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Fog Computing has emerged as a pivotal technology for enabling low-latency,

context-aware, and e�cient computing at the edge of the network. E�ective task

scheduling plays a vital role in optimizing the performance of fog computing

systems. Traditional task scheduling algorithms, primarily designed for centralized

cloud environments, often fail to cater to the dynamic, heterogeneous, and

resource-constrained nature of Fog nodes. To overcome these limitations, we

introduce a sophisticated machine learning-driven methodology that adapts task

allocation to the ever-changing Fog environment’s conditions. Our approach

amalgamates K-Means clustering algorithm enhanced with fuzzy logic, a robust

unsupervised learning technique, to e�ciently group Fog nodes based on

their resource characteristics and workload patterns. The proposed method

combines the clustering capabilities of K-means with the adaptability of fuzzy

logic to dynamically allocate tasks to fog nodes. By leveraging machine learning

techniques, we demonstrate how tasks can be intelligently allocated to fog nodes,

resulting in reducing execution time, response time and network usage. Through

extensive experiments, we showcase the e�ectiveness and adaptability of our

proposed approach in dynamic fog environments. Clustering proves to be a time-

e�ective method for identifying groups of jobs per virtual machine (VM) e�ciently.

To model and evaluate our proposed approach, we have utilized iFogSim.

The simulation results a�rm the e�ectiveness of our scheduling technique,

showcasing significant enhancements in execution time reduction, minimized

network utilization, and improved response time when compared to existing

machine learning and non-machine learning based scheduling methods within

the iFogSim framework.

KEYWORDS

machine learning, fog computing (FC), Internet of Things (IoT), symbiotic organism search

algorithm (SOS), task scheduling, K-mean clustering algorithm, fuzzy logic, fog nodes (FD)

1 Introduction

The advent of the Internet of Things (IoT) has ushered in an era of pervasive data

generation, enabling smart cities, industrial automation, healthcare monitoring, and a

myriad of other applications (Kumar et al., 2019). However, the efficient processing and

analysis of this vast volume of data at the edge of the network have posed significant
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challenges. Fog computing, an extension of cloud computing

(Arooj et al., 2021), offers a promising solution by bringing

computation and data storage closer to the data sources,

thereby reducing latency, bandwidth usage, and enabling real-

time decision-making. In this paradigm, a fundamental aspect that

demands attention is the scheduling of tasks on fog nodes, which

is pivotal in ensuring timely execution and resource optimization

(Goniwada, 2022).

Fog computing introduces a dynamic and heterogeneous

environment where resources, such as computing power and

network bandwidth, can vary significantly across fog nodes.

Moreover, the tasks to be executed often exhibit diverse

characteristics, including varying execution times and real-time

requirements (Guo and Chen, 2023). The challenge lies in

orchestrating these resources efficiently to meet stringent task

execution deadlines while optimizing resource utilization.

Traditional cloud computing scheduling algorithms

are ill-suited for the fog computing landscape due to the

inherent differences in resource proximity and the real-time

constraints imposed by IoT applications. While centralized cloud

environments benefit from ample resources and stable conditions,

fog nodes operate on the edge, where resources are constrained,

and environmental conditions are volatile.

One critical aspect of effective task scheduling in fog computing

is the accurate prediction of task execution times. Unlike cloud

data centers (Zhang et al., 2023) where resource performance is

relatively stable, fog nodes are susceptible to resource fluctuations

due to factors such as network congestion, device failures, and

environmental conditions. Consequently, execution times for tasks

can exhibit considerable variability.

Fog computing serves as an intermediary layer positioned

between end users and cloud data centers. Its utility becomes

particularly pronounced when dealing with applications

demanding minimal latency and immediate responses, contingent

on the origin of the data source. Within this stratum, a multitude

of virtual servers can be seamlessly deployed to efficiently manage

incoming requests.

Resource allocation, as described by Kreuzberger et al. (2023),

is a methodical process involving the distribution of accessible

resources to internet-based Cloud clients. The precise timing and

sequence of these allocations hold paramount importance, as they

play a pivotal role in optimizing the advantages derived from virtual

server utilization. This strategic allocation has the potential to

enhance system throughput without imposing undue charges on

customers. Furthermore, ensuring the availability of resources for

high-priority tasks is essential to prevent them from languishing

at the end of the task queue. Neglecting this aspect could lead

to inefficient utilization of virtual servers and potential financial

losses for a company. Consequently, the prioritized allocation

of resources for profit maximization emerges as a critical and

promising research area.

Machine learning (ML) (Aqib et al., 2023; Li et al., 2023),

a pivotal field, has witnessed remarkable progress across various

academic domains. Numerous research endeavors have been

undertaken to explore the utilization of machine learning in

addressing challenges within the realm of fog computing. Recent

years have seen a notable surge in the application of machine

learning (ML) to enhance fog computing applications and provide a

spectrum of fog-related services. These services encompass efficient

resource management, security enhancement, latency reduction,

energy conservation, and traffic modeling, among others. Within

the diverse landscape of fog computing, various devices, sensors,

and objects contribute copious amounts of data that necessitate

processing. Real-time processing not only holds the potential to

enhance operational efficiency but, in some scenarios, becomes

imperative. To ensure optimal resource utilization, sensors, devices,

and objects often engage in resource-intensive interactions (Aqib

et al., 2023). Consequently, the management of resources in fog

computing demands careful consideration and implementation

(Alguliyev et al., 2023). This section of the study delves into

investigations that harness ML algorithms for the purpose of

resource management within the domain of fog computing.

In this paper, we introduce a novel Scheduling Algorithm

designed for task allocation at the fog computing level. Our

algorithm efficiently assigns tasks to virtual machines (VMs)

responsible for executing the request/responsemodel within the fog

computing environment. To achieve this, we harness the K-Means

clustering algorithm (Awad et al., 2023; You et al., 2023) with fuzzy

logic (Ranjan and Sharma, 2023) for scheduling fog devices. The

primary contributions of our work are as follows:

1. Introduction of K-means Clustering Scheduling enhanced with

fuzzy logic within the fog computing paradigm.

2. Implementation of the proposed algorithm within the iFogSim

simulator (Gupta et al., 2016; Saad et al., 2023).

3. Substantial reduction in execution time, response time

and network usage signifying an improvement in

operational efficiency.

The remaining parts of the paper are partitioned into the

following hierarchy: Section 2 explores relevant literature, in

Section 3 we discuss problem statement and proposed solution,

Section 4 discuss application and model in detail, Section 5

elaborates suggested workflow, Section 6 presents our experimental

results and comparative analysis, validating the effectiveness of

our approach, Section 7 concludes the paper and summarizes

future work.

2 Literature survey

The many scheduling methods now in use may be placed in

one of three major categories: stochastic (Bhaumik et al., 2016;

Guo, 2017), deterministic (Hosseinzadeh et al., 2023; Reddy and

Sudhakar, 2023), or hybrid (Saif et al., 2023; Tran-Dang and Kim,

2023). Non-deterministic algorithms, often known as stochastic

algorithms, are those that create a result depending on a degree of

randomness and an objective function. Stochastic algorithms are

also known as evolutionary algorithms. This category also contains

algorithms that use heuristic and metaheuristic approaches.

Heuristic algorithms find answers by trial and error (Saad et al.,

2023), but they cannot ensure that the results will be the best

possible solution. Metaheuristic approaches, on the other hand,

are more generic. Then there are hybrid algorithms, which

are the mixture of many algorithms from the aforementioned
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scheduling algorithm types. Deterministic algorithms derive the

answer exclusively from the input and do not make use of chance

or randomness in any way. A literature overview of task scheduling

algorithms that use one of these three techniques is presented below

in this section.

The field of fog computing is one that is now undergoing

significant development. The research community is gradually

beginning to pay greater attention to task scheduling in fog

computing, despite the fact that there is not a great deal of research

on the subject. In distributed systems, the metaheuristic method is

often used to schedule tasks and handle resources (Jeyaraj et al.,

2023). But not much study has been done on how scheduling

methods can be used in fog computing architecture.

In the research carried out and presented by Li et al.

(2023), many distinct strategies for the placement of services have

been investigated in the context of cloud computing, and edge

computing. The atomization idea and both simultaneous and

sequential processing have been tried for service location. Gupta

and Singh (2023) showed and talked about fog computer designs

and other tools that work. They have told us more about organizing

and allocating resources in the fog environment, as well as the

different modeling tools that can be used for fog computing.

The Bee Life Algorithm was applied to the challenge of

task scheduling in the research that Vispute and Vashisht (2023)

presented to the scientific community. Both the entire amount

of RAM and the execution speed of the CPU have been used as

parameters. They compared their effort to the work done by GA

and PSO in order to highlight how far things had come. For the

purpose of allocation, a static method of task scheduling is used

rather than a dynamic one. A cloud-fog infrastructure-based job

scheduling approach that was developed by Agarwal et al. (2023)

and was based on the genetic algorithm (GA) mechanism was

also presented. Comparing the proposed method to the Bee Life

algorithm revealed that the proposed method is superior. In this

paper, the authors demonstrate efficacy using a limited data set. In

Bakshi et al. (2023) by Skarlat et al., a technique for fog device-based

service placement in fog colonies is developed. After determining a

suitable service deployment sequence, this method optimizes the

sequence using the GA method. However, the technique has a flaw

in that they have only compared the developed technique to the GA

and first fit techniques.

EPSO is a method of resource scheduling that was created by

He and Bai (2023) for use in a fog computing network. In order

to make the convex issues more manageable, it combined the PSO

approach with the proximal gradient technique. In order to bring

the local and global solutions closer together, the approach that was

devised makes use of additional gradient parameters. Comparisons

of total time and makespan metrics have been carried out in order

to demonstrate the usefulness of the established approach. The

newly discovered approach shortens the amount of time needed to

complete a large number of jobs, but at the expense of an increased

amount of energy usage.

In the research that was reported by Singhrova (2023), the

fireworks method was used to schedule jobs in an environment that

had a variety of different types of resources. In order to get the most

effective scheduling sequences, it makes use of the components

of the fireworks evolutionary approach. The methodology was

evaluated in light of the genetic algorithm, and the researchers

saw a rapid convergence. The fireworks were chosen using the

tournament-based selection approach, however the algorithm did

not have a cloud or fog environment built for it.

The approach of task scheduling known as the fireworks

algorithm was presented in the work that was done by Shen

et al. (2023). They have developed a detecting method for

explosions caused by fireworks. In addition to this, the authors

have implemented the task clustering mechanism, then proceeded

to implement the method. Memory and CPU utilization indicators

have been included in their load utilization model, however the

time aspect has not been taken into consideration. Consumption

of both energy and time has been regarded as the most important

elements in the research carried out by Hosseinzadeh et al. (2023).

The authors have successfully resolved the issues with scheduling

and commitment by using the fireworks method.

The implementation of cloudlets in mobile edge computing has

reportedly been successfully completed, as stated in Abadi et al.

(2023) research. The placement was carried out with a focus on

minimizing times and taking total time of ownership into account.

Mishra and Chaturvedi (2023) presented the methodology for

cloud-based work distribution as their contribution. This approach

used two distinct tactics in order to maximize performance while

also reducing the amount of inappropriate job allocation. They have

improved the scheduling of cloud-based resources as well as the

load allocation across those resources.

The authors Atiq et al. (2023) established a novel paradigm

for resource allocation and task scheduling that concurrently

takes into consideration three separate criteria. These elements

are referred to as the resource balancing factor, task completion

time, and throughput. They have made use of the Lyapunov

drift methodology in order to optimize and cut down on the

amount of time spent waiting for tasks, but it does not include a

modern optimization method. Kumar and Karri (2023) suggested

a way in which scheduling is intended to function on different

parameters by integrating the allocation and selection of resources

in a fog environment. In this approach, scheduling is meant to

work on multiple parameters. The suggested approach selects a

methodology for rapidly completing tasks in order to lower the

task loading factor; however, it does not include an optimization

technique, which would be helpful in improving the method’s

currently poor outcome.

Numerous researchers have tried to use various numbers

of goals to tackle the multi objective optimization issue of the

workflow applications. To plan the workflow tasks across the

available resources, a hybrid meta-heuristic GA-PSO method is

suggested in this research (Yin et al., 2023). The proposed method

uses the properties of heterogeneous tasks and nodes but unable to

accomplish multi-objective optimization.

When the total number of repetitions of the process is raised

above a certain threshold, the results generated by the algorithms

that are based on IGA are, in a nutshell, superior than those

produced by other algorithms.

Increasing the total number of repetitions of the process, on the

other hand, will result in the IGA-based meta-heuristic algorithm
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taking a longer amount of time to arrive at the best possible answer

(Meng et al., 2023; Sun et al., 2023). Besides that, the IPSO-based

meta-heuristic algorithms provide superior outcomes in a shorter

amount of time when compared to the other methods. However,

since the PSO-based algorithms converged on a solution so quickly,

the reliability of the results could be jeopardized as a result of this.

This rapid convergence may result in the algorithms being stuck

in the locally optimum solution (Gomathi et al., 2023; Pirozmand

et al., 2023).

In the research presented in Chaplot et al. (2023), the Ant

Colony Algorithm is employed for the purpose of scheduling

grouped tasks onto virtual machines. This method encompasses

three crucial steps in its execution: the initial grouping of jobs

based on factors like time and time, the subsequent prioritization of

tasks, and finally, the selection of the most suitable virtual machine

(VM) through the utilization of the Ant Colony Algorithm. This

particular approach is further implemented and simulated within

the iFogSim framework. The notable outcome of this integration

is an enhancement in the simulation results, achieved while

consuming minimal energy resources. The utilization of the Ant

Colony Algorithm in the context of task scheduling contributes

significantly to the optimization of resource allocation and the

overall performance of the iFogSim simulation environment.

In the paper presented by the authors in Alhijawi and Awajan

(2023), they introduce an innovative scheduling approach that

merges knapsack optimization with Symbiotic Organism Search

(SOS). Additionally, they discuss a distinctive application focused

on identifying health issues among elderly individuals through the

use of Elderly Human Activity Detection (EAHD) in smart home

environments. The SOS process involves three distinct stages. The

first stage is Mutualism, which is followed by the random selection

of organisms. This combination of knapsack optimization and

SOS introduces a novel approach to task scheduling, particularly

within the context of health monitoring in smart homes for the

elderly population. The second is commensalism, and the third is

parasitism. This formula, 1/(TUC+BW), is used to compute fitness

value at each phase. Two case studies employing iFogsim DCNS

and EAHD that outperform FCFS and Knapsack algorithms.

The GKS algorithm is a scheduling approach proposed in Cerf

et al. (2023) that uses knapsack to deploy modules on fog devices.

Using knapsack approaches, PEs are allocated to modules. In order

to fill a knapsack with extra items (modules), the GKS algorithm is

utilized to maximize profit while reducing weight. In iFogsim, this

strategy outperforms energy consumption-based algorithms.

The researchers presented in their work a knapsack-based

strategy to scheduling concurrent video transfers in a cloud context,

with an emphasis on minimizing the completion time, known as

the Least Completion Time (MCT) (Paparella et al., 2023). They

used the “maximum min” strategy, which involves selecting the

most powerful machines in the cloud infrastructure and allocating

them to a certain amount of video segments. TheMCTmethod was

then used to schedule these portions. The study findings found that,

when both execution time and segment count were considered,

the “maximum min” approach beat the MCT technique. This

shows that the “maximum min” technique is more efficient and

effective, resulting in shorter execution durations and a lower total

segment count.

Many fields are now using machine learning. In domains like

speech recognition, data classification, and face recognition, the

robots are intelligently functioning. RL is a technique for finding

the best answer without the assistance of the outside environment

(Kober et al., 2013). An essential algorithm for machine learning

is found in the artificial intelligence (AI) branch known as

reinforcement learning (RL). Until the session is over, this process

is repeated (Roy et al., 2017). Due to the quick growth of AI and

RL as well as the drawbacks of other task scheduling techniques,

RL is integrated with AI to solve optimization challenges through

task scheduling. SARSA, TD-learning, and Q-learning are three

different traditional RL Algorithms (Peng et al., 2015). The Q-

learning method is the most effective task scheduling algorithm

(Wei et al., 2017). One method for leveraging the Markov decision

process (MDP) to solve different issues when all the information is

not available is Q-learning.

The research cited in reference Alexandrescu (2023), Alguliyev

et al. (2023), Aqib et al. (2023), and Jamshed et al. (2023), upon

which I have anchored my foundational problem statement for

this entire study, has a notable limitation. Specifically, it fails to

account for various operational time parameters, among others.

Furthermore, the research does not incorporate the utilization of

fuzzy logic to enhance the adaptability of task allocation within fog

nodes across different degrees of membership.

The proposed algorithm is compared with Symbiotic Organism

Search (SOS) (Hosseinioun et al., 2022) and k-means (Mtshali

et al., 2019) algorithm. Symbiotic Organism Search (SOS) is a

metaheuristic algorithm inspired by the symbiotic relationships

between organisms in an ecosystem. Symbiotic Organism Search

(SOS) can be used in task scheduling in fog computing to find

optimal task assignments to fog nodes, while minimizing certain

objectives such as makespan, cost, and energy consumption. SOS

can be slow to converge, especially for complex problems as well

as sensitive for initial population. The K-means algorithm can be

used to group tasks together based on their characteristics such as

task length and resource requirements. Once the tasks have been

grouped, they can be assigned to fog nodes based on the resources

available at each node. For example, tasks that require a lot of

resources can be assigned to fog nodes with more resources, while

tasks that have a tight deadline can be assigned to fog nodes that are

closer to the data source. K-means is suitable for scenarios where

data points naturally belong to distinct clusters and there is little

ambiguity in cluster assignments.

3 Problem statement

Use of k-mean algorithm in task scheduling is only effective

when each data point is assigned exclusively to one cluster. It uses

crisp, binary membership assignments where a point belongs to

a cluster or it doesn’t. K-means is suitable for scenarios where

data points naturally belong to distinct clusters and there is little

ambiguity in cluster assignments.

But when there is an uncertainty or ambiguity in assigning

tasks to fog nodes, when there is a requirement that tasks can

be partially allocated to multiple fog nodes in order to take

benefit from the resources of multiple nodes simultaneously,
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when in fog computing environments, the workload and resource

availability of fog nodes fluctuate, when QoS requirements are

not strictly binary but have varying degrees of importance or

compliance, when task scheduling involves optimizing multiple

conflicting objectives, such as minimizing energy consumption

while maximizing task execution speed or reliability, when fog

nodes have diverse capabilities, including computational power,

memory, and network bandwidth, when the fog computing system

needs to adapt rapidly to changing task requirements or node

conditions, in all these scenario k-mean clustering will not give

optimal results.

3.1 Proposed solution

In order to get optimal results, use of K-means clustering using

fuzzy logic is valuable in fog computing scenarios where there

is uncertainty, variability, and ambiguity in task scheduling and

assignment. It uses soft, probabilistic assignments with degrees

of membership. It enables flexible task allocation decisions that

consider partial membership of tasks to fog nodes and varying

degrees of suitability, helping to optimize resource utilization and

meet diverse QoS requirements.

4 Application and system models

Fog computing, a variant of cloud computing, operates

applications on fog devices situated between end-user devices and

the distant cloud. This architectural approach capitalizes on the

benefits of both cloud and edge computing, making it particularly

advantageous for scenarios involving distributed data and low-

latency requirements. At the foundational layer of this architecture,

IoT sensors play a pivotal role in the reception and transmission

of data via gateways to the higher layers. Concurrently, actuators

are responsible for system control tasks. Fog computing, as a

practical implementation, empowers edge devices to preprocess

and analyze data, enhancing overall system efficiency. It’s important

to note that each fog network application boasts a distinct

topology. To facilitate the creation of custom and predefined

topologies, the iFogSim simulator offers a user-friendly Graphical

User Interface (GUI) module (Gupta et al., 2016). This GUI

empowers users to incorporate various elements such as sensors,

actuators, fog, cloud components, and connection elements into

their topological designs.

To illustrate the practical application of these concepts, we

utilize iFogSim in a case study centered around car parking,

demonstrating the creation and utilization of a new topology for

this specific scenario. Other modules within the simulator are

designed to interpret and execute these customized topologies.

Fog computing stands as a pivotal enabler across several critical

domains within IoT applications, such as smart car parking system.

In the context of fog computing, innovative solutions emerge.

For instance, in the realm of traffic management, fog computing

can be harnessed to facilitate dynamic road access based on

real-time cues, such as flashing lights. This technology adeptly

identifies pedestrians and cyclists while accurately gauging the

speed and proximity of oncoming vehicles. Consequently, when

motion is detected, sensor-based lighting systems are triggered, and

conversely, they switch off when activity ceases (Gupta et al., 2016).

Smart traffic lights, a quintessential fog computing component,

can be envisaged as fog nodes that seamlessly communicate with

one another, effectively transmitting warning signals to nearby

vehicles. This collaboration draws upon various communication

technologies, including zigbee, 4G, smart traffic signals, and

roadside infrastructure, which collectively optimize interactions

between fog computing entities and vehicular access points (Gupta

et al., 2016).

This case study revolves around a distributed monitoring

camera system that spans multiple domains, including healthcare,

transportation, security, and manufacturing (Kumar et al., 2019).

Within this context, the application model comprises five

distinct functions:

1. Raw Video Processing: The system processes raw video feeds

to identify specific objects and detect movements occurring in

front of the cameras.

2. Object Tracking: An object tracking module is employed to

calculate configurations necessary for effective monitoring.

3. PTZ Configuration: The Pan-Tilt-Zoom (PTZ) setup is utilized

to adjust the camera’s position, enhancing its surveillance

capabilities. Both physical cameras and actuators play a role in

this process.

4. User Interface Interaction: The system includes a user interface

component responsible for transmitting relevant information

about tracked objects to the user’s device.

The physical topology of this case study, denoted as

“case study-A”, is represented by the DCNS video camera

application architecture (Gupta et al., 2016), as illustrated in

Figure 1. All components enclosed within the dotted line are

integral to this architectural setup, with fog devices contained

within a designated box. “M1” denotes Module 1 within

the architecture.

5 Proposed algorithm

5.1 Number of clusters selection

In the scenario where you have only one objective, which

is sending images as data or tasks with varying number of

instructions, input and output file size as task parameters and

with different CPU length (500, 2,000) in MIPS, with different

RAM (500, 2,000) in MB, and with different uplink and download

bandwidth as fog nodes parameters, the number of clusters would

be 9. The reason for this is that the CPU length, RAM, and

bandwidth are the three factors that are affecting the execution

time, response time and network usage of the tasks. Since the

number of instructions, input and output file size can vary, the CPU

length, RAM, and bandwidth requirements of the tasks can also

vary. The nine clusters could be:

Cluster 1: Fog nodes with CPU lengths in the range (500,

1,000) MIPS, RAM in the range (200, 1,000) MB, and

bandwidth in the range (10, 100) Mbps (Low CPU, low RAM,

low bandwidth).
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Cluster 2: Fog nodes with CPU lengths in the range (1,000,

1,500) MIPS, RAM in the range (1,000, 1,500) MB, and

bandwidth in the range (10, 100) Mbps (Medium CPU,

medium RAM, low bandwidth).

Cluster 3: Fog nodes with CPU lengths in the range (1,500,

2,000) MIPS, RAM in the range (1,500, 2,000) MB, and

bandwidth in the range (10, 100)Mbps (HighCPU, high RAM,

low bandwidth).

Cluster 4: Fog nodes with CPU lengths in the range (500,

1,000) MIPS, RAM in the range (200, 1,000) MB, and

bandwidth in the range (100, 1,000) Mbps (Low CPU, low

RAM, medium bandwidth).

Cluster 5: Fog nodes with CPU lengths in the range (1,000,

1,500) MIPS, RAM in the range (1,000, 1,500) MB, and

bandwidth in the range (100, 1,000) Mbps (Medium CPU,

medium RAM, medium bandwidth).

FIGURE 1

Case study A-video surveillance camera.

FIGURE 2

iFogSim application operational sequence.
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Input:

- fogNodes: Array of fog nodes, each with

attributes (e.g., execution time, response

time, bandwidth)

- tasks: Array of tasks, each with attributes

- numClusters: Number of fog clusters for K-means

clustering

- fuzzinessFactor: Fuzziness factor for fuzzy

logic (greater than 1)

- maxIterations: Maximum number of iterations for

K-means and fuzzy logic

Output:

- taskAssignments: An array indicating which fog

node each task is assigned to

1. Apply K-means clustering to the fog nodes with

the specified number of clusters

(numClusters). This step results in fog

clusters and centroids.

2. Initialize an empty array taskAssignments of

size equal to the number of tasks.

3. Repeat the following steps until convergence

or the maximum number of iterations

(maxIterations) is reached:

a. Calculate membership degrees for each task

to fog clusters based on fuzzy logic.

- For each task in tasks:

i. Calculate the membership degrees to each

fog cluster using the fuzzy logic equation

with attributes (e.g., execution time,

response time, bandwidth).

b. Update the fog clusters’ centroids based on

the tasks’ membership degrees.

- For each fog cluster:

i. Calculate the new centroid based on the

weighted sum of task attributes and their

membership degrees.

4. For each task in tasks:

a. Initialize an empty array fogClusterScores

for fog cluster suitability scores, one for

each fog cluster.

b. For each fog cluster:

i. Initialize a variable totalScore to 1.0.

ii. For each attribute (e.g., execution time,

response time, bandwidth):

- Calculate the combined membership degree for

each fuzzy set associated with the attribute

based on the task’s fuzzy attribute values.

- Update the totalScore by multiplying it with

the combined membership degree.

iii. Calculate the overall suitability score

for the fog cluster by considering all

attributes.

iv. Store the suitability score in the

fogClusterScores array.

c. Determine the fog cluster with the highest

suitability score for the task.

- Select the fog cluster index with the

maximum score in the fogClusterScores array.

d. Assign the task to the fog cluster with

the highest suitability score.

5. Repeat steps 4a to 4d for all tasks in tasks.

6. Assign tasks within each fog cluster to the

specific fog node (centroid) of that cluster.

7. Return the taskAssignments array, which

indicates which fog node each task is assigned

to based on K-means clustering and fuzzy

logic.

End Algorithm

Algorithm 1. K-means clustering and fuzzy logic.

Cluster 6: Fog nodes with CPU lengths in the range (1,500,

2,000) MIPS, RAM in the range (1,500, 2,000) MB, and

bandwidth in the range (100, 1,000) Mbps (High CPU, high

RAM, medium bandwidth).

Cluster 7: Fog nodes with CPU lengths in the range (500,

1,000) MIPS, RAM in the range (200, 1,000) MB, and

bandwidth in the range (1,000, 10,000) Mbps (Low CPU, low

RAM, high bandwidth).

Cluster 8: Fog nodes with CPU lengths in the range (1,000,

1,500) MIPS, RAM in the range (1,000, 1,500) MB, and

bandwidth in the range (1,000, 10,000) Mbps (Medium CPU,

medium RAM, high bandwidth).

Cluster 9: Fog nodes with CPU lengths in the range (1,500,

2,000) MIPS, RAM in the range (1,500, 2,000) MB, and

bandwidth in the range (1,000, 10,000) Mbps (High CPU, high

RAM, high bandwidth).

5.2 Fuzzy logic in task allocation

In task allocation for fog computing, fuzzy logic is

used to assign tasks to fog nodes with varying degrees

of membership. This approach allows for more flexibility

and adaptability when deciding which fog node is best

suited for a given task. Here’s an expanded explanation

with equations:

Step 1—Fuzzy sets and membership functions: In fuzzy

logic, attributes are represented as fuzzy sets, where each set

is characterized by a membership function. These membership

functions determine the degree to which an element belongs to

a set. In task allocation, each fog node and task attribute (e.g.,

execution time, response time, and bandwidth) can be represented

as fuzzy sets. The membership functions, denoted as µ(x), assign

a membership degree between 0 and 1 for each element x. For

example, if we have a task with an execution time attribute, we

can define a fuzzy set “LowExecutionTime” with a membership

function µ(LowExecutionTime), where µ(LowExecutionTime)(x)

represents the degree to which the execution time of the task

is “low”.
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Input:

- MaxAreas: Maximum number of geographic areas

- MaxCameras: Maximum number of surveillance

cameras

- FogDeviceParams: Parameters for Fog Devices

(node name, MIPS, RAM, Storage, max BW, min BW,

Busy power, idle power)

- Application: Modules, Edges, Tuples, Workflow

- MaxFogDevices: Maximum number of fog devices

Output:

- Energy cost and allocation results

1. Initialize a Fog Broker.

2. Create an Application with Modules, Edges,

Tuples, and Workflow:

a. Define the application structure, including

modules, edges connecting them, tuples, and

the workflow.

3. For i = 1 to MaxAreas (representing

geographic areas):

a. For j = 1 to MaxCameras (representing

surveillance cameras within each area):

i. Create a Fog Device with parameters:

- Node name

- MIPS (Million Instructions Per Second)

- RAM (Random Access Memory)

- Storage

- Maximum available bandwidth (max BW)

- Minimum required bandwidth (min BW)

- Busy power consumption

- Idle power consumption

ii. End for

b. End for

4. Initialize a module mapping.

5. Submit the Application to the Fog Broker.

6. Start the iFogSim simulation.

7. For i = 1 to MaxFogDevices:

a. Add Modules to Fog Device(i).

8. Perform K-Means Clustering and Fuzzy Logic

with Tuples and Fog Devices:

a. Implement the enhanced k-means cluster

scheduling algorithm, taking into account

tuple characteristics and available fog

devices.

9. Allocate Processing Elements (PE) to Modules

using AppModuleAllocationPolicy:

a. Implement the allocation policy to

efficiently assign PEs to modules.

10. Update the Energy Cost based on device power

consumption, considering execution time,

response time, and bandwidth usage.

11. Stop the iFogSim simulation.

12. Output the Energy Cost and Allocation

Results.

Main Program:

1. Initialize parameters and input data.

2. Execute the Fog Broker and iFogSim simulation

algorithm to optimize task allocation based

on execution time, response time, and bandwidth

constraints.

Algorithm 2. DCNS with K-means clustering and fuzzy logic.

Step 2—Membership degree calculation: To allocate tasks to

fog nodes, we calculate the membership degree of each task to

each fog node based on their attributes. This degree represents

how suitable a fog node is for executing a particular task. The

membership degree µ(A)(x) of an element x belonging to fuzzy set

A can be calculated using various methods, such as the Gaussian

function, triangular function, or trapezoidal function. Here’s a

general equation using a Gaussian membership function:

µ(A)(x) = exp(−0.5∗((x− c)/σ)2)

- A represents the fuzzy set (e.g., “Low Execution Time”).

- x is the value of the attribute (e.g., execution time of a task).

- c is the center of the fuzzy set (representing a typical value for

that set).

- σ (sigma) controls the spread or width of the

membership function.

Step 3—Multiple attributes and fuzzy rules: Task allocation

often considers multiple attributes, such as execution time,

response time, and bandwidth. Each attribute can have its fuzzy sets

and membership functions.

Fuzzy rules can be defined to determine how these attributes

collectively affect the membership degree. For example, a fuzzy rule

might state: “If execution time is low AND response time is fast,

then the membership degree for fog node A is high.”

Step 4—Aggregation of membership degrees: Once

membership degrees for various attributes are calculated,

they are aggregated to determine the overall membership degree of

a task to a fog node. This aggregation can be done using operators

like the minimum (AND) or maximum (OR) operators, depending

on the inference method used.

5.3 The enhanced K-means algorithm

The proposed approach enhances the traditional K-means

algorithm with fuzzy logic to perform task scheduling in fog

computing environments. The key steps of this enhanced K-means

algorithm are as follows:

Step 1—Initialization: Initialize cluster centroids

(representing fog nodes) and set the fuzziness parameter.

Step 2—Membership calculation: Calculate the membership

degrees for each task with respect to each fog node based

on criteria such as proximity, resource availability, and

historical performance.

Step 3—Centroid update: Update the fog node centroids

based on the weighted average of the tasks’ characteristics and

their membership degrees.
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TABLE 1 Task input characteristics.

Parameters Units Value

No. of instructions Instructions (1, 100)∗109

Size of input file MB (10, 100)

Size of output file MB (10, 100)

TABLE 2 Fog node characteristics.

Parameters Units Fog node values

CPU Length MIPS (500, 2,000)

Ram MB (500, 2,000)

Uplink bandwidth Mbps (10, 10,000)

Download bandwidth Mbps (10, 10,000)

TABLE 3 Experiment parameters.

Experiment Purpose Data input
parameters

Fog node
parameters

1 Heterogenous task

and dynamic nodes

(100, 100, 800) 40

Step 4—Convergence check: Iterate steps 2 and 3 until

convergence criteria are met.

5.4 Simulation workflow

iFogsim is a Java-based simulator designed for the development

and testing of fog computing scenarios, topologies, and applications

(Gupta et al., 2016). The workflow within iFogsim is depicted in

Figure 2. Initially, the FogBroker class is responsible for creating the

fog computing environment. Subsequently, the createApplication

method is employed to establish a case study or any application

to evaluate the performance of fog nodes, sensors, and actuators

within the fog environment. The createFogDevice method is

utilized to generate a specified number of fog devices, each with

distinct attributes and capacities.

These attributes encompass essential hardware details like

node name, MIPS (Million Instructions Per Second), RAM

(Random Access Memory), uplink and downlink bandwidth,

level, ratePerMips, busyPower, and idlePower. Upon application

submission, our proposed scheduling algorithm, termed: “K-

Means Clustering and Fuzzy Logic”, is invoked through the

Clustering (Tuples, FD) method. This method clusters tasks/tuples

in accordance with the approach outlined in Algorithm 1.

Subsequently, it assigns virtual machines (VMs) to the created

clusters, with the appAllocationPolicy class responsible for

handling the scheduling as shown in Algorithm 2. Following

the scheduling phase, the simulation incorporates updates

pertaining to execution times, response time and network usage.

The simulation results are then presented for further analysis

and evaluation. T
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In Algorithm 1, we first apply K-means clustering to the fog

nodes to group them into clusters with centroids. Then, we use

fuzzy logic to calculate membership degrees for tasks to each fog

cluster, update the cluster centroids based on tasks’ membership

degrees, and finally assign tasks to fog clusters. Subsequently,

tasks within each fog cluster are assigned to the specific fog node

(centroid) of that cluster. This hybrid approach leverages both K-

means clustering and fuzzy logic to make informed task allocation

decisions in fog computing environments.

In Algorithm 2, we initiate the creation of the fog broker and

the application. For every camera and specific area, a fog device

is generated. These applications are then introduced to the fog

broker alongside the creation of fog devices. Subsequently, the

application is incorporated into the fog broker during the FD

creation phase. The mapping of modules takes place, followed by

the commencement of iFogSim, which includes the scheduling of

modules for VM allocation through Clustering (Algorithm 1).

6 Experiment and results

This research utilized the iFogsim library for conducting

simulations. iFogsim, a Java-based library, comprises modules and

classes specifically designed for simulating fog computing scenarios

FIGURE 3

Comparison of execution times (in milliseconds) between DCNS (SOS), DCNS K-means clustering and the proposed DCNS K-means clustering using

fuzzy logic.

FIGURE 4

Comparison of network usage (in kilobytes) between DCNS (SOS), DCNS K-means clustering and the proposed DCNS K-means clustering using

fuzzy logic.
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(Gupta et al., 2016). Users familiar with the Cloudsim library

will find the iFogsim package, along with its associated classes,

essential for their work. To execute the program successfully, a

computer with the following specifications is required: an Intel

Core i5 processor, a minimum of 3 gigabytes of RAM, and

the Microsoft Windows 10 operating system. For implementing

the new scheduling algorithm, we will employ two distinct case

studies as part of the experimentation process. Tables 1, 2 shows

the initialization values for AppModule and FogDevice used as

iFogsim entities.

The experiment parameters are summarized in Table 1, which

shows that for experiment 1 we have created eight scenarios and

in every scenario the number of data input (cameras) are increased

with the difference of 100 and throughout this whole experiment,

number of fog nodes are fixed to 40 and we got the results as shown

in Table 4.

To assess the effect of the proposed method on the workflow

scheduling issue relative to existing algorithms, we conducted

comprehensive tests on real-world workflow application that is

efficient car parking using the simulation settings in terms of

number of data input and fog node characteristics listed in Table 3.

These factors were used to determine the characteristics of the fog

node and workflow application utilized in the research.

We devised a scenario in which high-definition, intelligent

cameras photograph parking spots. Following that, the images are

sent to the fog node. The fog node analyses the pictures to assess

the condition of the parking slot and displays parking space visuals

on aWi-Fi-connected smart LED attached to the fog node. The link

between the fog nodes and the cloud server is established through a

proxy server. In the simulation, we established variables for parking

areas and the number of cameras. In our experimental situation,

we established eight parking lots. One hundred to eight hundred

cameras were originally deployed to each parking lot to gather

photos of the parking area.

It is very important to point out that we produced at least one

fog node for each individual region and later on we increased the

number of fog nodes in order to analyze the result gathered from

different settings. We increased the number of cameras so that

we could analyze the data gathered from a variety of settings and

to evaluate the effects on the execution time, response time and

network usage use in a fog node.

We conducted a total of eight simulation runs for the

two scenarios (differing in the number of cameras) and

three methodologies (Symbiotic Organism Search SOS, K-means

Clustering and K-means Clustering using fuzzy logic) within the

DCNS (Gupta et al., 2016) framework. Our comparison primarily

relies on identifying the best results achieved under identical

configurations for the case studies. Table 4 presents the actual

execution time, response time and network utilization for three case

studies. In the provided Table 4, it is evident that our proposed

scheduling method, DCNS K-means Clustering using fuzzy logic,

proves to be more effective compared to the existing scheduling

methods that is DCNS (SOS) and DCNS K-means Clustering.

In Table 4, we have gathered the results of the DCNS case

study, collected from eight simulation runs using iFogsim.

These results include the execution time in milliseconds

(ms), response time in milliseconds (ms) and network

usage in kilobytes (KB). To facilitate a comparison between

the existing DCNS (SOS) and DCNS K-means Clustering

and the proposed K-means Clustering using fuzzy logic

scheduling method.

Figure 3 represents the execution time comparison between

DCNS with the existing scheduling (SOS), K-means Clustering and

the proposed K-means Clustering using fuzzy logic Scheduling.

It is evident that DCNS proposed K-means Clustering using

fuzzy logic Scheduling exhibits significantly lower execution times

compared to DCNS with the existing scheduling (SOS) and K-

means Clustering scheduling.

FIGURE 5

Comparison of response time (in milliseconds) between DCNS (SOS), DCNS K-means clustering and the proposed DCNS K-means clustering using

fuzzy logic.
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Figure 4 represents the network usage comparison between

DCNS with the existing scheduling (SOS), K-means Clustering and

the proposed K-means Clustering using fuzzy logic Scheduling. It is

evident that DCNS proposed K-means Clustering using fuzzy logic

Scheduling exhibits significantly lower network usage compared to

DCNS with the existing scheduling (SOS) and K-means Clustering

scheduling.

Figure 5 represents the response time comparison between

DCNS with the existing scheduling (SOS), K-means Clustering and

the proposed K-means Clustering using fuzzy logic Scheduling. It is

evident that DCNS proposed K-means Clustering using fuzzy logic

Scheduling exhibits significantly lower response time compared to

DCNS with the existing scheduling (SOS) and K-means Clustering

scheduling.

7 Conclusion

In this research, we presented a novel approach to task

scheduling in fog computing environments using the K-means

clustering algorithm enhanced with fuzzy logic. The combination

of clustering capabilities with adaptability to uncertainty and

variability provided by fuzzy logic proved to be effective in

improving task scheduling efficiency, reducing execution time,

response time and network usage and enhancing resource

utilization. Leveraging machine learning techniques, our approach

demonstrates remarkable reductions in execution time, response

time and network usage in dynamic fog environments. This

approach adheres to the strategy of task clustering and the

subsequent allocation of these optimal clusters to fog devices

to identify more suitable virtual machines for allocation. The

experimental evaluation of this proposed model is conducted using

the iFogsim toolkit. The results provide compelling evidence that

the proposed clustering algorithm surpasses the existing scheduling

schemes (SOS) and k-means in iFogsim, notably in terms of

reducing execution time, response time and network usage. Task

scheduling remains a critical challenge in fog computing, and

the integration of K-Means clustering with fuzzy logic offers

an exciting avenue for further exploration and development.

Future research avenues may focus on further enhancing the

scalability and robustness of our proposed approach, as well as

its applicability in various fog computing scenarios. Overall, the

proposed task scheduling algorithm is a promising approach for fog

computing applications. However, the proposed algorithm is still

under development and has not been evaluated in all possible fog

computing environments. It’s a very difficult task to design a fuzzy

logic rules considering fog nodes capabilities, task requirements

etc. otherwise this will limit the proposed algorithm to get the

optimal solution.
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