
TYPE Original Research

PUBLISHED 14 February 2024

DOI 10.3389/fcomp.2024.1274181

OPEN ACCESS

EDITED BY

Pavan Turaga,

Arizona State University, United States

REVIEWED BY

Chao Tong,

Beihang University, China

Henry Kirveslahti,

Swiss Federal Institute of Technology

Lausanne, Switzerland

*CORRESPONDENCE

Aaron Mahler

aaron.mahler@teledyne.com

Tyrus Berry

tberry@gmu.edu

RECEIVED 07 August 2023

ACCEPTED 22 January 2024

PUBLISHED 14 February 2024

CITATION

Mahler A, Berry T, Stephens T, Antil H,

Merritt M, Schreiber J and Kevrekidis I (2024)

On-manifold projected gradient descent.

Front. Comput. Sci. 6:1274181.

doi: 10.3389/fcomp.2024.1274181

COPYRIGHT

© 2024 Mahler, Berry, Stephens, Antil, Merritt,

Schreiber and Kevrekidis. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

On-manifold projected gradient
descent

Aaron Mahler1*, Tyrus Berry2*, Tom Stephens1, Harbir Antil2,

Michael Merritt1, Jeanie Schreiber2 and Ioannis Kevrekidis3

1Teledyne Scientific & Imaging, LLC, Durham, NC, United States, 2Center for Mathematics and Artificial

Intelligence, George Mason University, Fairfax, VA, United States, 3Departments of Chemical and

Biomolecular Engineering and Applied Mathematics and Statistics, Johns Hopkins University,

Baltimore, MD, United States

This study provides a computable, direct, and mathematically rigorous

approximation to the di�erential geometry of class manifolds for high-

dimensional data, along with non-linear projections from input space onto these

class manifolds. The tools are applied to the setting of neural network image

classifiers, where we generate novel, on-manifold data samples and implement

a projected gradient descent algorithm for on-manifold adversarial training.

The susceptibility of neural networks (NNs) to adversarial attack highlights the

brittle nature of NN decision boundaries in input space. Introducing adversarial

examples during training has been shown to reduce the susceptibility of NNs

to adversarial attack; however, it has also been shown to reduce the accuracy

of the classifier if the examples are not valid examples for that class. Realistic

“on-manifold” examples have been previously generated from class manifolds

in the latent space of an autoencoder. Our study explores these phenomena in

a geometric and computational setting that is much closer to the raw, high-

dimensional input space than what can be provided by VAE or other black

box dimensionality reductions. We employ conformally invariant di�usion maps

(CIDM) to approximate class manifolds in di�usion coordinates and develop

the Nyström projection to project novel points onto class manifolds in this

setting. On top of the manifold approximation, we leverage the spectral exterior

calculus (SEC) to determine geometric quantities such as tangent vectors of the

manifold. We use these tools to obtain adversarial examples that reside on a class

manifold, yet fool a classifier. These misclassifications then become explainable

in terms of human-understandable manipulations within the data, by expressing

the on-manifold adversary in the semantic basis on the manifold.

KEYWORDS

di�usion maps, kernel methods, manifold learning, Nyström approximation, adversarial

attack, image classification, projected gradient descent

1 Introduction

Despite their superior performance at image recognition, neural network (NN)

classifiers are susceptible to adversarial attack, and their performance can degrade

significantly with small perturbations to the input (Szegedy et al., 2014; Tabacof and Valle,

2016; Moosavi-Dezfooli et al., 2017). The brittle performance of NNs when given novel

inputs can be attributed to their intricate high-dimensional decision boundaries, which

fail to generalize robustly outside of the training data. This problem is epitomized by the

observation that NNs are excellent interpolators but poor extrapolaters.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1274181
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1274181&domain=pdf&date_stamp=2024-02-14
mailto:aaron.mahler@teledyne.com
mailto:tberry@gmu.edu
https://doi.org/10.3389/fcomp.2024.1274181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1274181/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

Crafting attacks to deceive NNs with minimal changes to the

input has been shown to be remarkably easy when the attacker has

full access to the NN architecture and weights. The fast gradient

sign method is one of the earliest attack methods that crafts

adversarial examples by taking the sign of the gradient of the

loss function to perturb the input in the direction that maximizes

the loss in pixel space (Goodfellow et al., 2015). Other methods

take a number of smaller steps in directions to find the smallest

perturbation required to misclassify an input (Moosavi-Dezfooli

et al., 2016; Carlini and Wagner, 2017; Samy Bengio, 2018; Madry

et al., 2019). Most of these methods use the gradient of the NN

loss function for a given input as a way to determine directions of

maximal confusion, i.e., directions leading to the closest decision

boundary in the high-dimensional pixel space. There also exists

single-pixel attacks that use differential evolution with no gradient

information and are able to reliably fool NNs (Su et al., 2019).

Variousmethods have been proposed tomakeNNsmore robust

to adversarial attack. Adversarial training is a common choice

because it involves using attack inputs as additional training data,

thereby allowing the NN decision boundary to more correctly

classify that data. Commonly, the gradient of the NN will be used

to augment the data set for this purpose (Goodfellow et al., 2015;

Madry et al., 2019). On the other hand, gradient masking is a

method that attempts to create a network that does not have useful

information in the gradient, so that it cannot be exploited for

creating attacks (Papernot et al., 2017). These types of networks

have been found to still be vulnerable though to similar attacks that

work on NNs with useful gradients (Papernot et al., 2017; Athalye

et al., 2018). Defensive distillation is a gradient-free method that

uses two networks, where the second network is trained using the

distilled (softened) outputs of the first network (Papernot et al.,

2017). Training on distilled outputs is done to create less irregular

decision boundaries, which in turn results in being less prone

to misclassifying small perturbations. Ensemble methods use the

output of multiple models, which results in less effective attacks

since it is unlikely the models are sensitive to the exact same attacks

(Tramèr et al., 2020). Input preprocessing can also be applied to try

to mitigate or remove adversarial perturbations. This can be done

in a model agnostic way such as filtering or compressing the data

(Yin et al., 2020), detecting adverasial inputs with feature squeezing

(Xu et al., 2018), or using an autoencoder to denoise the input (Cho

et al., 2020).

One popular method of adversarial training uses small steps

along the network gradient that are only allowed to step so far away

from the original input, called projected gradient descent (PGD)

(Madry et al., 2019). The data set is augmented with examples

that are maximally confusing to the NN during training, but the

augmented data points are only allowed to be ǫ far away from true

data points. This results in a marked improvement to the NN when

it is attacked with perturbations of the same strength. However,

PGD trained networks show a decrease in accuracy on clean inputs

and the accuracy goes down as the size of the ǫ-ball allowed for

augmentations increases (Engstrom et al., 2019). The degradation

of accuracy and the rise of robustness could be due to several

factors, such as overfitting the model to adversarial examples or

from adversarial examples that are not actually representative of

the class of the input that was perturbed. The trade-off between

robustness and accuracy has been noted to occur with many flavors

of adversarial training, and it has even been conjectured that

robustness and accuracy may be opposed to each other for certain

NNs (Su et al., 2018; Tsipras et al., 2019).

On the other hand, it has also been shown that in some cases,

a more careful choice of adversarial examples can create robust

NNs that are also on-par with standard networks at generalizing

to unseen validation data (Stutz et al., 2019). This was explained

by the fact that adversarial training such as PGD creates samples

that are not truly on the manifold of that data’s class label. The NN

is then tasked with learning a decision boundary for the training

data as well as randomly noisy data, resulting in the compromise

between accuracy and robustness for those types of adversarial

training. In Stutz et al. (2019), they found perturbations in a latent

space learned from the training data. Perturbing in an ǫ ball in the

latent space was surmised to be on a class manifold and therefore a

new augmentation that was representative of that class. Adversarial

training in a way that is agnostic to the underlying geometry of

the data itself therefore seems to be a root cause for the trade-off

between robustness and accuracy.

The above mitigations to adversarial attacks all proceed from

the perspective that the neural network has simply not been fed

enough variation in the collected training data to learn decision

boundaries that adhere to the full underlying data manifolds. From

this perspective, injecting adversarial examples into the original

training data “pushes out” incursions by the decision boundary

into the true manifold. An alternative perspective is that the

adversarial examples do not result from so-called bugs in the

decision boundaries but are instead features of the data (Ilyas

et al., 2019). From the features perspective, adversarial training is

a data cleaning process; the original data has pixel correlations

across classes that our eyes cannot detect, and computed adversarial

perturbations act to wash those away. While we do not embark

on our applications from this perspective, the mathematical tools

developed here are ideally suited for extending their hypotheses

and results.

Our application of on-manifold adversarial training connects

the learning problem to the manifold hypothesis and manifold

modeling techniques. For natural images, the manifold hypothesis

suggests that the pixels that encode an image of an object, together

with the pixel-level manipulations that transform the scene through

its natural, within-class variations (rotations, articulations, etc),

organize along class manifolds in input space. In other words,

out of all possible images drawn from an input space, while the

vast majority look like random noise, the collection of images that

encode a recognizable object (a tree, a cat, or an ocean shoreline)

are incredibly rare, and the manifold hypothesis claims that those

images should be distributed throughout input space along some

coherent geometric structure. On-manifold adversarial training

aims for an NN to better capture the underlying structure in the

data. In this study, we use novel manifold modeling techniques that

do not rely on autoencoders or black box neural networks.

To construct and leverage a data-driven representation of

an embedded manifold, we use a collection of tools that have

grown out of the diffusion maps-based methods in the manifold

learning community. Diffusion maps methods are based on

learning a manifold by estimating a certain operator called

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

the Laplace–Beltrami operator, which encodes all the geometric

properties of the manifold. The advantage of this approach is

that is does not require constructing a simplicial complex (or

triangularization) from data, which can be quite challenging.

However, diffusion maps-based manifold learning requires several

additional tools to access needed geometric quantities for on-

manifold adversarial learning. In particular, we need the ability to

find the tangent directions to the manifold, walk along a tangent

direction, and then project down onto the manifold. To find the

tangent directions to the manifold, we use a recent development

known as the Spectral Exterior Calculus (SEC) that builds these

estimators directly from the diffusion maps constructions. The SEC

uses global information to find the principal tangent directions,

and is thus less susceptible to noise and large ambient dimensions

than local (nearest neighbor)-based methods. Finally, to project a

point from data space onto the manifold, we discover a surprising

and powerful new tool which we call the Nyström projection. Using

these methods, we demonstrate creating on-manifold adversarial

examples that are explainable in terms of their semantic labels.

1.1 Manifold learning and CIDM

Manifold learning emerged as an explanation for how kernel

methods were able to perform regressions and identify low-

dimensional coordinates from much higher dimensional data

sets than would be possible according to normal statistics.

Assuming that the data were lying on a submanifold of

the data space, it appeared that the kernel methods (kernel

regression, kernel PCA, etc.) were able to leverage this intrinsically

low-dimensional structure.

The first advance in understanding this effect rigorously was

Laplacian eigenmaps (Belkin and Niyogi, 2003). They employed

a Gaussian kernel to build a complete weighted graph on the

data set with weights Kij = k(xi, xj) = exp(−||xi − xj||
2/(2ǫ2)).

This was a very common choice of radial basis kernel at the time

and a natural first choice for analysis. Laplacian Eigenmaps then

constructs the weighted graph Laplacian L = D−K
ǫ2

, where diagonal

matrix Dii =
∑

j Kij is called the degree matrix. In the limit, as

the number of data points goes to infinity, the Laplacian matrices

become larger and larger, and if the bandwidth, ǫ, is taken to

zero at an appropriate rate, this sequence of matrices are shown

to converge to the Laplace–Beltrami operator on the manifold that

the data were sampled from. This was the first rigorous connection

between the somewhat ad hoc kernel methods and the intrinsic

geometry of the data.

Unfortunately, the assumptions required to prove the key

theorem of Laplacian eigenmaps were overly restrictive in practical

settings. In addition to only applying to a single kernel function

(when in practice, many different kernel functions were known

empirically to have similar behavior), Laplacian eigenmaps also

required the data to be sampled uniformly from the underlying

manifold. This is a somewhat technical requirement, an embedded

manifold (such as the one the data are assumed to lie on), that

inherits a natural measure from the ambient data space which

is called the volume form. We can think of this volume form as

a distribution, and when the data are sampled from this natural

distribution, it is called uniformly sampled. However, there is no

reason for the data to have been be uniformly collected in this

sense. For example, if your data lie on a unit circle, there is no

reason that the data could not be more densely collected on one

side of the circle and more sparsely collected on the other side,

but Laplacian eigenmaps did not allow for this in their theorem.

These restrictions meant that the applicability of kernel methods to

resolving the intrinsic geometry of a real data set was still seen as

rather tenuous.

Diffusion maps (Coifman and Lafon, 2006a) resolved these

concerns and solidified the connection between a large class of

kernel methods and the intrinsic geometry of the data. The idea

of diffusion maps turns out to be fairly simple, although the

technical details of the theorems are somewhat challenging. The

key idea is that the degree matrix, Dii =
∑

j k(xi, xj), is actually

a classical kernel density estimator, meaning that if the data are

not sampled uniformly, then Dii will be proportional to the true

sampling density (up to higher order terms in ǫ which can be

carefully accounted for). Diffusion maps begins by generalizing the

kernel density estimation results to data sampled on manifolds,

and then uses the estimated density to de-bias the kernel. De-

biasing the kernel turns out to be a simple normalization procedure

called the diffusion maps normalization, which constructs the

normalized kernel,

K̂ = D−1KD−1

and then recomputes the new degree matrix D̂ii =
∑

j K̂ij and

finally the diffusion maps graph Laplacian L̂ = D̂−K̂
ǫ2

. The diffusion

maps theorems showed that for any radial basis kernel that had

exponential decay in distance, and for data collected from any

smooth distribution on the manifold, their new graph Laplacian,

L̂, converged to the Laplace–Beltrami operator on the manifold.

Moreover, the diffusion maps theorems also showed (although this

was only realized in later works, e.g., Berry and Sauer, 2016) that

even when their normalization was not used, the classical graph

Laplacian converged to a Laplace–Beltrami operator with respect

to a conformal change of metric. This ultimately showed that all

kernel methods with radial basis kernels that had fast decay were

finding the intrinsic geometry of the data (possibly up to a change

of measure). Later works would generalize the diffusion maps

theorems to include all kernels that had sufficiently fast decay in the

distance between points (so not just radial basis functions) (Berry

and Sauer, 2016).

At this point, we should address why both Laplacian eigenmaps

and diffusion maps have the word “Maps” in them. This goes back

to the motivation that was driving the development of these new

theories. In particular, both methods were motivated by Kernel

PCA, which interpreted the eigenvectors of the kernel matrix as

providing the coordinates of a mapping into a new space, often

called a ‘feature space’. Ironically, this mapping interpretation arose

from the theory of Reproducing Kernel Hilbert Spaces, where

the kernel induces a map into a function space (not a Euclidean

space). However, since the kernel matrix, K, has as many rows

and columns as there were data points, the eigenvectors of the

kernel matrix have as many entries as there are data points, so

inevitably these were visualized and interpreted as new coordinates.

Diffusion maps and Laplacian eigenmaps were trying to show

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

that this “mapping” preserved intrinsic aspects of the geometry

while also reducing dimension, and while the first part is partially

correct, the dimensionality reduction aspect of the diffusion maps

turns out to not be guaranteed. However, this was merely a case

of applying the wrong interpretation to the results. In fact what

diffusion maps had proven was much better than any fact about

a mapping. By recovering the Laplace–Beltrami operator on the

manifold, and its eigenfunctions, diffusion maps unlocked the door

and allowed access to every single aspect of the geometry of the

data. Moreover, the eigenfunctions provide a generalized Fourier

basis for analysis of functions and operators on the data set, and

have been used in regression, interpolation, forecasting, filtering,

and control applications.

To leverage the opening that diffusion maps has created to

learning manifold geometry from data, we will need several recent

advances that improve and apply the original theory. First, it

turns out that for real data sets in high dimensions, the fixed

bandwidth kernels discussed so far have difficulty adjusting to

large variations in sampling density. To compensate for this, a

variable bandwidth kernel is needed (Berry and Harlim, 2016),

which can automatically adjust to have a small bandwidth and high

resolution in areas of data space that are densely sampled, while

keeping a large bandwidth and a lower resolution representation

of sparsely sampled regions of data space. The ultimate evolution

of the variable bandwidth kernels is the Conformally Invariant

Diffusion Map (CIDM) (Berry and Sauer, 2016, 2019), which we

introduce in Section 1.1.1.

The next tool we will need is a rigorous method for

extending/interpolating all of the discrete representations of

functions, mappings, and operators to be able to operate on any

new input data. Here, we use a regularized version of a standard

method called the Nyström extension, introduced in Section 1.1.2.

Although this basic method of interpolation is well-established, we

will apply it in ways that have never been considered before to

achieve powerful new methods and results.

Finally, we mentioned above that the Laplace–Beltrami

operator unlocks the door to access all the hidden geometry of

the data. This is due to a technical result which says that if

you know the Laplace–Beltrami operator, you can recover the

Riemannian metric on the manifold, and the Riemannian metric

completely determines all aspects of the geometry (from dimension

and volume to curvature to geodesics and everything in between).

However, until recently, this was a purely abstract possibility,

and there was no actual method for constructing these geometric

quantities starting from the Laplace–Beltrami operator. This was

achieved in 2020 with the creation of the Spectral Exterior Calculus

(SEC), which re-builds all of differential geometry starting just from

the Laplace–Beltrami operator. While we will not require every

aspect of the SEC here, the basic philosophy of its construction will

be fundamental to the way that we will construct vector fields and in

a particular tangent vectors on the manifold, so a brief introduction

will be given in Appendix A.1.

1.1.1 Conformally invariant di�usion map
Asmentioned above, the original version of diffusionmaps uses

a fixed bandwidth kernel of the form J(x, y) = h(||x − y||2/ǫ2).

Here, h is called the shape function and is assumed to decay quickly

to zero as the input (distance) goes to infinity. A typical choice

for h is the exponential function h(z) = exp(−z), so moderate

differences in distances leads to large differences in the values of

h. This becomes particularly problematic in terms of the distance

to the nearest neighbors. If the distances from a data point to

its nearest neighbors are large (relative to the bandwidth ǫ), then

the values of the kernel become very close to zero. This means

that even though our weighted graph is technically still connected,

the weights are so close to zero that it becomes numerically

disconnected, which causes the diffusionmap to interpret such data

points as disconnected from the rest of the data set. On the other

hand, we want the kernel function to decay quickly beyond the

nearest neighbors to localize the analysis and make the resulting

kernel matrix approximately sparse.

When the density of points varies widely, it becomes very

difficult to find a single bandwidth parameter ǫ which achieves

these two goals across the data set. One tends to have to choose

the bandwidth large enough to connect with the sparsest region of

data, and this large bandwidth value results in a loss of resolution in

the denser sampled regions. This trade-off is examined rigorously

in Berry and Harlim (2016), which introduces variable bandwidth

kernels and generalizes the diffusion maps expansions for such

kernels. The best practical implementation of a variable bandwidth

approach was introduced in Berry and Sauer (2019), which is a

variable bandwidth version of the Conformally Invariant Diffusion

Map (CIDM) that was introduced in Berry and Sauer (2016).

The CIDM starts by re-scaling the distance using the distances

to the nearest neighbors, namely

δ(x, y) ≡
d(x, y)

√

d(x, kNN(x))d(y, kNN(y))

Where kNN returns the k-th nearest neighbor of the input point

from the training data set. Note that the distance to the k-th nearest

neighbor is a consistent estimator of the density to the power of

−1/d where d is the dimension of the manifold. Thus, when the

local density is high, the distance to the kNN will be small, and

conversely when the local density is sparse, the distance to the kNN

will be large. Thus, δ(x, y) has re-scaled the distances into a unit-less

quantity which will be on the same order of magnitude for the k-th

nearest neighbors of all the data points.

Inside the kernel, we will use the square of this quantity,

δ(x, y)2 =
d(x, y)2

d(x, kNN(x))d(y, kNN(y))

which is also more convenient for derivatives. Next, we use the

dissimilarity δ in a kernel,

k(x, y) ≡ h(δ(x, y)2/ǫ2)

Where ǫ is a global bandwidth parameter and h :[0,∞) →

[0,∞) is a called a shape function (examples include h(z) = e−z

as mentioned above or even simply the indicator function h(z) =

1[0,1](z)). We can then build the kernel matrix Kij = k(xi, xj) on the

training data set, and the diagonal degree matrix Dii =
∑

j Kij and

the normalized graph Laplacian L ≡ I − D−1K.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

We should note that in Berry and Sauer (2019), it was shown

that, uniquely for the CIDM, the unnormalized Laplacian Lun ≡

D − K has the same limit as the normalized Laplacian in the

limit of large data; however, the normalized Laplacian, L, has some

numerical advantages. Numerically, it is advantageous to maintain

the symmetry of the problem by finding the eigenvectors of the

similar matrix, Lsym ≡ D1/2LD−1/2 = I − D−1/2KD−1/2. Finally,

we are interested in the smoothest functions on themanifold, which

are the minimizers of the energy defined by L; however, it is easier

to find the largest eigenvalues of Ksym ≡ D−1/2KD−1/2 (Recall that

maximal eigenvalues can be found with power iteration methods

which are fast than the inverse power iterations required for finding

smallest eigenvalues). Once we have computed the eigenvectors

KsymEv = λEv, then it is easy to see that Eφ = D−1/2Ev are eigenvectors

ofD−1K with the same eigenvalues, and Eφ are also eigenvectors of L

with eigenvalues ξ = 1−λ. Thus, when λ are the largest eigenvalues

of Ksym, the corresponding ξ will be the smallest eigenvalues of L.

We will refer to L as the CIDM Laplacian, and we will use the

eigenvectors and eigenvalues of L to represent the geometry of the

data manifold. The eigenvectors of the CIDM Laplacian, L Eφ = λ Eφ

are vectors of the same length as the data set, so the entries of these

eigenvectors are often interpreted as the values of a function on the

data set, namely φ(xi) = Eφi. Of course, we have not really defined

a function φ since we have only specified its values on the data set.

However, in the next section, we will show how to define a function

φ on the whole data space that takes the specified values on data set.

This method is called the Nyström extension because it extends the

function from the training data set to the entire data space.

In Berry and Sauer (2016), the CIDM Laplacian, L, was

shown to converge (in the limit of infinite data and bandwidth

going to zero) to the Laplace–Beltrami operator of the hidden

manifold with respect to a conformal change of metric that has

volume form given by the sampling density. The Laplace–Beltrami

operator encodes all the information about the geometry of the

manifold (see Appendix A for details), which is why methods such

as diffusion maps and the CIDM are called manifold learning

methods. Moreover, it was shown in Berry and Harlim (2016)

and Berry and Sauer (2016, 2019) that the CIDM construction

using the k-nearest neighbors density estimator, as described above,

does not require the so-called “DiffusionMaps normalization”. The

CIDM gives the unique choice of conformal geometry for which a

standard unnormalized graph Laplacian is a consistent estimator of

a Laplace–Beltrami operator (Berry and Sauer, 2019). Empirically,

we have found that this variable bandwidth kernel construction is

much more robust to wide variations in sampling density.

We should note that in the Nyström extension section below,

we will make use of the following normalized kernel,

k̂(x, y) =
k(x, y)

∑N
i=1 k(x, xi)

=
h(δ(x, y)2/ǫ2)

∑N
i=1 h(δ(x, xi)

2/ǫ2)

since this corresponds to D−1K as discussed above [namely if K =

k(xi, xj), then k̂(xi, xj) = (D−1K)ij]. Finally, to reduce sensitivity, we

often use the average of the distances to the k-nearest neighbors in

the re-scaling, so the dissimilarity would then be,

δ(x, y)2 =
d(x, y)2

1
k

∑k
i=1 d(x, iNN(x))

1
k

∑k
j=1 d(y, jNN(y))

Where iNN refers to the i-th nearest neighbor so the

summations are averaging the distances to the k-nearest neighbors.

1.1.2 Nyström extension: interpolation and
regularization

In this section, we introduce the Nyström extension, which is

the standard approach for extending diffusion maps eigenfunctions

(and thus the “diffusion map”) to new data points. Once the

eigenfunctions can be extended, arbitrary functions can also be

extended by representing them in the basis of eigenfunctions;

this approach can be used to extend any sufficiently smooth

function to new data points in input space. Since, in practice, we

can only represent a function with finitely many eigenfunctions,

the truncation onto this finite set gives us a regularized, or

smoothed, regression. The Nyström extensions of the diffusion

maps eigenfunctions are sometimes called geometric harmonics

(Coifman and Lafon, 2006b) and these out-of-sample extensions

are related to the method of Kriging in Gaussian Processes, a

connection which is explored in Dietrich et al. (2021).

Given an eigenvector K Eφ = λ Eφ of a kernel matrix Kij =

k(xi, xj), we can extend the eigenvector to the entire input space by,

φ(x) ≡
1

λ

N
∑

j=1

k(x, xj)(Eφ)j (2)

which is called the Nyström extension. Note that here k is an

abstract kernel which may incorporate CIDM normalizations

inside the shape function as well as normalization such as

the diffusion maps normalization and/or Markov normalization

outside of the shape function. For example, for CIDM, the Nyström

extension of an eigenfunctions is,

φ(x) =
1

λ

N
∑

j=1

k̂(x, xj)φ(xj) =

∑N
j=1 h(δ(x, xj)

2/ǫ2)φ(xj)

λ
∑N

i=1 h(δ(x, xi)
2/ǫ2)

Where the CIDM kernel k̂ takes the place of the abstract kernel

k in Equation (2). Notice that evaluating k̂ involves computing

the dissimilarity δ between arbitrary point x and a training data

point xj, which in turn requires finding the k nearest neighbors

of the point x from the training data set. Thus, evaluating the

abstract kernel k may actually depend on the entire training data

set; however, in this section, we will consider the training data

set as fixed and treat its influence on k as hidden parameters that

define the kernel k. We should note that although everything in this

section can be applied to any kernel, a simple radial basis function

kernel with no normalizations and a fixed bandwidth has fairly poor

performance for the off-manifold extensions we will discuss later in

this section.

A key property of the Nyström extension is that on the training

data points, we have

φ(xi) =
1

λ

N
∑

j=1

k(xi, xj)(Eφ)j =
1

λ
(K Eφ)i =

1

λ
(λ Eφ)i = (Eφ)i.

So if we interpret (Eφ)i as the value of a function on the data

point xi, then the Nyström extension agrees with these function

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 1

Nyström extension comparison. Consider data points near a unit circle (top left) and a function to learn given by the color (also shown bottom left)

localized near the unit circle. We consider three methods of learning the function, a simple 2-layer neural net, the standard di�usion map Nyström

extension, and the CIDM Nyström extension. Each extension is shown on a large region (top row) as well as localized near the unit circle (bottom

row). The CIDM provides the smoothest extension to the entire input space.

values on the original data set and extends the function to the entire

input space.

Moreover, given an arbitrary vector of function values Efi on

the data set, we can extend this function to the entire data set

by representing Efi in the basis of eigenvectors and then applying

the Nyström extension to these eigenvectors. Let {φℓ}
N
ℓ=1 be the

collection of eigenvectors of the kernel matrix K. Note that (Eφℓ)i
will refer to the i-th entry of the ℓ-th eigenvector. Notice that,

Ef =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉

Eφℓ

so if we replace the vector Eφℓ with the Nyström extension, we have

the Nyström extension of f given by

f (x) =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉

φℓ(x) =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉 1

λℓ

N
∑

j=1

k(x, xj)(Eφℓ)j.

Notice that this can be viewed as a kernel extension of f by

rewriting the above as

f (x) =

N
∑

j=1

k(x, xj)

(

N
∑

ℓ=1

〈

Ef , Eφℓ

〉 1

λℓ

(Eφℓ)j

)

In other words, the Nyström extension of a function is given by

f (x) =
∑N

j=1 k(x, xj)cj, which is a linear combination of the kernel

basis functions k(·, xi), with coefficients cj ≡
∑N

ℓ=1

〈

Ef , Eφℓ

〉

1
λℓ
(Eφℓ)j.

This formula can be truncated for ℓ = 1, ..., L, with L < N to get a

smoothed, low-pass filtered version of the function. When all of the

eigenvectors are used, we have

f (xi) =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉 1

λℓ

N
∑

j=1

k(xi, xj)(Eφℓ)j =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉

(Eφℓ)i = Efi

So again the Nyström extension agrees with the original vector

of function values on the original data points. When fewer than

N eigenfunctions are used, the Nyström extension is a smoothing

of the original function, so it does not interpolate the values on

the training data, which can be useful for de-noising. Finally, if we

substitute in the definition of the vector inner product, we have the

following expression for the Nyström extension:

f (x) =

N
∑

j=1

k(x, xj)

(

L
∑

ℓ=1

1

λℓ

(Eφℓ)j

N
∑

i=1

Efi(Eφℓ)i

)

Where L is the number of eigenfunctions used and is typically

much less than N to smooth and denoise the function.

2 Methods

Here, we introduce some tools for analyzing data on manifolds

in the input data space. The first tool is a novel method of projecting

arbitrary data points non-linearly down onto the manifold. This

method is based on using the Nyström extension to build a

projection, so we call this new method the Nyström projection

in Section 2.1. The next tool is the Spectral Exterior Calculus

(SEC), which was developed in Berry and Giannakis (2020) and

is able to identify vector fields that respect the global structure

of the data. Here, we overview the interpretation of the SEC

on vector fields in Section 2.2 and describe how we use these

vector fields to approximate the tangent space to the manifold in

a way that is more robust than local linear methods. Together, by

using linear projection of vectors (such as perturbation directions)

onto the tangent space and the non-linear Nyström projection of

perturbations of data points down onto the manifold itself, we

introduce an on-manifold technique for projected gradient descent

in Section 2.3.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

2.1 The Nyström projection: mapping
o�-manifold points onto the manifold

In Section 1.1.2, we reviewed the Nyström extension as an

established method of out-of-sample extension for functions on the

data space. In this section, we introduce a novel application of this

extension, which we will call the Nyström projection. The Nyström

projection will be defined below as the Nyström extension of the

original data coordinate functions. This special case is deserving of

extra scrutiny because it is the only function which maps a new

data point through the diffusion maps embedding and back into

the original data space, meaning that the Nyström projection can

be iterated with surprising and useful results.

The next (and crucial) question is: How does the Nyström

extension perform out-of-sample? In the case of manifold learning,

this question has two cases, first, when the out-of-sample data

lie on the manifold, and, second, when they are off the manifold

(and potentially far from the manifold). For data points on the

manifold, the behavior of Nyström is well-understood as a band-

limited interpolation of the function f , which minimizes a certain

cost function. The on-manifold out-of-sample interpretation is easy

because we started by assuming that there was a given function on

the manifold and that we had sampled values of that function on

our in-sample training data. Thus, there is a natural “true” function

in the background to compare our Nyström interpolation to.

The case of extension to off-manifold points is much more

interesting and less is known about this case. Clearly, for any fixed

“true” function defined on the manifold, there will be infinitely

many smooth extensions to the entire space, so the Nyström

extension is selecting one of these extensions, and in the limit

of infinitely many data points and eigenfunctions, this extension

is minimizing a certain functional. While this is an open area

of research, empirically, we observe that for a normalized CIDM

kernel, the Nyström extends the function to an off-manifold data

point by essentially taking the function value of the nearest point

on the manifold. Since almost every point in the ambient data space

has a unique nearest point on the manifold, this is well-defined up

to a set of measure zero, and, in practice, there is a smoothing effect

in a neighborhood of this measure zero set; however, we will ignore

these effects for simplicity.

To demonstrate empirically how the Nyström extension

performs far from the training data set, in Figure 1 we show an

example of a data set lying near the unit circle in the plane. Given a

simple smooth function, shown in the first panel of Figure 1, we can

use various methods to learn this function and attempt to extend it

to the entire input data space (the plane in this case). Notice that

when well-tuned, performance near the training data set, shown

by the “localized” panels of Figure 1, is comparable for a simple

two-layer neural network as well as the Nyström extension with

both the standard diffusion maps kernel and the CIDM kernel.

However, Figure 1 shows that these methods have very different

behavior far from the data set, with the neural network behaving

somewhat unpredictably, and the standard diffusion map kernel

having difficulty extrapolating when far from the training data,

whereas the CIDM makes a smooth choice of extension which is

well-defined even very far from the training data.

This interpretation of the Nyström extension as taking the

value of the nearest point on the manifold is critical since it lead

us to a novel and powerful method of achieving a non-linear

projection onto the manifold. The idea is actually quite simple,

think of the original data set as a function on the manifold and

build the Nyström extension of this function. In fact, this is how

we often think of a data set mathematically in the manifold learning

literature. Thus, we will apply the Nyström extension of the original

data coordinates into a function on the entire data space, andwe call

the resulting function the Nyström projection.

While it is perfectly valid to consider the data manifold as a

subset of the ambient data space,M ⊂ R
n in differential geometry,

it is useful to think of an abstract manifold N that is simply an

abstract set of points, and then think of the data set as the image of

this abstract manifold under an embedding into Euclidean space,

so ι :N →M ⊂ R
n. Now, the points in data space, xi ∈ R

n, are

the images of an abstract point x̃i ∈ N , such that ι(x̃i) = xi. In

this interpretation, each of the coordinates of the data are actually

scalar valued component functions of the embedding function, so

(xi)s = ιs(x̃i), where ιs :N → R are the component functions

of the embedding. Of course, since we know the value of these

coordinate functions on the training data set, we can apply the

Nyström extension to each of the ιs functions, and extend the entire

ι embeddingmap to the entire data space. In this way, we obtain the

Nyström projection ι̃ :Rn → R
n, which is given by

ι̃s(x) =

N
∑

j=1

k(x, xj)

(

L
∑

ℓ=1

1

λℓ

(Eφℓ)j

N
∑

i=1

(Exi)s(Eφℓ)i

)

Where (Exi)s is the s-th coordinate of the i-th data point. We can

also write the Nyström projection more compactly in terms of the

Nyström extension of the eigenfunctions, as

ι̃(x) =

L
∑

ℓ=1

x̂ℓφℓ(x)

Where x̂ℓ =
〈

Ex, Eφℓ

〉

is a vector-valued generalized Fourier

coefficient given by (x̂ℓ)s =
〈

(Ex)s, Eφℓ

〉

=
∑N

i=1(Exi)s(Eφℓ)i. Thus, we

can think of x̂ as encoding the embedding function that takes the

abstract manifold to the realized data coordinates.

In fact, ι̃ does much more than the original embedding

function, since it extends the embedding function to the entire data

space. This is because when input data points are off-manifold, the

Nyström extension of a function is well-approximated by selecting

the values of the function for the nearest point on the manifold.

Since we are applying the Nyström extension to the embedding

function itself, this means that for an off-manifold point, the

Nyström projection ι̃ will actually return the coordinates of the

nearest point on the manifold. In other words, Nyström projection

ι̃ acts as the identity for points on the manifold and projects off-

manifold points down to the nearest point on manifold. This novel

yet simple tool gives us a powerful new ability in manifold learning

and has opened up several promising new research directions.

Moreover, the choice of L in the Nyström projection gives us

control over the resolution of the manifold we wish to project on.

Thus, for a noisy data, we can intentionally choose a smaller L

value to project down through the noise to a manifold that cuts

through the noisy data. This is demonstrated in Figure 2 (rightmost

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 2

Nyström projection onto the Unit Circle. We use the Nyström projection to project points on the plane onto the unit circle using a noisy training data

set (red) to learn the manifold. Top: After learning from the red training data set, blue data points far from the manifold are projected onto the

magenta points using a single iteration of the Nyström projection (left) and two iterations (middle); the green line connects each initial point to its

Nyström projection. Top Right: Applying two iterations to a grid in the plane projects onto a circle, the original grid points are colored by the angle

computed after they are projected to show where they land. Bottom Row: A grid colored by radius (left) is projected once (middle) and twice (right)

using the Nyström projection learned from the same data set (red) as the top row.

panels), where we set L = 20 and recovered a smooth circle that

cuts through the noisy input data set (red points).

It is useful to formulate the Nyström projection as a

composition of a non-linear map (related to the Diffusion Map)

and a linear map. Often, we consider the map which takes an

input point in data space and returns the coordinates of the first L

eigenfunctions, 8 :R
n → R

L given by 8(x) = (φ1(x), ...,φL(x))
⊤.

This is the so-called diffusion map (with t = 0). While we have

argued above that this is not necessarily the best embedding of the

data, it is useful to express the projection we have just constructed.

Note that the x̂ is an n× Lmatrix containing the first L generalized

Fourier coefficients of each of the n coordinates of our data set.

Thus, x̂ defines a linear map X̂ :R
L → R

n from R
L (the image

of 8) back to the data space, Rn (where X̂ is simply given by left

multiplication by the matrix x̂). The Nyström projection onto the

manifold is the composition of these two maps, namely ι̃ = X̂ ◦8,

so that we have a map,

x 7→8 (φ1(x), ...,φL(x))
⊤ 7→X̂ ι̃(x)

such that ι̃ ≡ X̂ ◦8 :R
n →M ⊂ R

n and X̂ ◦8

∣

∣

∣

M
= IdM.

The fact that the Nyström projection maps back into the

original data space has the significant consequence that it actually

forms a dynamical system which can be iterated. Moreover, we

have seen that its behavior can be extremely useful in that it

tends to project data points “down onto onto the manifold”. This

feature, that applying (and iterating when necessary) the Nyström

projection pushes new data points down toward the manifold

inside of the ambient data space, is what allows us to search for

on-manifold adversaries.

Before continuing, we consider a future application of the

Nyström projection as an input layer to a neural network. If we are

performing optimization with respect to a loss function L :Rn → R

and we want to restrict our optimization to the manifold, we can

simply compose with the projection ι̃ to find,

L|M(x) = L(X̂ ◦8)(x)

which has gradient,

∇L|M(x) = D8(x)⊤x̂⊤∇L((X̂ ◦8)(x)) ∈ TxM ⊂ R
n.

Here, we assume that the gradient of L is already computable,

and we are merely evaluating grad L on ι̃(x) = X̂ ◦ 8(x) which is

still a point in data space and just happens to have been projected

down onto the manifold. Moreover, we already have the matrix x̂,

so the only additional component that is needed is the gradient of

8, which simply requires computing the gradient of each of the

Nyström eigenfunctions.

2.2 SEC vectors

Our goal is to find vector fields that span the tangent spaces

of the manifold at each point. While this is not always possible

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

with just d vector fields (where d is the intrinsic dimension of the

manifold), the Whitney embedding theorem guarantees that it is

always possible with 2d vector fields. The L2 inner product,

G(v,w) ≡ 〈v,w〉L2 ≡

∫

M

v · wdvol,

induced on vector fields by the Riemannian metric provides a

natural notion of orthogonality that can help to identify non-

redundant vector fields. Here, we use the notation v · w ≡ g(v,w)

to denote the function which at each point is the Riemannian dot

product of the two vectors at fields at that point.

In addition to being orthogonal, we also need these vector

fields to cut through noise and follow the coarse (principal)

geometric structure of the manifold. For this purpose, we introduce

the Dirichlet energy on vector fields, induced by the weak form

of the Hodge 1-Laplacian, δ1 = dδ + δd, where d, δ are the

exterior derivative and codifferential, respectively. These operators

are defined on differential forms, which are dual to tensor fields,

and, in particular, the dual of a vector field is a 1-form. The musical

isomorphisms switch back and forth between forms and fields, with

sharp, ♯, turning forms into fields, and flat, ♭, going back. As an

example, the codifferential on 1-forms is related to the divergence

operator by,

∇ · v = −δ(v♭)

Similarly, the exterior derivative, which acts on forms, induces

an operator on smooth fields which generalizes the curl operator,

∇ × v ≡ (⋆d(v♭))♯.

This operator coincides with the curl when manifold is three-

dimensional, so we use the same name, but in general, on an n-

dimensional manifold, the output of the generalized curl operator

will be a n − 2 tensor field. Using the generalized divergence and

curl operators, we can now define the Dirichlet energy on smooth

vector fields as

E(v,w) ≡

∫

M

(∇ × v) · (∇ × w) dvol+

∫

M

(∇ · v)(∇ · w) dvol

Where we note that the dot product in the first term is

the extension of the Riemannian metric to n − 2 forms. By

minimizing this energy, we will ensure that we have the smoothest

possible vector fields, as seen by a global (integrated) measure

of smoothness. As discussed in Appendix A, the Dirichlet energy

on vector fields is motivated by a dual energy on differential 1-

forms. Note that while measuring smoothness on functions only

requires a single term, the integral of the gradient of the function,

measuring smoothness of vector fields requires two different types

of derivatives. This is because neither the divergence nor the curl

can completely measure the different types of oscillations a vector

field can have, but when combined they provide a robust measure

of smoothness.

The Dirichlet energy and Riemannian metric together will

define a natural function for identifying good sets of vector fields,

which in turn will reduce to a generalized eigenvalue problem. In

Appendix A, we overview the SEC construction of the Dirichlet

energy and how to find its minimizers relative to the Riemannian

inner product. For now, we demonstrate the advantage of this

approach to finding vector fields that respect the global structure

of the data set. In Figure 3, we show a data set that while near

a simple manifold exhibits variations in density and noise levels

characteristic of real data. This example clearly demonstrates how

the SEC principal vectors respect the principal global structure

of the manifold, rather than getting lost in local details the way

local linearization is. This is possible because the Dirichlet energy

captures a measure of smoothness that is balanced over the entire

global structure of the data set.

Finally, we should note an important caveat and related

direction for future research. The vector fields identified here

are only globally orthonormal, meaning in an integrated sense.

This means that they are not required to be orthonormal in each

coordinate chart, since positive alignment in some regions can be

canceled by negative alignment in others. In future study, one could

consider a local orthonormality condition. This is related to the

search for minimal embeddings.

2.3 On-manifold projected gradient
descent

As discussed in Section 1, projected gradient descent (PGD)

relies on computing the network loss gradient with respect to

the input rather than the weights of the model. Once these input

gradients have been computed via backpropagation with respect to

a target class, the input is perturbed in the direction of the gradient

to create an adversarial example. If the resulting perturbed image

is farther than ǫ away from the starting image for a given distance

metric (typically ℓ2 or ℓ∞), then the perturbed image is projected

onto the ǫ-ball surface around the starting image. This is done

with the intent of keeping the adversarial example from becoming

unrecognizable as the original class. We use the SEC and Nyström

projection to create an on-manifold PGD that is representative of

the original class but not constrained to an ǫ-ball. First, we take

the gradient of the network for an input with respect to the input’s

class. Then, we find the input point’s position on the manifold with

the Nyström projection, see Section 2.1. Using the SEC, we then

compute the vector fields that are tangent to the manifold and

obtain the tangent bundle at the position of the starting point’s

position on the manifold, see Figure 3 for a comparison of vector

fields from SEC to local PCA. Next, we project the gradient onto

the orthonormalized subspace spanned by a subset of tangent

vectors at the input point depending on the dimensionality of the

underlying data. For instance, if the underlying manifold had an

estimated dimension of 2 then you would choose the 2 tangent

vectors from the smoothest vector fields computed by the SEC. We

orthonormalize the subspace by using the non-zero eigenvectors

of the singular value decomposition (SVD) to obtain an unbiased

basis. Then, we step along the direction of the gradient in the

tangent space by an amount determined by a hyperparameter

so that the input is sufficiently perturbed. As the final step,

we use the Nyström projection to return this perturbed sample

back to the manifold, see Figure 2 for an example. The Nyström

projection ensures that the resulting example is on that particular

class’s manifold and provides the information for determining

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 3

SEC vector fields (left) respect global structure. Here, we consider a data set (blue points) localized near the unit circle but with varying density and

varying amounts of noise. In the top left plot, we show the principal vector field identified by the SEC (the global minimizer of the Dirichlet energy).

We compare this to a local PCA approach using k = 20, 40, and 60 nearest neighbors of each point (middle left to right). Note how the SEC vector

field smoothly respects the dominant mode of variation in the data set; while the local PCA approach can find the tangent direction in the clean

sections, it loses track in the noisy section of the data. The problem is further exacerbated in higher dimensions, and in the bottom row, we repeat

the same experiment using an isometric embedding of the circle into four dimensions. Again, we show the SEC principal vector (bottom left) and

local PCA with k = 10, 20, and 30 nearest neighbors from middle left to right.

FIGURE 4

On-manifold PGD steps for a 2D tangent space. Starting with an initial image (black dot), we follow the network gradient (red arrow). The perturbed

sample (red X) is then projected (black arrow) onto the tangent plane, TPM (gray surface), from the geometry found around the initial image. The

upwards black arrow pointing out of the tangent plane at the black dot is normal to the tangent plane for visual clarity. The on-plane perturbation

(blue X) is then Nyström projected (blue arrow) onto the manifold (curved surface M). The on-manifold point (green dot) is then classified to

determine if the network has classified it correctly. If the on-manifold point is classified correctly, then it is fed back into the network and the process

is repeated, although it reuses the same manifold and TPM from the starting point.

the example’s semantic labels (intrinsic coordinates) and tangent

vectors. We can obtain the on-manifold example’s semantic labels

using the same methodology used to obtain the mapping from

CIDM coordinates to pixel, see Figure 1 for an example of obtaining

semantic labels on a learned manifold. The perturbation and

projection steps are repeated until a misclassification is found, see

Figure 4 for an pictoral overview and Algorithm 1 for a pseudo-

code description. We use the same tangent basis from the starting

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

image at all steps because we found that updating the tangent basis

at each step did not appreciably change the result after performing

Nyström projection. If the on-manifold PGD is successful, then it

produces an adversarial example that fools the classifier and is also

on the input class’s manifold.

Input: x0, y0, α, Tx0M //initial image, class, step

size, and tangent bundle

x← x0

y← C(x) //network classification of image

Px0 ←
∑

i viv
T
i ; vi ∈ Tx0M //projector from tangent

bundle at x0

while y = y0 do

g ← ∇xL(x, y) //classifier loss gradient w.r.t. x

x← x+ αPx0 (g) //step along projected gradient

x← N (x) //Nyström project image onto manifold

y← C(x)

end while

return x //on-manifold adversarial example

Algorithm 1. On-manifold PGD algorithm.

3 Results

The main result we present shows on-manifold adversarial

examples that are explainable in human understandable terms

by using the adversaries’ semantic labels on the manifold. We

present experimental results for finding on-manifold adversaries

using a VGG11 classifier (Simonyan and Zisserman, 2014) and a

synthetic data set. Our classifier is trained and validated to classify

RGB images of various vehicles (see Figure 5 for examples), which

were generated using synthetic data collected in Microsoft’s AirSim

platform, allowing for insertion of various vehicle classes in a range

of locations. Each vehicle class is sampled over two sets of intrinsic

parameters, represented by the azimuth angle and down look angle

(DLA) from which the image is captured. The azimuth angles are

sampled one degree apart from 1 to 360 and the down look angle is

sampled one degree apart from 1 to 45 degrees. The dense sampling

in intrinsinc parameters will enable CIDM and SEC computations,

while also allowing for NN models trained on the data to be

fairly robust.

3.1 VGG11 with static backgrounds

We trained a VGG11 classifier on a subset of the down look

angles (10◦ − 30◦) and all azimuth angles. See Figure 6 for the loss

and decision boundaries of the classifier for a single class over all

view angles available, including those the classifier was not trained

on. We use an image from the training set that was in a region close

to a decision boundary at 30◦ down look and 100◦ azimuth. We

then apply our on-manifold PGD to that point using a manifold

modeled on the points surrounding that point from 0◦ to 40◦

DLA and 80◦ to 120◦ azimuth, see Figure 7. The output of the

on-manifold PGD for this example results in a misclassification

that correlates with the decision boundary for this class near that

sample in view angle as seen in Figure 6. Note that the results of

projecting onto the manifold provide not only the on-manifold

point in pixel space but also in intrinsic parameter coordinates.

This means that the misclassification can be explained in terms

of human-understandable features. In this case, the on-manifold

adversarial example seen at step 5 in Figure 7 is shown to be at 39.36

DLA and 101.22 azimuth, which can be confirmed to be a region of

misclassification by looking at the explicit sampling of that region

in the decision boundary map of Figure 6.

When perturbing the on-manifold images with the gradient,

X′ = X + α∇X, we use a fixed step size, α = 106.38 for

convenience. We tested a range of step sizes ranging on a log scale

to find the smallest step that sufficiently perturbed the input into

misclassifying with the on-manifold PGD algorithm. The size of the

parameter α is due to the fact that the network gradient is mostly

contained in a space not spanned by the tangent vectors. After

projecting the gradient onto the tangent plane, the magnitude of

the projected gradient is several orders of magnitude smaller than

the raw gradient, which is visibly discernible in the second and third

columns of Figures 7, 10. To obtain a sufficient perturbation for the

classifier to misclass, this required a large value for α. Due to the

fact that the ℓ2 norm of the gradient was typically on the order of

10−3 for these examples, the gradient could also be normalized so

that smaller values of α could be used.

We choose the first two tangent vectors from the SEC because

the output of the SEC code returns the vector fields ordered by

smoothness, which typically results in the first vector fields being

best aligned with themanifold.We visually confirmed this in CIDM

coordinate space as seen in Figure 8.

3.2 Simple CNN with random backgrounds

We present another on-manifold PGD result using an

adversarially trained network. The model is a CNN with two

convolutional layers and a final fully connected layer. Both of the

2D convolutional layers have a kernel size of 3, stride of 1, padding

1, and are followed by a 2D max pooling with a kernel size of 2

and then ReLu activations. The first layer has 12 filters and the

second layer has 24 filters. For our data set with images sizes of

128×128, this leads to an input of size 32×32×24 into the last fully

connected layer. The output of the final layer is set to the number of

classes in the data set and we apply the softmax activation function.

The training paradigm for this experiment consists of using images

with randomly generated backgrounds, as shown in Figure 5, with

the result that the trained network will be background-agnostic.

We train on images from all azimuth angles and DLA from 20

to 30 degrees. After six epochs of standard training, we switch

to adversarial training, where adversarial images are generated by

following the network gradient. We continue until we reach 100

total epochs of training. Figure 9 then plots the loss and prediction

maps over azimuth and DLA for the luxury SUV class.

We note in Figure 9 that the majority of the misclassifications

occur outside of the training regime, with a few rare

misclassifications in the training regime, given as scattered

predictions of the box truck and sedan classes. We seek to generate

on-manifold adversarial examples in the range 20◦ − 30◦ for DLA

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 5

Examples of RGB vehicle datatset, consisting of seven vehicle types (pickup truck, SUV, sedan, dump truck, box truck, jeep, and fork lift), varying in

360 degrees azimuth and 45 degrees down look angle. The data contains six types of scene backgrounds including urban and rural environments.

The full resolution data is 256 by 256 pixels, although it has been downsampled to 128 by 128. Top row: vehicle images with flat backgrounds

generated using image segmentation maps. Bottom row: vehicle images with randomly sampled location backgrounds (images are again inserted

into backgrounds using segmentation maps).

FIGURE 6

Network loss and prediction map (pickup truck class). Loss map and decision boundary map for the Pickup Truck class on a VGG11 network. The

classifier was trained with the seven vehicle types shown in Figure 5 using down look angles from 10◦ to 30◦ and azimuths from 0◦ to 359◦.

and 135◦−165◦ for azimuth, which is the range we use in geometry

calculations. Notice, in this experiment, we are only providing our

geometry tools with data from the intrinsic parameter range that

the network was trained on. The goal of this experiment is to use

our geometry tools to find and correctly explain an adversarial

example that caused the network to mislcassify, without giving the

geometry tools preferential treatment in the form of additional

data that the network was not trained on. Figure 10 illustrates our

on-manifold PGD iteration, as described in Section 2.3, with the

starting point at DLA 20◦ and azimuth 150◦.

Figure 10 depicts the iteration of on-manifold PGD to an on-

manifold adversarial example, which is classified as a box truck

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 7

Generation of an on-manifold adversarial image. The first column is the Nystöm projection of the input from the previous step with the step number

on the vertical axis and the predicted intrinsic parameters on the horizontal axis. The second column is the first column after adding the network

gradient times 106.38. The third column adds the image from the first column and 107 times the gradient after it is projected onto the manifold

subspace spanned by the tangent subspace. The fourth column is the result of Nystöm projecting the third column so that it is on the manifold. Each

image includes the network prediction of that image at the top, and the outline color corresponds to the steps in Figure 4.

(as one would expect from Figure 9). In this experiment, we note

that adversarial examples causing a misclassification often contain

a reflection on the side of the vehicle. We have verified that this

matches with a rare feature in the training data, where images

containing a reflection commonly cause the luxury SUV to be

misclassified as the white box truck. These reflections are a result of

AirSim’s environment and they represent an unexpected challenge

that network mislcassified but was identified by our on-manifold

PGD approach. Evidently, not only is this approach able to generate

adversarial example which can be explained in terms of their

semantic labels but it also provides explainable insights into which

features of an image cause a network to misclassify.

4 Discussion

In conclusion, we have presented a formal introduction of

CIDM, a type of variable bandwidth kernel diffusion map that

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 8

Pickup truck manifold approximation. The top two images show the manifold of the Pickup Truck plotted using the first three coordinates from

CIDM. The top left image is colored by the azimuth angle, and the top right is colored by the down look angle. The bottom four plots show the

tangent vector fields of the SEC as red arrows, and the initial point around which the geometry approximation was built as a blue dot.

FIGURE 9

Network loss and prediction map (luxury SUV class). Loss map and decision boundary map for the Luxury SUV class on a CNN. The classifier was

trained with seven vehicle types as shown in Figure 5 using down look angles from 20◦ to 30◦ and azimuths from 0◦ to 359◦. Adversarial training

begun after epoch 6 and continued until epoch 100, where the network gradients were used to generate adversaries. Network evaluation takes place

with scene background images, while the network was trained with a randomized set of backgrounds to avoid an over-dependence of the network

on the image background.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 10

Generation of an on-manifold adversarial image. The first column is the Nystöm projection of the input from the previous step with the step number

on the vertical axis and the predicted intrinsic parameters on the horizontal axis. The second column is the first column after adding the network

gradient times 105.23. The third column shows the gradient after it is projected onto the manifold subspace spanned by the tangent subspace. The

fourth column is the result of Nystöm projecting the third column so that it is on the manifold. Each image includes the network prediction of that

image at the top and the outline color corresponds to the steps in Figure 4.

is adept at dealing with heterogenous data density. We have

also introduced a novel application of the Nyström method for

extending the CIDM eigenfunctions to new data points. We use the

Nyström projection to map off-manifold points onto the manifold

inside PGD to implement an on-manifold PGD. Additionally, we

showed how to use SEC to find vector fields of the manifold for

points on the manifold, which we use as a local linear space around

the data to project to for intermediate points in our on-manifold

PGD implementation. We were able to successfully obtain on-

manifold examples that the trained NN misclassifies, showing the

promise of on-manifold examples that can be found in input space

without reducing down to a latent space. Our reported results

provided the geometry approximation tool with data that was

outside the data used to train the NN classifier, meaning that

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

the output of the on-manifold PGD algorithm would not be a

valid input for adversarial regularization. However, the experiment

did provide novel tools for modeling the data manifold in a

manner that allowed the on-manifold PGD algorithm to walk in the

direction of the NN gradient while remaining on themanifold. This

provided novel examples that were on-manifold but not simply

part of the hold out data. In addition, the Nyström projection onto

the manifold provided the intrinsic parameters of the adversarial

examples so that the misclassification was human interpretable.

The ability to report the intrinsic parameter of arbitrary points on

the manifold opens the door to being able to explain NN decision

boundaries in human understandable terms without explicitly

sampling all possible inputs. In non-synthetic data, a single class

will typically not have continuously varying intrinsic parameters, so

additional work needs to done to transition these tools to real-world

data sets.

Data availability statement

The datasets presented in this article are not readily available

because the way the dataset was generated was described

for reproducibility, but it is not available due to commercial

restrictions. Requests to access the datasets should be directed to

aaron.mahler@teledyne.com.

Author contributions

AM: Conceptualization, Investigation, Methodology,

Software, Supervision, Visualization, Writing – original draft.

TB: Conceptualization, Funding acquisition, Investigation,

Methodology, Visualization, Writing – original draft. TS:

Conceptualization, Funding acquisition, Investigation,

Methodology, Software, Writing – review & editing. HA:

Investigation, Project administration, Writing – review &

editing. MM: Investigation, Software, Visualization, Writing –

original draft. JS: Investigation, Software, Writing – review &

editing. IK: Conceptualization, Methodology, Writing – review

& editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This material was based upon study supported by the Defense

Advanced Research Projects Agency (DARPA) under Agreement

No. HR00112290079, and it has been approved for public release;

distribution is unlimited.

Acknowledgments

The authors would also like to thank Juan M. Bello-Rivas for

many helpful and insightful discussions related to these topics.

Conflict of interest

AM, TS, and MM were employed by Teledyne Scientific &

Imaging, LLC.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2024.1274181/full#supplementary-material

References

Athalye, A., Carlini, N., and Wagner, D. (2018). “Obfuscated gradients give a false
sense of security: circumventing defenses to adversarial examples,” in Proceedings of
the 35th International Conference on Machine Learning (Cambridge, MA: PMLR),
274–283.

Belkin, M., and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality
reduction and data representation. Neural Comput. 15, 1373–1396.
doi: 10.1162/089976603321780317

Berry, T., and Giannakis, D. (2020). Spectral exterior calculus. Commun. Pure Appl.
Math. 73, 689–770. doi: 10.1002/cpa.21885

Berry, T., and Harlim, J. (2016). Variable bandwidth diffusion kernels. Appl.
Comput. Harmon. Anal. 40, 68–96. doi: 10.1016/j.acha.2015.01.001

Berry, T., and Sauer, T. (2016). Local kernels and the geometric structure of data.
Appl. Comput. Harmon. Anal. 40, 439–469. doi: 10.1016/j.acha.2015.03.002

Berry, T., and Sauer, T. (2019). Consistent manifold representation for topological
data analysis. Foundations of Data Science 1, 1. doi: 10.3934/fods.2019001

Carlini, N., and Wagner, D. (2017). Towards evaluating the robustness of neural
networks. arXiv [preprint]. doi: 10.1109/SP.2017.49

Cho, S., Jun, T. J., Oh, B., and Kim, D. (2020). “DAPAS: denoising autoencoder
to prevent adversarial attack in semantic segmentation,” in 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1-8. Conference Name: 2020
International Joint Conference on Neural Networks (IJCNN) (Glasgow: IEEE).

Coifman, R. R., and Lafon, S. (2006a). Diffusion maps. Appl. Comput. Harmon.
Anal. 21, 5–30. doi: 10.1016/j.acha.2006.04.006

Coifman, R. R., and Lafon, S. (2006b). Geometric harmonics: a
novel tool for multiscale out-of-sample extension of empirical functions.
Appl. Comput. Harmon. Anal. 21, 31–52. doi: 10.1016/j.acha.2005.
07.005

Dietrich, F., Bello-Rivas, J. M., and Kevrekidis, I. G. (2021). On the
correspondence between gaussian processes and geometric harmonics. arXiv
[preprint]. doi: 10.48550/arXiv.2110.02296

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
mailto:aaron.mahler@teledyne.com
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1274181/full#supplementary-material
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1002/cpa.21885
https://doi.org/10.1016/j.acha.2015.01.001
https://doi.org/10.1016/j.acha.2015.03.002
https://doi.org/10.3934/fods.2019001
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2005.07.005
https://doi.org/10.48550/arXiv.2110.02296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., and Tsipras, D. (2019). Robustness.
Python Library. Available online at: https://github.com/MadryLab/robustness

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing
adversarial examples. arXiv [preprint]. doi: 10.48550/arXiv.1412.6572

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A.
(2019). Adversarial examples are not bugs, they are features. arXiv [preprint].
doi: 10.48550/arXiv.1905.02175

Kurakin, A., Bengio, A., and Goodfellow, A. K. (2018). “Adversarial examples in the
physical world,” in Artificial Intelligence Safety and Security (Boca Raton, FL: Chapman
and Hall/CRC), 14.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2019).
Towards deep learning models resistant to adversarial attacks. arXiv. [preprint].
doi: 10.48550/arXiv.1706.06083

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. (2017). “Universal
adversarial perturbations,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Honolulu, HI: IEEE), 1765–1773. Available online at: https://
ieeexplore.ieee.org/document/8099500

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). “DeepFool: a simple
and accurate method to fool deep neural networks,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE), 2574–2582.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
(2017). “Practical black-box attacks against machine learning,” in Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS
’17 (New York, NY: Association for Computing Machinery), 506–519.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks
for large-scale image recognition. arXiv [preprint]. doi: 10.48550/arXiv.1409.
1556

Stutz, D., Hein, M., and Schiele, B. (2019). Disentangling adversarial
robustness and generalization. arXiv [preprint]. doi: 10.1109/CVPR.2019.
00714

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., and Gao, Y. (2018). Is robustness
the cost of accuracy?-A comprehensive study on the robustness of 18 deep image
classification models. arXiv [preprint]. 631–648. doi: 10.1007/978-3-030-01258-8_39

Su, J., Vargas, D. V., and Kouichi, S. (2019). One pixel attack for fooling deep neural
networks. IEEE Transact. Evol. Comp. 23, 828–841. doi: 10.1109/TEVC.2019.2890858

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
et al. (2014). Intriguing properties of neural networks. Technical Report. arXiv.
doi: 10.48550/arXiv.1312.6199

Tabacof, P., and Valle, E. (2016). “Exploring the space of adversarial images,” in 2016
International Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE),
426–433.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel,
P. (2020). Ensemble adversarial training: attacks and defenses. arXiv [preprint].
doi: 10.48550/arXiv.1705.07204

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A.
(2019). Robustness may be at odds with accuracy. arXiv [preprint].
doi: 10.48550/arXiv.1805.12152

Xu, W., Evans, D., and Qi, Y. (2018). “Feature squeezing: detecting adversarial
examples in deep neural networks,” in Proceedings 2018 Network and Distributed
System Security Symposium (San Diego, CA: Internet Society).

Yin, Z., Wang, H., and Wang, J. (2020). “War: an efficient pre-processing method
for defending adversarial attacks,” in Machine Learning for Cyber Security: Third
International Conference, ML4CS 2020, Guangzhou, China, October 8–10, 2020,
Proceedings, Part II (Berlin: Springer-Verlag), 514–524.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274181
https://github.com/MadryLab/robustness
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1905.02175
https://doi.org/10.48550/arXiv.1706.06083
https://ieeexplore.ieee.org/document/8099500
https://ieeexplore.ieee.org/document/8099500
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2019.00714
https://doi.org/10.1007/978-3-030-01258-8_39
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1705.07204
https://doi.org/10.48550/arXiv.1805.12152
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	On-manifold projected gradient descent
	1 Introduction
	1.1 Manifold learning and CIDM
	1.1.1 Conformally invariant diffusion map
	1.1.2 Nyström extension: interpolation and regularization

	2 Methods
	2.1 The Nyström projection: mapping off-manifold points onto the manifold
	2.2 SEC vectors
	2.3 On-manifold projected gradient descent

	3 Results
	3.1 VGG11 with static backgrounds
	3.2 Simple CNN with random backgrounds

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

