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Early diagnosis of pneumonia is crucial to increase the chances of survival and

reduce the recovery time of the patient. Chest X-ray images, the most widely

used method in practice, are challenging to classify. Our aim is to develop a

machine learning tool that can accurately classify images as belonging to normal

or infected individuals. A support vectormachine (SVM) is attractive because binary

classification can be represented as an optimization problem, in particular as a

Quadratic Unconstrained BinaryOptimization (QUBO)model, which, in turn,maps

naturally to an Ising model, thereby making annealing—classical, quantum, and

hybrid—an attractive approach to explore. In this study, we o�er a comparison

between di�erent methods: (1) a classical state-of-the-art implementation of

SVM (LibSVM); (2) solving SVM with a classical solver (Gurobi), with and without

decomposition; (3) solving SVM with simulated annealing; (4) solving SVM with

quantum annealing (D-Wave); and (5) solving SVM using Graver Augmented

Multi-seed Algorithm (GAMA). GAMA is tried with several di�erent numbers of

Graver elements and a number of seeds using both simulating annealing and

quantum annealing. We found that simulated annealing and GAMA (with simulated

annealing) are comparable, provide accurate results quickly, competitive with

LibSVM, and superior to Gurobi and quantum annealing.

KEYWORDS

quantum annealing, quantummachine learning, binary classification, Graver Augmented

Multi-seed Algorithm, support vector machine

1 Introduction

Pneumonia is a major disease which is prevalent across the globe. Caused by the bacteria

and viruses in the air we breathe, the illness affects one or both of the lungs, creating difficulty

in breathing. Pneumonia accounts for more than 15% of deaths in children younger than

5 years old (World Health Organization, 2022). Therefore, early and accurate diagnosis of

pneumonia is crucial to prevent death and ensure better treatment.

There are many widely used tests to diagnose pneumonia, such as chest X-rays, chest

MRI, and needle biopsy of the lung. Chest X-ray imaging is the most commonly used

method, as it is relatively inexpensive and non-invasive. Figure 1 shows examples of healthy

and pneumonic lung X-rays. However, the examination of chest X-rays is challenging and

sensitive to subjective variability. Machine learning (ML) techniques have gained popularity
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FIGURE 1

The image on the left shows a normal chest X-ray, whereas the one on the right shows lungs with pneumonia opacity (Breviglieri, 2019).

for solving the image classification problem and have found their

use in pneumonia diagnosis as well. Support vector machine

(SVM) is a widely used method for classification. We have the

added advantage of being able to reframe the SVM as a Quadratic

Unconstrained Binary Optimization (QUBO) problem, making it

especially suitable for studying annealing methods. In this study,

we computationally evaluate a variety of SVM methods, in the

context of X-ray imaging for pneumonia, and compare our results

against LibSVM, a state-of-the art implementation of SVM. Our

main contributions include:

1. Studying a QUBO formulation of an SVM using simulated

annealing (SA) and quantum annealing (QA).

2. Solving a QUBO with Gurobi and comparing with annealing

methods.

3. Combining multiple weak SVMs to get a strong classification

model to accommodate fewer qubits on NISQ quantum

annealers.

4. Studying a hybrid quantum-classical optimization heuristic

technique, Graver Augmented Multi-seed Algorithm (GAMA).

2 Related work with CNNs and SVMs

Nagashree andMahanand (2023) compared the performance of

an SVM with a few other classification algorithms, such as decision

tree, naïve Bayes, and K nearest neighbor. The comparison results

indicate a better performance of SVMs for diagnosing pneumonia.

Darici et al. (2020) and Kundu et al. (2021) developed an ensemble

framework and implemented it with deep learning models to boost

their individual performance.

Many researchers have explored, using different data sets,

comparing between classical and quantum machine learning

algorithms. Willsch et al. (2020) introduced a method to train an

SVM on a D-Wave quantum annealer and studied its performance

in comparison to classical SVMs for both synthetic data and

real data obtained from biology experiments. Wang et al. (2022)

implemented an SVM, enhanced with quantum annealing, for two

fraud detection data sets. They observed a potential advantage

of using an SVM with quantum annealing, over other classical

approaches, for bank loan time series data. Delilbasic et al. (2021)

implemented two formulations of a quantum support vector

machine (QSVM) using IBM quantum computers and D-Wave

quantum annealers and compared the results for remote sensing

(RS) images. Bhatia and Phillipson (2021) compared classical

approach, simulated annealing, hybrid solver, and fully quantum

implementations for public Banknote Authentication dataset and

the Iris Dataset.

Researchers have also studied convolutional neural networks

(CNN) in this context. Although it is not the focus of our study,

we mention the related literature. Sirish Kaushik et al. (2020)

implemented four models of CNNs and reached an accuracy of

92.3%. Nakrani et al. (2020) and Youssef et al. (2020) implemented

deep learning models (different types of CNNs) to classify the

data. Madhubala et al. (2021) extended the classification to more

than two types of pneumonia. They used CNNs for classification

and later performed augmentation to obtain the final results.

Ibrahim et al. (2021) considered bacterial pneumonia, non-COVID

viral pneumonia, and COVID-19 pneumonia chest X-ray images.

They performed multiple experiments with binary and multi-class

classification and achieved a better accuracy in identifying COVID-

19 (99%) than normal pneumonia (94%).

3 Background information

3.1 QUBO formulation of SVM

Recalling that SVM is a supervised machine learning model.

The hyperplane produced by the SVM maximizes its distance

between the two classes. Figure 2 shows the support vectors, and

the hyperplane classifies data into two classes (labels +1 and−1).

Given training data X ∈ R
N×d and training labels Y ∈

{−1,+1}N , where N is the number of training data points, we look

for a hyperplane determined by weights, w ∈ R
d, and bias, b ∈ R,

to separate the training data into two classes. Mathematically, the

SVM is expressed as (Date et al., 2021) follows:

min
w,b

1

2
‖w‖2, (1)

subject to yi(w
Txi + b) ≥ 1, ∀i = 1, 2, . . . ,N.
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FIGURE 2

Representation of hyperplane in SVM separating two classes of data.

where, xi is the i-th row vector in X and yi is the i-th element in Y .

The Lagrangian function of this optimization problem is as follows:

L(w, b, λ) =
1

2
‖w‖2 −

N
∑

i=1

λi[yi(w
Txi + b)− 1], (2)

where λ is the vector containing all the Lagrangian multipliers, that

is, λ = [λ1, . . . , λN]
T , with λi ≥ 0, ∀i. Each Lagrange multiplier

or support vector corresponds to one image and represents the

significance of that particular image in determining the hyperplane.

Converting the above primal problem to its dual form yields a

QUBO (Date et al., 2021)

min
λ

L(λ) =
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyj(x
T
i xj)−

N
∑

i=1

λi, (3)

with the final weights determined as

w =

N
∑

i=1

λiyixi, (4)

N
∑

i=1

λiyi = 0, (5)

and λi, λj ≥ 0, ∀i, j. Since the data are linearly inseparable, we use

a kernel function to plot the input data to higher dimensions and

use the SVM on the higher dimensional data. The kernel matrix is

defined as follows

Kij = φ(xi)φ(xj), ∀i, j, (6)

where φ(xi) is some function of the input vector xi. In this study,

we have used the radial basis function (RBF) as it can project data

efficiently. Mathematically, the RBF is defined as follows:

K(x1, x2) = exp

(

−
‖x1 − x2‖

2

2σ 2

)

. (7)

The value of σ was chosen as 50 by trial. Substituting the RBF

from (7) in (3) yields the QUBO as follows:

min
λ

L(λ) =
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyj(Kij)−

N
∑

i=1

λi. (8)

The Lagrange multipliers should also satisfy the condition in

(5). Writing (8) as a matrix yields

min
λ

L(λ) =
1

2
λT(K ⊙ YYT)λ − λT1N , λ ≥ N . (9)

where, K is the kernel matrix whose elements are defined by (6).

1N and N represent N-dimensional vectors of ones and zeros,

respectively, and ⊙ is the element-wise multiplication operation.

This QUBOmatrix becomes the input to an annealer (Ising solver)

that solves the minimization objectives and returns the Lagrange

multipliers (binary) or the support vectors.

The precision vector is introduced to have integer support

vectors instead of only binary, and the dimension of the precision

vector depends on the range of integer values for the support

vector. The precision vector has powers of 2 as elements, and here,

we use p = [20, 21] to get the final QUBO matrix. Now, the

dimensions of the QUBO have doubled, and our support vectors

can be four integers (0,1,2,3) instead of just being binary. Let

λ̂ = [λ11, λ12, . . . , λN1, λN2] be the expanded Lagrange multiplier

vector, which gives us our final QUBO. We pass the QUBO matrix

to an annealer (Ising solver). The final λ̂ vector obtained minimizes

the QUBO

min
λ̂

L(λ̂) =
1

2
λ̂TPT(K ⊙ YYT)Pλ̂ − λ̂TPT1N , (10)

where P = In ⊗ p and λ = Pλ̂. The annealer returns expanded

Lagrange multipliers λ̂, which we use to calculate support vectors

λ. We can predict the labels for unseen data using λ as follows:

label(x) = sign

(

N
∑

i=1

λiyi(Kxi)+ b

)

, (11)

b = mean(yi − wTxi), where i ∈ [0, . . . ,N], (12)

wTxi =

N
∑

j=1

λjyjKji,

with Kxi being the kernel between the new test point x and training

data point i as defined in (6).

3.2 Graver Augmented Multi-seed
Algorithm (GAMA)

Let our binary optimization problem be of the form:

objective function:min f (x)

constraints: Ax = b.

Alghassi et al. (2019a) introduced a novel fusion of quantum

and classical methodologies for computation of Graver basis. In
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the study by Alghassi et al. (2019b), the heuristic was given the

acronym GAMA—Graver Augmented Multiseed Algorithm—and

the authors studied the application of Graver basis (computed

classically) as a means to attain good solutions. In this article, we

explore the performance of GAMA in the context of solving an

SVM.

GAMA is a heuristic algorithm, in which we compute a partial

Graver basis and obtain many feasible solutions using Ising solvers.

The motivation for GAMA comes from the theoretical foundation

that a complete Graver basis is a Test-Set for a wide variety of

objective functions (Graver, 1975; Murota et al., 2004; De Loera

et al., 2009; Lee et al., 2010; Hemmecke et al., 2011). Of course,

for most realistic size problems, it is not possible to identify a

complete Graver basis (Pottier, 1996), but in some cases, it is much

simpler to establish a partial Graver basis, especially when QUBOs

are solved using Ising solvers. We therefore rely on the existence

of several feasible solutions to compensate for this incompleteness

of the Graver basis. Consequently, the GAMA heuristic selects the

best among the (possibly) local optimal solutions by performing

a (partial) Graver walk from each of the possible solutions as the

seed (hence the term “multiseed”). For finding the Graver bases,

we consider the QUBO form of the constraint matrix Ax = 0.

The Ising solver gives us many kernel elements, and performing

conformal filtration on these kernel elements gives us the partial

Graver bases. To get feasible solutions, we take the QUBO form of

the constraint matrix Ax = b (and solve it using an Ising solver).

An alternative is to find kernel elements as differences of the feasible

solutions and thus partial Graver bases and augment every feasible

solution using the Graver bases to obtain solutions that are likely

only a local optimum. To be clear, we have the following steps:

1. Find (partial) Graver basis (either by finding several kernel

elements by solving a QUBO for Ax = 0 or taking differences

of feasible solutions found in step 2);

2. Find feasible solutions by solving a QUBO for Ax = b;

3. Augment the feasible solutions using partial Graver basis

elements, computing the objective function value f (x) at each

step, and choosing the best solution among all (potentially) local

optimal solutions.

4 Data and pre-processing

The data set used is from Kaggle (Breviglieri, 2019) (Kaggle,

RRID:SCR_013852): 1,000 images from each of the normal and

opacity classes are used for training the SVM, while 267 images

from the normal class and 1,000 images from the opacity class

are used to test the trained model for evaluation of performance.

Originally, the images are of different sizes and dimensions.

Therefore, the images are first resized to 200 × 200 pixels. The

resized images are then flattened to give 1-dimensional arrays of

40,000 pixels.

Although the original data set in Kaggle contains more than

4,000 images, we have considered only 2,000 training images. In

the dataset, we observed 1,082 normal images available for training,

while there are more than 3,000 images with signs of pneumonia.

To get unbiased results from the MLmodels, we began our training

with a balanced dataset. Thus, we considered 1,000 normal images

and 1,000 opacity images as the data set in our studies.

5 Methods

We begin with a discussion of each method.

5.1 Method 1: LibSVM (benchmark)

LibSVM is a state-of-the-art library that implements support

vector machine (Chang and Lin, 2011) using the input data sets

directly, without going through the formulation of a QUBO. The

results from LibSVM are typically considered to be a benchmark to

compare other newer methods.

5.2 Method 2: SVM using Gurobi

An SVM modeled as QUBO, as in (10), can be solved using a

state-of-the-art classical solver, such as Gurobi (version 9.5.0). This

is implemented in two ways as follows:

1. All 2,000 training images are taken at once and incorporated into

the QUBO. The solver returns expanded Lagrange multipliers

as an array of 4,000 elements, using which we construct 2,000

support vector values and make predictions on test data.

2. The training set is divided into 40 sets, each of 50 images. Every

set represents an SVM. The 40 SVMs are solved separately and

combined using majority voting bagging (Kim et al., 2002). This

approach is discussed in detail in Section 5.3.

5.3 Method 3: SVM using annealing

We used the D-Wave neal simulated annealer, digital annealer

from IITM, and the Advantage_system 6.2 fromD-Wave with 5614

qubits with the Pegasus connectivity between them (Dattani et al.,

2019) as our three Ising solver options. Among these, the first two

are simulated annealers, while the latter is a quantum annealer.

With additional lenience given for the Lagrange multipliers

using a precision vector, the QUBO matrix for 2,000 input images

has a size of 4000 × 4000. This is beyond the processing capacity

of simulated annealing using D-Wave neal and D-Wave quantum

annealing. To overcome this, we opted to partition the images into

20 distinct sets, each comprising 100 images, giving a QUBOmatrix

of size 200 × 200, which can be solved with simulated annealers

while still remaining challenging for quantum annealing platforms.

Subsequently, we refined our strategy by further dividing the

images into 40 sets, each encompassing 50 images (25 from each

class). As a result, there are 40 SVMs (40 QUBO matrices) of size

100× 100. These 40 SVMs are trained separately, and their outputs

are combined using the majority voting bagging technique (Kim

et al., 2002) to obtain the final decision boundary for classification.

This framework is presented in Figure 3.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1286657
https://scicrunch.org/resolver/RRID:SCR_013852
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Guddanti et al. 10.3389/fcomp.2023.1286657

FIGURE 3

Flowchart of the steps involved in our proposed method for utilizing SVM using annealing.

5.3.1 Method 3(a): simulated annealing
5.3.1.1 Simulated annealing using the D-Wave neal

package

The 40 QUBOs corresponding to 40 SVMs are solved

individually using a simulated annealer, with 1,000 iterations each

per SVM. The output of the annealer is the set of expanded

Lagrange multipliers for all the 1,000 iterations. We filter the

one which gives the minimum energy among 1,000 iterations

for every SVM and thus obtain 40 sets of expanded Lagrange

multipliers for 40 SVMs, using which we get our final support

vectors. The 40 SVMs are combined using the majority voting

bagging technique, and the prediction of unseen test data is

carried out by (11). The simulated annealer was configured

using the default parameter values specified by D-Wave neal in

our study.

5.3.1.2 Simulated annealing using the digital annealer of

IITM

In the utilization of the Digital Annealer for simulated

annealing, it was essential to designate parameter values, that

is, the starting and ending temperature and iterations to

perform at every temperature while descending. We converted

all 40 QUBOs to Ising formulations and gave them as input

to the digital annealer. The annealer performs one round of

annealing from starting temperature to ending temperature with

a specified number of iterations at every step. We took the

initial temperature to be 6.4K, the final temperature to be

0.001K, and iterations at every step to be 20. The output we

get would be the final spin values of the Ising formulation and

its final energy value. We take the spin values output for all

40 SVMs which are expanded Lagrange multipliers and calculate

support vectors. These are combined using majority voting,

and prediction for unseen test data is done by using equation

(11).

5.3.2 Method 3(b): quantum annealing
The procedure resembles that of simulated annealing with D-

Wave neal. Here, instead of 1000, we have taken 500 iterations of

the D-Wave quantum annealer. It is important to note that, unlike

simulated annealing, quantum annealers often have substantial

queue times.

5.4 Method 4: SVM using GAMA

GAMA can be a very efficient method when the objective

function is complex but the constraints are simple (Alghassi et al.,

2019b). We give the simpler constraints to the annealer, obtain

partial Graver elements and feasible solutions, and do a walkback

using the initial objective function to obtain a final solution. The

constraint equation is given in (5).

To ensure that the algorithm does not get stuck in a

local minimum while performing augmentation, we implement a

Metropolis-Hastings version of GAMA. In this case, we consider

the probability of moving in any of the directions according to the

ratio in the objective function value and not just in the direction of

improvement. We end the augmentation iterations if the change

in objective function value remains constant for more than ten

iterations.

5.4.1 Method 4(a): GAMA using simulated
annealing

We tested simulated annealing from D-Wave and the Digital

Annealer from IITM. Similar to the method 3 (Section 5.3), the

images are divided into 40 sets (40 SVMs). Recalling that we use

the constraint mentioned in (5) to get Graver bases and feasible

solutions:

N
∑

i=1

λiyi = 0. (13)
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TABLE 1 Confusion matrix values and time taken for the following methods, respectively: LibSVM (Classical state-of-the-art implementation of SVM),

Gurobi1 (Gurobi using all images at once), Gurobi2 (Gurobi with images split into 40 sets), SimAnn-Dn (Simulated Annealing using D-Wave neal),

SimAnn-Di (Simulated Annealing using the Digital Annealer from IITM), QuantumAnn (Quantum Annealing with D-Wave), Simulated Annealing using

D-Wave neal with GAMA (50 Graver + 50 feasible solutions), Simulated Annealing using D-Wave neal with GAMA (100 Graver + 100 feasible solutions),

Simulated Annealing using D-Wave neal with GAMA (200 Graver + 200 feasible solutions), Simulated Annealing using the Digital annealer from IITM with

GAMA (499 Graver + 499 feasible solutions), and Quantum Annealing with GAMA run on D-Wave quantum annealer (127 feasible solutions + 127 Graver

elements).

Method True +ve False +ve True −ve False −ve Time taken

LibSVM 917 19 248 83 3 min 30 s

Gurobi1 712 11 256 288 30 min

Gurobi2 860 111 156 140 2.44 s

SimAnn-Dn 927 22 245 73 6 min 29 s

SimAnn-Di 884 20 247 116 20 s

QuantumAnn 924 46 221 76 12 s

GAMA1 862 28 239 138 10 s (anneal) + 7 s (aug)

GAMA2 900 36 231 100 10 s (anneal) + 36 s (aug)

GAMA3 924 33 234 76 10 s (anneal) + 153 s (aug)

GAMA-Di 885 67 200 115 256 s (anneal) + 1,196 s (aug)

GAMA-Q 875 9 258 125 0.3 s (anneal) + 92 s (aug)

In the table, “aug” represents augmenting time. Quantum annealer time represents only quantum processor time. We are reporting the best of three runs for all annealing methods.

The constraint matrix (QUBO matrix framed from the above

equation) remains the same for all SVMs as the Y vector (labels

vector) remains the same for all 40 SVMs (each SVM has 25 normal

and then 25 opacity images). As the right-hand part of constraints

is zero, kernel elements and the feasible solutions are also the same.

This special structure implies that a single execution of the annealer

is sufficient to address the optimization requirements for all 40

SVMs. Thus, the Graver bases and feasible solutions are obtained

once and used for augmentation in all SVMs.

A total of 500 feasible solutions (also kernel elements) were

obtained by simulated annealing using the D-Wave neal package

(from dwave-ocean-sdk). For simulated annealing using the digital

annealer of IITM, we have taken the QUBO of constraint

mentioned above in (5) and converted it to an Ising formulation.

The annealer performs one round of annealing at a time as

mentioned in the method 3(a). We took the initial temperature to

be 6.4K, the final temperature to be 0.001K, and iterations at every

step to be 20. The entire annealing is performed for 500 times. Here,

500 feasible solutions (also kernel elements) are obtained. When

conformal filtration is performed, we obtained 499 partial Graver

bases.

Detailed experimentation of this method is performed using

D-Wave neal simulated annealing. We experimented with three

different sets of Graver bases and feasible solutions. The following

cases are considered for augmentation:

1. 50 Graver elements + 50 feasible solutions

2. 100 Graver elements + 100 feasible solutions

3. 200 Graver elements + 200 feasible solutions

We obtained 40 sets of Lagrange multipliers corresponding to

40 SVMs for each of the three cases above. The majority of voting

bagging is used to combine 40 SVMs, and the final output is tested

on the test data set according to equation (11). Using the digital

annealer from IITM, we have utilized all 499 partial Graver bases

and feasible solutions and performed the augmentation.

5.4.2 Method 4(b): GAMA using D-Wave quantum
annealing

The GAMA with quantum annealing process follows a

methodology akin to that of GAMA involving simulated annealing.

The number of feasible solutions was 127 (as compared with 500 in

the earlier method). Notably, out of 500 calls to D-Wave, only 127

gave the minimum energy solution. All 127 feasible solutions and

corresponding (partial) Graver elements (computed via conformal

filtration, which happened to also be 127, likely due to the fact that

the kernel elements are short to begin with) were included in the

augmentation process.

6 Results and analysis

The results of various methods are compared through

confusion matrix representation and associated metrics as we

mentioned below. A confusion matrix is a tabular representation

used to assess the performance of classification models. It provides

a comprehensive overview of how well the predictions of the model

align with actual outcomes for different classes or categories. The

matrix is constructed by comparing predicted class labels with

true class labels for data points. It represents a breakdown of

the predictions into four categories: True Positives (TP) represent

correctly predicted positive instances, True Negatives (TN)

represent correctly predicted negative instances, False Positives

(FP) represent instances that are incorrectly predicted as positive

when they are actually negative, and False Negatives represent

instances that are incorrectly predicted as negative when they are
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TABLE 2 Accuracy, precision, recall, and F1 score for all methods.

Method Accuracy Precision Recall F1 score

LibSVM 91.9 97.9 91.7 94.6

Gurobi1 76.4 98.4 71.2 82.6

Gurobi2 79.8 88.2 86 87

SimAnn-Dn 92.5 97.6 92.7 95

SimAnn-Di 89.2 97.7 88.4 92.8

QuantumAnn 90.3 95.2 92.4 93.7

GAMA1 86.8 96.8 86.2 91.2

GAMA2 89.2 96.1 90 92.9

GAMA3 91.3 96.5 92.4 94.4

GAMA-Di 85.6 92.9 88.5 90.6

GAMA-Q 89.4 98.9 87.5 92.8

We have highlighted the maximum values in each column in red for easy comparison.

actually positive. The confusion matrix helps in evaluating metrics

such as accuracy, precision, recall, and F1-score, which help with

a deeper understanding of the performance of the model across

various classes.

We evaluate various methods on four metrics as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
, (14)

Precision =
TP

TP+FP
, (15)

Recall =
TP

TP+FN
, (16)

F1 score =
2 TP

2TP+FP+FN
. (17)

For all the methods, the results are noted from the confusion

matrix, which is shown in Table 1 (Recalling that positive means

opacity and negative is normal). For quantum annealing, the

annealing time including queue time and post-processing for 40

SVMs is 3 h 16 min. In the table, we have removed all these and

only provided annealing time. The metrics of comparison for all

the methods are presented in Table 2.

6.1 Comparison of methods

Since the running time for each method is different, we cannot

draw direct comparisons based on the values of the four metrics.

However, Tables 1, 2 provide insight into some key points. All the

metrics from Table 2 are plotted in the graph in Figure 4 for visual

convenience. We use LibSVM as the classical solver to compare our

SVM implementations. As shown in Table 2, the results from other

methods, especially SimAnn-Dn, compare favorably against those

from LibSVM.

• Gurobi, when given data divided into 40 SVMs, takes the least

time (2.44 s), but the performance is weak. When all images

are input at once and trained for 30 min, there is no significant

improvement in the performance.

• Simulated annealing performed using D-Wave neal takes

approximately 6.5 min to run, and the results obtained are

good. The best accuracy (92.5%) and F1 score (95%) are

achieved with simulated annealing.

• In the case of GAMA, the performance improves as

we increase the number of Graver elements taken for

augmentation. The augmentation time taken also increases

accordingly (it reaches a threshold value of performance as in

Supplementary Figures 2, 4, See Appendix). Indeed, using 200

feasible solutions and 200 Graver elements appears sufficient

to reach good performance relatively quickly.

• GAMA when implemented using quantum annealing takes

approximately 8.5 min (including queue time) and provides

accuracy similar to that of SVM using quantum annealing

[Method 3(b)]. Here, we can observe a massive speed-up

as method 3(b) takes more than 3 h to run. Thus, despite

limited connectivity, GAMA provides a significant time

improvement for quantum annealing, without compromising

on the metrics.

• Quantum annealers often have a lower precision for encoding

QUBO coefficients. However, we found that this did not

affect the results because the QUBO matrix elements

ranged between 0 and 2 or between 0 and 4 when we

used GAMA.

Among our approaches, for a given time budget (of training),

the best methods are as follows:

1. 5 min: GAMA 3 (200 Graver elements + 200 feasible solutions).

2. 10 min: Simulated annealing [method 3(a)] and GAMA 3 (200

Graver elements + 200 feasible solutions).

3. 20 min: Simulated annealing [method 3(a)] and GAMA 3 (200

Graver elements + 200 feasible solutions).

Not much improvement is observed by increasing training

time.

6.2 Bagging and probability distribution

Majority voting bagging (Kim et al., 2002), the method used

to combine SVMs, also improve the performance of the combined

SVM. The accuracy of annealing methods [method 3(a) and

method 3(b)] without bagging and with bagging is compared in

plots (Figures 5, 6).

We can observe that the accuracy improved to 92.5% (Red line

in Figure 5) in the case of simulated annealing using D-Wave neal

and to 90.3% (Red line in Figure 6) in the case of D-Wave quantum

annealing using majority voting bagging.

Many iterations of annealing are taken to find the Lagrange

multipliers that best minimize the objective function value. It is

instructive to know how often we might get the parameters

that give the minimum objective function value. From

Figures 5, 6, we also observe that some of the individual

SVMs also give sufficiently good results. Thus, there maybe

an opportunity to reduce computational time (by only

solving a few SVMs rather than all 40) and obtain good

results.
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FIGURE 4

Comparative analysis of accuracy, precision, recall, and F1 score for all methods.

FIGURE 5

The yellow lines represent the accuracy metric for all the 40 SVMs we divided the data into. The red line shows the maximum accuracy achieved

using weighted average bagging as 92.5%. All the SVMs are solved with simulated annealing using D-Wave neal.

To understand the probability of obtaining the best solution,

we plot the probability distribution for best-performing SVMs

(for simulated annealing using D-Wave neal and quantum

annealing, respectively). Figure 7 shows the probability distribution

for all obtained solutions over 10,000 iterations of simulated

annealing for SVM number 31, which gave us the best individual

SVM accuracy. We can observe that although our desired

low-energy solution occurred with low probability, the median

solutions also give good accuracy. Figure 8 shows the probability

distribution for all obtained solutions over 8,000 iterations

of D-Wave for SVM number 27, which gave us the best

individual SVM accuracy. The distribution is similar to that of

simulated annealing but did not reach the quality of solutions of

simulated annealing.

7 Concluding remarks

In this study, we explored binary classification through

classical, quantum, and hybrid methods, using X-ray imaging data

for pneumonia, and used LibSVM as our benchmark. To have a

balanced data set for SVM, we selected 1,000 images, each, with

and without pneumonia as our input data set. We separated the

data into 40 sets. We formulated the SVM as a QUBO and solved

the QUBOs using simulated annealing and Gurobi and quantum

annealing. Additionally, we studied GAMA heuristic, where the

(different) QUBOs were solved using simulated annealing and

quantum annealing. Each of our data sets yielded an SVM. We

used bagging to combine the 40 SVMs, which improved the overall

accuracy.
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FIGURE 6

The yellow lines represent the accuracy metric for all the 40 SVMs we divided the data into. The red line shows the maximum accuracy achieved

using weighted average bagging as 90.3%. All the SVMs are solved using quantum annealing.

FIGURE 7

Probability distribution of simulated annealing solutions for SVM

number 31. The best solution has energy approximately −59.

For binary classification of X-ray images, SVM can be an

alternative to CNN, especially when considering pathways to

implementations on a quantum annealer. The classical solver,

LibSVM, shows a 92% accuracy in classification. However,

Simulated Annealing using D-Wave neal (SimAnn-Dn) has

comparable or better performance. GAMA provides a speed-up

over quantum annealing with the similar performance on metrics.

Quantum annealing is not competitive in terms of time taken

but provides solutions of quality that are near the best obtained.

We anticipate an enhancement in performance when quantum

FIGURE 8

Probability distribution of D-Wave quantum annealing solutions for

SVM number 27. Notably, the best solution has energy of

approximately −20, not as good as that found in simulated

annealing.

annealers with more qubits and better connectivity become

accessible. It is important to acknowledge that improvements in

classical hardware and software are also anticipated concurrently.

This suggests that periodic comparisons should be encouraged. We

hope that our study adds to the literature on the benchmarking

of quantum, classical, and hybrid approaches to solve a variety

of important combinatorial optimization problems arising from

practical applications (Metriq, 2023).
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