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In this study, the maze generation using quantum annealing is proposed. We

reformulate a standard algorithm to generate a maze into a specific form of a

quadratic unconstrained binary optimization problem suitable for the input of the

quantum annealer. To generate more di�culty mazes, we introduce an additional

cost function Qupdate to increase the di�culty. The di�culty of the mazes was

evaluated by the time to solve the maze of 12 human subjects. To check the

e�ciency of our scheme to create themaze, we investigated the time-to-solution

of a quantum processing unit, classical computer, and hybrid solver. The results

show thatQupdate generates di�cultmazes tailored to the individual. Furthermore,

it show that the quantum processing unit is more e�cient at generating mazes

than other solvers. Finally, we also present applications how our results could be

used in the future.

KEYWORDS

quantum annealing, combinatorial optimization,maze generation, bar-tipping algorithm,

time-to-solution

1 Introduction

A combinatorial optimization problem is minimizing or maximizing their cost or

objective function among many variables that take discrete values. In general, it takes

time to solve the combinatorial optimization problem. To deal with many combinatorial

optimization problems, we utilize generic solvers to solve them efficiently. Quantum

annealing (QA) is one of the generic solvers for solving combinatorial optimization problems

(Kadowaki and Nishimori, 1998) using the quantum tunneling effect. Quantum annealing

is a computational technique to search for good solutions to combinatorial optimization

problems by expressing the objective function and constraint time requirements of the

combinatorial optimization problem by quantum annealing in terms of the energy function

of the Ising model or its equivalent QUBO (Quadratic Unconstrained Binary Optimization)

and manipulating the Ising model and QUBO to search for low energy states (Shu Tanaka

and Seki, 2022). Various applications of QA are proposed in traffic flow optimization

(Neukart et al., 2017; Hussain et al., 2020; Inoue et al., 2021), finance (Rosenberg et al.,

2016; Orús et al., 2019; Venturelli and Kondratyev, 2019), logistics (Feld et al., 2019;

Ding et al., 2021), manufacturing (Venturelli et al., 2016; Haba et al., 2022; Yonaga et al.,

2022), preprocessing in material experiments (Tanaka et al., 2023), marketing (Nishimura

et al., 2019), steel manufacturing (Yonaga et al., 2022), and decoding problems (Ide et al.,

2020; Arai et al., 2021a). The model-based Bayesian optimization is also proposed in

the literature (Koshikawa et al., 2021). A comparative study of quantum annealer was
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performed for benchmark tests to solve optimization problems

(Oshiyama and Ohzeki, 2022). The quantum effect on the case

withmultiple optimal solutions has also been discussed (Yamamoto

et al., 2020; Maruyama et al., 2021). As the environmental effect

cannot be avoided, the quantum annealer is sometimes regarded

as a simulator for quantum many-body dynamics (Bando et al.,

2020; Bando and Nishimori, 2021; King et al., 2022). Furthermore,

applications of quantum annealing as an optimization algorithm

in machine learning have also been reported (Neven et al., 2012;

Amin et al., 2018; Khoshaman et al., 2018; Kumar et al., 2018;

OḾalley et al., 2018; Arai et al., 2021b; Sato et al., 2021; Urushibata

et al., 2022; Goto and Ohzeki, 2023; Hasegawa et al., 2023). In this

sense, developing the power of quantum annealing by considering

hybrid use with various techniques is important, as mentioned in

several previous studies (Hirama and Ohzeki, 2023; Takabayashi

and Ohzeki, 2023).

In this study, we propose the generation of the maze by

quantum annealing. In the application of quantum annealing

to mazes, algorithms for finding the shortest path through a

maze have been studied (Pakin, 2017). Automatic map generation

is an indispensable technique for game production, including

rogue-like games. Maze generation has been used to construct

random dungeons in rogue-like games by assembling mazes

(mok Bae et al., 2015). Therefore, considering maze generation

as one of the rudiments of this technology, we studied maze

generation using a quantum annealing machine. Several algorithms

for the generation of the maze have been proposed. In this

study, we focused on maze-generating algorithms. One can

take the bar-tipping algorithm (Alg, 2023a), the wall-extending

algorithm (Alg, 2023b), and the hunt-and-kill algorithm (Alg,

2023c).

The bar-tipping algorithm is an algorithm that generates a

maze by extending evenly spaced bars one by one. For the sake

of explanation, we will explain the terminology here. A path

represents an empty traversable part of the maze and a bar a filled

non-traversable part. Figure 1 shows where the outer wall, bars,

and coordinate (i, j) are in a 3 × 3 maze. The maze is surrounded

by an outer wall, as shown in Figure 1. It requires the following

three constraints. First, each bar can be extended by one cell only

in one direction. Second, the first column can be extended in

four directions: up, down, left, and right, while the second and

subsequent columns can be extended only in three directions: up,

down, and right. Third, adjacent bars cannot overlap each other.

We explain the detailed process of the bar-tipping algorithm using

the 3 × 3 size maze. In this study, a maze generated by extending

the N × N bars is called N × N size maze. First, standing bars are

placed in every two cells in a field surrounded by an outer wall, as

shown in Figure 1. Second, Figure 2 shows each step of bar-tipping

algorithm. Figure 2A shows the first column of bars extended.

The bars in the first column are randomly extended in only one

direction with no overlaps, as shown in Figure 2A. The bars can

be extended in four directions (up, down, right, and left) at this

time. Figure 2B shows the second column of bars being extended.

Third, the bars in the second column are randomly extended in

one direction without overlap, as shown in Figure 2B. The bars can

be extended in three directions (up, down, and right) at this time.

Figure 2C shows the state in which the bars after the second column

are extended. Fourth, the bars in subsequent columns are randomly

FIGURE 1

Positions where outer wall, bars, and coordinate (i, j) are in 3× 3

maze.

extended in one direction, likewise the bars in the second column,

as shown in Figure 2. Figure 2D shows the complete maze in its

finished state. Following the process, we can generate a maze, as

shown in Figure 2D.

If multiple maze solutions are possible, the maze solution is not

unique, simplifying the time and difficulty of reaching the maze

goal. These constraints must be followed for the reasons described

below. The first constraint prevents a maze from generating a

maze with multiple maze solutions and closed circuits. Figure 3A

shows a maze state that violates the first constraint. The step

violating the first constraint because one bar in the upper right

corner is extended in two directions, as shown Figure 3A. The

second constraint prevents generating a maze from a maze with

closed circuits and multiple maze solutions. Figure 3B shows a

state that violates the second constraint. The second constraint

is violated, it has a closed circuit and multiple maze solutions,

as shown in Figure 3B. The third constraint prevents maze

generation from a maze with multiple maze solutions. Figure 3C

shows a state that violates the third constraint. The bars overlap

in the upper right corner, making it the third constraint as

Figure 3C.

Next, we describe the wall-extending algorithm. It is an

algorithm that generates a maze by extending walls. Figure 4 shows

the extension starting coordinates of the wall-extending algorithm.

Figure 5A shows the initial state of the wall-extending algorithm.

First, as an initial condition, the outer perimeter of the maze is

assumed to be the outer wall, and the rest of the maze is assumed to

be the path, as shown in Figure 5A. Coordinate system is different

from the bar-tipping algorithm, and all cells are labeled coordinates.

As shown in Figure 4, the coordinates where both x and y are even

and not walls are listed as starting coordinates for wall extending.

The following process is repeated until all starting coordinates
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FIGURE 2

Step of bar-tipping algorithm. (A) Step1: bars in first column are extended. (B) Step2: bars in second column are extended. (C) Step3: bars in

subsequent column are extended. (D) Step4: a complete maze through these steps.

FIGURE 3

Mazes violated the constraints. (A) A maze violate the first constraint. (B) A maze violate the second constraint. (C) A maze violated the third

constraint.

change to walls, as shown in Figure 5C. The coordinates were

randomly chosen from the non-wall extension start coordinates.

The next extending direction is randomly determined from which

the adjacent cell is a path. Figure 5B shows how the path is

extended. The extension will be repeated while two cells ahead

of the extending direction to be extended are a path, as shown

in Figure 5B. Figure 5C shows all starting coordinates changed to

walls. These processes are repeated until all the starting coordinates

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1285962
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ishikawa et al. 10.3389/fcomp.2023.1285962

FIGURE 4

Red cells represent options of starting coordinates for the

wall-extending algorithm.

change to walls, as shown in Figure 5C. Figure 5D shows a maze

created by wall-extending. Following the process, we can generate

a maze, as shown in Figure 5D.

As a third, the hunt-and-kill algorithm is explained below.

It is an algorithm that generates a maze by extending paths.

Figure 6 shows the extension starting coordinates of the hunt-and-

kill algorithm. Figure 7A shows the initial state of the hunt-and-kill

algorithm. The entire surface is initially walled off, as shown in

Figure 7A. Coordinates, where both x and y are odd, are listed as

starting coordinates for path extension, as shown in Figure 6. As

with the wall-extending algorithm, all cells are set to coordinates.

Figure 7B shows the state in which the path is extended. A

coordinate is chosen randomly from the starting coordinates, and

the path is extended from there, as shown in Figure 7B. Figure 7C

shows the coordinate selection and re-extension after the path can

no longer be extended. If the path can no longer be extended,

a coordinate is randomly selected from the starting coordinates,

which are already paths, and extension starts again from it, as

shown in Figure 7C. This process is repeated until all the starting

coordinates turn into paths to generate the maze. Figure 7D shows

the complete maze with the hunt-and-kill algorithm. Following the

process, we can generate a maze, as shown in Figure 7D.

Of the three maze generation algorithms mentioned above, the

bar-tipping algorithm is relevant to the combinatorial optimization

problem. In addition, unlike other maze generation algorithms, the

bar-tipping algorithm is easy to apply because it only requires the

consideration of adjacent elements. Thus, we have chosen to deal

with this algorithm. Other maze generation algorithms could be

generalized by reformulating them as combinatorial optimization

problems. The wall-extending and hunt-and-kill algorithms will be

implemented in future studies, considering the following factors.

The former algorithm introduces the rule that adjacent walls

are extended and so are their walls. The number of connected

components will be computed for the latter, and the result will be

included in the optimization.

Using the bar-tipping algorithm, we reformulated it to

solve a combinatorial optimization problem that generates a

maze with a longer solving time and optimizes it using

quantum annealing. Quantum annealing (DW_2000Q_6 from

D-Wave), classical computing (simulated annealing, simulated

quantum annealing, and algorithmic solution of the bar-tipping

algorithm), and hybrid computing were compared with each

other according to the generation time of mazes, and their

performance was evaluated. The solver used in this experiment is

as follows: DW_2000Q_6 from D-Wave, simulated annealer called

SASampler and simulated quantum annealer called SQASampler

from OpenJij (Ope, 2023), D-Wave’s quantum-classical hybrid

solver called hybrid_binary_quadratic_model_version2 (BQM),

and classical computer [MacBook Pro(14-inch, 2021), OS: macOS

Monterey Version 12.5, Chip: Apple M1 Pro, Memory: 16

GB]. This comparison showed that quantum annealing was

faster. This may be because the direction of the bars is

determined at once using quantum annealing, which is several

times faster than the classical algorithm. We do not use an

exact solver to solve the combinatorial optimization problem.

We expect some diversity in the optimal solution and not

only focus on the optimal solution in maze generation. Thus,

we compare three solvers, which generate various optimal

solutions.

In addition, we generate mazes that reflect individual

characteristics, whereas existing maze generation algorithms

rely on randomness and fail to incorporate other factors.

In this case, we incorporated the maze solution time as

one of the other factors to solve the maze. The maze

solving time was defined as the time (in seconds) from

the start of solving the maze to the end of solving the

maze.

The study is organized as follows. In the next Section, we

explain the methods of our experiments. In Section 3, we describe

the results of our experiments. In Section 4, we summarize this

study.

2 Methods

2.1 Cost function

To generate the maze by quantum annealer, we need to

set the cost function in the quantum annealer. One of the

important features of the generation of the maze is diversity.

In this sense, the optimal solution is not always unique. Since

it is sufficient to obtain a structure consistent with a maze, the

cost function is mainly derived from the necessary constraints

of a maze, as explained below. Three constraints describe the

basis of the algorithm of the bar-tipping algorithm. The cost

function will be converted to a QUBO matrix to use the

quantum annealer. To convert the cost function to a QUBO,

the cost function must be written in a quadratic form. Using

the penalty method, we can convert various constraints written
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FIGURE 5

(A) Initial state for wall-extending algorithm. (B) Step 1 for wall-extending algorithm. (C) Step 2 for wall-extending algorithm. (D) Maze generated

using wall-extending algorithm.

in a linear form into a quadratic function. The penalty method

is a method to rewrite the equality constant as a quadratic

function. For example, the penalty method can rewrite an equation

constant x = 1 to (x − 1)2. Thus, we construct the cost

function for generating the maze using the bar-tipping algorithm

below.

The constraints of the bar-tipping algorithm correlate with each

term in the cost function as described below. The first constraint

of the bar-tipping algorithm is that the bars can be extended

in only one direction. It prevents making closed circuits. The

second constraint of the bar-tipping algorithm is that the bars

of the first column be extended randomly in four directions (up,

right, down, and left), and the second and subsequent columns

can be extended randomly in three directions (up, right, and

down). It also prevents the creation of closed circuits. The third

constraint of the bar-tipping algorithm is that adjacent bars must

not overlap. Following the constraint in the bar-tipping algorithm,

we can generate a maze with only one path from the start to the

goal.

The cost function consists of three terms

to reproduce the bar-tipping algorithm, according to

the three constraints, and determine the start and

goal.

E({xi,j,d,Xm,n}) =
∑

i,i′

∑

j,j′

∑

d,d′

Q(i,j,d),(i′ ,j′ ,d′)xi,j,dxi′ ,j′ ,d′

+λ1

∑

i

∑

j

(

∑

d

xi,j,d − 1

)2

+λ2

(

∑

m

∑

n

Xm,n − 2

)2

,

(1)

where xi,j,d denotes whether the bar in i-th row, j-th column

extended in direction d (up : 0, right : 1, down : 2, left : 3). When

the bar in coordinate (i, j) is extended in direction, xi,j,d takes 1,

otherwise takes 0. Due to the second constraint of the bar-tipping

algorithm, the bars after the second column cannot be extended

on the left side; only the first column has (d = 3). Furthermore,

Q(i,j,d)(i′ ,j′ ,d′) in Equation (1) depends on i, j, d, i′, j′, and d′ and is
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FIGURE 6

Red cells represent options of starting coordinates for the

hunt-and-kill algorithm.

expressed as follows

Q(i,j,d),(i′ ,j′ ,d′) =











1 (i = i′ − 1, j = j′, d = 2, d′ = 0)

1 (i = i′ + 1, j = j′, d = 0, d′ = 2)

0 otherwise.

(2)

The coefficients of λ1 and λ2 are constants to adjust the

effects of each penalty term. The first term prevents the bars from

overlapping and extending each other face-to-face. It represents

the third constraint of the bar-tipping algorithm. Here, due to the

second constraint, bars in the second and subsequent columns

cannot be extended to the left. Therefore, the adjacent bars in

the same row cannot extend and overlap. This corresponds to the

fact that d cannot take 3 when j ≥ 1. Thus, there is no need to

reflect, considering the left and right. In particular, the first term

restricts the extending and overlapping between the up and down

adjacent bars. For example, the situation in which one bar in (i, j)

extended down (d = 2) and the lower bar in (i + 1, j) extended up

(d = 0) are represented by xi, j, 2xi+1, j, 0 = 1 and Q(i, j, 2), (i+1, j, 0)

take 1. In the same way, thinking of the relation between the

bar in (i, j) and the upper bar in (i − 1, j), Q(i, j, 0), (i−1, j, 2) = 1.

Thus, Q(i, j, 0), (i−1, j, 2)xi, j, 0xi−1, j, 2 takes 1, and the value of the cost

function taken will increase. By doing this, the third constraint is

represented as a first term. The second term is a penalty term that

limits the direction of extending to one per bar. It represents the

first constraint of the bar-tipping algorithm. This means that for a

given coordinate (i, j), the sum of xi,j,d
[

d = 0, 1, 2(, 3)
]

must take

the value 1. Here, the bars in the second and subsequent columns

cannot extend to the left by the second constraint. Thus, d takes (0,

1, 2, 3) when j = 0, and d takes (0, 1, 2) when j ≥ 1. The third

term is the penalty term for selecting two coordinates of the start

and the goal from the coordinates (m, n). This means that for a

given coordinate (m, n), the sum of Xm,n takes 2. In other words,

two coordinates were selected as the start and the goal. The start

and the goal are commutative in the maze. They are randomly

selected from the two coordinates determined by the third term.

Xm,n denotes whether or not to set the start and goal at them-th row

and n-th column of options of start and goal coordinates. When

the (m, n) coordinate is chosen as the start and goal, Xm,n takes

1. Otherwise, it takes 0. There are no relations between Xm,n and

xi,j,d in Equation (1). This means that the maze structure and the

start and goal determination coordinates have no relations. Figure 8

shows the coordinates (m, n) that are the options of the start and

the goal. As Figure 8 shows, (m, n) is different from the coordinate

setting bars; it is located at the four corners of the bars, where the

bars do not extend. Xm,n and xi,j,d are different. Xm,n are options of

start and goal, and xi,j,d are options of coordinates and directions to

extend the bars.We have shown the simplest implementation of the

maze generation following the bar-tipping algorithm by quantum

annealer. Following the above a maze depending on randomness is

generated. To generate a unique maze independent of randomness,

we add the effect to make the maze more difficult in the cost

function, and the difficulty is defined in terms of time (in seconds).

2.2 Update rule

We propose an additional Qupdate term to increase the time to

solve the maze. We introduce a random term that takes random

elements to change the maze structure. It is added to the Equation

(1). First, Qupdate term, the additional term which includes the new

QUBOmatrix Qupdate, is given by

λupdate1

∑

i,i′

∑

j,j′

∑

d,d′

Qupdate(k,k′)xi,j,dxi′ ,j′ ,d′

+λupdate1

∑

i

∑

j

∑

d

∑

m

∑

n

Qupdate(k,l)xi,j,dXm,n

+λupdate1

∑

i

∑

j

∑

d

∑

m

∑

n

Qupdate(l,k)Xm,nxi,j,d

+λupdate2

∑

m,m′

∑

n,n′

Qupdate(l,l′)Xm,nXm′ ,n′ ,

(3)

where











k = d + (3N + 1)i (j = 0)

k = d + 3j+ 1+ (3N + 1)i (j 6= 0)

l = (3N + 1)N + (N + 1)m+ n.

(4)

Figure 9 shows the structure of Qupdate and roles. Here, k′, l′

are the replacement of i, j, m, n, and d in k, l with i′, j′, m′, n′,

and d′. N in Equation (4) is the size of the maze. The coefficients

λupdate1 and λupdate2 are constants to adjust the effect of terms. The

elements ofQupdate related to the relation between the start and goal

determination and the maze generation. This is located in part B, C

in Figure 9 and multiplied by the λupdate1. The elements of Qupdate

related to the relation between the start and goal determination

and the maze generation, part B, C in Figure 9 is multiplied by

the λupdate1. The elements of Qupdate related to the start and goal

determination, part D in Figure 9 is multiplied by the λupdate2.
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FIGURE 7

(A) Initial state for hunt-and-kill algorithm. (B) Step 1 for hunt-and-kill algorithm. (C) Step 2 for hunt-and-kill algorithm. (D) Maze generated using

hunt-and-kill algorithm.

These are to control the maze difficulty without breaking the bar-

tipping algorithm’s constraints. Equation (3) is represented by the

serial number k of each coordinate (i, j) at which bars can extend,

and the sum l of the total number of coordinates at which the bars

can extend and the serial number of coordinates (m, n), which are

options for the start and the goal. Furthermore, The second term

and the third term in Equation (3) allow the maze to consider the

relation between the structure of the maze and the coordinates of

the start and the goal.

Second, Qupdate, the new QUBOmatrix, is given by

Qupdate := p(t)Qupdate +
{

1− p(t)
}

Qrandom, (5)

whereQrandom is amatrix of random elements from−1 to 1 and p(t)

depends on time t (in seconds) taken to solve the previousmaze and

is expressed as follows:

p(t) =
1

1+ e−at
. (6)

TheQupdate is a matrix that was made with the aim of increasing

the maze solving time through the maze solving iteration. The

initial Qupdate used in the first maze generation is a random matrix,

and the next Qupdate that is used in the second or subsequent

maze generation is updated using Equation (5), the maze solving

time t, and the previous Qupdate. The longer the solving time t

of the maze is, the higher the percentage of the previous Qupdate

in the current Qupdate and the lower the percentage of Qrandom;

inversely, when t is small, the ratio of the previous Qupdate is

small, and the percentage of Qrandom is significant. In other

words, the longer the solving time t of the previous maze, the

more characteristics of the previous term Qupdate remain. Here,

a is a constant to adjust the percentage. The p(t) is a function

that increases monotonically with t and takes 0 to 1. Thus,

Qrandom, which the random element in Qupdate, increase as time

t increases. After the maze is solved, the next maze QUBO is

updated by Equation (5) using the time taken to solve the maze.

The update is carried out only once before the maze generation.

Repetition of the update will make the maze gradually difficult for

individuals.

The sum of Equations (1) and (3) is always used

to generate a new maze annealing from a maximally

mixed state.
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2.3 Experiments

2.3.1 Generation of maze
We generate mazes by optimizing the cost function using

DW_2000Q_6. Since the generated maze will not be solved, the

update term is excluded for this experiment. λ1 = 2 and λ2 = 2

were chosen.

FIGURE 8

Black cells represent outer walls and inner bars (i, j). Red cells

represent options of start and goal coordinates (m,n).

2.3.2 Computational cost
We compare the generation times of N × N maze in

DW_2000Q_6 from D-Wave, simulated annealer called

SASampler and simulated quantum annealer called SQASampler

from OpenJij, D-Wave’s quantum-classical hybrid solver called

hybrid_binary_quadratic_model_version2 (hereinafter referred to

as “Hybrid Solver”) and classical computer [MacBook Pro(14-inch,

2021), OS: macOS Monterey Version 12.5, Chip: Apple M1 Pro,

Memory: 16 GB] based on bar-tipping algorithm coded with

Python 3.11.5 (hereinafter referred to as “Classic”). The update

term was excluded from this experiment. We set λ1 = 2 and

λ2 = 2. DW_2000Q_6 was annealed 1,000 times for 20 µs,

and its QPU annealed time for maze generation as calculated

using time-to-solution (TTS). SASampler and SQASampler were

annealed with 1,000 sweeps. These parameters were constant

throughout this experiment. Regression curves fitted using the

least squares method were drawn from the results to examine the

dependence of computation time on maze size.

2.3.3 E�ect of update term
The solving time of 9 × 9 maze generated without Qupdate

and using Qupdate was measured. This experiment asked 12

human subjects to solve mazes one set (30 times). To prevent

the players from memorizing maze structure, they can only

observe the limited 5 × 5 cells. In other words, only two

surrounding cells can be observed. The increase rate from the

first step of simple moving average of 10 solving times was

plotted on the graph. For this experiment, λ1 = 2, λ2 = 2,

λupdate1 = 0.15, λupdate2 = 0.30, and a = 0.05 were chosen.

For two λupdate, we chose larger values that do not violate the

constraints of the bar-tipping algorithm. We chose a value in

which Equation (6) will be ∼0.8 (80%) when t = 30 s as

a constant a.

FIGURE 9

Structure of Qupdate. Part A is related to maze generation. Part B and part C are related to the relation between maze generation and the start and

goal determination. Part D is related to the start and goal determination.
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FIGURE 10

(Left) 9× 9 maze generated by DW_2000Q_6. (Right) 15× 15 maze generated by DW_2000Q_6. Red cells represent a start and a goal for the maze.

2.4 Applicatons

The cost function in this study has many potential applications

by generalizing it. For example, it can be applied to graph

coloring and traffic light optimization. Graph coloring can be

applied by allowing adjacent nodes to have different colors.

Traffic light optimization can address the traffic light optimization

problem by looking at the maze generation as traffic flow.

Roughly speaking, our cost function can be applied to the

problem of determining the next state by looking at adjacent

states.

Qupdate can be applied to the problem of determining the

difficulty of the next state from the previous result. The selection of

personalized educational materials is one of the examples. Based on

the solving time of the previously solved problems, the educational

materials can be selected at a difficulty suitable for the individual.

This is the most fascinating direction in future studies. As described

above, we should emphasize that Qupdate proposed in this study

also has potential use in various fields related to training and

education.

3 Results

3.1 Generation of maze

Figure 10 shows execution examples of 9 × 9 and 15 ×

15 mazes generated by optimizing the cost function using

DW_2000Q_6.

3.2 Computational cost

Fits of the form aN2 + bN + c is applied to each of the datasets

using the least squares method. The results are as follows. Figure 11

FIGURE 11

Time to reach the ground state with 99% success probability as a

function of the maze size in DW_2000Q_6. The error bars represent

a 95% confidence interval. The regression curve is given by

[(3.231± 0.076)N+ (11.40± 0.69)] for linear regression and

[(7.4± 1.8) · 10−2N2 + (2.05± 0.30)N+ (14.8± 1.0)] for quadratic

regression.

shows the relation between TTS for maze generation and maze

size on DW_2000Q_6. DW_2000Q_6 is O(N) or O(N2). Even

if it is quadratically dependent on the maze size, its deviation is

smaller than the other solvers. Figure 12 shows the relation between

maze generation time and maze size on Classic, SASampler, and

SQASampler. Classic
[

(0.855±0.090)N2+(0.6±1.5)N+(2.2±5.1)
]

,

SASampler
[

(28.8 ± 1.2)N2 + (36 ± 20)N + (129 ± 71)
]

, and

SQASampler
[

(172.8 ± 4.4)N2 + (287 ± 73)N − (1.5 ± 2.5) · 102
]

exhibit quadratic dependence on the maze sizeO(N2). Most of the
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FIGURE 12

(A) The time to reach the ground state as a function of the maze size in Classic. The error bars represent a 95% confidence interval. The regression

curve is [(0.855± 0.090)N2 + (0.6± 1.5)N+ (2.2± 5.1)]. (B) Time to reach the ground state as a function of the maze size in SASampler. The error bars

represent a 95% confidence interval. The regression curve is [(28.8± 1.2)N2 + (36± 20)N+ (129± 71)]. (C) Time to reach the ground state as a

function of the maze size in SQASampler. The error bars represent a 95% confidence interval. The regression curve is [(172.8± 4.4)N2 + (287± 73)N

−(1.5± 2.5) · 102].

FIGURE 13

Comparison of maze generation time between DW_2000Q_6 and

classic.

solvers introduced here areO(N2) since they are extending N × N

bars to generate a maze. Figure 13 shows the comparison of maze

generation time betweenDW_2000Q_6 and Classic. DW_2000Q_6

has a smaller coefficient N2 than the classical algorithm, and after

N = 5, DW_2000Q_6 shows an advantage over Classic in the maze

generation problem. The improvement using quantum annealing

occurred because it determines the direction of N × N bars at

once. Figure 14 shows the relation between maze generation time

and maze size on Hybrid Solver. Linear and quadratic fits applied

to the dataset indicate that the Hybrid Solver is O(1) or O(N)
[

(3.29±0.83)·102N+(2.99325±0.00090)·106
]

betweenN = 1 and

N = 18 and then shifted toO(N2)
[

(6.899±0.065) ·103N2− (0.4±

3.2) · 103N + (6.90 ± 0.39) · 105
]

. The shift in the computational

cost of Hybrid Solver may have resulted from a change in its

algorithm.

FIGURE 14

Time to reach the ground state as a function of maze size in the

Hybrid Solver. The error bars represent a 95% confidence interval.

3.3 E�ect of update term

Here, 12 human subjects are asked to solve the maze one set

(30 times), and the maze is shown to increase in difficulty as it

adapts to each human subject. Figure 15A shows the increase rate

from the first step of simple moving average of 10 solving time

of maze generated without Qupdate and individual increase rate.

The solving time of the maze without Qupdate was slightly getting

shorter overall. Figure 15B shows the increase rate from the first

step of simple moving average of 10 solving time of maze generated

using Qupdate and individual increase rate. The solving time of

the maze using Qupdate was getting longer overall. Most of the

players increased their solving time, but some players decreased

or did not change their solving time. In addition, nine players’

average of the solving time of the maze generated using Qupdate
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FIGURE 15

(A) Left: Increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze generated without Qupdate. The error bars

represent standard errors. Right: All players’ increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze generated

without Qupdate. (B) Left: Increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze generated using Qupdate. The

error bars represent standard errors. Right: All players’ increase rate from the first step of simple moving average of 10 solving time of 9× 9 maze

generated using Qupdate.

increased than that of the maze generated without Qupdate. These

show that Qupdate has the potential to increase the difficulty of the

mazes.

4 Discussion

In this study, we show that generating difficult (longer the

maze solving time) mazes using the bar-tipping algorithm is

also possible with quantum annealing. By reformulating the bar-

tipping algorithm as the combinatorial optimization problem, we

generalize it more flexibly to generate mazes. In particular, our

approach is simple but can adjust the difficulty in solving mazes

by quantum annealing.

In Section 3.2, regarding comparing computational costs to

solve our approach to generating mazes using TTS, DW_2000Q_6

has a smaller coefficient of N2 than the classical counterpart.

Therefore, as N increases, the computational cost of DW_2000Q_6
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can be expected to be lower than that of the classical simulated

annealing for a certain time. Unfortunately, since the number of

qubits in the D-Wave quantum annealer is finite, the potential

power of generating mazes by quantum annealing is limited.

However, our insight demonstrates some advantages of quantum

annealing against its classical counterpart. In addition, we observed

that the hybrid solver’s computational cost was constant up to N =

18. This indicates that hybrid solvers will be potentially effective if

they are developed to deal with many variables in future.

In Section 3.3, we proposed Qupdate to increase the

solving time using quantum annealing. We demonstrated

that introducing Qupdate increased the time to solve the maze

and changed the difficulty compared with the case where

Qupdate was not introduced. At this time, the parameters

(λupdate1, λupdate2, and a) were fixed. Difficult maze generation

for everyone may be possible by adjusting the parameters

individually.

One of the directions in the future study is in applications

of our cost function in various realms. We should emphasize

that Qupdate proposed in this study also has the potential use

in various fields related to training and education. The powerful

computation of quantum annealing and its variants open the

way to such realms with high-speed computation and various

solutions.
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