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In the ever-evolving landscape of deep learning, novel designs of neural

network architectures have been thought to drive progress by enhancing

embedded representations. However, recent findings reveal that the embedded

representations of various state-of-the-art models are mappable to one another

via a simple linear map, thus challenging the notion that architectural variations

are meaningfully distinctive. While these linear maps have been established for

traditional non-adversarial datasets, e.g., ImageNet, to our knowledge nowork has

explored the linear relation between adversarial image representations of these

datasets generated by di�erent CNNs. Accurately mapping adversarial images

signals the feasibility of generalizing an adversarial defense optimized for a specific

network. In this work, we demonstrate the existence of a linear mapping of

adversarial inputs between di�erent models that can be exploited to develop

such model-agnostic, generalized adversarial defense. We further propose an

experimental setup designed to underscore the concept of this model-agnostic

defense. We train a linear classifier using both adversarial and non-adversarial

embeddings within the defended space. Subsequently, we assess its performance

using adversarial embeddings from other models that are mapped to this space.

Our approach achieves an AUROC of up to 0.99 for both CIFAR-10 and ImageNet

datasets.

KEYWORDS

linear mapping, adversarial defense, embedded representations, embeddings spaces,

cross-model defense, convolutional neural network architectures

1. Introduction

The rapid advancements in deep learning have led to remarkable breakthroughs in

various tasks, such as image recognition, natural language processing, and autonomous

driving. These achievements are widely attributed to increasingly innovative designs of

neural network architectures, which are believed to enhance the quality of embedded

representations. However, evidence from recent research into embedded representations has

found results that counter this narrative. Specifically, McNeely-White et al. (2022) found that

embedded representations of inputs within state-of-the-art models can be linked via a simple

linear map. The existence of this simple map suggests that, despite the architectural diversity,

the learned embedded representations may not be as distinctive as previously assumed.

In this study, we investigate the potential to harness this mapping to develop robust

defenses against adversarial attacks (i.e., imperceptible perturbations added to input data

that cause neural networks to incorrectly process inputs; Szegedy et al., 2014b). The crux

of our proposed defense is that an adversarial defense can be established for specific neural

network’s embedded space—then, other neural network’s embedded representations can be
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linearly mapped to that embedding space, leading to the detection

of adversarial attacks. We define the neural network with the

defense’s embedding space as the canonical embedding space.

In order for the defense designed for the canonical embedding

space to generalize to mapped inputs from other networks,

adversarial inputs into other networks would need to map to the

canonical space. We believe our work is the first to investigate

if such a mapping would be accurate—McNeely-White et al.

(2022) only experimented with mapping in-domain, unperturbed

inputs from datasets like ImageNet and IJB-C. Mapping adversarial

inputs between embedding spaces is a difficult problem because

adversarial inputs are typically generated for a specific network.

Thus, a source image that is adversarially perturbed by two different

networks, resulting in one image per network, is distinct because

each generated image is designed to fool a specific network. This

makes the mapping problem more difficult, and requires that any

adversarial defense for a canonical embedding space be robust to

these differences.

Our work investigated a defense proposed by Gorbett and

Blanchard (2022), utilizing a linear SVM to detect adversarial

inputs specific to a particular network. The SVM training

necessitates creating a dataset of potential attacks. While Gorbett

and Blanchard (2022) demonstrates robustness with sufficient data,

a drawback lies in the dataset requirement. By considering one

network as the canonical reference and mapping other networks

to that space, we overcome this limitation, needing training data

solely for the canonical network. Figure 1 provides a high-level

illustration of the concept.

In this research paper, we present the following key

contributions:

• Successful Linear Mapping of Adversarial Inputs: We

successfully establish connections between adversarial inputs

across diverse CNNs using a simple linear mapping. By

applying this technique to adversarial versions of MNIST,

CIFAR-10, and ImageNet datasets, we achieve Mean Squared

Error (MSE) scores, of mapped adversarial embeddings,

going as low as approximately 0, highlighting significant

similarities in the adversarial image embeddings of various

CNN architectures.

• Robust Cross-Model Adversarial Detection: We develop a

straightforward yet effective adversarial defense mechanism

based on a linear SVM approach. Remarkably, this defense

method, initially constructed for one model’s embeddings,

proves to be highly adept at detecting adversarial embeddings

from other models as well. The achieved Area Under the

Receiver Operating Characteristic (AUROC) scores, reaching

up to 0.99, demonstrate the robustness and generalizability of

our defense approach across different CNN architectures.

• By integrating linear mapping to build adversarial detection

method, ultimately, we propose a canonical adversarial

defense that accurately identifies adversarial inputs from a

range of networks and adversarially manipulated datasets.

Our paper adheres to the following structure: Section 2

presents a comprehensive review of related literature concerning

adversarial defense and linear mapping. In Section 3, we outline the

experimental setup, encompassing the definition of linear mapping,

selection of datasets, implementation of adversarial attacks, and

the chosen evaluation metrics. Sections 4, 5, and 7 contain the

details of conducted experiments, analysis of obtained results, and

discussion. Lastly, in Section 8, we provide concluding remarks

summarizing the overall findings and contributions of our research.

2. Related work

2.1. Adversarial defense

In recent years, the vulnerability of deep neural networks

(DNNs) to adversarial attacks has sparked significant interest,

leading to a growing body of research focused on interpreting

adversarial attacks (Han et al., 2023) and devising defense and

detection mechanisms (Khamaiseh et al., 2022). Various proposed

methods include augmenting input images to enhance robustness

against adversarial attacks (Frosio and Kautz, 2023), mapping

adversarial images back to the clean distribution (Li et al.,

2023), and using vector quantization (Dong and Mao, 2023).

Several studies have delved into gradient-based methods, including

leveraging sparse representation to counter adversarial attacks

(Gopalakrishnan et al., 2018), constraining the hidden space of

DNNs (Mustafa et al., 2019), and reducing the space of potential

adversarial examples (Xu et al., 2017).

In parallel, researchers have also explored the utilization of

manifold-related properties to address adversarial attacks. Notably,

Jha et al. (2018) observed that adversarial examples tend to deviate

from the data manifold as the intensity of attacks increases,

and this increasing distance can serve as a valuable cue for

detection. Moreover, Crecchi et al. (2019) employed the non-linear

dimensionality reduction technique t-SNE to identify adversarial

examples by detecting images lying outside the manifold in

localized pockets. Additionally, Feinman et al. (2017) introduced

kernel density and Bayesian uncertainty estimation methods for

adversarial detection, using the representations of unknown data

points in the last hidden layer to measure their distance within that

feature space. These manifold-based approaches present promising

avenues for fortifying DNNs against adversarial perturbations.

Another intriguing area for advancing adversarial defense

techniques lies in the development of pre-processing methods.

Recent studies by Blau et al. (2022) and Nie et al. (2022) have

introduced innovative defense strategies based on diffusion

processes, which prove effective in countering adversarial

attacks. Qiu et al. (2021) in their work, have put forth pre-

processing techniques aimed at mitigating gradient-based attacks.

Additionally, Zheng et al. (2020) have proposed a model-agnostic

defense approach that leverages affine transformations applied to

images as a pre-processing step. Our work distinguishes itself from

traditional pre-processing defense methods. Instead of modifying

the input data prior to model inference, we harness the output of

trained models as a foundation for constructing our adversarial

defense.

The utilization of information from latent layers for detecting

adversarial attacks has also received extensive attention. Bendale

and Boult (2016) introduced OpenMax as an alternative to the
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FIGURE 1

The idea of a model-agnostic defense: Adversarial embeddings from di�erent models are mapped to a target model with a defended space. The

mapped adversarial embeddings can then be e�ectively detected from non-adversarial embeddings using a simple linear classifier trained on the

adversarial and non-adversarial embeddings of the target model.

softmax layer, leveraging penultimate layer information to identify

unknown classes. Li and Li (2017) employed convolution layer

outputs to develop a cascade method for detecting adversarial

examples. In contrast, Gorbett and Blanchard (2022) demonstrated

that only penultimate layers carry sufficient information to

distinguish adversarial from non-adversarial images. Furthermore,

Jamil et al. (2023) highlighted the utility of intermediate ReLU

activation patterns for detecting adversarial images. These diverse

approaches underscore the significance of using latent layer

information for robust adversarial detection.

Our work aligns with the latter research endeavors, where

we capitalize on information from the penultimate layer to

construct a shared embedding space for various DNNs. This

shared space exhibits potential as a robust fortress for adversarial

defense. By mapping adversarial embeddings from different DNNs

onto this canonical space, our aim is to create a generalized

defense mechanism against adversarial attacks. This approach

holds promise for strengthening the security and robustness of deep

neural networks in the face of adversarial perturbations.

2.2. Linear mapping

Some researchers have directed their efforts toward

emphasizing the commonalities existing between different DNN

architectures concerning the learned features. For instance, in Lenc

and Vedaldi (2015), a comparison of the hidden representations

of DNNs in the convolutional layers was carried out through

regression analysis. Notably, a series of studies conducted by

McNeely-White et al. (2020), McNeely-White et al. (2021), and

McNeely-White et al. (2022), established a relationship among

DNNs by demonstrating that their hidden representations are

essentially similar, up to a single linear transformation. McNeely-

White et al. (2022) delved into the implications of these linear

mappings in the context of biometric security.

In our work, we build upon this concept and extend it to the

domain of adversarial attacks. We aim to investigate whether the

hidden network representations for adversarial data can also be

effectively mapped from one model’s embedding space to another

model’s space. By exploring the feasibility of such cross-model

mappings, we seek to uncover potential insights that may facilitate

the development of more robust adversarial defense strategies.

3. Experimental setup

This section presents the methodology for establishing a linear

mapping between a source network and a target network (see

Section 3.1). Additionally, it encompasses the details of the datasets

utilized in this study (see Section 3.2), the employed adversarial

attacks (see Section 3.3), and the evaluation metrics (see Section

3.4) used to assess the transferability of adversarial features.

3.1. Linear mapping

Given fA and fB as the source and target networks, respectively,

and X as the set of input images, we define a linear map denoted by

MA→B as follows:

f̃B(X) = MA→BfA(X), (1)

where f̃B(X) is the best approximation to fB(x) across a given

dataset, and the linear mapping MA→B is computed by solving a
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least square regression problem as follows:

minimize
M̃A→B

∑m
i=1 ‖M̃A→BfA(x)− fB(x)‖2. (2)

3.2. Datasets

To assess the transferability of adversarial information between

different architectures, we conduct a series of experiments. We

begin by testing with a simple dataset such as MNIST, and

subsequently, we validate its generalizability by extending the

evaluation to more complex datasets like CIFAR-10 and ImageNet.

This section provides an overview of the datasets utilized in the

experiments, as well as a detailed explanation of the methodology

used for generating the adversarial attacks.

3.2.1. MNIST
The MNIST dataset comprises a collection of 70,000 grayscale

images of handwritten digits, each measuring 28 × 28 pixels. The

dataset is further partitioned into a training set, containing 60,000

images, and a test set, containing 10,000 images. These images are

categorized into 10 classes, representing the digits from 0 to 9.

3.2.2. CIFAR-10
The CIFAR-10 dataset comprises 60,000 images that are

organized into 10 distinct classes. For training purposes, there are

50,000 images, and an additional 10,000 images are allocated for

testing. Each image within the dataset measures 32× 32 pixels.

3.2.3. ImageNet
In this study, we utilized the validation set from the ImageNet

dataset, consisting of 50,000 images spread across 1000 classes, with

50 images per class.

For the MNIST and CIFAR-10 datasets, we employed the

training set to train the models. Subsequently, the test set was

utilized to calculate the linearmapping and assess the transferability

of adversarial attacks.

As for the Imagenet dataset, we performed a train-test split on

the validation set. The training set was utilized to compute the

linear mapping, while the test set was employed to evaluate the

transferability of adversarial attacks.

3.3. Adversarial attacks

We generate adversarial datasets corresponding to MNIST,

CIFAR-10, and ImageNet datasets using the following adversarial

attack techniques.

3.3.1. Fast gradient sign method
The Fast Gradient Sign Method (FGSM) (Szegedy et al., 2014b)

is an efficient one-step adversarial attack technique. It introduces

small perturbations δ to the input data x based on the gradient ▽x

of the loss function J with respect to the input. The perturbations

are scaled by a small positive scalar ǫ, and their direction is

determined by the sign of the gradient. This method causes

misclassification by the targeted machine learning model. The

mathematical representation is as follows:

δ = ǫ · sign
(

▽xJ
(

8, x, y
))

, (3)

where ǫ is the scaling factor and sign denotes the sign function.

This technique is widely used for crafting adversarial examples to

evaluate the robustness of machine learning models.

3.3.2. Projected gradient descent
In contrast to FGSM, Projected Gradient Descent (PGD)

(Madry et al., 2017) is an iterative adversarial attack method that

computes perturbations using gradients and then restricts them

within a specified perturbation bound. This iterative approach leads

to more robust attacks as the perturbations are constrained to

remain within an acceptable range. The iterative perturbation can

be expressed as follows, where α represents the perturbation step

size:

δt+1 = clip
ǫ
(δt + α · sign

(

▽xJ
(

8, x+ δt , y
))

). (4)

Here, clip
ǫ
denotes a function that ensures the perturbations stay

within the specified range, ǫ.

3.3.3. Carlini and Wagner attack
The Carlini and Wagner attack (Carlini et al., 2019) is

an optimization-based adversarial technique that efficiently finds

small perturbations to cause misclassification in a fixed input

image. By minimizing a distance metric between the original

and perturbed images, the attack strikes a balance between

misclassification confidence, perturbation size, and the distance

norm. This approach aims to generate potent and subtle adversarial

perturbations for evading machine learning models effectively.

3.3.4. DAmageNet
DAmageNet (Chen et al., 2019) presents a transferable

adversarial attack strategy that leverages attention heatmaps to

create universal adversarial samples. By directing the attention to

irrelevant regions in the image, it induces misclassification, taking

advantage of shared attention patterns across diverse deep neural

networks. This technique has proven to be effective in causing

misclassification across a wide range of models, demonstrating its

potency in generating robust adversarial samples.

In our experimental setup, we employed the Fast Gradient

Sign Method (FGSM) attack to create adversarial datasets for the

MNIST, CIFAR-10, and ImageNet validation datasets. For each

dataset, we set the perturbation magnitude (ǫ) to the values of 0.02,

0.05, and 0.01, respectively.

However, for the ImageNet experiments, we extended our

evaluation to include more sophisticated attacks, such as PGD,

C&W attack, and the DamageNet attack. The adversarial dataset

corresponding to the ImageNet validation set, generated with the

DamageNet attack, was directly obtained from reliable source on

the web.
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3.4. Testing and evaluation metrics

3.4.1. Mean squared error
To evaluate the effectiveness of a linear mapping, we use

the Mean Squared Error (MSE) metric. This involves calculating

the MSE between the target embeddings and their corresponding

linearly mapped source embeddings. For each pair of embeddings,

we compute the squared differences between their elements, sum

up these squared differences, and then take the average across all

pairs. This resulting average MSE score represents how well the

linear mapping transforms embeddings from one space to another.

Lower MSE values indicate a more accurate and robust linear

mapping.

3.4.2. Linear SVM classifier
To assess the effectiveness of linear mapping for deep neural

networks with adversarial images, we adopt a linear SVM classifier.

As demonstrated in a prior study (Gorbett and Blanchard, 2022),

adversarial image embeddings can be distinguished from non-

adversarial image embeddings using a linear SVM. To evaluate the

mapping’s efficacy, we train a linear SVM classifier on embeddings

generated by one model to discern between adversarial and

non-adversarial image embeddings. Additionally, we investigate

whether the mapped adversarial embeddings, linearly transformed

from a different network’s embedding space to the target network’s

space, remain distinguishable from the non-adversarial image

embeddings. To quantify the SVM’s performance, we measure the

area under the receiver operating characteristic curve (AUROC)

metric.

4. Experiments

For CIFAR-10 and MNIST datasets, each comprising two sets:

train and test. These sets consist of original images and their

corresponding adversarial counterparts generated using the FGSM

attack mentioned in Section 3.4.1.

In the case of ImageNet, we utilize pretrained models, leading

to a dataset that solely contains test data. This dataset encompasses

both original images and their corresponding adversarial images

crafted through all the mentioned adversarial attacks given in

Section 3.3.

For MNIST, we use two straightforward architectures: one

comprising convolution layers and the other a feed-forward

neural network (FFNN). For CIFAR-10, we employ EfficientNet

(Tan and Le, 2020), ResNet-18 (He et al., 2015), MobileNetV2

(Sandler et al., 2019), GoogLeNet (Szegedy et al., 2014a), and

VGG-19 (Simonyan and Zisserman, 2015) architectures. These

networks were trained solely on the original images from the

MNIST and CIFAR-10 training sets, respectively. In the case of

ImageNet, we use pre-trained models, namely ResNet-50, ResNet-

101, ResNet-152 (He et al., 2015), VGG-19, Inception-v3 (Szegedy

et al., 2014a) and Vision Transformer (Dosovitskiy et al., 2020),

which have been trained on the ImageNet training dataset. The

classification accuracy on original test dataset and corresponding

FGSM adversarial dataset of each of these models, evaluated using

the test set, along with the size of the penultimate layer, are

summarized in Table 1.

In these experiments, we initially construct a linear classifier

trained to discriminate between the adversarial embeddings

and original embeddings of a target model. Subsequently, we

demonstrate that the trained classifier also effectively distinguishes

these original embeddings from adversarial embeddings that are

mapped from a source model to this target model.

To conduct this investigation, we designate a model as the

target model and proceed to map the adversarial and original

features from the embedding spaces of other models to the

embedding space of this target model using MNIST and CIFAR-

10 datasets with specified neural architectures. We then expand

this approach to the ImageNet dataset, employing one neural

architecture as the target model and several other architectures as

source models. The experiment involves dividing the validation

dataset into three distinct splits: map, svm, and val. For each

split, we calculate the embeddings of the networks from their

penultimate layer, which are denoted as XA
map, X

A
svm, X

A
val
, with A

representing the network under consideration.

Given two networks, a source network denoted by s and a target

network denoted by t, we train a linear SVM using the embeddings

Xt
svm from the target network. This SVM classifier is trained with

binary labels to distinguish between adversarial and original data.

Then, we learn a linear mapping denoted as Ms→t that aligns the

embeddings Xs
map with Xt

map by solving model (2). Subsequently,

we obtain the mapped embeddings X
′

val
by applying Ms→t to the

validation data, Xs
val
, i.e., X

′

val
= Ms→tX

s
val
. We then measure the

strength of this mapping using the MSE metric, as mentioned in

Section 3.4.1.

To assess adversarial transferability, we replace the validation

data of target network, Xt
val
, with X

′

val
obtained from linear

mapping process. Next, we evaluate the modified data on the linear

SVM trained on the target model’s embeddings. The extent of

transferability is quantified by measuring the SVM classification

accuracy on the data which is the source model’s adversarial and

original embeddings after being linearly mapped to the target

model’s embedding space (see Section 3.4.2). The procedure is

formally described in Algorithm 1.1

5. Results

5.1. Linear mapping for MNIST

Initially, we investigated the feasibility of linearly mapping

adversarial images from theMNIST dataset and using a linear SVM

to identify the adversarial images. Using a convolutional neural

network (CNN) and a feed-forward neural network (FFNN) and

evaluating mapping between both, we found the SVM was able to

accurately identify adversarial images with 99.4% accuracy (CNN

→ FFNN) and 99.5% accuracy (FFNN → CNN) with ǫ = 0.02—

notably, these results were consistent across various epsilon values.

This mirrors the accuracy of the SVM’s performance on the original

embedding space (99.8% for CNN; 99.9% for FFNN).

1 The “+” in step 1 of the Algorithm 1 indicates the concatenation of two

sets.
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TABLE 1 Classification accuracies for DNNs trained and evaluated on MNIST, CIFAR-10, and ImageNet and their corresponding adversarial datasets.

Datasets Model names Latent layer dimension size Classification accuracy

Original data (%) Adversarial data (%)

MNIST
CNN 128 99.16 88.42

FFNN 128 97.98 58.27

CIFAR-10

EfficientNet-B0 320 85.20 39.31

ResNet-18 512 95.42 44.09

VGG-19 512 93.51 48.41

MobileNet-V2 1,280 92.85 41.13

GoogLeNet 1,024 95.75 45.49

ImageNet

ResNet-50 2,048 75.68 48.50

ResNet-101 2,048 76.92 64.41

ResNet-152 2,048 78.08 66.49

VGG-19 25,088 72.16 59.43

Inception-V3 2,048 77.20 66.37

Vision Transformer 768 81.02 74.18

The adversarial data is created using FGSM attack with ǫ = 0.02, 0.05, and 0.01, respectively.

Require: Xi
map, Xi

svm, Xi
val where i = t, s

Ensure: AUROCsvm

1) Identify:

Xi
map = Xorgimap + Xadvimap

Xi
svm = Xorgisvm + Xadvisvm

Xi
val = Xorgival + Xadvival

2) Train a linear SVM with Xadvisvm +Xorgisvm

for i = t

3) Learn a linear mapping Ms→t using (2) with

fA(x) = Xs
map and fB(x) = Xt

map,

calculate X
′

val = Ms→tX
s
val

4) Evaluate SVM with X
′

val = Xadv
′

val + Xorg
′

val

5) Calculate AUROCsvm

Algorithm 1. Cross-network adversarial mapping and detection.

5.2. Linear mapping for CIFAR-10

Table 2 presents the MSE scores between the adversarial

embeddings of the target space and the ones mapped from the

source model embedding space to the target model embedding

space. The recorded lowest MSE values are 0.003 and 0.004 when

adversarial embeddings are mapped to the space of GoogLeNet and

MobileNet, respectively. Even when other models are considered as

the targetmodel, theMSE values remain remarkably low, indicating

the overall efficiency of the linear mappings.

The architectures employed in the experiments demonstrate

varying accuracies on non-adversarial and adversarial data

(Table 1). EfficientNet-B0, with an accuracy of only 85%, is

particularly vulnerable to adversarial attacks, achieving a mere

39.31% accuracy when exposed to such perturbations. Table 3

illustrates that when adversarial embeddings are mapped to

the low-performing EfficientNet-B0, its ability to distinguish

adversarial images from non-adversarial ones decreases. On

the contrary, for ResNet-18, which exhibits better classification

accuracy on original data, the mapped adversarial embeddings

retain more distinctive features, enabling their effective separation

from original images. These results show that the separability of

adversarial embeddings seems to be contingent on the model’s

ability to classify the original data accurately. In other words, if

the model performs well in classifying the original data, it tends to

achieve better separability of adversarial embeddings as well.

These findings were obtained using the FGSM adversarial

attack with ǫ = 0.05. However, the transferability of adversarial

features appears to be less dependent on the perturbation level,

consistent with our observations from the MNIST experiments.

5.3. Linear mapping for ImageNet

Building upon the insights gained fromMNIST and CIFAR-10,

where linear mapping for adversarial data between different CNN

architectures proved effective, we propose a shared embedding

space concept, leveraging the ImageNet dataset. Specifically, we

utilize ResNet-152’s penultimate layer as the shared space, mapping

adversarial embeddings from other networks onto it. Table 4 shows

the MSE scores between the adversarial embeddings generated

by ResNet-152 and the ones mapped to it from various CNNs.

The overall MSE values are very low, except for VGG-19 where

we observe notably higher MSE scores. We hypothesize that this

discrepancy can be attributed to the high dimensionality of the

VGG-19 embedding space. This trend appears to persist across our

subsequent experiments, suggesting a consistent challenge posed by

the intricately layered embedding space of VGG-19. Interestingly,

the attention based model, ViT, shows very low MSE scores,

signifying linear mapping can be easily learnt between CNN and

attention based architectures.
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TABLE 2 MSE scores (3.4) for the trained linear mapping between source and target adversarial embeddings for CIFAR-10.

Target

Source E�cientNet-B0 ResNet-18 VGG-19 MobileNet GoogLeNet

EfficientNet-B0 0.000 0.017 0.022 0.017 0.018

ResNet-18 0.020 0.000 0.011 0.013 0.010

VGG-19 0.037 0.018 0.000 0.025 0.021

MobileNet 0.006 0.004 0.005 0.000 0.004

GoogLeNet 0.007 0.003 0.004 0.004 0.000

TABLE 3 AUROC scores for classification of mapped original and adversarial image embeddings from the sourcemodel using a linear SVM trained on

targetmodel’s embeddings for CIFAR-10 dataset.

Target

Source E�cientNet-B0 ResNet-18 VGG-19 MobileNet GoogLeNet

EfficientNet-B0 0.907 0.942 0.886 0.899 0.922

ResNet-18 0.907 0.995 0.939 0.979 0.988

VGG-19 0.899 0.979 0.943 0.974 0.972

MobileNet 0.904 0.991 0.936 0.989 0.983

GoogLeNet 0.902 0.987 0.928 0.978 0.985

An AUROC score of 1 indicates the best performance, with values close to 1 considered indicative of good classification performance.

TABLE 4 MSE scores for the linear mapping trained on original and

adversarial embeddings for ImageNet between various models and

ResNet-152.

Test data Adversarial attacks

FGSM PGD DamageNet C&W

ResNet-50→

ResNet-152

0.0672 0.0871 0.0851 0.0882

ResNet-101→

ResNet-152

0.0583 0.0747 0.0792 0.0813

VGG-19→

ResNet-152

0.817 0.8439 0.8127 0.8971

Inception-V3→

ResNet-152

0.1058 0.1084 0.1124 0.1146

ViT→ ResNet-152 0.1368 0.1423 0.1508 0.144

The arrow indicates the direction of the linear map, with ResNet-152 as the target model and

all other models serving as sourcemodels.

Moreover, Table 5 presents the AUROC values obtained

from the linear SVM classification. Firstly, it shows the results

for ResNet-152 generated using adversarial and non-adversarial

embeddings (1st row). Subsequently, it demonstrates the

performance of the linear SVM when applied to the adversarial

embeddings mapped to ResNet-152 space from other models’

embedding space. The AUROC scores range from 0.75 to 0.99,

which represents an impressive range, highlighting the excellent

performance of the linear SVM. These results demonstrate that

different DNNs learn similar adversarial features, facilitating

successful mapping and accurate detection using a binary classifier.

We also perform the similar experiment while making the ViT

as the target model and mapped the embeddings from all CNN

architectures to its space. The AUROC scores for the SVMdetection

is given is Table 6. It is interesting to observe that the attention

TABLE 5 AUROC scores for classification of mapped original and

adversarial image embeddings from various models using a linear SVM

trained on ResNet-152 model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

ResNet-152 0.9885 0.9932 0.9995 0.999

ResNet-50→

ResNet-152

0.9874 0.9913 0.9991 0.999

ResNet-101→

ResNet-152

0.9862 0.9926 0.9993 0.999

VGG-19→

ResNet-152

0.7584 0.7453 0.8572 0.8764

Inception-V3→

ResNet-152

0.9635 0.9434 0.9721 0.9886

ViT→ ResNet-152 0.9721 0.9686 0.9959 0.9955

The arrow indicates the direction of the linear map, with ResNet-152 as the target model and

all other models serving as sourcemodels.

based architecture does not affect the quality of learnt linear map

and the results are consistent with when the embeddings were

mapped to ResNet-152’s space.

Remarkably, the linear mapping is trained exclusively on

adversarial images; however, during detection, when differentiating

adversarial embeddings from other models with non-adversarial

embeddings from ResNet-152, the SVM performs comparably

or even better. This observation indicates that adversarial

information within an image can be linearly transferred, alongside

the image embeddings themselves, to a different CNN space.

Consequently, this idea hints at the potential for a unified and

transferable representation of adversarial features across diverse

DNN architectures within the ImageNet dataset.
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5.4. Mapped embeddings adversarial
classification accuracy

To assess whether the embeddings, once mapped to

the target network, maintain their adversarial nature, we

conducted an experiment to measure the classification accuracies

achieved by the target models. Specifically, we recorded the

classification accuracies of the target models when provided

with embeddings mapped to their respective embedding spaces.

The results are presented in Table 7, showcasing both the

average accuracies across different source models and their

standard deviations.

Table 7 reveals a notable trend—the classification accuracy of

the target models closely aligns with their adversarial accuracies

(as indicated in column 3 of Table 7). This observation underscores

the effectiveness of our mapping approach in preserving adversarial

characteristics during the transfer.

However, it’s worth noting that when considering the

ImageNet dataset, we observed a higher standard deviation,

particularly due to the mapping process from the VGG-19

embedding space. This outcome can be attributed to the inherent

challenges posed by the substantial disparity in dimensions

between the source and target embeddings, a point previously

discussed.

TABLE 6 AUROC scores for classification of mapped original and

adversarial image embeddings from various models using a linear SVM

trained on Vision Transformer (ViT) model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

ViT 0.9799 0.9755 0.9973 0.9972

ResNet-50→ ViT 0.9815 0.9837 0.9978 0.9992

ResNet-101→ ViT 0.9793 0.9850 0.9985 0.9991

ResNet-152→ ViT 0.9797 0.9849 0.9986 0.9992

VGG-19→ ViT 0.7083 0.7001 0.8096 0.8106

Inception-V3→

ViT

0.9610 0.9385 0.9707 0.9863

The arrow indicates the direction of the linear map, with ViT as the targetmodel and all other

models serving as sourcemodels.

6. Comparison with other method

Our proposed method is the first to demonstrate the existence

of a linear mapping between adversarial image representations of

twomodels and leverages this insight to construct a model-agnostic

adversarial defense.

We illustrate the possibility of this linear mapping using

a simple baseline—a linear Support Vector Machine (SVM)—

to create a model-agnostic detection method. We compare our

baseline with the adversarial detection method proposed by Harder

et al. (2021). The experiments in this section provide a comparative

analysis. Specifically, we calculate the magnitude and phase of

Fourier transforms for the penultimate layer embeddings and

utilize them to establish a linear mapping. We then proceed to

train a linear SVM classifier, following the procedure outlined in

Algorithm 1.

To facilitate a comprehensive comparison, we selected ResNet-

152 and Vision Transformer (ViT) as our target models, and

mapped theMagnitude Fourier Spectrum (MFS) and Phase Fourier

Spectrum (PFS) embeddings from various source models into the

spaces of these target models. Our findings, as presented in Tables 8,

9, offer valuable insights.

Notably, when utilizing the mapped MFS embeddings, we

observed that linear SVM did not exhibit strong performance, as

indicated by relatively low AUROC scores across all adversarial

attacks. In contrast, our method, which involves directly learning

the linear mapping using the model’s native embeddings,

consistently outperformed the mapped MFS approach.

Furthermore, our analysis reveals that PFS presents an

intriguing facet. It demonstrates superior performance when

compared to mapped MFS embeddings, suggesting that phase

information is amenable to linear mapping. However, it’s worth

highlighting an interesting observation: while PFS performs

well within the realm of CNN-based architectures, its efficacy

diminishes when applied to the mapping from attention-based

architectures to CNN-based ones, as evidenced by lower AUROC

scores in Table 8.

Notably, when all models are mapped to ViT space, the

performance of PFS exhibits a slight decrease (see Table 9)

compared to our proposed method. This underscores the

adaptability and robustness of our approach, particularly in

scenarios involving attention-based architectures.

TABLE 7 Adversarial classification accuracies of embeddings from di�erent models mapped to the target model for FGSM attack.

Datasets Target models Adversarial accuracy of target model Mapped accuracy for adversarial dataset

Cifar-10

EfficientNet-B0 39.31 41.90± 1.48

ResNet-18 44.09 40.55± 4.83

VGG-19 48.41 39.6± 4.02

MobileNet 41.13 42.125± 3.24

GoogleNet 45.49 40.825± 4.134

ImageNet
ResNet-152 66.49 52.30± 19.21

ViT 74.18 46.75± 20.01

Accuracies are represented as the average of various accuracies with the standard deviations. The high standard deviation in ResNet-152 and Vision Transformer comes from the poor

performance of VGG-19 mapped to ResNet-152 and ViT having accuracies (16.6 and 8.9%), respectively.
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TABLE 8 AUROC scores for classification of mapped original and adversarial image magnitude Fourier spectrum (MFS) and phase Fourier spectrum (PFS)

from various models using a linear SVM trained on ResNet-152 model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

MFS PFS MFS PFS MFS PFS MFS PFS

ResNet-152 0.823 0.966 0.816 0.967 0.958 0.995 0.986 0.998

ResNet-50→ ResNet-152 0.804 0.969 0.820 0.954 0.945 0.993 0.985 0.999

ResNet-101→ ResNet-152 0.793 0.961 0.778 0.961 0.942 0.995 0.978 0.999

VGG-19→ ResNet-152 0.562 0.692 0.548 0.692 0.658 0.779 0.702 0.811

Inception-V3→ ResNet-152 0.621 0.934 0.514 0.514 0.803 0.940 0.769 0.968

ViT→ ResNet-152 0.606 0.894 0.544 0.868 0.803 0.980 0.721 0.965

The arrow indicates the direction of the linear map, with ResNet-152 as the target model and all other models serving as sourcemodels.

TABLE 9 AUROC scores for classification of mapped original and adversarial image magnitude Fourier spectrum (MFS) and phase Fourier spectrum (PFS)

from various models using a linear SVM trained on Vision Transformer (ViT) model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

MFS PFS MFS PFS MFS PFS MFS PFS

ViT 0.577 0.884 0.549 0.858 0.813 0.980 0.676 0.963

ResNet-50→ ViT 0.614 0.947 0.521 0.921 0.865 0.989 0.835 0.993

ResNet-101→ ViT 0.595 0.937 0.562 0.925 0.858 0.991 0.841 0.992

ResNet-152→ ViT 0.604 0.934 0.565 0.922 0.847 0.990 0.834 0.993

VGG-19→ ViT 0.524 0.639 0.499 0.616 0.594 0.737 0.562 0.741

Inception-V3→ ViT 0.549 0.895 0.483 0.835 0.704 0.935 0.703 0.950

The arrow indicates the direction of the linear map, with ViT as the target model and all other models serving as sourcemodels.

In summary, our exploration of MFS and PFS mappings

reveals interesting results. While PFS demonstrates promise,

especially within the CNN domain, our method of direct linear

mapping using model embeddings consistently delivers superior

performance across various model architectures and adversarial

attacks.

We also observed a notable variation in results when using

different adversarial attack methods. For instance, the performance

is better with DAmageNet images, likely due to their higher level of

perturbation (MSE = 2.97 across the dataset) compared to FGSM

(0.013), PGD (1.83), and C&W (1.05).

7. Discussion

To our knowledge, this is the first work to establish that

adversarial features can be efficiently mapped between diverse

DNN architectures. This novel discovery indicates the feasibility

of creating a robust canonical embedding space that is resistant to

adversarial inputs. This involves mapping adversarial embeddings

from other DNNs to this canonical embedding and utilizing the

canonical defense for identifying adversarial inputs. In this work,

we establish the feasibility of a simple model-agnostic defense using

an SVM—however, future work needs to explore the feasibility of

alternative solutions for adversarial defense.

It is important to note that while this mapping does require data

from the source model during its establishment, it subsequently

enables the efficient detection of adversarial inputs. This detection

process involves a minimal computational overhead, primarily

consisting of matrix multiplication. The distinct advantage of

our approach lies in its model-agnostic nature, allowing multiple

models to achieve robustness against adversarial attacks through

a shared and efficient detection mechanism. In contrast, model-

dependent defense methods, although also requiring access to data,

are inherently tied to specific model architectures and demand

customization for each model.

These linear mappings raise intriguing possibilities for

understanding the learned representations across different

modalities, such as linking vision and language representations.

Moreover, the implications extend to leveraging these mappings

for practical purposes. For instance, mapping image embeddings

to language embeddings may enhance the performance of language

models in their respective tasks.

Our work also provide valuable insights into how one could

consider the influence of architecture on a learned representation.

If high performing models have ultimately learned similar

representations, areas like neural architecture search (NAS) may

consider shifting their focus to identifying higher performing

representations—there is some work in this domain, such as the

hypothesis by Blanchard et al. (2019) that learned representations

that mirror biology, by grouping similar-looking objects in the
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embedded representations, enhance robustness. The methodology

for evaluating this shift in focus has been established by works like

Radford et al. (2021), who evaluated their learned representation by

testing generalization to new tasks in a zero-shot context.

There are of course further investigations that need to be

done for non-traditional training paradigms and architectures.2

For example, what is the feasibility linear of mapping between

generative models, such as Variational Autoencoders (VAEs),

Generative Adversarial Networks (GANs), and CNNs? Do linear

methods suffice for mapping from VAE spaces to CNN spaces,

or are non-linear methods required? Despite initial appearances

suggesting differences in the organization of VAEs’ latent spaces,

exploring the degree of dissimilarity from a linear relationship

could yield valuable insights. Understanding the connections

between these distinct embedding spaces will open avenues for

leveraging the respective strengths of generative models and

CNNs. Are there hybrid approaches that capitalize on the unique

capabilities of each architecture? How can hybrid approaches

facilitate the development of more powerful and adaptable AI

systems?

Overall, our novel findings offer valuable insights into

the interplay between adversarial features and neural network

embeddings. This work paves the way for investigating novel

model-agnostic defense strategies that transcend the limitations of

individual architectures. Such defensesmay enablemore robust and

reliable deep learning systems in the face of adversarial challenges.

8. Conclusion

In this study, we showcase the remarkable shared commonality

in representations of adversarial images across a diverse set of deep

neural networks (DNNs). This interchangeability is made possible

through a straightforward linear mapping technique, typically

using the DNNs penultimate layers. To our knowledge, this is

the first work to establish that adversarial inputs are mappable

across DNNs. Further, we capitalize on our novel finding to

introduce the concept of a model-agnostic adversarial defense

that leverages the transferability of adversarial features across

representations. We develop a canonical adversarial defense, map

adversarial embeddings from other models to that canonical space,

and show adversarial inputs can be accurately identified without

any additional training. The feasibility of linearly transforming

2 Assuming the “traditional” paradigm is architectures trained for

classification.

adversarial features presents promising prospects for developing a

more robust model-agnostic adversarial defense, provides insights

for understanding and evaluating learned representations, and

opens the door for a wealth of future research that capitalizes on

these linear mappings.
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