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We are interested in benchmarking both quantum annealing and classical

algorithms for minimizing quadratic unconstrained binary optimization (QUBO)

problems. Such problems are NP-hard in general, implying that the exact

minima of randomly generated instances are hard to find and thus typically

unknown. While brute forcing smaller instances is possible, such instances are

typically not interesting due to being too easy for both quantum and classical

algorithms. In this contribution, we propose a novel method, called posiform

planting, for generating random QUBO instances of arbitrary size with known

optimal solutions, and use those instances to benchmark the sampling quality

of four D-Wave quantum annealers utilizing di�erent interconnection structures

(Chimera, Pegasus, and Zephyr hardware graphs) and the simulated annealing

algorithm. Posiform planting di�ers from many existing methods in two key

ways. It ensures the uniqueness of the planted optimal solution, thus avoiding

groundstate degeneracy, and it enables the generation of QUBOs that are

tailored to a given hardware connectivity structure, provided that the connectivity

is not too sparse. Posiform planted QUBOs are a type of 2-SAT boolean

satisfiability combinatorial optimization problems. Our experiments demonstrate

the capability of the D-Wave quantum annealers to sample the optimal planted

solution of combinatorial optimization problems with up to 5, 627 qubits.

KEYWORDS

quantum annealing (QA), QUBOproblem,MAX-2-SAT, planted solution, time-to-solution,

combinatorial optimization problem, boolean satisfiability (SAT), quadratic unconstrained

binary optimization

1 Introduction

Many important NP-hard optimization problems can be easily expressed in a QUBO

(quadratic unconstrained binary optimization) or an Ising form (Lucas, 2014), given by the

quadratic function

Q(x1, . . . , xn) =

n∑

i=1

aixi +
∑

i<j

aijxixj (1)

in n ∈ N binary variables. In Equation (1), the linear weights ai ∈ R and the quadratic

couplers aij ∈ R define the problem under investigation and are chosen by the user. The

assignments of the variables xi for i ∈ {1, . . . , n} are unknown, and we seek a configuration

of (x1, . . . , xn) minimizing Equation (1). If xi ∈ {0, 1}, then Equation (1) is called a QUBO

problem, and if xi ∈ {−1,+1}, then it is called an Ising model.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1275948
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1275948&domain=pdf&date_stamp=2023-11-21
mailto:ghahn@hsph.harvard.edu
https://doi.org/10.3389/fcomp.2023.1275948
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1275948/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hahn et al. 10.3389/fcomp.2023.1275948

Since many NP hard problems can be formulated as QUBO

models, it is of interest to efficiently compute the optimal

solution(s) of general QUBO problems. To this end, researchers

have developed a variety of classical approaches (Kirkpatrick et al.,

1983; Boros et al., 2006, 2007) to compute solutions of high

quality that minimize Equation (1). Quantum annealing offers an

experimental route to sample combinatorial problems. Quantum

annealing is a type of analog quantum computation that uses

quantum fluctuations to attempt to arrive at an optimal (or a very

good) minimum of Equation (1) (Kadowaki and Nishimori, 1998;

Das and Chakrabarti, 2008; Morita and Nishimori, 2008; Hauke

et al., 2020). The quantum annealing algorithm has been physically

instantiated in a number of ways, including superconducting flux

qubit hardware that is manufactured by D-Wave Systems, Inc.

The D-Wave quantum annealers have been evaluated for sampling

a large number of different types of problems, typically focusing

on combinatorial optimization problems or Hamiltonian dynamics

(Boixo et al., 2013, 2014, 2016; Lanting et al., 2014; Venturelli

et al., 2015; Harris et al., 2018; King et al., 2021, 2022, 2023;

Tasseff et al., 2022). D-Wave quantum annealing devices offer on

the scale of hundreds to thousands of qubits, but are still subject

to connectivity constraints, control errors, and noise from the

environment (Pearson et al., 2019; Lanting et al., 2020; Nelson et al.,

2021; Zaborniak and de Sousa, 2021; Grant and Humble, 2022;

Pelofske et al., 2023). Tomap a QUBOQ of Equation (1) directly on

the hardware chip of a quantum annealer, its connectivity structure

should be consistent with the connectivity structure of the quantum

device. Specifically, each variable xi is mapped to a distinct qubit qi.

For each non-zero coefficient aij, there should be a coupler (direct

link) between qubits qi and qj. If a direct embedding is not possible,

then a minor embedding of the graph representing the sparsity

structure of the QUBO Q onto the graph defined by the hardware

structure can be used (Choi, 2008, 2011; Könz et al., 2021; Marshall

et al., 2022). However, the number of qubits required in that case

may grow quadratically with the size of Q.

To better assess the capabilities of both classical and

quantum approaches for sampling (approximate) solutions of

combinatorial optimization problems, methods are needed that

generate benchmark problems with (ideally) known solutions.

Two strategies exist to achieve this goal. First, one can generate

problems of the type of Equation (1) with randomly sampled

linear and quadratic weights, and then brute force them. However,

brute forcing is only feasible for problems with a relatively small

number of variables (roughly 30 variables for full brute force

computations). Second, methods have been developed that allow

one to generate QUBO problems with planted solutions, that is,

problems generated to have a solution that is specified a priori.

A detailed overview of such methods is given in Section 1.1.

Importantly, existing methods often have two shortcomings.

Many approaches only ensure that the generated problem has

a minimum at the planted solution, but do not guarantee its

uniqueness. Moreover, for many methods, the sparsity structure of

the generated QUBO cannot be chosen, which means the QUBO

cannot directly be solved on certain hardware devices. Naturally,

since the minimization of Equation (1) is NP-hard, all methods

exploit some form of shortcut or mathematical device to generate

large problems with non-trivial structures and known solutions.

In this contribution, we introduce a new method to generate

QUBO problems of the type of Equation (1) with a single

planted solution. The method is called posiform planting, in

reference to the mechanism we exploit that generates a QUBO in

posiform representation. The posiforms are converted to QUBOs

only at a later stage when the solution has been planted. Two

features of our algorithm are noteworthy. First, it guarantees the

uniqueness of the planted solution. Moreover, the connectivity

structure of the QUBO can, in principle, be chosen freely.

Naturally, the generated QUBOs need to have at least a certain

number of quadratic terms to guarantee the uniqueness of the

planted solution and thus cannot be too sparse, although this

also depends on the solution being planted. In contrast to some

existing solution-planting methods, such as the tile planting or

deceptive cluster loops methods of the Chook toolbox (Perera et al.,

2021), posiform planting generates QUBO problems which include

linear terms.

The adaptation to an arbitrary connectivity structure is

of importance when generating problems that are tailored to,

for instance, the qubit connectivity structure of the D-Wave

quantum annealers. In particular, the physical qubits across

currently existing D-Wave generations use connections determined

by Chimera, Pegasus, or Zephyr graphs (Dattani et al., 2019;

Boothby et al., 2020). Being able to tailor the generated problems

to any arbitrary architecture allows one to generate much

larger benchmark problems compared to the case where the

problems cannot be directly embedded, thus necessitating the

computation of a minor embedding onto the D-Wave QPU

chip structure.

One of the properties of the transverse field driver in

quantum annealing and other approximate quantum optimization

algorithms is that degenerate ground states are not in general

sampled uniformly (Matsuda et al., 2009; Mandrà et al., 2017;

Zhang et al., 2017; Könz, 2019; Könz et al., 2019; Kumar et al.,

2020; Pelofske et al., 2021; Nelson et al., 2022). Posiform planting

guarantees the uniqueness of the planted optimal solution. Thus,

any use cases in which biased sampling of degenerate solutions

needs to be avoided could benefit from posiform planting. Some

use cases in which biased sampling of degenerate solutions

should be avoided include the estimation the ground-state entropy

of a degenerate physical systems, estimating the count of the

total number of solutions in combinatorics or the estimation

of ground state probabilities in industrial applications where

the problem has several solutions by design (Mandrà et al.,

2017).

This article is structured as follows. After a literature review

in Section 1.1, we introduce the idea of posiform planting

in Section 2. We evaluate the QUBO problems generated

by posiform planting on D-Wave devices using both native

connectivity (using the Chimera, Pegasus, and Zephyr hardware

graphs), and arbitrarily connected minor embedded problem

instances (Section 3). The hardware native QUBOs are also

sampled using the classical heuristics simulated annealing and

steepest gradient descent. The article concludes with a discussion

in Section 4. Data and extra figures generated from this

research are publicly available as a Zenodo dataset (Hahn et al.,

2023).
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1.1 Literature review

A variety of contributions in the literature focus on the

generation of QUBO or Ising models of the type of Equation (1)

that can serve as benchmark problems. These methods can be

grouped according to the underlying mechanism they use to

generate problems and the properties they guarantee. Originally,

this property of known planted solutions was introduced

from satisfiability problems (Barthel et al., 2002; Krzakala and

Zdeborová, 2009).

One popular way to generate problems is with the help

of frustrated loops, meaning Ising models of the form Q =∑M
j=1 Qj, where each Qj only contains a subset of the variables. For

instance, Hen et al. (2015) and King A. D. et al. (2015) generated

frustrated Ising models with tunable hardness, though the authors

explicitly pointed out that they cannot guarantee uniqueness.

Similar methods are the so-called tile-planting (Perera et al., 2020)

and patch-planting for Ising models (Wang et al., 2017). In Pei et al.

(2020), the authors generate weighted MAX-2-SAT instances with

the help of frustrated loops that have known solutions. Notably, the

hardness of their problems can be tuned through a parameter called

the frustration index.

One major drawback of many published planted solution

methods is the fact that they do not guarantee the uniqueness

of the planted solution, meaning that the input configuration

is only guaranteed to be one of a possibly unknown number

of minima. A notable exception is Kowalsky et al. (2022), who

ensure the uniqueness of solution with an approach based on

equation planting. However, the resulting QUBOs have a very

special form as each linear equation is required to contain exactly

three binary variables.

Another route is called equation planting, that is, the generation

of QUBO problems from a set of (linear) equations. In Hen (2019),

the author considers a set of linear equations modulo 2 to pin

down the bitstring to be planted, and then recasts it as an Ising

model. Their method is based on the experimental observation

that although linear equations are easy to solve, they disguise the

solution well for machines when being recast as an optimization

problem. According to the author, equation planting guarantees the

uniqueness of the planted solution. However, tailoring the instances

to a given connectivity structure is not mentioned.

A popular tool for generating binary optimization problems

with planted solutions is the Chook toolbox of Perera et al. (2021).

Chook implements several approaches, such as “tile planting,”

“Wishart planting,” “equation planting,” and “k-local planting.”

However, none of those approaches guarantees uniqueness, and

some of them (such as Wishart planting) are not designed to tailor

to arbitrary connectivity structures. Notably, themethod “deceptive

cluster loops” is tailored to the D-Wave Chimera topology.

The software package dwig contains Python implementations

of several existing planted solution methods, specifically, RAN-

pr (Zdeborova and Krzakala, 2016), RAN-k (King J. et al., 2015),

FL-k (King A. D. et al., 2015), FCL-k (King et al., 2017), weak–

strong cluster network (Denchev et al., 2016), frustrated cluster loops

(Albash and Lidar, 2018), and corrupted biased ferromagnet (Pang

et al., 2021).

There are several studies which have examined the sampling of

MAX 2-SAT combinatorial optimization problems using quantum

annealing, some with an emphasis on generating MAX 2-SAT,

which are challenging for quantum annealing to sample (Crosson

et al., 2014; Santra et al., 2014; Hsu et al., 2018; Mehta et al., 2021,

2022; Mirkarimi et al., 2023).

The above methods have been used in a number of studies on

sampling characteristics of quantum annealers (King J. et al., 2015;

Zhang et al., 2017; Barash et al., 2019; Marshall et al., 2019).

2 Methods

This section introduces a novel method to generate QUBO

models of the type of Equation (1) for a customized connectivity

structure and with a guarantee of uniqueness for the planted

solution. The method is based on the generation of a posiform

representation of Equation (1), which is introduced in Section 2.1.

The construction of the posiform and the guarantee of uniqueness

are based on the fact that testing if a posiform attains the value

zero is equivalent to a 2-SAT problem, which can be solved

in polynomial time (Section 2.2). The complete algorithm is

summarized in Section 2.3. A note on how the generation can

naturally be adapted to a given connectivity structure is discussed

in Section 2.4.

2.1 Conversion from QUBO to posiform

A posiform is a quadratic function with positive coefficients

on an extended set of variables Z = {x1, . . . , xn} ∪ {x1, . . . , xn},

meaning that a posiform can contain either a variable xi ∈ {0, 1} or

its complement xi = 1 − xi, where i ∈ {1, . . . , n}. A posiform can

be expressed as

P(x1, . . . , xn) = P(x1, . . . , xn, x1, . . . , xn) =
∑

z∈Z

bzz +
∑

z,z′∈Z

bzz′zz
′,

(2)

where each z ∈ Z and z′ ∈ Z stand for one of the variables xi
or its complement xi, i ∈ {1, . . . , n} and the coefficients bz and bzz′

are non-negative.

Any QUBO of the form of Equation (1) can be written as a

posiform. To this end, consider first the linear terms. If ai > 0 for

some i ∈ {1, . . . , n} in Equation (1), it remains unchanged in the

posiform. If ai < 0, we rewrite aixi = ai(1 − xi) = ai + (−ai)xi.

The single summand ai is constant and can be omitted as it does

not impact the location of the minimum of Equation (1). The term

(−ai)xi complies with the posiform requirement as −ai > 0 given

ai < 0.

Similarly, any quadratic term aijxixj with aij > 0 in

Equation (1) remains unchanged in the posiform. If aijxixj with

aij < 0 in Equation (1), we rewrite it as either aij(1− xi)xj = aij +

(−aij)xj+(−aij)xixj or aijxi(1−xj) = aij+(−aij)xi+(−aij)xixj. Both

options are valid choices and none is preferable over the other. As

can be seen, apart from the constant term aij, which can be omitted,

the remaining summands have positive coefficients −aij > 0 given

aij < 0.

As a simple example, consider the following QUBO in three

variables, Q(x1, x2, x3) = 2x1 − x2 + x1x2 − 2x2x3. In posiform
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representation, it can be written as P(x1, x2, x3) = 2x1+ x2+ 2x3+

x1x2 + 2x2x3, where we omitted the offset −3 that results from the

conversion.

2.2 Connection to 2-SAT problems

The idea of posiform planting is to generate posiforms that

attain a value zero at a unique known (planted) combination

of values of the variables. Assume a posiform of the type of

Equation (2) is given. Clearly the minimum of Equation (2) is

bounded below by zero as all coefficients and variables are non-

negative. Moreover, we can test if there is a configuration x =

(x1, . . . , xn) that achieves P(x1, . . . , xn) = 0 in linear time.

This can be seen as follows. If P(x1, . . . , xn) = 0, then all

summands in Equation (2) must be zero. Therefore, we aim to

find x = (x1, . . . , xn) such that z = 0 for all linear terms, and

zz′ = 0 for all quadratic terms in Equation (2), where z, z′ ∈ Z .

For the quadratic terms, zz′ = 0 is equivalent to z ∨ z′ = True.

We thus rewrite all linear and quadratic terms in Equation (2)

without their coefficients into a 2-SAT problem, which can be

solved in linear time (Krom, 1967; Even et al., 1976; Aspvall et al.,

1979). Any solution to the constructed 2-SAT problem will satisfy

P(x1, . . . , xn) = 0 and vice versa. Importantly, if the 2-SAT problem

has a unique solution, so does the corresponding posiform.

2.3 QUBO generation with given
connectivity and planted unique solution

We are given a bitstring x∗ = (x∗1 , . . . , x
∗
n), denoting the

solution to be planted. The first step is to generate a 2-SAT problem

having x∗ as its unique solution. We aim to construct a 2-SAT

problem having x∗ as its unique solution with the help of an

exclusion argument, meaning that we add clauses to the 2-SAT

problem that exclude any bitstring other than x∗. This is achieved

as follows.

We select two random indices i, j ∈ {1, . . . , n} with i 6= j and

consider the two bits x∗i and x∗j in the solution to be planted. We

then randomly select one of the three possible binary tuples (x̂i, x̂j)

satisfying (x̂i, x̂j) 6= (x∗i , x
∗
j ). Depending on the choice of (x̂i, x̂j),

we add a clause to the current 2-SAT problem that excludes the

possibility of (xi, xj) = (x̂i, x̂j) in an optimal solution, precisely, the

clause

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (0, 0), (3)

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (0, 1),

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (1, 0),

¬(xi ∧ xj) = (xi ∨ xj) if (x̂i, x̂j) = (1, 1).

After each added clause, we attempt to solve the generated 2-

SAT problem at its current stage. By construction, the choice of the

clauses added to the 2-SAT problem will never exclude the planted

bitstring x∗ from the solution set of the generated 2-SAT problem.

We continue in this fashion until we arrive at a 2-SAT problem

which has x∗ as its unique solution. Our procedure only requires

polynomial effort. Indeed, it is known that the phase transition in

2-SAT problems occurs for n variables at O(n) clauses (Gent and

Walsh, 1994; Coja-Oghlan and Panagiotou, 2016), thus we expect

to only add a linear number of clauses until x∗ remains as the

unique solution of the 2-SAT problem. Moreover, solving a 2-SAT

problem can be done in linear time (Krom, 1967; Even et al., 1976;

Aspvall et al., 1979). Note that, to save computational effort, it is not

necessary to solve the 2-SAT problem being generated each time

a new clause is added. Instead, it suffices to solve it after adding

a certain batch size B ∈ N of new clauses. In the experiments of

Section 3, we use theMiniSat solver of Eén and Sörensson (2023).

Once a 2-SAT problem is constructed with x∗ as its unique

solution, we construct a posiform from it. Thus, in the second step,

we convert each clause (z ∨ z′) = ¬(z ∧ z′) into the quadratic term

bzz′z z′, where z, z′ ∈ Z . The negation is necessary here as each

clause (z ∨ z′), that is, True (value 1) in the 2-SAT problem needs

to be zero in the posiform (see Section 2.2) as it is a function to be

minimized. Importantly, the coefficient bzz′ > 0 of the posiform

is actually freely choosable (as long as it is positive). Substituting

any complement xi as 1 − xi and multiplying out the expression

yields a QUBO with (typically) both positive and negative QUBO

coefficients.

As an example, suppose we aim to plant the solution x∗ =

(1, 0, 1) in n = 3 variables. For the random indices (i, j) = (2, 3),

we choose (x̂2, x̂3) = (1, 1), thus satisfying (x̂2, x̂3) 6= (x∗2 , x
∗
3).

According to Equation (6), we add the clause (x2∨x3) to the 2-SAT

problem being generated. By continuing in this fashion for other

randomly chosen variable pairs in x∗, we might obtain the 2-SAT

instance

(x2 ∨ x3) ∧(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3)

∧(x1 ∨ x3), (4)

which can easily be checked to have the unique solution x∗.

Rewriting Equation (4) into a posiform results in P = x2x3+x1x2+

x1x3+x1x2+x2x3+x1x3. Note that the coefficients of P (set here to

1) can be freely chosen as long as they are positive. Multiplying out

the posiform leads to the QUBO Q(x1, x2, x3) = x2 + x3 − 2x1x3,

which can easily be verified to have a unique minimum at x∗.

2.4 Adaptation to connectivity structures

Apart from the guarantee of uniqueness, the algorithm of

Section 2.3 allows one to adapt the generated QUBOs to a

given connectivity structure. This is possible since there are no

restrictions on the choice of tuples (x∗i , x
∗
j ) with i, j ∈ {1, . . . , n}

that are being used to narrow down the solution space to x∗ in the

2-SAT problem.

To be precise, instead of sampling i, j ∈ {1, . . . , n}, it is valid

to sample (i, j) ∈ E for some edge set E ⊆ {1, . . . , n} × {1, . . . , n}.

When converting the generated 2-SAT problem to a posiform, the

clauses become the quadratic terms, and when multiplying out the

posiform into a QUBO, no further couplers are being introduced.

Therefore, the edges in E will translate 1-to-1 to the quadratic

couplers in the posiform and in the QUBO. For instance, E can

be chosen as the fixed connectivity graph of one of the D-Wave

annealer generations. Naturally, if E is too sparse, it might not be

guaranteed anymore that enough clauses can be sampled to narrow
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TABLE 1 D-Wave quantum annealing processor summary.

D-wave QPU chip ID Topology Available Available Annealing time

name qubits couplers (min, max) microseconds

DW_2000Q_6 Chimera C16 2,041 5,974 (1, 2,000)

Advantage_system4.1 Pegasus P16 5,627 40,279 (0.5, 2,000)

Advantage_system6.1 Pegasus P16 5,616 40,135 (0.5, 2,000)

Advantage2_prototype1.1 Zephyr Z4 563 4,790 (1, 2,000)

down x∗ as the unique solution; however, this problem was not

encountered for any of the D-Wave hardware graphs.

3 Results

In this section, we investigate the performance of the posiform

planting methodology introduced in Section 2. The section starts

with an overview of the D-Wave devices and their parameters in

Section 3.1. In Section 3.2, we use posiform planting to generate

and solve QUBO instances on four D-Wave machines that fit their

hardware natively, thus allowing for very large instance sizes. The

hardness of the generated instances is assessed by computing the

ground state probability (GSP) and the time-to-solution (TTS)

metrics. In Section 3.3, we investigate instances with arbitrary qubit

connectivity, thus requiring a minor embedding of the problem

QUBO onto the D-Wave hardware.

3.1 Parameter settings

Table 1 shows the four generations of the D-Wave quantum

annealer used in the experiments of this section. Apart from the

Chip ID and the name of the D-Wave topology, Table 1 displays the

number of available qubits and couplers and the annealing times

supported by the device.

The posiform planting method requires solving a 2-SAT

problem repeatedly during the planting process to verify the

uniqueness of the planted solution (see Section 2.3). For

efficiency reasons, we add an initial batch of B clauses to

the 2-SAT problem before starting to check for uniqueness.

In Section 3.2, we employ the choice B = 2, 000 for the

Chimera hardware graph of DW_2000Q_6, B = 30, 000

for the Pegasus hardware graph of Advantage_system4.1

and Advantage_system6.1, and B = 1, 000 for the

Zephyr hardware graph of Advantage2_prototype1.1. In

Section 3.3, we employ B = 1 to generate the 52 variable all-to-

all graphs. These choices of B are arbitrary, they do not influence

the uniqueness of the solution but the runtime of the generation

process, and they were selected to correspond to the number of

variables in the hardware graph. Similarly, the posiform coefficients

can be chosen arbitrarily in posiform planting. We select the

posiform coefficients from the set {1, 2} for both the hardware

native QUBOs and the minor embedded QUBOs, which depending

on the hardware graph can result in highly variable QUBO

coefficients after converting the posiform to a QUBO. However, the

QUBOmodels can still be mapped onto the D-Wave hardware due

to the auto coefficient scaling and the maximum energy scale that is

programmable onto the chip. Choosing the posiform coefficients as

integers also ensures that the QUBO coefficients will be integers.

Visualizations of the hardware native QUBO coefficients can be

found in Appendix 1.

The hardware native QUBOs in Section 3.2 are sampled using

annealing times of 0.5 µs for the Advantage_system6.1

and Advantage_system4.1, and in the range {1, 2, . . . , 10}

and {20, 30, . . . , 1, 990, 2, 000} µs for all four D-Wave quantum

annealers. Each hardware native QUBO is sampled using two D-

Wave device calls, each having 400 anneal-readout cycles, resulting

in a total of 800 measurements made per annealing time and per

hardware native QUBO.

3.2 Results for hardware native QUBOs

We generate 100 unique QUBO problems tailored to the four

D-Wave quantum annealers outlined in Table 1. Those are being

solved as a function of the anneal time, using the D-Wave settings

described in Section 3.1. Since the unique solution and thus the

ground state of each QUBO is known, computing the ground state

success probability (GSP) is straightforward.

Figure 1 shows the GSP for the hardware native QUBOs

measured on the four D-Wave devices. Each subplot shows the

results of the 100 randomly generated QUBOs on each device, with

one line per QUBO visualizing probability of reaching the ground

state (among the 800 anneals) as a function of the annealing time.

Several observations are noteworthy. Since the GSP is mostly

non-zero, the D-Wave quantum annealers are able to sample

the optimal solution during some anneal. This even holds true

for QUBO instances with up to 5, 627 variables in the case of

Advantage_system4.1. Although it is difficult to see in the

plots, at small annealing times, in particular, 500 ns and 1 µs, the

two Pegasus chip devices fail to sample the optimal solution across

all 100 problem instances.

We observe an increasing trend in the measured GSP as

a function of the annealing time, but with diminishing returns

as annealing time increases. The results show a difference in

behavior between the four D-Wave devices. In particular, the

563 qubit system Advantage2_prototype1.1 samples the

optimal solution at a much higher rate than the other devices. This

finding can be attributed to the fact that the number of variables

on this device is less than on the other devices, while also being

the newest generation of the D-Wave annealer with reported lower

error rates than the previous generations.
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FIGURE 1

Ground state success probability (GSP) for hardware native QUBOs computed on the devices Advantage2_prototype1.1 (top left), DW_2000Q_6
(top right), Advantage_system4.1 (bottom left), and Advantage_system6.1 (bottom right). Each subplot corresponds to one D-Wave annealer

and contains 100 separate lines which are showing GSP results for the 100 unique random hardware native posiform planted QUBOs. Each line

shows the probability of reaching the ground state (among the 800 anneals) as a function of the annealing time. The dashed black line denotes the

mean GSP computed at each evaluated annealing time.

We observe that the results for DW_2000Q_6 in Figure 1

show periodic variations of the measured GSP. This is because

the annealing time measurements in increments of 100 µs were

made several weeks apart from the measurements made for all

other annealing times in increments of 10 µs, and previous

studies (Pelofske et al., 2023) have shown that there are long-

term variations (in solution quality) of the computations carried

out on current D-Wave quantum annealing devices. Therefore, the

variations that have a periodicity of 100µs are due to variance of the

noise profile of the device, rather than variations that are a function

of the annealing time.

Next, we examine the time-to-solution (TTS) metric for the

100 QUBO instances that were generated for each of the four D-

Wave annealers. TTS is an estimate of the time it takes to reach an

optimum solution with a 99% confidence. It is defined as

TTS0.99 =
QPU-access-time

A
·
log(1− 0.99)

log(1− p)
, (5)

where QPU-access-time (in seconds) is the real compute

time used on the D-Wave backend (including the hardware

programming time, anneal-readout cycle, and anneal times),

A is the number of anneals and p ∈ (0, 1) is the success

probability observed among the A anneals, that is, the proportion

of anneals that found the ground state. The QPU-access-

time also includes all communication time with the device

on top of the annealing time used in the computation.

When p = 1, we set TTS0.99 = QPU-access-time/A.

When p = 0, TTS0.99 is undefined, and therefore is

not computed.

Figure 2 plots the TTS (computed with Equation 5) to reach

the optimal planted solution for the set of 100 randomly generated

hardware native QUBOs for each of the four D-Wave annealers.

We observe that for Advantage2_prototype1.1, the lowest

TTS is achieved for short annealing times, whereas for the other

three generations of the D-Wave annealer, both low and high

annealing times incur higher TTS values, with the lowest TTS being

achieved in-between.

In addition to solving the 100 native hardware QUBOs

sampled on each of the four D-Wave devices, we also investigate

how successfully classical heuristics can solve them. Figure 3

shows histograms for the achieved GSP when sampling the

same set of hardware native QUBO problems using the classical

heuristics Simulated Annealing (SA), implemented in the function

neal in the D-Wave SDK (D-Wave Systems, 2023b), and

greedy Steepest Descent (analogous to steepest gradient descent),

implemented in the function greedy in the D-Wave SDK (D-Wave

Systems, 2023a). Figure 3 demonstrates that the SA algorithm,

in particular, is able to find the optimal solution of the

QUBOs generated with posiform planting with very high success

probability.
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FIGURE 2

TTS as a function of the annealing time on the 100 hardware QUBO problems for each of the four D-Wave quantum annealers, in particular,

Advantage2_prototype1.1 (top left), DW_2000Q_6 (top right), Advantage_system4.1 (bottom left), and Advantage_system6.1 (bottom

right). One line per QUBO instance. Log scale on both axes.

3.3 Results for minor embedded QUBOs

Posiform planting as introduced in Section 2.3 generates new

clauses to be added to the 2-SAT instance without any constraints

on the indices. Although clauses are arbitrary, the generated

QUBOs are usually not fully connected. Using generated QUBOs

with all-to-all connectivity require a minor embedding onto the D-

Wave quantum hardware before being solved, since the D-Wave

hardware graphs are (relatively) sparse. Despite the challenges

associated with minor-embedded QUBO instances, which require

chained qubits and pose issues such as selecting appropriate chain

strengths, utilizing such QUBOs enables a direct comparison of

D-Wave devices on the same set of input problems. A diagram

showing these complete minor embeddings on the four hardware

graphs is shown in Figure A4 in the Appendix.

We generate five QUBOs with varying density with the

aim to allow for a range of GSP rates among those planted

QUBOs. Each QUBO instance has 52 logical variables, which

is the largest problem size with an all-to-all connectivity that

can be minor embedded on the Advantage2_prototype1.1

device. Since Advantage2_prototype1.1 has the smallest

such embedding, the same QUBO instances are guaranteed to be

executed on all four D-Wave quantum annealers, thereby allowing

for a fair comparison. Note that these 52 variable QUBOs are

not fully connected, but they are arbitrarily connected in that the

generator can select arbitrary edges to include.

Figure 4 shows ground state success probability (GSP)

measurements as a function of the chain strength, computed for

the five fixed QUBO instances on the four D-Wave annealers

of Table 1. Each subplot additionally showcases the behavior

for different annealing times. The figure highlights several

observations. First, the DW_2000Q_6 device seems to achieve

a considerably lower GSP than the other devices, followed by

Advantage_system4.1 and Advantage_system6.1,

while Advantage2_prototype1.1 achieves highest GSP

across the instances. Second, the anneal times do influence the

solution quality throughout all instances, with longer annealing

times usually resulting in an increased solution quality. Third,

although the 5 QUBO instances were generated with the same

parameters, there seems to be a considerable range in difficulty,

with the instances in the left columns being harder to solve than

the ones in the rightmost columns.

4 Discussion

This study proposes a new method, called posiform planting,

to generate QUBOs with a unique planted solution. Apart from

guaranteeing the uniqueness, posiform planting can be adapted to

any arbitrary connectivity structure, meaning that it allows one

to generate tailored QUBO instances whose quadratic couplers

fit, for instance, the hardware connectivity of modern quantum

annealers. Therefore, posiform planting allows one to efficiently

generate QUBO instances with thousands of variables and a unique

planted solution. Posiform planting also generates QUBOs that

have linear terms, a property that not all of existing planted solution

methods have.
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FIGURE 3

Histograms of the GSP for the same hardware native posiform planted QUBOs used in Figure 1 sampled using classical heuristics. Simulated

annealing and steepest descent heuristics applied to the QUBOs generated for the hardware graphs of DW_2000Q_6 (top left),

Advantage2_prototype1.1 (top right), Advantage_system4.1 (bottom left), and Advantage_system6.1 (bottom right). The side-by-side

histogram bars correspond to each bin, so the sampling rates for simulated annealing are extremely high (usually at a proportion of 1).

FIGURE 4

GSP measurements as a function of the chain strength for the five minor-embedded QUBO instances. The five columns correspond to the five

QUBO instances being solved, and the four rows correspond to the four D-Wave quantum annealers (DW_2000Q_6, Advantage_system4.1,
Advantage_system6.1, and Advantage2_prototype1.1 from top to bottom). The annealing times are varied (see legends).
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Interestingly, our construction shows that, for the generation

of a QUBO with a planted solution, the coefficients in a posiform

representation do not matter and can be freely chosen (as long as

they are positive as required by definition of a posiform). Since

the choice of the posiform coefficients does not impact the planted

solution or its uniqueness, posiform planted allows for an efficient

generation of a set of QUBO instances having the same planted

solution. Posiform planting also allows for an arbitrary bitstring to

be chosen as the planted solution.

Posiform planting can be used to verify whether good classical

heuristic algorithms, such as simulated annealing, are able to

find the single optimal solution for extremely large QUBOs. This

not only applies to classical algorithms but also other emerging

computing technologies such as spiking neuromorphic computing

(Alom et al., 2017; Mniszewski, 2019) or the hybrid quantum-

classical gate model algorithm QAOA (Farhi et al., 2014; Hadfield

et al., 2019). We experimentally demonstrated that four D-Wave

quantum annealers, with a total of three different classes of

hardware graphs, can sample the unique planted solution for

hardware native QUBO problems that use the entire hardware

chip. Since we scaled our instances to the maximal size that can

be embedded on D-Wave, the current hardware limitations (of

maximally 5,627 qubits on D-Wave Advantage) somewhat limit us

from scaling our instances to sizes where D-Wave starts to struggle.

Posiform planting generates QUBOs of a special form to

guarantee the uniqueness of the planted solution. To be precise,

all QUBOs generated by posiform planting have the property that

when converted to a posiform representation, they are solvable

(meaning they attain a value of zero). However, not all QUBOs

have this property. Nevertheless, posiform planting is complete

in the sense that it can generate any QUBO whose posiform

representation is solvable.

The study leaves scope for further avenues of research. Most

importantly, it remains to investigate if posiform planting allows

one to tune the difficulty of the QUBO problems, for instance,

via the choice of the posiform coefficients (which can be tuned

without constraints other than being positive). Another topic for

future research is to be able to vary the ground state degeneracy

of posiform planted QUBOs, if there are specific use cases where

obtaining a QUBO with a specific number of ground states would

be advantageous.

Finally, posiform planting can enhance an existing planted

solution method, denoted asM, to guarantee the uniqueness of the

planted solution. For instance, given the desired solution x∗ to be

planted, we first use M to produce a QUBO Q1 with the planted

solution x∗, which may be non-unique. Subsequently, leveraging

posiform planting, we generate a QUBO Q2 that ensures x∗ is

a unique optimal solution. By forming the linear combination

Qnew = α1Q1 + α2Q2 with α1,α2 > 0, we obtain a problem

with a unique solution x∗, while potentially preserving any desired

properties ofM.
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