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Quantum annealing research at
CMU: algorithms, hardware,
applications

Sridhar Tayur* and Ananth Tenneti

Quantum Technologies Group, Carnegie Mellon University, Pittsburgh, PA, United States

In this mini-review, we introduce and summarize research from the Quantum

Technologies Group (QTG) at Carnegie Mellon University related to computational

experiencewith quantum annealing, performed in collaborationwith several other

institutions including IIT-Madras and NASA (QuAIL). We present a novel hybrid

quantum-classical heuristic algorithm (GAMA, Graver Augmented Multi-seed

Algorithm) for non-linear, integer optimization, and illustrate it on an application

(in cancer genomics). We then present an algebraic geometry-based algorithm for

embedding a problem onto a hardware that is not fully connected, along with a

companion Integer Programming (IP) approach. Next, we discuss the performance

of two photonic devices - the Temporal Multiplexed Ising Machine (TMIM) and

the Spatial Photonic Ising Machine (SPIM) - on Max-Cut and Number Partitioning

instances. We close with an outline of the current work.

KEYWORDS

quantum annealing, Combinatorial Optimization, Photonic Ising Machines, Graver basis,

cancer genomics

1 Introduction

Quantum annealing has emerged as a promising approach because a variety of

Combinatorial Optimization (CO) problems that arise in practical situations (Smelyanskiy

et al., 2012; Tanahashi et al., 2019; Hauke et al., 2020) can be formulated as a Quadratic

Unconstrained Binary Optimization (QUBO) problem, which maps naturally to an Ising

model, and solved on specially constructed quantum and semi-classical hardware (Wang

et al., 2013; Lucas, 2014; McMahon et al., 2016; Glover et al., 2018; Harris et al., 2018; King

et al., 2018; Chou et al., 2019; Wang and Roychowdhury, 2019; Mohseni et al., 2022). A lucid

introduction to quantum annealing can be found in McGeoch (2014).

At Carnegie Mellon University’s Quantum Technologies Group (QTG), we have been

working on several initiatives1 related to computational aspects of quantum annealing

(Figure 1).

1. While unconstrained optimization problems expressed as QUBO can be directly passed

to an annealer solver, it is also of practical interest to develop scalable decomposition

methods that solve general non-linear constrained optimization problems. We describe

a novel quantum-classical algorithm, Graver Augmented Multiseed Algorithm (GAMA)

(Alghassi et al., 2019b,c) for solving such optimization problems, building on previous

work on the use of algebraic geometry for Integer Optimization with a linear objective

1 QTG is also engaged in theoretical research on understanding speed up in adiabatic quantum

computing (Dridi et al., 2018b, 2019a), and other connections between algebraic geometry and Ising

models (Dridi et al., 2019b), topics not covered here.
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FIGURE 1

Some computational quantum annealing initiatives at Quantum Technology Group (QTG).

function (Tayur et al., 1995). GAMA is motivated by test sets,

and (a) uses partial Graver bases (Graver, 1975) instead of

the complete Graver basis and (b) many feasible solutions as

starting points (rather than just one) for augmentation. Both

the partial Graver basis and a number of feasible solutions are

obtained from the constraint equation expressed as QUBOs

(that is solved by an annealer). A particular advantage of this

algorithm is that it separates the constraints from the objective

function, allowing us to tackle situations where the computation

of objective function value may need an oracle call (such as a

simulation).

2. Many devices such as D-Wave have limited coupling

connectivity between qubits. For a dense problem graph,

it is therefore necessary to develop a mapping - minor

embedding—to the sparse hardware graph. We have developed

two methods, based on algebraic geometry and Integer

Programming (Dridi et al., 2018a; Bernal et al., 2020).

3. Building fully connected Ising hardware is another exciting

area of current research. We have re-constructed (with some

refinements) two Photonic Ising Machines (PIM), building on

the time-multiplexed coherent Ising machine (TMCIM) (Böhm

et al., 2019) and the spatial multiplexed Ising machine (SPIM)

(Pierangeli et al., 2020). We have studied the performance of

the annealers on Max-Cut and Number Partitioning Problem

with D-Wave (McGeoch, 2014) and Gurobi (LLC Gurobi

Optimization, 2023).

The rest of the review is organized as follows. In Section 2, we

describe GAMA. In Section 3, we illustrate the application

of the GAMA on identifying altered pathways in cancer

genomics as a proof-of-principle and recovering known

results. An algebraic geometry-based embedding algorithm

and its Integer Programming reformulation are outlined

in Section 4 and compared to the default heuristic that

is used by D-Wave. The performance of two Photonic

Ising Machines is discussed in Section 5. We conclude in

Section 6.

2 Graver augmented multiseed
algorithm (GAMA)

We begin with three definitions, taken verbatim from Alghassi

et al. (2019c).

Definition 1. A set S ∈ Z
n is a Test Set or an optimality certificate

if for every non-optimal, feasible solution, x0, there exists t ∈ S and

λ ∈ Z+ such that f (x0 + λt) < f (x0). The vector, t is called the

augmenting direction.

The following partial order is defined on R
n.

Definition 2. Given x, y ∈ R
n, we define x is conformal to y,

written as x ⊑ y, if xiyi ≥ 0 (x and y lie in the same orthant),

and |xi| ≤ |yi|, ∀ i ∈ {1..n}. A sum u =
∑

i vi is called conformal if

vi ⊑ u, ∀i.

For a matrix A ∈ Z
m×n, define the lattice

L∗(A) = {x|Ax = 0, x ∈ Z
n,A ∈ Z

m×n}\{0}. (1)

Definition 3. The Graver basis, G(A) ⊂ Z
n, of an integer matrix A

is defined as the finite set of⊑minimal elements in L∗(A).

The Graver basis (Graver, 1975) of an integer matrix, A ∈

Z
m×n is known to be a test set for integer linear programs. Graver

basis is also a test set for certain non-linear objective functions

including Separable convex minimization (Murota et al., 2004),

Convex integer maximization (De Loera et al., 2009), Norm p

minimization (Hemmecke et al., 2011), Quadratic (Murota et al.,

2004; Lee et al., 2010) and Polynomial minimization (Lee et al.,

2010). It has also been shown that for these problem classes, the

number of augmentation steps needed is polynomial (De Loera

et al., 2009; Hemmecke et al., 2011). Graver basis can be computed

(only for small size problems) using classical methods such as the

algorithms developed by Pottier (1996) and Sturmfels and Thomas

(1997).

At QTG, we are exploring (a) the effectiveness of computing

partial Graver basis using annealers by solving a QUBO (for kernel

elements) and (b) instead of relying on just one feasible solution

as the seed for augmentation, using multiple feasible solutions

(that are also obtained via annealing, by solving a second QUBO),

as parallel starting points. The GAMA heuristic (Alghassi et al.,

2019b,c) thus aims to find good solutions to constrained non-linear

optimization problems of the form in Equation 2, using multiple

seeds as starting points for augmentation, with partial Graver basis

elements as the augmenting directions:

(IP)A,b,l,u,f =















min f (x)

Ax = b l ≤ x ≤ n x, l, u ∈ Z
n

A ∈ Z
m×n b ∈ Z

n

(2)
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where f :Rn− > R is a real valued function.

2.1 QUBO for kernel calculation

In order to find a sample of the kernel elements for the

constraint matrix A, we solve the Quadratic Unconstrained Integer

Optimization (QUIO), given by

min xTQIx, QI = ATA, x ∈ Z
n

xT = [x1, x2...xn], xi ∈ Z.
(3)

Since the inputs to the annealer are binary variables, we create

a binary encoding of the integer variable. Writing

x = L+ EX, (4)

with L as the lower bound vector and E as the encoding matrix, the

QUIO is equivalent to the QUBO

min XTQBX, QB = ETQIE+ diag(2LTQIE),

X ∈ {0, 1}nk,QI = ATA.
(5)

The above QUBO is solved by an annealer to obtain kernel

elements. A partial Graver basis can be obtained from the kernel

elements in a classical post-processing step by ⊑-minimal filtering

(Alghassi et al., 2019b).

2.2 QUBO for feasible solutions

Similar to the kernel sampling, the Ax = b constraint can be

expressed in the QUIO form as

min xTQIx− 2bTAx

QI = ATA, x ∈ Z
n.

(6)

After binary encoding, we get the QUBO given by

min XTQBX, QB = ETQIE+ 2diag[(LTQI − bTA)E]

X ∈ {0, 1}nk,QI = ATA.
(7)

The above QUBO can be solved by an annealer to obtain a

sample of feasible solutions.

3 An application of GAMA: cancer
genomics

As a proof-of-principle testing of GAMA, we describe an

application (Alghassi et al., 2019a) to identify cancer pathways de

novo (Vogelstein and Kinzler, 2004; Haber and Settleman, 2007;

Ciriello et al., 2012; Vandin et al., 2012a,b; Zhao et al., 2012) from

mutation co-occurrence and mutual exclusivity (Leiserson et al.,

2013; Weinberg and Weinberg, 2013).

Data from The Cancer Genome Atlas (TCGA) are now

available for a variety of cancers, providing information about

which genes are mutated for which patient for any given cancer.

With this, we can create a matrix. The rows of the matrix are

patients, the columns are the genes, and the elements of the matrix

(row i, column j) are zero or one (a binary matrix), where “one” in

(row i, column j) means that gene j is mutated for patient i.

However, not all mutations matter. The mutations that do

not matter are called passengers. Those mutations that matter are

called drivers. We want to isolate drivers from passengers (Most

mutations are passengers). Furthermore, the same cancer can

manifest itself due to different driver mutations, because different

mutated driver genes can impact different cellular signaling and

regulatory pathways. This mutational heterogeneity complicates

efforts to identify drivers solely by their frequency of occurrence.

A pathway is a collection of genes. To find k pathways

means finding k different collections of genes. Each collection

of genes can be of a different size. To make the discovery of

these pathways computationally manageable, we also make two

commonly accepted simplifications:

Simplification 1: A pathway has at most one mutated driver gene.

This is because driver genes are quite rare. Thus, two different

pathways will not likely share a common driver gene. This is called

(mutual) exclusivity.

Simplification 2: A pathway should apply to many patients. This is

called coverage. The important thing to note is that even though

two patients share a pathway, they can have a different mutated

gene from that shared pathway as an explanatory reason for

their cancer.

Another complexity that we need to handle is that real data

are noisy because of measurement errors and passenger mutations.

This means that we cannot impose exclusivity as a hard constraint.

Instead, we allow for some overlap or “approximate exclusivity”

and this is a parameter in our formulation. Similar considerations

force a modification of Simplification 2 as well, in the sense that

we now can only reasonably hope that most patients have at least

one mutation in a pathway. Recall that mutual exclusivity problems

even without the modification above are NP-hard (Karp, 1972).

3.1 Multiple-pathway QUBO formulation
for GAMA

Alghassi et al. (2019a) developed a novel formulation tailored

for GAMA to discover the cancer pathways. Consider a hypergraph

Hg = (Vg ,Ep) with incidence matrix B, where each gene (gi) is

represented by a vertex vi ∈ Vg , i = 1, 2, ..., n and the mutation

list of each patient Pi is represented by a hyperedge ei ∈ Ep, i =

1, 2, ...,m.

The incidence matrix is mapped to its primal graph (G). This

is a graph with the same vertices as that of the hypergraph and

with edges between all pairs of vertices contained within the same

hyperedge. The primal graph can be expressed in terms of the

(positive) Laplacian matrix:

L+(G) = BBT = D(G)+ A(G). (8)

The weighted adjacency matrix A = [a(i, j)]n×n is symmetric

and has zero as the diagonal elements. The number of patients that

have gene pairs (gi, gj) mutated is given by a(i, j). The number of

patients with gene gi mutated is given by the element, di in the
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degree matrix, D = diag{d1, d2, ..., dn}, where di is the degree of

the vertex vi in the primal graph.

A k-pathway QUBO formulation simultaneously finds k

pathways in a single optimization run. The solution vector is

represented by the binary vector xi = [xi1, xi2, ..., xin]
T , i = 1, 2, ..., k

where, each element xij indicates if a vertex vj belongs to the ith

pathway. Let X = [x1, x2, ..., xk]
T . The QUBO formulation is given

by the following (where L = (D − A) is the negative Laplacian

matrix).

min XT(Qmain + αQorth)X

Qmain = −Ik ⊗ L

Qorth = (Jk − Ik)⊗ In

(9)

Note that Ik and In are k × k and n × n identity matrices. Jk is

the k× kmatrix with all entries equal to 1.

Rewriting the system of equations( 9) as

min XTQX

(1Tk ⊗ In)X ≤ 1n

Q = −Ik ⊗ L

(10)

brings it in the form suitable for GAMA (Alghassi et al., 2019b).

This is a non-linear (quadratic) non-convex integer problem

and of a Quadratic Semi Assignment Problem (QSAP) form. We

can alternatively extract Graver basis and generate feasible solutions

systematically, in this case, Alghassi et al. (2019b) instead of solving

QUBOs on a quantum annealer.

3.2 Numerical results

GAMA algorithm is used to solve the k-pathway problem using

the mutation data of 33 genes for Acute Myeloid Leukemia (AML)

for 200 patients (Network, 2013). By construction, the number of

binary variables required is lower than available methods (?). For

k = 3, the pathways discovered by GAMA are consistent with

those reported by the TCGA authors. For k = 6, three additional

pathways are discovered by GAMA albeit with lower coverage.

4 Embedding algorithms

If an annealer hardware is not fully connected (e.g. the D-Wave

system), it is necessary to map the logical graph, Y associated with

the optimization problem into the processor graph, X (Choi, 2011,

Boothby et al., 2016).We describe embedding algorithms2 based on

algebraic geometry (Dridi et al., 2018a).

Definition 4. Let X be a hardware graph. A minor-embedding of

the the graph, Y is a map, φ :Vertices(Y)− > connectedSubtrees(X)

such that, ∀(y1, y2) ∈ Edges(Y), there exists at least one edge

connecting the subtrees, φ(y1) and φ(y2).

2 Note that X can be any graph in general, not just the hardware graph,

which is the focus here.

Given an embedding of a logical graph, Y into a physical graph,

X, the Y minor is a subgraph of X given by

φ(Y) = ∪y∈Vertices(Y)φ(y) (11)

This is the input graph to the quantum processor. The

information regarding the mapping of each logical qubit is stored

in a hash map,

id × φ :Vertices(Y)× Vertices(Y)− > Vertices(Y)× Subtrees(X)

(12)

which can be used to unembed the desired solution returned by the

processor.

4.1 Algebraic geometry method

The set of embeddings can be viewed as an algebraic variety,

which is the set of zeros of a system of polynomial equations (Cox

et al., 2007). Given an embedding the mapping, π :Vertices(X)− >

Vertices(Y) ∪ {0}, where the pre-image (fiber) π−1(y) = φ(y),

∀y ∈ Vertices(Y) has the form:

π(xi) =
∑

j

αijyj

with
∑

j

αij = βi, αij(αij − 1) = 0

αij1αij2 = 0, for j1 6= j2

(13)

where βi ∈ {0, 1} is equal to 1, if the physical qubit xi is used, and

0 otherwise. The conditions on the embedding φ in Definition 4

along with a limit on the number of usable physical qubits can be

translated into a system of polynomial constraints on αij and βi.

This system defines an algebraic ideal I , and the embeddings can

be obtained using the Groebner basis of I .

4.2 Integer programming (IP) method

An IP formulation of the embedding algorithm (Bernal et al.,

2020) is developed by expressing the polynomial conditions in

Dridi et al. (2018a) as linear constraints involving integer variables.

This formulation includes constraints forMinimum andMaximum

size. Embeddings are obtained by optimizing the Embedding size

within the feasible region. A decomposition approach, iterating

between a qubit assignment master problem and a fiber condition

checking subproblem is also developed.

Bernal et al. (2020) tested these methods using random graphs

that vary in structure, size, and density. The results are compared

with the D-Wave default heuristic, minorminer (Cai et al., 2014).

The IP-based approaches are found to be slower whenever the

heuristic can find an embedding. However, it is possible to obtain

infeasibility proofs and bounds on solution quality with the IP

methods, but not from the heuristics. The decomposition approach

outperforms the monolithic IP approach.
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5 Hardware

Two fully connected Coherent Ising Machines (CIM) - the

Temporal Multiplexed Coherent Ising Machine (TMCIM) (based

on Böhm et al., 2019, 2021) and the Spatial Photonic Ising Machine

(SPIM) (an enhancement of that of Pierangeli et al., 2019)—were

built by collaborators at IIT-Madras (Prabhakar et al., 2023).

5.1 Temporal Multiplexed Ising Machine

The TMCIM was tested on the Max-Cut problem (Karp, 1972)

and the results on various instances are compared with Gurobi run

on an Intel Core i3 processor and also with a D-Wave machine. The

graph instances for the problem are generated using rudy (Rendl

et al., 2010). See Prabhakar et al. (2023) for details.

First, at a fixed graph size (100 nodes), and varying density,

TMCIM performed better than Gurobi up to a graph density of

40%. However, above 50%, the performance of TMCIM degraded.

Next, the results with a fixed graph density of 40% and varying size

of the graph from 100 to 1, 000 were obtained. For larger graphs,

the performance of TMCIM was found to be considerably lower

than Gurobi.

Second, the results are compared with the D-Wave Advantage

1.1 (DWA) annealer with the graph size varying from 20 to 100

nodes and the graph density fixed at 10%. For all the graph sizes,

TMCIM is able to always give aMax-Cut value which is at least 96%

of the value obtained using Gurobi (see Figure 6 in Prabhakar et al.,

2023). A solution accuracy of 99% can be attained up to 30 nodes.

For DWA, the solution accuracy degrades beyond 20 nodes. This

can be attributed to the limited connectivity of its Pegasus graph.

5.2 Spatial Photonic Ising Machine

The SPIMwas tested on a Number Partitioning Problem (NPP)

with instance sizes varying from 16 to 16, 384 variables. The

performance of the SPIM was compared with that of Gurobi and

DWA. See Tables 3, 4 in Prabhakar et al. (2023). For DWA, the

number of variables that can be embedded is limited to 11 × 11

fully connected graph and is not competitive. For problem sizes

up to 1024 variables, Gurobi performs better than SPIM. However,

Gurobi is unable to find solutions as the problem size gets larger

while SPIM can handle up to 16,384 variables.

6 Conclusion

We have developed GAMA (Graver Augmented Multi-seed

Algorithm), a novel hybrid quantum-classical algorithm for non-

linear constrained integer optimization. As an application, we have

explored a new formulation for the discovery of de-novo cancer

pathways. This tailored formulation is found to require fewer

binary variables when compared with existing methods, and the

pathways detected have been found to be consistent with previously

published results.

For minor embedding that is usually required in Ising

hardware that does not have an all-to-all connectivity, we have

developed algebraic geometry and IP-based algorithms. The

IP algorithm is found to perform well for highly structured

source graphs when compared with the currently employed

heuristic, minorminer and the Groebner basis method.

While slower overall when compared with the heuristic, the

algorithm can detect instance infeasibility and obtain bounds on

solution quality.

We have built two photonic Ising machines, TMCIM and

SPIM. We have studied their performance on Max-Cut and NPP

problems, respectively, by comparing them with D-Wave and

Gurobi. For the Max-Cut, TMCIM gave better results than Gurobi

at smaller graph sizes (< 100 nodes) and lower densities (<

40%), while its accuracy is lower for larger problems. However,

the performance is better than D-Wave, which can be attributed

to better connectivity. SPIM can solve NPP problems up to 16384

spins, which is larger than the problem sizes solved by D-Wave and

Gurobi. Gurobi’s performance is better at smaller sizes, but cannot

exceed more than 1024 spins.

We conclude by noting some current work in quantum

annealing. We are testing GAMA3 against state-of-the-art

classical approaches for an application in disaster preparation,

in collaboration with researchers at Koc University, as part

of an initiative of the Turkish Ministry of Transportation

and Infrastructure, focused on probable earthquakes in

Istanbul. As noted earlier, the performance of the annealers

depends crucially on connectivity in the hardware. We are

in the process of building another fully connected annealer,

based on Floquet Theory, collaborating with researchers at

Cornell University and Raytheon BBN Technologies, that

is implemented using superconducting circuits (Onodera

et al., 2020), adding to a growing set of devices with all-to-all

connectivity being developed on other technologies (such as

trapped ions or cold Rydberg atoms, such as QuEra processor).

Nevertheless, we expect the size of complete connectivity in any

hardware in the foreseeable future to be limited. It is therefore

necessary to develop additional decomposition techniques

for efficiently partitioning (and then recombining) large-scale

optimization problems, an area of active algorithmic research

at QTG.
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