
TYPE Original Research

PUBLISHED 11 January 2024

DOI 10.3389/fcomp.2023.1305800

OPEN ACCESS

EDITED BY

Xing Cai,

Simula Research Laboratory, Norway

REVIEWED BY

Rajeev Ratna Vallabhuni,

Bayview Asset Management, LLC, United States

Alfredo Daniel Sánchez,

The Institute of Photonic Sciences (ICFO), Spain

*CORRESPONDENCE

Tarik Chakkour

tarik.chakkour@centralesupelec.fr

RECEIVED 02 October 2023

ACCEPTED 01 December 2023

PUBLISHED 11 January 2024

CITATION

Chakkour T (2024) Parallel computation to

bidimensional heat equation using MPI/CUDA

and FFTW package.

Front. Comput. Sci. 5:1305800.

doi: 10.3389/fcomp.2023.1305800

COPYRIGHT

© 2024 Chakkour. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Parallel computation to
bidimensional heat equation
using MPI/CUDA and FFTW
package

Tarik Chakkour*

LGPM, CentraleSupélec, Université Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie

(CEBB), Pomacle, France

In this study, we present a fast algorithm for the numerical solution of the heat

equation. The heat equation models the heat di�usion over time and through

a given region. We engage a finite di�erence method to solve this equation

numerically. The performance of its parallel implementation is considered using

Message Passing Interface (MPI), Compute Unified Device Architecture (CUDA),

and time schemes, such as Forward Euler (FE) and Runge-Kutta (RK) methods.

The originality of this study is research on parallel implementations of the fourth-

order Runge-Kutta method (RK4) for sparse matrices on Graphics Processing Unit

(GPU) architecture. The supreme proprietary framework for GPU computing is

CUDA, provided by NVIDIA. We will show three metrics through this parallelization

to compare the computing performance: time-to-solution, speed-up, and

performance. The spectral method is investigated by utilizing the FFTW software

library, based on the computation of the fast Fourier transforms (FFT) in parallel

and distributed memory architectures. Our CUDA-based FFT, named CUFFT, is

performed in platforms, which is a highly optimized FFTW implementation. We

will give numerical tests to reveal that this method is up-and-coming for solving

the heat equation. The final result demonstrates that CUDA has a significant

advantage and performance since the computational cost is tiny compared with

the MPI implementation. This vital performance gain is also achieved through

careful attention of managing memory communication and access.

KEYWORDS

heat conduction equation, parallelization, numerical schemes, Runge-Kutta, MPI, Navier-

Stokes Cuda

1 Introduction

Initially, partial differential equations are widely used to express many phenomena in

nature. These equations are known for their complexity, so the finite difference method is

needed to solve them. This approach consists of iterating from a given initial condition to

converging to a solution. The heat diffusion is one of these equations, in which there are

many recent studies on numerical schemes (Belhocine and Wan Omar, 2018; Sene, 2019;

Rasheed et al., 2021) applied to discretize it. For instance, authors propose in a new approach

in the studymentioned in the reference (Singer, 1938; Kravčenko et al., 2019) for parallelizing

space-time BEM (boundary elementmethod) for the heat equation. It consists of distributing

each block corresponding to a submesh obtained from an input mesh over processors. It is

important to note that this method is based on a decomposition technique, providing good

accuracy compared with other classical ones (Bluman and Cole, 1969; Cannon, 1984). The

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1305800
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1305800&domain=pdf&date_stamp=2024-01-11
mailto:tarik.chakkour@centralesupelec.fr
https://doi.org/10.3389/fcomp.2023.1305800
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1305800/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

authors have developed other methods of continuous-in-time

financial and computational fluid models (Chakkour and Frénod,

2016; Chakkour, 2017, 2019, 2022, 2023).

The Runge-Kutta (RK) method is a finite difference technique

for solving partial differential equations. It is usually used to reach

efficiency requirements with low dissipation errors and limitations

of oscillatory solutions. There are a great variety of different

schemes based on RK (Anastassi and Simos, 2005; Tselios and

Simos, 2005). In the present work, we propose a fourth-order RK4

method (Ben Amma et al., 2019; Xu et al., 2020; Habibi et al.,

2022) that considered sufficient to guarantee dissipation. Using

it indicates that it is efficient for the numerical solution of the

heat equation with a periodic solution. In this case, our suggested

method is suitable for a small time step, not only when oscillations

occur.

The massively parallel computer system has emerged as an

important research topic in recent years. It is involved in various

computational methods, particularly the finite difference approach

to solve some partial differential equations. The present study

aims to apply the parallel computer system to the finite difference

method to accelerate solutions from the heat equation using the fast

Fourier transform algorithm, which plays a more prominent role in

this method.

The originality of our study is the adaptation of numerical

schemes and the FFTW parallel library to solve this equation.

A conceptual framework is running in parallel with distributed

memory architectures. Particularly, numerical solution on regular

grids is efficiently performed in the best way of parallelization. The

data are decomposed onto different processes with minimizing the

requiredmessage passing. Using the FFTW library, which is written

with MPI, allows for independent benefits. One of them is to

avoid having to code routines when Fourier operators are utilized.

The symmetry property satisfied by operators and implemented

by this library is taken into account for a full advantage of a

wasted memory. On the other hand, CUFFT is introduced as an

efficient parallel algorithm for computing FFT onmassively parallel

processors, such as GPUs. It is used in our implementation and

is considered a faster algorithm (Wang et al., 2016; Pirgov et al.,

2021) than other modern FFT libraries. This implementation aims

to satisfy the computationally demanding application.

The remainder of the study is organized as follows. In Section

(2), the approach of using the adaptive library FFTW for the

discrete Fourier transform is presented. This library is highly

optimized and always has degrees of freedom concerning the

chosen DFT algorithm strategy. Section (3) describes how to

solve the heat equation with discretization. Section (4) focuses on

developing parallel algorithms using the Finite Difference Method

and FFTW. Several tests are presented to analyze the impact of

computing architectures GPU and MPI on the performance of

parallel implementations. Finally, Section (5) provides a conclusion

with some perspectives in future studies.

2 FFTW software library

The FFTW (Frigo and Johnson, 2005) is a software library

based on Message Passing Interface standard (MPI) for calculating

Fast Fourier Transforms (FFT) on parallel memory architectures.

Certainly, FFT is one of the principal algorithms in scientific

computing. The so-called Cooley and Tukey FFT algorithm

(Cooley and Tukey, 1965) was published in 1965 and is known for

its recursive method based on the divide and conquer approach. It

provides a wide number of applications in various scientific fields,

such as engineering and mathematics. A number of algorithms are

derived from this existing and simple version to produce a suitable

version dependent on the need. A new version described in the

study mentioned in the reference (Cicone and Zhou, 2021) consists

of efficiently implementing the iterative filtering algorithm based

on FFT. The objective of this class of algorithm FFT is to compute

the Discrete Fourier Transform (DFT) of length N assumed to

be a power of two, with a lower cost in time. In fact, it requires

just O[N log2(N)] operations. This significant gain shows that this

library performs well in calculating the FFT of complex or real data.

The FFTW is able to compute globally a discrete approximate

solution to many spectral methods (Burns et al., 2020) which were

challenging to parallelize in a distributed memory environment.

The spectral methods are considered one of the most frequently

used methods due to its versatility and high efficiency. These

methods are often recommended than finite difference methods

since they converge faster with rising degrees of freedom (Feng and

Zhao, 2020). This library is exploited in a wide variety of other

fields, such as computer science and engineering. It is the heart

of many signal processing and exploring the best algorithmic tool.

Examples of their modern applications and usage include image

reconstruction in life sciences (Dan et al., 2021; Prigent et al.,

2023), visualization of large biological specimens in bioinformatics

(Muhlich et al., 2022), weather simulations (Khouzami et al., 2022;

Grady et al., 2023), option price prediction in financial mathematics

(Alfeus and Schlögl, 2019; Phelan et al., 2019; Salavi et al., 2022),

and machine learning (Dao et al., 2019; Aradhya et al., 2022). There

are also other applications of FFTW in audio engineering (Faerman

et al., 2021, 2020). The paper (Vijendra Babu et al., 2023) aims

to suggest a digital code-modulated MIMO system; this code is

based on the maximum a posteriori machine learning algorithm.

The research (Gangadhar et al., 2023) completes this study and

is devoted to Engineering computational models and procedures

to address real-world issues with language comprehension. FFTW

is utilized to create a wide range of audio effects and correct

vocal recordings (Arts and van den Broek, 2022). The capacity to

manipulate complex signals is a powerful tool in audio engineering.

To validate the FFTW library, we will test the discrete Fourier

transform (DFT) over the trigonometric polynomial function

sampled at a finite number of points. Consider we have a Cosinus

function f , which is defined on the interval [0, 2π]. For our

purposes, these points will be equally spaced, xi and yj means the

2D grid coordinates based on the coordinates contained in vectors

x and y, where N is the number of sample points, i.e., 1x = 1y.

The approximation to function f at these sample points is written

as a finite dimensional vector given as follows:

f = (fi,j) = f (xi, yj), (1)

where,

fi,j = cos

(

2π(i− 1)

N

)

, i = 1, 2, . . . ,N. (2)

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

FIGURE 1

FFTW in case for Cosinus function.

When the input function is considered real, two situations are

presented to implement data in FFTW. The first one is Real-to-Real

Transform, and the second one is Real-to-Complex Transform.

Figure 1 illustrates the case of Real-to-Real Transform applied

to Cosinus data function defined in relation (2). The obtained

function is consequently the Dirac distribution, achieving this

verification.

3 Heat equation

This section is dedicated to determining approximate

numerical solutions of the heat equation using Fourier spectral

methods. In order to simplify the model, the imposed boundary

conditions are considered periodic. The heat equation is initially

introduced to describe heat conduction, which appears in other

branches of theoretical physics. For instance, it allows the report

of diffusion phenomena and the probabilistic representation of

Wiener process.

Let be� the square with side length 2π , the bidimensional heat

equation is given as follows:

∂u(x, t)

∂t
= α∇2u(x, t), (x, t) ∈ �× [0,T]. (3)

where the parameter α is the thermal diffusivity, and u(x, t)

accounts for the temperature distribution. First, discretizing x

such that nodes xi,j are uniformly distributed in [0, 2π], where

indexes i and j mean theirs labels according, respectively, to each

direction, i = 0, 1, 2, ..., nx, j = 0, 1, 2, ..., ny. Furthermore, since

the partial differential equation defined in the study mentioned

in the reference (3) could not be solved exactly, a new technique

is investigated to get approximate solutions. The purpose is to

transform this initial linear equation into a set of independent

ordinary differential equations that can be solved easily. The Fast

Fourier transform is used to solve the linearized equation, applying

the Fourier Transform operator to both sides of Equation (3) to

obtain:

∂ ûk

∂t
= α((ikx)

2 + (iky)
2)ûk. (4)

Here, kx and ky are the coefficients of the kth Fourier mode

following x and y-directions, respectively. We implement time

schemes such as forward Euler and Runge-Kutta methods to

compute solutions in the spectral space. After obtaining solutions

in this space, the inverse Fast Fourier Transform yields them in the

real space. We will let ûn denote the approximate solution at time

step n, and h denote the time step, i.e., h = T
n . The discretization

with the forward Euler scheme in time is explored in relation (4) to

get:

ûn+1
k
=

(

1− αh(k2x + k2y)

)

ûnk . (5)

Formally,

ûnk =

(

1− αh(k2x + k2y)

)n

û0k. (6)

The suite function ûn
k

defined in the study mentioned

in the reference (6) converges exponentially to the unique

solution e−αT(k2x+k
2
y)û0

k
. Since we have the exact solution, we

will compare the numerical solution produced by the code with

this analytical solution. Next, the inverse Fast Fourier Transform

(IFFT) denoted by F
−1 is applied to obtain a solution in a

real space.

unk = F
−1

(

(1− αh(k2x + k2y))
nû0k

)

. (7)

A new time scheme, the explicit four-stage fourth-order Runge-

Kutta method, is applied to ensure the quadratic conservation laws.

For that, defining the function f as follows:

f (tn, û
n
k) = −α(k2x + k2y)û

n
k . (8)

Then, the approximation of ûn+1
k

in the initial problem (4),

when ûn
k
is known, can be expressed by the following relation:

ûn+1
k
= ûnk +

h(f1 + 2f2 + 2f3 + f4)

6
(9)

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

FIGURE 2

A numerical solution to the ODE defined in Equation (4) demonstrates the accuracy of the Runge-Kutta (RK4) for an one time step is presented in the

top left diagram. The top right diagram illustrates the error’s order of RK4 in thin logarithmic scale
[

10−7, 1
]

. The bottom left diagram shows the same

previous error in wide scale interval
[

10−3, 10−1
]

. The bottom right diagram illustrates the error’s order of the Forward Euler (FE) time scheme. (A)

Numerical solution with RK4. (B) Error’s order of RK4 in
[

10−7, 1
]

. (C) Error’s order of RK4 in
[

10−3, 10−1
]

. (D) Error’s order of FE in
[

10−7, 1
]

.

where the coefficients f1, f2, f3, and f4 are classically computed

in four intermediate points as follows:







































f1 = f (tn, û
n
k),

f2 = f

(

tn +
h

2
, ûnk +

hf1

2

)

,

f3 = f

(

tn +
h

2
, ûnk +

hf2

2

)

,

f4 = f (tn + h, ûnk + hf3).

(10)

Denoting C⋆ a potentially large constant independent of the

time step h. The Forward Euler (FE) scheme is convergent over

compact spectral space and is said to be convergent since the global

error tends toward zero when h requires to be much smaller. The

definition of this convergence means:

‖ûnk − e−αT(k2x+k
2
y)û0k‖L∞ ≤ C⋆h. (11)

Similarly, the Runge-Kutta method (RK4) with time step h is

said to be convergent with order four on compact spectral space, if

it holds

‖ûnk − e−αT(k2x+k
2
y)û0k‖L∞ ≤ C⋆h

4. (12)

Now, we briefly deal with how to solve the initial problem,

which is the heat equation in spectral space. Let us start with basic

ODE (4) with fixing the initial condition, û0
k
= 1. Figure 2 is shared

into four diagrams that illustrate these two exact and approximate

solutions, with plotting the order of this scheme in wide and thin

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

logarithmic scales. These two numerical solutions are computed

using the fourth-order RK4 method, in which the exact one is

computed using relation (6), as shown in Figure 2A. The aim is to

verify the sharpness of our error. To explore in detail the behavior

of this numerical error, as shown in the top right diagram Figure 2B,

it oscillates well over thin logarithmic scale
[

10−7, 1
]

. Concerning

the order, the Runge-Kutta RK4 of the fourth-order is faster with

respect to the explicit Euler scheme. Indeed, as long as a time step

is finer, the two graphs are adjacent (see Figures 2B–D).

4 GPU programming and CUDA

This section is devoted to presenting the background

knowledge of GPU architecture and CUDA programming model

to make the best way to use them. The latest development activity

in Graphics Processing Units (GPUs; Brodtkorb et al., 2013)

permits an extension of high-performance computing in many

purpose fields. This technology is involved highly in parallelization,

multithreading, and many-core processing with very high memory

bandwidth and enormous computational horsepower. The GPU

utilized in the current study was the GeForce GTX-480, the second

generation of the CUDA enabled NVIDIA GPUs. This high-end

graphics card is built on the 40 nm process and structured on the

GF100 graphics processor; in its GF100-375-A3 variant, the card

supports DirectX 12. Figure 3 shows NVIDIA GeForce GTX 480

that is connected to the rest of the system using a PCI-Express

2.0 × 16 interface. This card measures 267 mm in length, and

its price at launch was 499 US Dollars. The oldest driver is used

because all necessary bugs are fixed and supported on the CUDA

version. GTX-480 architecture is based on the Scalable Processor

Array (SPA) framework. The SPA architecture in GTX-480 consists

of 10 Thread Processing Clusters (TPCs).

A multi-core contains multiple streaming multiprocessors

(SMs) in the GPU hardware architecture. Each SM incorporates

a fixed number of streaming processors (SPs). CUDA (Compute

Unified Device Architecture; Buck, 2007; Nickolls et al., 2008) is a

C-language a compiler that relies on the PathScale C compiler. For

this reason, it is viewed as a minimal extension of the C and C++

programming languages. CUDA is supported on NVIDIA GPUs

with unified graphics and computing architecture. The aim of using

NVIDIA is to have access to a software platform called Compute

Unified Device Architecture to authorize most translations of C

code onto the GPU. Our motivation for using this architecture

comes from choosing an excellent programming environment and

harnessing the power of the available parallel processors with

relative facility. It allows us to achieve speed-ups of a hundred times

on the developed application. The CUDA programming model

conveys parallelism absolutely, and each kernel executes on a fixed

number of threads. A kernel is an entirely conventional C program

for one thread from the hierarchy of thread groups. This function is

also defined as the unit of parallelism issued by the host computer to

the GPU. It is usually started by the CPU and executed by the GPU.

When invoking a kernel, a kernel is executed in parallel across a

set of parallel threads. Since a kernel can create dynamically a new

grid with the exact number of thread blocks, CUDA is more flexible

thanmost realizations of the SPMD (single-programmultiple-data)

model. The user arranges these threads into a grid defined as a set of

thread blocks. Then, the parallel execution and threadmanagement

are automatic with a simple scheduler. Figure 4 illustrates a clear

flowchart in CUDA architecture (Nvidia, 2008).

To clarify themanipulation of lot numbers of threads in CUDA,

this C-language compiler provides the conception of grids and

blocks of threads. The bidimensional computational domain �,

introduced previously, is divided into sets of blocks called grids

containing hundred of threads, as shown in the right side of

Figure 4. The installed driver proposes the possibility to determine

the location of the block in the grid, even the location of the thread

in the block. This determination is realized through the system

variables, which makes this identification operate threads in the

best way. The command syncthreads() are used to execute the

synchronization between a collection of threads of the same block.

However, synchronizing a group of threads between them from

various blocks is impossible. Indeed, these threads in a single block

communicate through the shared memory. The user does not affect

the result while the processing of a single thread or threads group

begins. In this situation, the hardware is subjected to managing this

result. If a kernel has been run on the GPU platform, the CPU gives

all the necessary allocation memory to the GPU. This allocation is

accompanied by transmitting the associated data to this memory.

Consequently, the CPU makes the kernel work on the GPU. Then,

the results come back to the CPU.

Due to the significant advantages of GPUs, we would like to

explore the performance of the parallelized heat equation onCUDA

architecture. Several software packages are needed to execute the

developed framework model on the GPU. These packages are

consistent with different hardware types. This implementation

focuses on packages, such as CUDA parallel computing platform,

OpenCL, and Petsc library, as described hereafter. The model is

run on NVIDIA GPUs. The framework is inherently parallel and

can profit from the GPU technology.

Due to the different features of various architectures, many

existing FFT algorithms and their implementation are required.

For the CPU implementation with CUDA, we will be able to use

a library called CUFFT (Nvidia, 2007), which is actually based on

the FFTW library. CUFFT handles FFTs of varying sizes on both

real and complex data. We do not develop our own custom GPU

FFT implementation in this framework since a simple interface for

computing FFT is provided for utilizing GPU devices. NVIDIA

has developed the CUFFT to achieve performance improvements

on the CUDA platform. One applicable property of this library

is that it can be used to expertly compute several FFTs at one

feature. This use is also motivated by supporting more elaborated

input and output data layouts. The way this library is involved in

the computation is to issue a configuration mechanism named a

plan that uses some specific building blocks to advance the Fourier

Transform after applying the FFT function from the CUFFT library

to various variables. Then, the specific implementation of the heat

equation on CUDA architecture will be carried out to obtain

the iterated vector in the spectral space. Some operations are

requested, such as element-wise multiplication will be done with

high computing capacity. GPUs offer the possibility of parallelizing

these operations. On the other hand, Sparse matrices power the

implementation of these operations. Next, Equations (9)–(10) are

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

FIGURE 3

NVIDIA GeForce GTX-480 GPU graphics processing architecture.

FIGURE 4

Grids, threads, and blocks define three hierarchical parts on CUDA architecture.

written in the form of a sparse linear algebraic system used to

implement these operations since the matrix contains some zero

elements.

For solving the heat Equation (3) through algebraic

equations, several possible approaches (Cerovskỳ et al., 2014;

Sivanandan et al., 2015) may be used to obtain the discrete-

space model. These approaches are summarized by employing

numerical schemes based on mathematical discretization,

mainly the forward time-centered space, explicit scheme, or

Crank-Nicolson scheme. Many studies (Widder, 1976; Eldén,

1995; Hutzenthaler, 2020) are aimed at using the central

scheme to approximate the derivative at each mesh point.

Denoting µ = h
(1x)2

≤ 0.5 to guarantee numerical scheme

stabilization. The approximation of second derivatives is

described in these contributions over the equidistributed grid

as follows:

ui,j = (1− 4µ)ui,j + µ(ui+1,j + ui−1,j + ui,j+1 + ui,j−1). (13)

The numerical scheme presented by the relation (13) provides

all the information to generate the code in parallel. In the

beginning, a quantity u has to be computed. Then, the computation

at a time iteration n + 1 depends on the results at time iteration

n. Then, at each time iteration, an applier matrix is called and

instantiated to manage the output of this scheme, as we will explain

hereafter.

The main contribution of this part consists of illustrating the

impact of the CUFFT (based on FFTW library) on the efficiency of

parallelization. To better achieve this contribution, Algorithm 1 is

proposed and implemented to parallelize the heat equation in two-

dimensional space that illustrates the classical program from the

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

1: function HE A TEQ U A T I O NNA T I V E (uOld, uNew)

2: Identify mesh size.

3: Initialize the temperature to some initial

guess.

4: Apply the boundary conditions.

5: Allocate Memory on Device.

6: Copy data from Host to Device.

7: Compute the number of blocks in CUDA grid.

8: Divide the grid into four main blocks to update

the temperature:

NT = i+(j+1)×N; ST = i+(j−1)×N; ET = (i+1)+j×N;

WT = (i− 1)+ j×N.

uNew = (1− 4µ)uOld + µ(uOld[ET]+ uOld[WT]+ uOld[NT]+

uOld[ST]).

If convergence is achieved syncthreads().

9: Free the Allocated Memory on Device.

10: Free the Allocated Memory on Host.

11: end function

Algorithm1. Implementationof theheat equationwith the central scheme

on CUDA.

1: function HE A TEQ U A T I O NFFTW(û0)

2: ût ← û0

3: for i← 1 to n do

4: f1 ← A× ût

5: f2 ← A× (ût +
hf1
2)

6: f3 ← A× (ût +
hf2
2)

7: f4 ← A× (ût + hf3)

8: ût = ût + h
6 (f1 + 2f2 + 2f3 + f4)

9: end for

10: ut = IFFTW(û t)

11: return ut

12: end function

Algorithm 2. Implementation of the heat equation with Runge-utta

method RK4 on CUDA.

literature. On the other hand, the targeted algorithm to compute the

temperature vector û in a given time t has been introduced by the

formula (9). Its general form is presented as Algorithm 2; thematrix

A (the infinitesimal generator) is associated with the function f

defined by the study mentioned in the reference (8) applied to the

grid with the initial condition û0 and the step h. Then, these both

algorithms are compared later to benchmark their performance on

the CUDA platform.

Notably, during two fast Fourier operations, the iterations

in the loop in time will be run greatly to assure convergence.

The execution in time costs a lot compared with the direct

and inverse operators. In addition this, at each time, many

matrix-vector multiplications are involved in this calculation. For

this reason, A High-Performance Sparse Fast Fourier Transform

Algorithm CUSFFT is not requested in the implementation. The

authors in the study mentioned in the reference (Hassanieh et al.,

2012) propose a new sub-linear algorithm for sparse Fourier

transform. This algorithm is explored in the studymentioned in the

reference (Wang et al., 2016) and performed on massively parallel

processors. We just use the CUFFT library on massively parallel

FIGURE 5

Communication mode shows the domain partition into four blocks

in each direction (north, south, east, and west).

architectures GPUs as described before. For both algorithms,

the parallelized implementation technique using CUDA begins

with several initializations, such as the mesh grid, the initial

temperature, and the necessary memory to transfer the data to

the allocated memory. This technique is based on Divide and

Conquer (Horowitz and Zorat, 1983; Atallah et al., 1989) to

improve the division of blocks of data under analysis. Precisions

for Algorithm 1; the bidimensional cartesian topology is subdivided

into four regions: east uOld[ET], weast uOld[WT], north uOld[NT],

and south uOld[ST] presenting, respectively, ui+1,j, ui−1,j, ui,j+1,

and ui,j−1, as can shown in Figure 5. Each region is a square block

of equal size that interchanges information in each direction. The

temperature is defined on discrete positions within each block.

Recalling that the three types of GPU memory are mainly

global memory, shared memory, and registers. Shared memory

is located on the GPU chip and is much faster and smaller

than global memory. Notably, the shared memory is more

complicated to build but easy to use, while the distributed one

is easier to build but difficult to use. Since the CUDA shared

memory is an extremely powerful feature of the CUDA kernel,

the parallel programming model using the CUFFT library is

run on this memory hardware architecture (Algorithm 2). The

heat equation has been parallelized on high-performance and

distributed architectures MPI (Algorithm 1) to comprise these two

types of memories. We will better achieve the comparison later

between these Algorithms on these two different memories with the

same collection of threads.

On the other hand, the parallel implementation provided

on Algorithm 2 is based on available functions in Petsc library

of computing routines over processors and adapted to multi-

processor systems. There are functionalities from this library

perform the linear algebraic operation acting on sparse matrices.

The information concerning the matrice storage format in the

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

FIGURE 6

Runtime of expliciting the fourth-order Runge–Kutta method (RK4) using the CSR storages.

memory is examined as the CSR (Compressed Sparse Rows)

format supported naturally by this library on Intel processors. The

native CSR mode has its constraints through High-performance

parallel computers. The native one is based on sequential CPU

implementation using the LAPACK package (Anderson et al.,

1999). Although, CSR format defined in Petsc is advanced itself

with a simple parallel algorithm for computing the matrix-vector

multiplication. In this case, the product of a square m2-matrix A

and a vector with m components is realized with a given number

of threads, where every thread computes each component of the

result. This strategy investigated in Petsc is efficient because the

operations are executed without considering zeros. These suitable

data structures and associated fragment routines existed in Petsc

using the massive parallelism grant to accelerate the operation

and decrease the runtime. This storage format admits an efficient

parallel algorithm compared with the native one. Additionally,

since this multiplication is generally limited by memory for sparse

matrices, the Petsc CSRmode remains the performing one from the

memory compared with the native one. Three array lists describe

this storage. The non-null values are stored in an element’s array

in row order, named Val. Each component of these values array

has an entry in the column index Col to express its location in

the matrix A. Array Ptr contains the offset of each matrix row

in arrays Val and Col. Moreover, it is desirable to use another

analogous storage format to CSR for sparse matrices, named CSC

(Compressed Sparse Columns). The non-zeros of each column in

CSC format are stored in contiguous memory locations. There are

many studies (Elafrou et al., 2019; Hong et al., 2019; Aliaga et al.,

2022) that present other new storage formats for sparse matrices,

such as compressed sparse blocks (CSB). Notably, the CSR format

is straightforward to be implemented on the GPU, and storing data

matrix A in the format of these arrays improves the efficiency

of data transfer and the expected matrix-vector multiplication.

In addition, the operations acting on matrix A stored in this

format are part of the Petsc library. For the implementation of

the matrix-vector multiplication, a routine MatMult is used. In

parallel, each process possesses a successive row block of the

matrix and a part of the input vector corresponding to these rows.

After this implementation, the operation of the vector addition is

requested in this algorithm. Next, the routine VecSum is used to

compute the sum of two compatible vectors. Implementing the

parallel product of the non-zero structure matrix by vector allows

for accelerating the fourth-order Runge-Kutta method (RK4).

This approach is used to the good advantage of the thread-

level parallelism, thread-level parallelism, and vectorization for

vector addition.

In what follows, we will demonstrate the efficacy of the CSR

storage format in the implementation of the Runge-Kutta method

(RK4). We evaluate our approach with the native format and the

adaptive CSR storage mode in PETSc for various numbers of cores.

Figure 6 shows the elapsed time of the algorithm in several CSR

storage schemes for each testing matrix A. These tests are carried

out with the most advantageous affinity setting. The proposed

implementation of these formats makes use of the Intel compiler.

For each test, the numerical code is compiled by using the Intel

Fortran compiler (ifort), accompanied by the -O3 optimization

flag, to perform automatic vectorization and maintain the ability

to optimize the code. The results show that the runtime decreases

along with the rise in the number of threads.

FFT is used widely in many scientific fields, such as

mathematical applications and engineering. We have shown in

Section 2 that the Fast Fourier Transform (FFT) implemented in

the FFTW library is an algorithm to calculate the discrete Fourier

transform (DFT) from a data array. The aim here is to express

various performances between GPU and CPU by some numerical

test cases using this algorithm since it is involved in the heat

equation resolution. When computing the FFT, the GPU has a

considerable advantage in terms of computation time compared

with the MPI. Table 1 shows that the GPU takes approximately six

percent of the time as the CPU for the larger vector size. Notably,

the time cost for the GPU and CPU computation is approximately

the same for small-size problems.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

In what follows, we will evaluate the performance of sparse

FFT on GPUs. This performance is considered the fastest

implementation compared with the same run on the MPI platform.

The sparsity parameter is fixed as follows: k = 500. We report the

performance from the FFTW algorithm for various signal sizes n

ranging from 218 to 226. We plot the speed-up and error precision

on the parallel FFTW on GPU. Figure 7 shows the comparison of

the speed-up of the FFTW algorithm between both platformCUDA

and MPI. It shows that the acceleration grows with the signal size

until reaching the maximum value 6.5 for n = 224. In Figure 8,

we have fixed the parameter n = 226, and the average L1 error

is plotted for different sparsity values k. Recalling that the first

common discrete signal quantity isL1-norm, which is defined from

TABLE 1 CPU and GPU average computing time of FFT.

Vector
size

103 104 105 106 107 108

GPU time 0.0004 0.00048 0.00075 0.00082 0.000801 0.12105

CPU time 0.00015 0.00062 0.00505 0.562635 2.70002 2.60098

any given signal A as follows:

‖A‖L1 =

n−1
∑

i=0

|A(i)|. (14)

The aim is to show how this error is accumulated per large

coefficient. Figure 8 proves that this error is tiny and minimal,

preserving consequently the accuracy of the algorithm. Increasing

the sparsity parameter k ensures that the achieved precision

is stable.

Let us consider the heat equation given by Equation (3) with

an initial condition generated randomly in the spectral space.

In order to explain what we can see in pictures of Figure 9 is

shared into six diagrams that can be interpreted as follows. An

intrinsic routine RAND is used in order to return to a real pseudo-

random number. The inverse Fast Fourier Transform of this initial

condition gives a new function in the physical space (see the top left

diagram). Solving the heat equation in physical space demonstrates

that a solution takes the form of Cosinus function with a higher

step time, as shown in the top right diagram. It shows that the

heat equation using backward Euler’s method is convergent at

FIGURE 7

Accuracy with varying signal size n and sparsity k on CUDA and MPI.

FIGURE 8

Accuracy (n = 226) showing the error precision.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

FIGURE 9

Numerical solution to the heat equation with an initial random function in di�erent times, presented at the top diagrams. Each solution given in the

(top) diagram is associated with its energy spectrum at each (bottom) diagram.

FIGURE 10

Speed-up of heat equation solutions on a bidimensional grid.

the final iteration. Notably, even after 10 successive iterations,

which remain sufficiently small, the solution changes slowly. This

solution, compared with the initial one, is presented in the top

middle diagram. An adaptive method is applied to the solution in

order to identify the energy spectrum. This identification is carried

out by the propagation of heat flow modeled through the domain

� (see the bottom diagrams). They illustrate good physical results

for transferring the heat energy from zones of higher temperatures

to zones of lower ones.

To illustrate the validation of our analytical model in parallel,

we ran it on four processors. In fact, the job is shared with them, in

which each task is affected by each one. Each processor has a partial

part of the solution. The total solution is obtained by transferring

the three parts acquired on each processor to the remaining

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

one. Different solutions to the heat equation are obtained using

the separation technique of variables. The basic idea is to verify

that this solution corresponds to one form of a combination of

trigonometric functions. Additionally, notably, the heat equation

is simulated in a periodic setting, in which an initial condition is

given. Then, it explains that the approximated solution behaves as

a Cosinus function at equally spaced points.

Our implementation relies on the distributed programming

method performed by the Message Passing Interface (MPI) 1.2.6

version of the ifort compiler. By choice, an N-processor system

has to generate a program speed-up. First, a comparative analysis

of the serial performance has been carried out. Figure 10 shows

the measured parallel performance of the heat equation. We run

a parallel code on a cluster sized at hundreds–thousands of nodes.

This cluster is based on 64-node architecture computer system.

The code executed in time was tested on various numbers of

processors. The speed-up acquired (e.g., 67 for 64 processors) was

very motivating. In other words, the speed-up is still notable even

for the rest of the processors. Increasing the time step will achieve

a good parallel speed-up. As shown, the solution was obtained

satisfactorily on the multicore computer for the communication of

the computing platform.

TABLE 2 Evaluation tests for comparison between CUDA and MPI in

execution time.

Tests Time
iterations

Mesh size CUDA(s) MPI(s)

Test 1 1,000 106 2.318 41.084

Test 2 5,000 106 11.727 172.592

Test 3 1,000 25.106 11.454 1716.553

The number of applications exploiting the CUDA platform

has expanded significantly. This choice is motivated by the ability

to deliver more excellent performance in parallel processing. A

new programming approach with CUDA is investigated to make

our application more effective. The aim is to achieve superior

performance than the MPI standard in our purpose application.

In this approach, the data distribution is based on GPU nodes

is considered the main computing mechanism. Table 2 shows

the execution time performed to obtain the solution of the heat

equation following three main tests. These tests are run over two

platforms having the same cores to evaluate the robustness. The

first test is a mesh of one million elements with 1,000 in time

iterations. In this test, the code is executed in 2.318(s) with the

CUDA technology with 820 cores. In the second test, the domain

size is always the same as the previous one with modifying the

number of iterations, which will be 5, 000. The execution time is

amplified by five as the number of iterations. In the last test, the

time iterations remain the same with respect to the first one, and the

number of domain sizes will be changed. These tests demonstrate

that the mesh size has more influence on the result than the

time iterations. Figure 11 shows the progression of time execution

according to these tests, as shown in Table 2. The implementation

results on a GPU platform are very significant and best compared

with the MPI one. Furthermore, the execution of the heat equation

on the CUDA platform with graphics processing is a hundred times

faster than the MPI one for refined mesh. Then, GPU architecture

provides high efficiency at a very low valuation.

5 Impact and conclusion

The new 2D numerical code allows the parallelization of the

heat equation under the MPI parallelizable library, which has been

FIGURE 11

The comparative execution time of parallel heat equation between CUDA and MPI.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

successfully realized. The validation of the parallelized numerical

results was an essential asset in achieving the objectives of this

article. Through these results, we have demonstrated that the

execution time of the CUDA implementation is almost faster

compared with the other MPI and OpenMP implementations.

In future studies, we would like to move directly from the heat

equation to Navier-Stokes ones by parallelizing the advective term.

The efficient implementation of the FFTW library will be applied to

solve the Navier-Stokes equations numerically in a cubic domain.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

TC: Writing - original draft.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was carried out in the Centre Européen de Biotechnologie et

de Bioéconomie (CEBB), supported by the Région Grand Est,

Département de laMarne, Greater Reims, and the EuropeanUnion.

In particular, the authors would like to thank the Département de la

Marne, Greater Reims, Région Grand Est, and the European Union

along with the European Regional Development Fund (ERDF

Champagne Ardenne 2014-2020) for their financial support of the

Chair of Biotechnology of CentraleSupélec.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alfeus, M., and Schlögl, E. (2019). On spread option pricing using
two-dimensional Fourier transform. Int. J. Theor. Appl. Fin. 22:1950023.
doi: 10.1142/S0219024919500237

Aliaga, J. I., Anzt, H., Grützmacher, T., Quintana-Ortí, E. S., and Tomás, A. E.
(2022). Compression and load balancing for efficient sparse matrix-vector product
on multicore processors and graphics processing units. Concurr. Comput. 34:e6515.
doi: 10.1002/cpe.6515

Anastassi, Z., and Simos, T. (2005). An optimized Runge-Kutta method
for the solution of orbital problems. J. Comput. Appl. Math. 175:1–9.
doi: 10.1016/j.cam.2004.06.004

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., et al.
(1999). LAPACK Users’ Guide. SIAM. doi: 10.1137/1.9780898719604

Aradhya, S., Thejaswini, S., and Nagaveni, V. (2022). “Multicore embedded
worst-case task design issues and analysis using machine learning logic,” in IOT
with Smart Systems: Proceedings of ICTIS 2021, Vol. 2, (Springer), 531–540.
doi: 10.1007/978-981-16-3945-6_52

Arts, L. P. A., and van den Broek, E. L. (2022). The fast continuous wavelet
transformation (fCWT) for real-time, high-quality, noise-resistant time-frequency
analysis. Nat. Comput. Sci. 2, 47–58. doi: 10.1038/s43588-021-00183-z

Atallah, M. J., Cole, R., and Goodrich, M. T. (1989). Cascading divide-and-
conquer: a technique for designing parallel algorithms. SIAM J. Comput. 18, 499–532.
doi: 10.1137/0218035

Belhocine, A., and Wan Omar, W. Z. (2018). Similarity solution and Runge–Kutta
method to a thermal boundary layer model at the entrance region of a circular tube: the
Lévêque approximation. Rev. Cient. 31, 6–18. doi: 10.14483/23448350.12506

Ben Amma, B., Melliani, S., and Chadli, L. (2019). “A fourth order Runge-Kutta
gill method for the numerical solution of intuitionistic fuzzy differential equations,”
in Recent Advances in Intuitionistic Fuzzy Logic Systems, eds M. Said and C. Oscar
(Springer), 55–68. doi: 10.1007/978-3-030-02155-9_5

Bluman, G. W., and Cole, J. D. (1969). The general similarity solution of the heat
equation. J. Math. Mech. 18, 1025–1042. doi: 10.1512/iumj.1969.18.18074

Brodtkorb, A. R., Hagen, T. R., and Sætra, M. L. (2013). Graphics processing unit
(GPU) programming strategies and trends in GPU computing. J. Parallel Distrib.
Comput. 73, 4–13. doi: 10.1016/j.jpdc.2012.04.003

Buck, I. (2007). “GPU computing: programming a massively parallel processor,”
in International Symposium on Code Generation and Optimization (CGO’07), 17.
doi: 10.1109/CGO.2007.13

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and
Brown, B. P. (2020). Dedalus: a flexible framework for numerical
simulations with spectral methods. Phys. Rev. Res. 2:023068.
doi: 10.1103/PhysRevResearch.2.023068

Cannon, J. R. (1984). The One-Dimensional Heat Equation. Cambridge University
Press. doi: 10.1017/CBO9781139086967. Available online at: https://books.google.fr/
books?hl=fr&lr=&id=XWSnBZxbz2oC&oi=fnd&pg=PR19&ots=6edC5xJawK&sig=
5gdjTITX22AumpTfF_er7iKt7pI&redir_esc=y#v=onepage&q&f=false

Cerovskỳ, A., Dulce, A., and Ferreira, A. (2014). Application of the Finite Difference
Method and the Finite Element Method to Solve a Thermal Problem. Department of
Mechanical Engineering, Integrated Masters in Mechanical Engineering, University
Porto, Porto, Portugal.

Chakkour, T. (2017). Some notes about the continuous-in-time financial model.
Abstr. Appl. Anal. 2017:6985820. doi: 10.1155/2017/6985820

Chakkour, T. (2019). Inverse problem stability of a continuous-
in-time financial model. Acta Math. Sci. 39, 1423–1439.
doi: 10.1007/s10473-019-0519-5

Chakkour, T. (2022). “Numerical simulation of pipes with an abrupt contraction
using openfoam,” in FluidMechanics at Interfaces 2: Case Studies and Instabilities, eds R.
Prud’homme and S. Vincent (Wiley Online Library), 45–75. doi: 10.1002/97811199030
00.ch3

Chakkour, T. (2023). Some inverse problem remarks of a continuous-in-time
financial model in l 1 ([t i, θ max]). Math. Model. Comput. 10, 864–874.
doi: 10.23939/mmc2023.03.864

Chakkour, T., and Frénod, E. (2016). Inverse problem and
concentration method of a continuous-in-time financial model.
Int. J. Financ. Eng. 3:1650016. doi: 10.1142/S24247863165
0016X

Cicone, A., and Zhou, H. (2021). Numerical analysis for iterative filtering
with new efficient implementations based on FFT. Numer. Math. 147, 1–28.
doi: 10.1007/s00211-020-01165-5

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://doi.org/10.1142/S0219024919500237
https://doi.org/10.1002/cpe.6515
https://doi.org/10.1016/j.cam.2004.06.004
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1007/978-981-16-3945-6_52
https://doi.org/10.1038/s43588-021-00183-z
https://doi.org/10.1137/0218035
https://doi.org/10.14483/23448350.12506
https://doi.org/10.1007/978-3-030-02155-9_5
https://doi.org/10.1512/iumj.1969.18.18074
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1109/CGO.2007.13
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.1017/CBO9781139086967
https://books.google.fr/books?hl=fr&lr=&id=XWSnBZxbz2oC&oi=fnd&pg=PR19&ots=6edC5xJawK&sig=5gdjTITX22AumpTfF_er7iKt7pI&redir_esc=y#v=onepage&q&f=false
https://books.google.fr/books?hl=fr&lr=&id=XWSnBZxbz2oC&oi=fnd&pg=PR19&ots=6edC5xJawK&sig=5gdjTITX22AumpTfF_er7iKt7pI&redir_esc=y#v=onepage&q&f=false
https://books.google.fr/books?hl=fr&lr=&id=XWSnBZxbz2oC&oi=fnd&pg=PR19&ots=6edC5xJawK&sig=5gdjTITX22AumpTfF_er7iKt7pI&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1155/2017/6985820
https://doi.org/10.1007/s10473-019-0519-5
https://doi.org/10.1002/9781119903000.ch3
https://doi.org/10.23939/mmc2023.03.864
https://doi.org/10.1142/S242478631650016X
https://doi.org/10.1007/s00211-020-01165-5
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2023.1305800

Cooley, J. W., and Tukey, J. W. (1965). An algorithm for the machine
calculation of complex Fourier series. Math. Comput. 19, 297–301.
doi: 10.1090/S0025-5718-1965-0178586-1

Dan, D., Wang, Z., Zhou, X., Lei, M., Zhao, T., Qian, J., et al. (2021). Rapid image
reconstruction of structured illumination microscopy directly in the spatial domain.
IEEE Photon. J. 13, 1–11. doi: 10.1109/JPHOT.2021.3053110

Dao, T., Gu, A., Eichhorn, M., Rudra, A., and Ré, C. (2019). “Learning fast
algorithms for linear transforms using butterfly factorizations,” in International
Conference on Machine Learning, 1517–1527. Available online at: https://proceedings.
mlr.press/v97/dao19a.html

Elafrou, A., Goumas, G., and Koziris, N. (2019). “Conflict-free symmetric sparse
matrix-vector multiplication on multicore architectures,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, 1–15. doi: 10.1145/3295500.3356148

Eldén, L. (1995). Numerical solution of the sideways heat equation by difference
approximation in time. Inverse Probl. 11:913. doi: 10.1088/0266-5611/11/4/017

Faerman, V., Avramchuk, V., Voevodin, K., and Shvetsov, M. (2021). “Real-time
correlation processing of vibroacoustic signals on single board raspberry pi computers
with hifiberry cards,” in International Conference on High-Performance Computing
Systems and Technologies in Scientific Research, Automation of Control and Production
(Springer), 55–71. doi: 10.1007/978-3-030-94141-3_6

Faerman, V. A., Shvetsov, M. P., and Tsavnin, A. V. (2020). Computations of cross-
correlation functions on a single board Raspberry Pi computer. J. Phys. 1615:12004.
doi: 10.1088/1742-6596/1615/1/012004

Feng, H., and Zhao, S. (2020). FFT-based high order central difference schemes
for three-dimensional Poisson’s equation with various types of boundary conditions.
J. Comput. Phys. 410:109391. doi: 10.1016/j.jcp.2020.109391

Frigo, M., and Johnson, S. G. (2005). The design and implementation of FFTW3.
Proc. IEEE 93, 216–231. doi: 10.1109/JPROC.2004.840301

Gangadhar, C., Moutteyan, M., Vallabhuni, R. R., Vijayan, V. P., Sharma, N.,
Theivadas, R. (2023). Analysis of optimization algorithms for stability and convergence
for natural language processing using deep learning algorithms.Meas. Sens. 27:100784.
doi: 10.1016/j.measen.2023.100784

Grady, T. J., Khan, R., Louboutin, M., Yin, Z., Witte, P. A., Chandra, R., et al.
(2023). Model-parallel Fourier neural operators as learned surrogates for large-scale
parametric PDEs. Comput. Geosci. 2023:105402. doi: 10.1016/j.cageo.2023.105402

Habibi, M., Safarpour, M., and Safarpour, H. (2022). Vibrational characteristics
of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-
Kutta and GDQ methods. Mech. Based Des. Struct. Mach. 50, 2471–2492.
doi: 10.1080/15397734.2020.1779086

Hassanieh, H., Indyk, P., Katabi, D., and Price, E. (2012). “Simple and
practical algorithm for sparse Fourier transform,” in Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1183–1194.
doi: 10.1137/1.9781611973099.93

Hong, C., Sukumaran-Rajam, A., Nisa, I., Singh, K., and Sadayappan, P. (2019).
“Adaptive sparse tiling for sparse matrix multiplication,” in Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming, 300–314.
doi: 10.1145/3293883.3295712

Horowitz and Zorat (1983). Divide-and-conquer for parallel processing. IEEE
Trans. Comput. 100, 582–585. doi: 10.1109/TC.1983.1676280

Hutzenthaler, M., Jentzen, A., Kruse, T., and Nguyen, T. A. (2020). A proof that
rectified deep neural networks overcome the curse of dimensionality in the numerical
approximation of semi-linear heat equations. SN Part. Diff. Equ. Appl. 1, 1–34.
doi: 10.1007/s42985-019-0006-9

Khouzami, N., Michel, F., Incardona, P., Castrillon, J., and Sbalzarini, I.
F. (2022). Model-based autotuning of discretization methods in numerical
simulations of partial differential equations. J. Comput. Sci. 57:101489.
doi: 10.1016/j.jocs.2021.101489

Kravčenko, M., Merta, M., and Zapletal, J. (2019). Distributed fast boundary
element methods for Helmholtz problems. Appl. Math. Comput. 362:124503.
doi: 10.1016/j.amc.2019.06.017

Muhlich, J. L., Chen, Y.-A., Yapp, C., Russell, D., Santagata, S., and
Sorger, P. K. (2022). Stitching and registering highly multiplexed whole-slide
images of tissues and tumors using ASHLAR. Bioinformatics 38, 4613–4621.
doi: 10.1093/bioinformatics/btac544

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel
programming with CUDA: is CUDA the parallel programming model that application
developers have been waiting for? Queue 6, 40–53. doi: 10.1145/1365490.1365500

Nvidia, C. (2007). CUFFT Library. Available online at: https://docs.nvidia.com/
cuda/cufft/index

Nvidia, C. (2008). Programming Guide 2.0. NVIDIA Cooperation. Nvidia.

Phelan, C. E., Marazzina, D., Fusai, G., and Germano, G. (2019). Hilbert
transform, spectral filters and option pricing. Ann. Oper. Res. 282, 273–298.
doi: 10.1007/s10479-018-2881-4

Pirgov, P., Mullin, L., and Khan, R. (2021). “Out-of-GPU FFT: a case study in
GPU prefetching,” in 2021 International Conference on Computational Science and
Computational Intelligence (CSCI), 1771–1776. doi: 10.1109/CSCI54926.2021.00336

Prigent, S., Nguyen, H.-N., Leconte, L., Valades-Cruz, C. A., Hajj, B., Salamero,
J., et al. (2023). SPITFIR (e): a supermaneuverable algorithm for fast denoising and
deconvolution of 3D fluorescence microscopy images and videos. Sci. Rep. 13:1489.
doi: 10.1038/s41598-022-26178-y

Rasheed, M., Ali, A. H., Alabdali, O., Shihab, S., Rashid, A., Rashid, T.,
et al. (2021). The effectiveness of the finite differences method on physical
and medical images based on a heat diffusion equation. J. Phys. 1999:012080.
doi: 10.1088/1742-6596/1999/1/012080

Salavi, R., Math, M., and Kulkarni, U. (2022). A comprehensive survey of fully
homomorphic encryption from its theory to applications. Cyber Secur. Digit. Forens.
73–90. doi: 10.1002/9781119795667.ch4

Sene, N. (2019). Solutions of fractional diffusion equations and Cattaneo-Hristov
diffusion model. Int. J. Anal. Appl. 17, 191–207. doi: 10.28924/2291-8639

Singer, J. (1938). A theorem in finite projective geometry and some
applications to number theory. Trans. Am. Math. Soc. 43, 377–385.
doi: 10.1090/S0002-9947-1938-1501951-4

Sivanandan, V., Kumar, V., and Meher, S. (2015). “Designing
a parallel algorithm for Heat conduction using MPI, OpenMP
and CUDA,” in 2015 National Conference on Parallel Computing
Technologies (PARCOMPTECH), 1–7. doi: 10.1109/PARCOMPTECH.2015.7
084516

Tselios, K. and Simos, T. E. (2005). Runge-Kutta methods with minimal dispersion
and dissipation for problems arising from computational acoustics. J. Comput. Appl.
Math. 175, 173–181. doi: 10.1016/j.cam.2004.06.012

Vijendra Babu, D., Basha, S.A., Kavitha, D., Sahaya Anselin Nisha, A., Vallabhuni,
R. R., and Radha, N. (2023). Digital code modulation-based MIMO system
for underwater localization and navigation using MAP algorithm. Soft Comput.
doi: 10.1007/s00500-023-08244-3

Wang, C., Chandrasekaran, S., and Chapman, B. (2016). “cusFFT: a high-
performance sparse fast Fourier transform algorithm on GPUs,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 963–972.
doi: 10.1109/IPDPS.2016.95

Widder, D. V. (1976). The Heat Equation, Vol. 67. Academic Press. Available
online at: https://books.google.fr/books?hl=fr&lr=&id=5BPILpGGGXsC&oi=fnd&
pg=PP1&ots=TKsJ9J2GsM&sig=oowW-N8QmeEQXvSZfZqK2ZDAF_g&redir_esc=
y#v=onepage&q&f=false

Xu, Y., Shu, C.-W., and Zhang, Q. (2020). Error estimate of the fourth-order Runge-
Kutta discontinuous Galerkinmethods for linear hyperbolic equations. SIAM J. Numer.
Anal. 58, 2885–2914. doi: 10.1137/19M1280077

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1305800
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1109/JPHOT.2021.3053110
https://proceedings.mlr.press/v97/dao19a.html
https://proceedings.mlr.press/v97/dao19a.html
https://doi.org/10.1145/3295500.3356148
https://doi.org/10.1088/0266-5611/11/4/017
https://doi.org/10.1007/978-3-030-94141-3_6
https://doi.org/10.1088/1742-6596/1615/1/012004
https://doi.org/10.1016/j.jcp.2020.109391
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1016/j.measen.2023.100784
https://doi.org/10.1016/j.cageo.2023.105402
https://doi.org/10.1080/15397734.2020.1779086
https://doi.org/10.1137/1.9781611973099.93
https://doi.org/10.1145/3293883.3295712
https://doi.org/10.1109/TC.1983.1676280
https://doi.org/10.1007/s42985-019-0006-9
https://doi.org/10.1016/j.jocs.2021.101489
https://doi.org/10.1016/j.amc.2019.06.017
https://doi.org/10.1093/bioinformatics/btac544
https://doi.org/10.1145/1365490.1365500
https://docs.nvidia.com/cuda/cufft/index
https://docs.nvidia.com/cuda/cufft/index
https://doi.org/10.1007/s10479-018-2881-4
https://doi.org/10.1109/CSCI54926.2021.00336
https://doi.org/10.1038/s41598-022-26178-y
https://doi.org/10.1088/1742-6596/1999/1/012080
https://doi.org/10.1002/9781119795667.ch4
https://doi.org/10.28924/2291-8639
https://doi.org/10.1090/S0002-9947-1938-1501951-4
https://doi.org/10.1109/PARCOMPTECH.2015.7084516
https://doi.org/10.1016/j.cam.2004.06.012
https://doi.org/10.1007/s00500-023-08244-3
https://doi.org/10.1109/IPDPS.2016.95
https://books.google.fr/books?hl=fr&lr=&id=5BPILpGGGXsC&oi=fnd&pg=PP1&ots=TKsJ9J2GsM&sig=oowW-N8QmeEQXvSZfZqK2ZDAF_g&redir_esc=y#v=onepage&q&f=false
https://books.google.fr/books?hl=fr&lr=&id=5BPILpGGGXsC&oi=fnd&pg=PP1&ots=TKsJ9J2GsM&sig=oowW-N8QmeEQXvSZfZqK2ZDAF_g&redir_esc=y#v=onepage&q&f=false
https://books.google.fr/books?hl=fr&lr=&id=5BPILpGGGXsC&oi=fnd&pg=PP1&ots=TKsJ9J2GsM&sig=oowW-N8QmeEQXvSZfZqK2ZDAF_g&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1137/19M1280077
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Parallel computation to bidimensional heat equation using MPI/CUDA and FFTW package
	1 Introduction
	2 FFTW software library
	3 Heat equation
	4 GPU programming and CUDA
	5 Impact and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

