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Manifold representation learning holds great promise for theoretical

understanding and characterization of deep neural networks’ behaviors

through the lens of geometries. However, data scarcity remains a major

challenge in manifold analysis especially for data and applications with real-

world complexity. To address this issue, we propose manifold representation

meta-learning (MRML) based on autoencoders to recover the underlying

manifold structures without uniformly or densely sampled data. Specifically,

we adopt episodic training, following model agnostic meta-learning, to meta-

learn autoencoders that are generalizable to unseen samples specifically

corresponding to regions with low-sampling density. We demonstrate the

e�ectiveness of MRML via empirical experiments on LineMOD, a dataset curated

for 6-D object pose estimation. We also apply topological metrics based on

persistent homology and neighborhood graphs for quantitative assessment of

manifolds reconstructed by MRML. In comparison to state-of-the-art baselines,

our proposed approach demonstrates improved manifold reconstruction better

matching the data manifold by preserving prominent topological features and

relative proximity of samples.

KEYWORDS

manifold representation learning, autoencoder, meta-learning, persistent homology,
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1 Introduction

Challenges such as model transferability, explanability, and adversarial robustness

prevent the application of deep learning to real-world problems with safety and mission

importance. One research direction of growing interest is to address these challenges

by studying deep learning from the perspective of geometry and topology (Watanabe

and Yamana, 2022; Aktas et al., 2019). Based on the widely accepted assumption that

high dimensional data often lie on a low dimensional manifold, manifold representation

learning, which seeks to capture underlying manifold structure, serves as a critical first step

towards principled geometric and topological analysis of deep learning (Tenenbaum et al.,

2000; Bengio et al., 2013).

While autoencoders (Liou et al., 2014; Bank et al., 2020) have been widely adopted

for learning intrinsic structure from high dimensional empirical data in an unsupervised

manner, sample scarcity and sparsity remains a major challenge for capturing underlying

manifolds especially for real-world problems. Existing solutions are often prone to issues

of bad generalization and incorrect local geometry due to sparse sampling in high

dimensional space and noisy samples of real-world complexity (Lee Y. et al., 2021).

Meanwhile, meta-learning has been widely adopted as a technique to address the challenge

of data scarcity and to learn models that are easy to adapt given few samples from new task

domain (Hospedales et al., 2022; Snell et al., 2017; Finn et al., 2017).
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In this work, inspired by model agnostic meta-learning

(MAML) originally designed for domain adaptation and domain

generalization (Finn et al., 2017; Li et al., 2018), we aim to combine

the strength of autoencoders and meta-learning by proposing

manifold representation meta-learning (MRML) to improve

manifold representation learning considering training distributions

containing low sampling density regions. We compare three

different sampling schemes that mirror different types of shifts

between training and testing distributions in an episodic training.

Accordingly, we train models to achieve good generalization

performance at different levels of difficulty. Thanks to the improved

generalizability of meta-learned models, we demonstrate that

manifold regions with low sample density can be faithfully

recovered.

To evaluate the generalization performance of MRML,

we tap into topological metrics based on persistent

homology (Edelsbrunner and Harer, 2008) and neighborhood

graphs to quantify the reconstructions at the manifold level. We

perform experiments using the LineMOD dataset (Hinterstoisser

et al., 2012) which is designed for 6-D pose estimation. We

perform both qualitative and quantitative comparison between

MRML under three different settings and multiple baseline

methods including recent state-of-the-art autoencoders

considering local connectivity (Lee Y. et al., 2021) and

geometric regularization (Duque et al., 2022). We demonstrate

consistent qualitative and quantitative improvement of manifold

reconstruction against baselines with respect to topological metrics

considering generalization to hold-out test samples corresponding

to a missing gap/hole in the complete manifold. In comparison

to baseline reconstruction, our best performing meta-learning

procedure captures a manifold better matching the data manifold

and leading to a relative reduction of topological distance at 14.44%

considering the hold-out neighborhood and at 4.44% considering

the entire manifold.

In summary, our major contributions include the following:

(1) We propose MRML (manifold representation meta-

learning) with novel episodic sampling strategies to improve

autoencoders’ generalization performance in reconstructing

manifold especially for regions with low sampling density.

(2) In addition to standard metrics focusing on sample-

level reconstruction accuracy, we introduce topological

and geometric metrics based on persistent homology and

neighborhood graphs for quantitative evaluation of MRML

with respect to manifold reconstruction.

(3) We demonstrate both qualitative and quantitative

improvement via MRML against state-of-the-art baselines

for manifold reconstruction evaluated based on topological

and geometric metrics, using training data with low sampling

density regions.

2 Related work

2.1 Manifold representation learning

Autoencoders (Liou et al., 2014; Bank et al., 2020) are

commonly adopted for unsupervised representation learning

where data in high dimensional input space is projected onto a

lower dimensional latent space by an encoder and restored back

to data dimension in the output space by a decoder. Several recent

works are proposed to incorporate topological analysis in design

of autoencoders for preserving the local geometry in unsupervised

representation learning. Moor et al. (2020) propose Topological

Autoencoder using topological loss to regularize the representation

learning and thus improve the alignment between input and

latent space based on persistent homology features. Schönenberger

et al. (2020) propose Witness Autoencoder (W-AE) to improve

the regularization by defining the alignment between input and

latent space via geodesic distances computed based on witness

complexes. Schonsheck et al. (2019) propose Chart Autoencoder

(CAE) which use an ensemble of decoders to model a multi-

chart latent space representing the manifold with a collection

of overlapping local neighborhoods. With this formulation, the

authors discuss the local proximity and manifold approximation

theoretically. More recent works investigate the use of geometric

regularization such as regularization based on local contraction

and expansion of the decoder (Nazari et al., 2023) or isometry

to preserve local distance (Gropp et al., 2020; Lee et al., 2022).

In this work, we perform qualitative and quantitative comparison

against two recent baselines addressing underlying geometry

of autoencoders. Lee Y. et al. (2021) propose Neighborhood

Reconstructing Autoencoder (NRAE) which seeks to correct local

geometry and overfitting of autoencoders simultaneously with

novel reconstruction loss leveraging neighborhood graph and local

quadratic approximation of the decoder. Duque et al. (2022)

propose Geometry Regularized Autoencoders (GRAE) which

introduce regularization to specificallymatch latent representations

of the autoencoder to representations from manifold learning

computation. In comparison to existing works, our approach does

not need explicit modeling or calculation of topological features at

set or batch level during the training. It is based on meta-learning

framework with episodic training and thus enables improved

generalization of manifold learning with respect to topological

metrics considering training manifolds consisting low sampling

density regions.

2.2 Model agnostic meta learning

Meta-learning or ’Learning to Learn’ techniques seek to

extract generalizable knowledge from learning processes of

diverse tasks to achieve fast adaptation or generalization to new

tasks (Andrychowicz et al., 2016; Hospedales et al., 2022) and

have demonstrated tremendous success in tasks such as few-

shot learning (Snell et al., 2017; Hsu et al., 2019) and domain

generalization (Li et al., 2019; Liu et al., 2021). Specifically model

agnostic meta-learning (MAML) (Finn et al., 2017) is proposed to

learn to achieve good adaptation to new tasks given a few samples

with a few steps of gradient descent. The learned model serves an

initial condition that is easy to fine-tune. MLDG (Li et al., 2018)

extends the model agnostic episodic training framework and learns

to achieve good zero-shot transfer by simulating domain shifts

in supervised classification tasks. Recent works also apply meta-

learning techniques to improve the training of generative models

such as Variational AutoEncoders (VAE) where representation
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learning is performed considering a sets of related probabilistic

models to achieve transferrable representation (Lee D. B. et al.,

2021; Wu et al., 2020). Our proposed methods follow the episodic

training framework in MLDG and explore novel episodic sampling

strategies simulating data shifts in transfer learning based on local

geometry without supervised labels. In comparison to recent works

based on variational inference, our work does not make any prior

assumption such as Gaussian or GaussianMixtures (Lee D. B. et al.,

2021) about the latent distribution.

3 Method

3.1 Meta-learning for manifold
representation learning

We develop unsupervised manifold representation learning

based on autoencoders to capture meaningful representation of

the data which faithfully encodes the underlying manifolds. To

address the challenge of data scarcity, we propose a generalizable

model which not only provides good reconstruction at sample level

but also preserves underlying geometry of the data (e.g., relative

proximity between samples; topological features highlights the

shape of underlying manifolds) given unseen data corresponding

to low sampling density region in the underlying manifold.

We integrate autoencoders with meta-learning for domain

generalization based on episodic training (MLDG) and examine

novel sampling strategies specifically simulating low sampling

regions in manifolds.

Following MLDG framework, we first split data into disjoint

meta training set S and meta testing set S′. We adopt episodic

training and at each training episode, we sample two disjoint

batches from the meta training set S, namely episodic training

batch Strain and episodic testing batch Stest . The split of episodic

training batch and episodic testing batch is designed to resemble

the distribution shift between source (S) and unseen target data (S′)

so as to test models’ generalization performance. We compute the

gradient on Strain with respect to model parameters θ and compute

the updated parameters θ∗ after one step of gradient descent. At

the episodic testing step, we perform a virtual evaluation of the

updated model on the episodic testing set Stest with a task loss term

L. Herein, we adopt the Binary Cross Entropy (BCE) loss. Given

input x, model fθ with parameters θ , the task loss term is defined as

L(x, θ) = −[fθ (x) log(x)+ (1− fθ (x)) log(1− x)]. (1)

At themeta-optimization step, we update themodel parameters

θ considering a meta-optimization loss as the weighted sum of

task loss terms evaluated on the episodic training and episodic

testing after one step of virtual update. The detailed meta-learning

procedures are specified in Algorithm 1.

In comparison to the original MLDG where the sampling of

episodic training set and episodic testing set is designed based

on different image domains (e.g., cartoon, painting, photo, etc.)

for supervised object classification, in this work, we devise three

sampling schemes specifically targeting the task of unsupervised

reconstruction of data manifold given data scarcity. Figure 1

provides a notional depiction of sample distribution in 2D space

1: Input: Training Data S; reconstruction loss L

2: Init: Model parameters θ, Hyperparameters α,β, γ.

3: for iter in iterations do

4: Sampling: sample disjoint Strain and Stest from

S

5: Episodic Train: Compute ∇θ = L′θ(Strain; θ);

update θ∗ = θ − α∇θ

6: Episodic Test: Evaluate L(Stest; θ
∗)

7: Meta Optimization: update θ ← θ −

γ
∂(L(Strain;θ)+βL(Stest;θ−α∇θ))

∂θ

8: end for

Algorithm 1. Meta-learning for manifold reconstruction.

which highlights the comparison between the different sampling

strategies, where each dot referes to a sample. In each setting,

we split the entire data space to meta training set S (light blue)

and meta testing set S′ (light red). Specifically to simulate a low

sampling density region in high dimensional data, we consider

samples in a random local neighborhood as the S′ which is

hold out from model training. Within S, at each episode, we

consider uniformly sampled Strain and construct Stest to include

(1) the nearest neighbor sample of each sample in Strain (Figure 1,

Setting A), (2) a disjoint random batch uniformly sampled from

the training data S (Figure 1, Setting B), or (3) a disjoint batch

containing a random local neighborhood in S (Figure 1, Setting C).

The three settings simulate different distribution shifts to encourage

model generalization with increased difficulty. Correspondingly,

the model is encouraged to generalize to (1) unseen test samples

close to training samples in the Euclidean space in Setting A, (2)

unseen test samples from the same training distribution in Setting

B, and (3) unseen test samples from a low sampling density region

corresponding to a hole or a gap in the training manifold in

setting C.

3.2 Topological metrics for manifold
reconstruction

To quantitatively evaluate the performance of manifold

reconstruction, we perform evaluation including metrics

beyond classic reconstruction errors describing instance-level

reconstruction quality. Based on various representation of

manifolds adopted in topological data analysis, we adopt two sets

of metrics to characterize reconstructions based on different types

of topological and geometric features of learned manifolds.

For each manifold, we first compute its persistence diagram

which characterizes the evolution of topological structures in

persistent homology and provides a summarized description of the

manifold shape (Cohen-Steiner et al., 2005; Pun et al., 2018; Agami,

2020; Watanabe and Yamana, 2022). We focus on the points in

the diagrams describing 0-dimension homology (i.e., connected

components) and 1-dimensional homology (i.e., holes) in the

manifold. We adopt the Wasserstein distance metric (Mileyko

et al., 2011) to compute the similarity between two persistence
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FIGURE 1

Experimental setting A, B and C of MRML with increased di�culties in generalization. Each dot represents a sample when projected into 2D space. A

Meta-test set (light red) is held out from Meta-train set (light blue) to simulate random hole in the manifold corresponding low-sampling density

region. For each training episode, a random batch of episodic-train set (blue) and a disjoint batch of episodic-test set (red) are sampled from

Meta-train set to simulate the data shift to encourage generalization of the model.

diagrams. Considering two persistence diagrams D1 and D2, the

p-th Wasserstein distanceWp(D1,D2) is defined as:

Wp(D1,D2) = (inf
M

∑

x∈D1

||x−M(x)||
p
∞)

1
p (2)

where M denotes all bijection mappings from D1 to D2.

The Wasserstein distance measures the distance between coupled

points from an optimal matching between two diagrams and

thus characterizes the similarity of topological features between

two manifolds.

In addition to the persistence diagram, we further construct

a k-nearest neighbor (KNN) graph for each of the manifolds as

a representation characterizing the manifold from the perspective

of local geometry at different resolutions. Considering each

point in the manifold as a vertex in the graph, we connect

vertices based on the Euclidean distance between corresponding

samples (Omohundro, 1989). We describe each graph via its

binary adjacency matrix and evaluate the similarity between two

graphs based on adjacency spectral distance (Wills and Meyer,

2020). Let A1 and A2 denote the adjacency matrices of two KNN

graphs G1 and G2 of size n. An adjacency matrix A is computed

such that the (i, j)-th element in the matrix is labeled as 1 if i-

th sample is one of the k-nearest neighbors to the j-th sample

and is labeled as 0 otherwise. The adjacency spectral distance is

computed as

S(G1,G2) =

√

√

√

√

n
∑

i=1

|λ
A1
i − λ

A2
i |

2 (3)

with λA denoting the eigenvalues of matrixA and |·| computing

the magnitude of values.

4 Experiment

4.1 Dataset

4.1.1 LineMOD
To demonstrate manifold reconstruction, we use the LineMOD

dataset (Hinterstoisser et al., 2012) which is widely adopted for 6D

object pose estimation. The dataset includes 3D object models and

RGB-D images along with the ground-truth 6D object poses. There

are 15 texture-less objects with discriminative colors, shapes, and

sizes. For each of 15 objects, there are 1313 samples at 640x480

resolution which are obtained by rendering object mesh models

with surface color and normal from a densely sampled view sphere.

For our experiments, we use RGB data rescaled to 64x64. We train

autoencoders to learn manifolds corresponding to data of single

object class and data of all 15 object classes.

4.2 Experimental setting

To demonstrate manifold reconstruction with data scarcity, we

perform multiple baseline experiments using vanilla autoencoder

(AE) and recent approaches emphasizing preservation of

geometry (Lee Y. et al., 2021; Duque et al., 2022). We perform

experiments using MRML under three episodic sampling schemes

as illustrated in Figure 1.We first split the data into (meta-) training

and (meta-) testing set by randomly selecting a sample and holding

out nearest k samples from the neighbor in Euclidean space. By

holding out this random cluster away from training, we simulate

a training manifold with a low density region corresponding to

unseen latent variations. For all MRML experiments, we use the

same encoder and decoder architectures. The encoder consists of

4 convolutional layers followed by 3 fully connected layers and

the decoder consists of 3 fully connected layers followed by 4
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deconvolutional layers. The latent space is set to 10 dimension.

We use the Adam optimizer (Kingma and Ba, 2015) and batch

size 64 for training all the models. We performed two sets of

experiments, one for learning the manifold from images of a single

object and one for learning the manifold from images of all 15

object classes. For single object experiment, we hold out a local

neighborhood containing 100 images. We perform training with

1,000 iterations at learning rate 10−3. For experiments on multiple

object classes, we hold out a local neighborhood containing 1,000

images. The hold out data are from the same object class. We use

the same batch size, learning rate, episodic step size and episodic

testing weight as used in the single object experiments. We set

the episodic training step size α and weight on episodic testing

loss β to be 10−7 and 10−3 for all three settings. For vanilla AE

and NRAE experiments, we use the same encoder and decoder

architecture, optimizer setting and learning rate as used in MRML

experiments. For GRAE, we followed the reported implementation.

The hyperparameters are selected based on the convergence of

reconstruction accuracy.

4.3 Results and discussion

We compare MRML under three episodic training settings

against the baselines. To qualitatively compare the learned

manifolds, we show 3-dimensional t-SNE visualizations (van der

Maaten and Hinton, 2008) of the manifolds in the data space, the

latent space of the encoder and the reconstruction space of the

decoder in Figure 2. We observe that for baselines and MRML,

the contour of the manifold is largely preserved when projected to

the latent space and the reconstructed space. Specifically focusing

on the hold-out test samples unseen at training stage (red in

Figure 2), we notice that in comparison to the ones learned via

baselines, manifold representations learned via MRML produce

more uniformly distributed samples in both the latent space and

the reconstructed space, which better matches the original data

manifold.

For qualitative comparison, in addition to sample-level

reconstruction accuracy measured via mean square error (MSE),

we measure the manifold-level reconstruction via the topological

distance between learned manifold of the reconstructed images

and the data manifold based on both persistence diagrams and

KNN graphs. Table 1 shows the quantitative comparison for

experiments on learning the manifold of a single object class.

For comparison based on MSE, we observe that most methods

have comparable sample-level reconstruction accuracy on average.

While GRAE shows an edge in overall reconstruction accuracy

but has considerably higher error when evaluated on the hold

out test data. We would like to note that, while selected baselines

were proposed to address local geometry, our problem setting pose

further challenge in generalization as we consider holdout data

specifically corresponding to holes/gaps in training manifolds as

visualized in Figure 2, in opposed to, e.g., unseen samples following

the same training distribution. Comparing performance over three

sets of metrics, it is observed that for approaches with similar

averaged reconstruction accuracy, its capability in preserving

topological or geometric features can still vary. This emphasize the

need for including topological and geometricmetrics for examining

representation learning to support the use of the representation

in topological or geometric analysis. For comparison based on

Wasserstein distance between persistence diagrams, we observe

thatMRMLmethods consistently achieve improved or comparative

performance against baseline approaches over different orders

of Wasserstein distance (p) and considering persistent homology

features at different dimensions, especially for MRML setting B

and setting C. This quantitative improvement is aligned with

qualitative observation as shown in Figure 2. This improvement

is consistent when we investigate manifold reconstruction of the

local neighborhood that is held out from the training as well as

the manifold reconstruction for the complete dataset including

both training and hold-out testing samples. We also note that the

improvement on reconstructing the manifold is demonstrated even

against baselines showing higher average accuracy at sample level

(e.g., comparing MRML against NRAE on holdout set and against

GRAE on complete data). Specifically, MRMLwith best performing

sampling strategy reduces the second orderWasserstein distance by

a factor of 14.44% considering the hold-out neighborhood and by a

factor of 4.44% considering the complete manifold against the best

performing baseline.

For comparison based on adjacency spectral distance between

KNN graphs at different resolutions, we observe that when

considering KNN graphs at finer granularity (k = 5), the

comparison better correlates with the comparison based on

averaged accuracy between pairwise samples. While proposed

MRML methods, especially setting B and setting C on holdout test

samples, demonstrate better match of KNN graphs at a coarser

resolution (k = 20) which suggests the alignment on the intrinsic

shape of the manifold. In this case, MRML with best performing

sampling strategy demonstrates a reduction in adjacency spectral

distance by a factor of 13.82% against the best performing baseline.

We also observe the improvement with proposed MRML

approaches in both experiments of single object class where

a manifold containing a single connected piece is considered

and experiments of multiple object classes where the manifold

of increased complexity contains multiple pieces, as shown in

Table 2. Note that for the multi-class experiments, due to the

computation cost, the comparison is only reported on the large

holdout test set corresponding to the missing gap/hole in the

manifolds. In this case, our proposed strategies again demonstrate

consistent improvement with respect to topological metrics based

on persistence diagrams and geometric metrics based on KNN

graphs, comparing to baselines at similar or inferior generalization

accuracy at sample level. Specifically, considering the hold-out

neighborhood, MRML with best performing sampling strategy

demonstrates a reduction in the second order Wasserstein distance

by a factor of 9.62% against the best performing baseline.

Finally, we compare the performance of MRML under different

episodic sampling schemes. We observe that the comparison

between MRML based strategies against baselines are mostly

consistent. For single object experiments, we observe that

Setting B and C yield relatively better generalization on the

hold-out test samples and better reconstruction on the overall

manifold. For experiments on multiple object classes where the

overall manifold has higher complexity, setting A and C yield

relatively better generalization. This comparison validate the use of

sampling scheme specifically simulating a generalization to missing

gaps/holes in the underlying manifold under setting C.
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FIGURE 2

TSNE visualization of data and learned manifolds using LineMOD data of single object class (top panel) and all 15 object classes (bottom panel). In

single object manifolds, blue represents meta-training samples and red represents hold-out meta-testing samples. In multiple object manifolds, blue

with di�erent shades represents meta-training samples of di�erent objects and red represents hold-out meta-testing samples.

TABLE 1 Experiments on LineMOD dataset with single object class.

Test samples Algorithms MSE

Persistence diagram KNN Graph

Wasserstein p=1 Wasserstein p=2 Spectral distance

Dim 1 Dim 2 Total Dim 1 Dim 2 Total k = 5 k = 20

Holdout

AE 4.03e-3 158.43 22.60 181.03 15.94 2.73 18.67 2.98 8.90

NRAE 3.55e-3 189.51 25.20 214.70 18.99 2.85 21.85 2.49 9.04

GRAE 6.85e-3 140.52 14.37 154.89 14.45 2.03 16.48 3.47 9.41

Meta A (Ours) 4.11e-3 145.92 17.91 163.83 14.69 2.37 17.06 3.76 8.66

Meta B (Ours) 3.95e-3 122.49 16.94 139.44 12.35 2.26 14.61 3.26 7.67

Meta C (Ours) 3.82e-3 116.26 17.23 133.49 11.72 2.38 14.10 2.85 8.36

All

AE 2.05e-3 2,053.00 229.08 2,282.08 59.64 8.60 68.24 10.01 28.31

NRAE 1.92e-3 2,541.94 279.99 2,821.93 71.40 10.43 81.83 8.47 30.58

GRAE 1.25e-3 1,952.196 214.83 2,167.03 57.85 8.16 66.01 9.90 28.06

Meta A (Ours) 2.15e-3 2,139.59 213.28 2,352.87 62.28 9.23 71.51 10.24 29.37

Meta B (Ours) 2.05e-3 1873.38 185.59 2058.96 55.40 7.67 63.08 10.44 30.99

Meta C (Ours) 1.96e-3 1,902.57 194.37 2,096.94 56.07 8.24 64.32 9.24 32.70

Evaluation based on topological distance between data and reconstructed manifolds and mean squared error (MSE) between data and reconstructed samples. Evaluation on manifolds of

hold-out testing data (top) and manifolds of complete dataset including both training and testing data (bottom). The best and second best performing approaches are highlighted.
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TABLE 2 Experiments on LineMOD dataset with multiple (15) object classes.

Test Samples Algorithms MSE

Persistence diagram KNNGraph

Wasserstein p=1 Wasserstein p=2 Spectral distance

Dim 1 Dim 2 Total Dim 1 Dim 2 Total k = 5 k = 20

Holdout

AE 3.88e-4 154.88 19.92 174.81 5.87 0.90 6.76 10.61 28.45

NRAE 7.91e-4 305.03 30.83 335.85 9.22 1.40 10.62 10.51 30.07

GRAE 9.48e-4 290.33 30.52 320.85 9.00 1.41 10.40 13.24 29.37

Meta A (Ours) 3.18e-4 134.66 15.95 150.60 5.30 0.81 6.11 10.68 28.65

Meta B (Ours) 3.47e-4 145.13 17.26 162.39 5.73 0.77 6.50 10.43 28.49

Meta C (Ours) 3.89e-4 141.15 17.03 158.17 5.49 0.81 6.30 9.96 28.08

Evaluation based on topological distance between data and reconstructed manifolds and mean squared error (MSE) between data and reconstructed samples. Evaluation is performed on the

manifold of hold-out test set only due to computation cost. The best and second best performing approaches are highlighted.

5 Conclusion

We propose manifold representation meta-learning to

address data scarcity in manifold reconstruction. Our framework

is based on model agnostic meta-learning, a state-of-the-art

learning paradigm that utilize episodic training to achieve better

performance given domain shifts. We specifically adapt the

framework to address the challenge task of unsupervised manifold

representation learning considering manifold regions with low

sampling densities. We adopt two sets of topological and geometric

metrics for quantitative comparison between data and model

reconstruction at manifold level. The metrics are computed based

on persistence diagrams characterizing homology features in

the manifold and KNN graphs characterizing relative proximity

of samples in the Euclidean space. We demonstrate that, in

comparison to state-of-the-art baselines, our MRML can better

preserve topological and geometric structures and better match the

data manifold, especially for regions with low sampling densities.

In our future work, we plan to integrate topological and geometric

measures with model training to better capture the underlying

manifold especially for real-world data with increasing complexity

in shape and increasing noise level in the data samples.
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