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The presented research introduces a new approach to simultaneously

compressing and encrypting images using chaotic compressive sensing. This

technique involves transforming the image into sparser data using the discrete

cosine transform basis, which is then compressed through projection onto a

lower dimensional space using a measurement matrix designed based on a

new chaotic map. The proposed chaotic map produced a Lyapunov exponent

value of 2.675 proving its chaotic behavior. The proposed map is also highly

sensitive to initial values, making it a secure basis for encryption. The compressed

data with the proposed map is then embedded onto a colorful image for

transmission. This approach achieves both compression and visually meaningful

encryption of images. Quantitative and Qualitative results on the proposed

compression-encryption algorithm shows the e�ectiveness of the methodology

against chosen plaintext attacks and cipher-only attacks.
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1 Introduction

The transmission of images over the internet has grown exponentially in recent

years, raising concerns about communication bandwidth and image security over public

channels. To address these issues, various image compression and encryption algorithms

have been proposed. Inspired by the idea of sparse signal approximation, compressive

sensing (CS) (Candès, 2006; Donoho, 2006) has emerged as a new approach to

image compression. Unlike traditional compression algorithms, CS-based compression

algorithms acquire data in a compressed way, reducing the need to store all the sensed

samples before compression. CS techniques have also enabled simultaneous compression

and encryption of images, using measurement matrices to securely transmit the data.

Chaotic compressive sensing approaches have been developed to reduce the burden of

redesigning the measurement matrix on the receiver side.

However, the compression-encryption schemes discussed thus far typically generate

noise-like or texture-like cipher images that provide no underlying data. To address this

issue, a new methodology known as meaningful encryption has emerged. This approach

embeds encrypted data onto high-frequency bands of a carrier image, usually of larger size

than the original image. The insensitivity of the human vision system to changes in high-

frequency content makes it difficult for intruders to detect that cipher images have been

implanted onto the carrier images.
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Motivated by this idea, we propose a new algorithm that

achieves concurrent compression and meaningful encryption of

images using compressive sensing. Our method compresses images

using a CS scheme, with a measurement matrix designed based

on a new chaotic map that is highly random and sensitive to its

initial parameters. The compressed image is then embedded onto

a high-frequency band of the carrier image, without affecting its

appearance. We use a single chaotic map with different keys for

compression, encryption, and embedding. The main contributions

of this paper are as follows

(i) proposing a new chaotic map,

(ii) developing a compression-encryption scheme using the

proposed chaotic map,

(iii) designing a chaotic map-based embedding scheme to generate

visually meaningful encrypted images,

(iv) presenting simulation results to quantify the efficiency of our

approach.

The rest of the paper is arranged as follows: Section 2

details some of the notable related works in recent times. Section

3 briefs the preliminaries on compressive sensing. Section 4

discusses the proposed chaotic map and its validations. Section

5 explains the proposed methodology of compression and

meaningful encryption of images. The results and discussion

are presented in Section 6, and finally, conclusions are drawn

in Section 7.

2 Related works

Numerous compression and encryption schemes utilizing

the concept of compressive sensing have been proposed in

recent years (Mathivanan and Maran, 2023; Mathivanan and

Balaji Ganesh, 2023; Ashwini and Amutha, 2021). Most methods

demonstrate simultaneous compression and encryption using

the CS methodology. In Zhang et al. (2020) proposed an

image compression and encryption algorithm using compressive

sensing and Fourier transform. They employed chaos and

fractional Fourier transform in their proposed method, which

produced good compression and reconstruction robustness. In

Wang et al. (2018), the authors proposed a combination of

compressive sensing and a detour cylindrical diffraction-based

encoding scheme. Through various experimental analyses, they

proved that their proposed work is free from plaintext and

ciphertext-only attacks. An encryption algorithm based on a

hyper chaotic system was proposed in Xu et al. (2020),

where the authors used a 2D - SLIM hyperchaotic map for

measurement matrix design. They used the GF 257 multiplication

algorithm along with the hyperchaotic system for permutation

and diffusion.

Musanna and Kumar (2020) proposed the use of nonlinear

exponential functions and chaotic maps for CS-based image

encryption. They designed the measurement matrix to be a

circulant matrix obtained from a logistic map. Their proposed

work obtained cipher images using a dynamic invertible

exponential function.

CS-based encryption techniques have become popular to

address specific applications as well. Unde and Deepthi (2019)

proposed a lightweight encryption scheme for Multimedia IOTs.

Their work aimed to improve the energy efficiency of CS-

based cryptographic systems. The authors validated the ability

of their algorithm to resist chosen plain text attack and

statistical attacks. In Xue et al. (2020), the authors proposed a

lightweight encryption scheme named Kryptein for cloud-enabled

IoT systems, especially to secure the interaction between IoT

devices and the cloud. Their algorithm requires significantly less

energy and computation consumption compared to other state-

of-the-art algorithms. Also multiple image encryption schemes

are becoming popular in recent years (Dai et al., 2021;

Chen et al., 2021). Zhou et al. (2023) proposed multi image

encryption scheme using quaternion discrete transform and

cross coupling operations. Zhang and Hu (2021) utilized 3D

scrambling model and DNA coding for the multiple image

cryptosystem. Watermarking scheme based image encryption

with geometric corrections was proposed in Gong and Luo

(2023).

To prevent the curiosity of intruders in knowing the underlying

data, a new form of image encryption scheme known as a visually

meaningful encryption scheme has evolved. Yang et al. (2021)

proposed a visually meaningful image encryption algorithm using

M-ary decomposition schemes. Their nonstandard preencryption

algorithm passed all security analyses. They used virtual bits to

embed into the host image in their embedding algorithm. In Ping

et al. (2019), the authors proposed a reversible color transform-

based visually secure meaningful encryption scheme. They used

different measurement matrices to compress and encrypt the

same secret image in different orders. Then, they obtained a

meaningful encrypted image with a carrier image that is small

compared to the secret image. Zhu et al. (2020) proposed a

meaningful encryption scheme using block compressive sensing.

They divided the plain image into blocks and compressed and

preencrypted it using block compressive sensing. The authors

embedded the cipher image onto the carrier image using the

singular value decomposition embedding method. They claimed

that their method provides a balanced performance on security,

compression, and running efficiency. Ye et al. (2020) used a

combination of DWT and SVD to hide the intermediate encrypted

image into a cover image. They used logistic tent map and tent

sine map for confusing the data and designing the measurement

matrix for compression. They inserted random numbers into

the preencrypted images to enhance the recovery quality at the

receiver side. Gong and Luo (2023) have proposed watermarking

scheme that utilizes a novel 3D chaotic system. Huang et al.

(2023) proposed a meaningful encryption scheme using integer

wavelet transform and RSE algorithm. Through experimental

results they have proved that their algorithm can successfully

resist known plain text attacks and chosen plain text attacks.

An encryption algorithm using bit level extension algorithm was

proposed in Zhou et al. (2024). Authors have generated secret

keys using the SHA-512 hash function in order to strengthen the

resistance of their encryption and decryption system against the

selected plaintext and differential attacks. Hu et al. (2023) have

combined matrix transform and semi-tensor product operation

to generate an asymmetric compressive sensing model. Authors

have used wavelet packet transform and Haar transform in

their approach.
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FIGURE 1

Comparison of the bifurcation diagram of the proposed map with existing maps: (A) logistic map, (B) logistic sine map, (C) sine map, (D) new chaotic

map, and (E) proposed map.

This paper proposes a new chaotic map and a new

visually meaningful encryption scheme. The images are

initially compressed using compressive sensing theory

and meaningfully encrypted using discrete wavelet

transforms of the carrier image. The rest of the paper

provides a detailed explanation of the preliminaries,

proposed map, and methodology, along with the

necessary results.
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3 Preliminaries

3.1 Compressive sensing (CS)

CS is an innovative and effective signal transform technology

that can reduce the number of sampling points associated with

the volume of data obtained, ensuring that the sensors never

acquire redundant data. The basic idea of compressive sensing

is to combine both sampling and compression in a single step.

Consider a 1D signal x ∈ ℜM1 of length M1. Let α be the sparse

representation of the signal x given by

α = 9Tx (1)

where 9 is the basis matrix over which the signal is sparsely

represented. Let k be the number of nonzero elements in the

sparse signal α. This sparse signal is compressively sensed using a

measurement matrix 2 to obtain the reduced measurements y as

given in (2).

y = 2x = 29α = 8α (2)

The matrices 2 and 9 must necessarily be incoherent. The

matrix 8 is called the sensing matrix. It is proven that the matrices

2 and 9 must satisfy the restricted isometry constraint to properly

reconstruct x from y (Candes, 2008). Recovery of the original signal

x from their reduced measurements y is performed by solving the

optimization problem:

minα ‖ α ‖0 s.t29α = y (3)

Solving l0 norm minimization is an NP-hard problem and is

not convex. Thus, the l0 norm can be converted into the convex

l1 − norm as

minα ‖ α ‖1 s.t29α = y (4)

4 Chaotic maps

Randomness generated by a deterministic system is

mathematically defined as chaos. The behavior of the chaotic

system is predictable if, and only if, there is knowledge about its

initial parameters; otherwise, the system appears to be random.

Chaotic maps are generally constructed based on chaos theory.

They are classified as 1D and high-dimensional maps. A 1D map

produces a simple 1D sequence with two control parameters.

Examples of 1D maps include the logistic map (Phatak and Rao,

1995) and sine map (Feng et al., 2017). Higher dimension maps

such as the 2D logistic sine map (Hua et al., 2014) produce a much

more complex sequence with two or more control parameters.

Physical implementation of a chaotic map via an electric circuit

is quite easy since only two or three initial parameters have to be

memorized by the circuit elements.

4.1 Proposed chaotic map

A chaotic map that has a wider chaotic range and extreme

sensitivity to its initial parameters is proposed. The proposed

equation is as follows:

Zn+1 = mod(sin(µπ(1+ Z2
n)), 1) (5)

The proposed map is created from the basic sine map.

Bifurcation of the sine map shows that the map values are chaotic in

periodic intervals. For the basic sine map, replacing Zn with Z
2
n and

taking the mod 1 value results in a new map that is highly chaotic

and extremely sensitive to its initial values. The proposed map has

shown chaos in entire range of considered µ value. Modulus value

is mainly taken to restrict the range of the map sequence between

0 and 1.

Many compressive sensing techniques are available in

literature. Each technique uses different methods to obtain sparser

data and also uses different measurement matrix to compress.Of

many approaches available, chaotic maps are used in the proposed

approach to design the measurement matrix. Since the chaotic

map produces a pseudorandom sequence, a structured matrix

is constructed from them to be used as a measurement matrix

for compressing the images. With the exemplary properties of

unpredictability, pseudo randomness, ergodicity and sensitivity

to their initial parameters, chaotic maps are widely used in

security applications to induce confusion and diffusion in the data,

enabling secure transmission for the data owner over an insecure

communication channel. Hence, using the chaotic sequence

generated with the proposed chaotic map and along with the

designed measurement matrix, CS-based encryption algorithms

for signal recovery are devised in this paper. Various simulation

results validating the chaotic property of the proposed map are

presented in the subsequent sections.

4.2 Simulation results validating the
proposed chaotic map

4.2.1 Bifurcation analysis
For precise representation of the nonlinear behavior of any

system, bifurcation plots are used. Bifurcation analysis is one

of the most important parameters for evaluating the chaotic

behavior of a chaotic map. Bifurcation is usually made with the

control parameter against its system values. Figure 1 compares the

bifurcation plot of the proposed chaotic map along with some of

TABLE 1 Significance of LE and ApEn values.

S. no Metric Value Inference

1 Lyapunov

exponent

Greater than 1 The two trajectories of the

map eventually diverge

exponentially in each unit

time and will be totally

different

Less than 1 The two trajectories will

finally overlap as time goes to

infinity

2 Approximate

entropy

Higher ApEn The values of the sequence are

difficult to predict

Lower ApEn Less complex and Easy to

predict
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the existing 1Dmaps for an initial random value of 0.543. From the

plots, it is quite evident that the bifurcation plot of the proposed

map (Figure 1E) is very chaotic throughout the whole range of

µ values investigated, while other existing maps are chaotic only

for small ranges of µ values. It can be seen that there are no

empty spaces in the bifurcation plot of the proposed map, and

that means for each µ value, the sequence values of the map are

completely different. The chaotic behavior of the proposed map is

thus clearly superior to that of existing 1D maps, as evidenced by

these plots.

4.2.2 Comparison of Lyapunov exponent and
approximate entropy of proposed map with
existing map

The most frequently accepted markers for assessing chaos

in a map are the Lyapunov exponent (LE) (Wolf et al.,

1985) and approximate entropy (ApEn) (Pincus, 1995). LE

calculates the average divergence of two map trajectories with

two different initial values that are closer to each other.

The degree of complexity in the maps is calculated using

approximate entropy.

TABLE 2 Comparison of LE and ApEn between existing and proposed chaotic maps.

S. no Map Expression LE ApEn

1 Logistic Ln+1 = µLn(1− Ln) 0.6744 0.7167

2 Logistic sine map LSn+1 = µLSn(1− LSn)+ ( 4−µ

4
)sin5LSn 0.6354 0.7177

3 Sine map SMn+1 = µsin(5SMn) 1.9348 1.6862

4 New Chaotic map NCn+1 = µ(NC4
n − NC2

n)+ 1 1.6822 0.7143

5 Proposed map Zn+1 = mod(sin(µ5(1+ Z2
n)), 1) 2.675 2.100

µ = 4, Initial value = 0.544.

FIGURE 2

Trajectories of the proposed map (A) with di�erent initial Z values and (B) with di�erent µ values.

FIGURE 3

Block diagram of the proposed compression encryption scheme.
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The significance of LE and ApEn values is briefly described

in Table 1. Table 2 compares the computed metrics for the

proposed map along with other existing maps in the literature.

It can be inferred from the tabulated values that the LE

and ApEn values are almost 30 to 70% higher than the

values obtained for the existing method. This is because

of the chaotic nature of the proposed map for a wider

range of µ values. Thus, the proposed map behaves in

the same manner or even superior to the existing maps

and thus can be used in compression, encryption or any

other application.

Input: Scrambled measurement blocks M,

Secret Keys K2 = {l2,µ2},K3 = {l3,µ3}

Output: Pre encrypted measurement blocks M∗

1. Reshape the scrambled measurement blocks

M into a single vector m

2. Generate chaotic sequence Seq2 with as

initial parameters using Equation 5.

3. Sort Seq2, in ascending order to get index

sequence and sorted sequence (id2, S2)

4. Scramble m into m′ using id2
5. Divide each m′ into Positive integer I,

Decimal fraction D and sign bit S :m′ = S∗(I+D)

6. Generate chaotic sequence Seq3 with as

initial parameters using Equation 5.

7. Restrict the range of Seq3 to 0-255:

Seq_255 = mod(floor(Seq3 ∗ 1015), 256)

8. Confuse the values of I using

Seq255 : I_Cipher = IEXOR Seq_255.

9. Add S and D to I_Cipher to generate encrypted

measurements: m∗ = S ∗ (I_cipher + D)

10. Reshape m∗ into blocks of same size as

M to get M∗

Algorithm 1. Di�usion of measurements.

4.2.3 Sensitivity to initial parameters
A good chaotic map must be extremely sensitive to its initial

values. Trajectory plots are used to validate the chaotic maps in

terms of their sensitivity to their initial values. When the map

sequences obtained considering different initial values andµ values

are disparate, the map is considered to be highly sensitive to

its parameters. In order to prove this, trajectory plots are used.

Figures 2A, B shows the trajectory plot made with two different

initial values and two different µ values. The deviation between

two different initial values is considered to be in the range of

10–14. Similarly, the difference between two different µ values is

considered to be 10–15. The plots show the value of the chaotic

sequence obtained with the proposed chaotic map considering

these two different initial µ values. It is quite apparent from these

plots that with extremely minimal changes in the chaotic value

and µ value, the chaotic sequence obtained is completely different.

Hence, the suggested map being particularly sensitive to its initial

values makes it ideal for use in encryption processes where the

initial values of the map are secret keys.

5 Proposed compression encryption
scheme

The block diagram of the proposed compression encryption

scheme is shown in Figure 3. The secret image to be securely

transmitted is initially converted into sparser data. The

transformed data are compressed with the aid of the measurement

matrix. The compressed data is pre-encrypted with chaotic

sequences. Embedding of preencrypted data in a color image is

carried out using the discrete wavelet transform. The following

subsections provide a detailed explanation of each of the processes

outlined above.

5.1 Compression and pre-encryption of
image

The image to be encrypted is initially compressed using

the CS scheme. The image is sparsely represented using the

FIGURE 4

Proposed encryption process.
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Input: Embedded Carrier Image C∗, Secret Keys

K4 = {l4,µ4},K5 = {l5,µ5},K6 = {l6,µ6},K7 = {l7,µ7},

carrier image of size (Mc,Nc), secret image

of size (MS,NS)

Output: Embedded carrier image C∗

1. Generate chaotic sequence Seq4, Seq5, Seq6
and Seq7 with secret keys K4 = {l4,µ4},K5 =

{l5,µ5},K6 = {l6,µ6},K7 = {l7,µ7}.

2. Convert each sequence’s first two

fractional digits into characters.

3. Add the two characters and convert into

numeric value to get the sampling distance d

4. Sample the generated sequence Seq4, Seq5,

Seq6 and Seq7, with sampling distance d to get

the sampled sequence Seq4d, Seq5d, Seq6d and

Seq7d.

5. Sort the sampled sequences SSeq4_d, Seq5_d,

Seq6_d and Seq7_d in ascending order and

get index sequence and sorted sequence

(id4, S4),(id5, S5), (id6, S6) and (id7, S7) respectively.

6. Divide Carrier image into R, G and B

channels.

7. Decompose R channel of image into LL, LH,

HL and HH subbands.

8. Set the embedding locations on the R

channel of the carrier image from the

sorted sequences [rm(i) cm(j)] = [s4(i)s7(j)]; i =

1, 2, 3. . ...Mc and j = 1, 2, 3. . .Nc

9. Set the locations on the encrypted images

from which the pixel are to be taken for

embedding using the sorted sequence S2 and S3

as follows: [rs(i)cs(j)] = [s5(i)s6(j)];

10. Replace the pixels in R channel of

carrier image to be the pixels from encrypted

measurements: R(rm(i)) = M∗(rs(i));R(cm(j)) = M∗(cs(i))

11. Combine R, B and G channels to get

embedded carrier image C∗.

12. Return C∗.

Algorithm 2. Embedding pre encrypted measurements into

carrier image.

9 matrix (DCT). The sparser data are then projected onto

a lower dimensional space using the measurement matrix M,

thus achieving compression. A pseudo random measurement

matrix constructed from the chaotic sequences obtained from

the proposed chaotic map is used as the measurement matrix

in our work. The design of the measurement matrix is detailed

in our previous work (Ashwini and Amutha, 2018). Initial

parameters l1 and µ1 are used as key values K1 in generating

the sequence to be used in MM design. Compressed data are

then encrypted using the same chaotic map that is used for

matrix design. Details of the encryption algorithm is explained in

Algorithm 1 and the block block diagram of the same is given in

Figure 4.

5.2 Embedding pre-encrypted images

Preencrypted images are then embedded onto the carrier

image to obtain the meaningful encrypted image. To produce a

visually pleasing embedded image, the encrypted measurements

are implanted onto the high-frequency content of the carrier

image. The discrete wavelet transform is employed for this purpose.

Embedding procedure is detailed in Algorithm 2.

The embedded carrier image thus contains the secret image

engrafted in it in encrypted form. Data invaders will not have any

idea about the underlying cipher data that the carrier image is

transporting in the public channel.

5.3 De-embedding and decryption of
secret image

The embedded carrier image that has been received by the

intended data user must be processed to recover the secret image.

As a first step, the encrypted measurements that were embedded

in the carrier image are recovered. The measurements obtained are

then given to the CS-based reconstruction algorithm along with the

measurement matrix that was used at the sender side to recover

the sparser data. With the aid of the same basis matrix, the sparser

data are converted back to the secret image by taking the inverse

transform. The chaotic sequence generated at the sender side must

be regenerated at the receiver side so that the same measurement

matrix and the embedding locations that were used at the sender

side can be regenerated at the receiver side as well.

6 Experimental results and discussion

The proposed compression encryption scheme is tested on five

different cover images and nine secret images downloaded from

the SIPI image database https://sipi.usc.edu/database. The cover

images are shown in Figure 5 and the secret images are shown in

Figure 6. As mentioned earlier, cover images in Figure 5 are the

carrier images that act as host andwill house the secret image within

it (Figure 6). Both color images and secret images are considered

to be RGB images. Various simulation experiments are performed

to analyse the efficiency of the proposed method in effectively

compressing and encrypting the images. All the simulations are

performed with MATLAB R2018 software, using an INTEL i3, 2.2

GHz processor with 6GB RAM.

6.1 Qualitative results of the proposed
compression—encryption scheme

Figure 7 shows a series of sample images that have undergone

compression and encryption using the proposed scheme. The result

is shown for a sampling ratio of 0.5. In the example shown, the

secret imagemoon is encrypted and embedded into the cover image

Baboon. It is evident from the figure that the recovered secret image

Moon from the embedded cover image (Figure 7E) is almost similar

to the actual secret image (Figure 7B). The process of compression,

encryption and embedding of the secret image has not degraded the
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FIGURE 5

Cover images. C1 4.2.05 “Airplane”. (Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/database/database.

php?volume=misc&image=11#top, licensed under CC BY 4.0) C2 4.2.07 “Peppers”. (Reproduced from SIPI Image Database, University of Southern

California, https://sipi.usc.edu/database/database.php?volume=misc&image=13#top, licensed under CC BY 4.0) C3 “Lena”. (Reproduced from SIPI

Image Database, University of Southern California, licensed under CC BY 4.0) C4 4.2.03 “Mandrill (a.k.a Baboon)”. (Reproduced from SIPI Image

Database, University of Southern California, https://sipi.usc.edu/database/database.php?volume=misc&image=10#top, licensed under CC BY 4.0) C5

4.2.06 “Sailboat on lake”. (Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/database/database.php?

volume=misc&image=12#top, licensed under CC BY 4.0).

visual perception of the image. The proposed method can thus be

thought of as a good compression encryption scheme.

6.2 Compression performance analysis

6.2.1 PSNR and SSIM
Degradation in the characteristic property of perceived images

is measured by Image Quality Assessment. The assessment is

performed both quantitatively and qualitatively by comparing

the images with ideal or reference images. There are several

techniques and metrics available for image quality assessment.

Particularly, image quality metrics focus on measuring specific

types of degradation, such as blurring, blocking, ringing, or all

possible distortions of signals. Two main metrics, namely, the

PSNR and SSIM, can be mathematically implemented in the

optimization context. The PSNR computes the peak signal-to-noise

ratio, in decibels, between two images. This ratio is used as a quality

measurement between the original and a compressed image. Higher

the PSNR, better the quality of the compressed or reconstructed

image. The metric PSNR, however, is sometimes mismatched to

perceive visual quality and is not normalized in representation.

Hence, another famous quality metric, namely, the Structural

Similarity Indexing Metric, SSIM, is also computed. The Structural

Similarity Index (SSIM)measures the deterioration of image quality

brought on by processing operations like data compression or

transmission losses. It is a technique for estimating the perceived

quality of images. The SSIM index is a complete reference metric,

meaning that an original, uncompressed, or distortion-free image

serves as the basis for measuring or predicting image quality. An

SSIM value closer to 1 signifies better image quality. Tables 3, 4 list

the PNSR and SSIM values computed between the original secret

image before compression and the recovered secret image from the

compressed image for SR ranging from 0.1 to 0.9. The following

inferences can be drawn from Tables 3, 4.
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FIGURE 6

Secret images. S1 4.1.05 “House” (Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/database/database.

php?volume=misc&image=5#top, licensed under CC BY 4.0) S2 4.1.02 “Couple (NTSC test image)” (Reproduced from SIPI Image Database,

University of Southern California, https://sipi.usc.edu/database/database.php?volume=misc&image=2#top, licensed under CC BY 4.0) S3 4.1.01

“Female (NTSC test image)” (Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/database/database.php?

volume=misc&image=1#top, licensed under CC BY 4.0) S4 5.1.14 “Chemical plant” (Reproduced from SIPI Image Database, University of Southern

California, https://sipi.usc.edu/database/database.php?volume=misc&image=19#top, licensed under CC BY 4.0) S5 5.1.13 “Resolution chart”

(Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/database/database.php?volume=misc&image=18#

top, licensed under CC BY 4.0) S6 5.1.12 “Clock” (Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/

database/database.php?volume=misc&image=17#top, licensed under CC BY 4.0) S7 5.1.11 “Airplane” (Reproduced from SIPI Image Database,

University of Southern California, https://sipi.usc.edu/database/database.php?volume=misc&image=16#top, licensed under CC BY 4.0) S8 5.1.09

“Moon surface” (Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/database/database.php?volume=

misc&image=14#top, licensed under CC BY 4.0) S9 4.1.06 “Tree” (Reproduced from SIPI Image Database, University of Southern California, https://

sipi.usc.edu/database/database.php?volume=misc&image=6#top, licensed under CC BY 4.0).

(i) The values of PSNR between secret images remain high

for higher sampling ratios, irrespective of the type of

secret image.

(ii) The first highest value is observed in secret image S7, which

features more primary colors. It was followed by secret image

S6 with more primary colors.
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FIGURE 7

Qualitative analysis of the proposed scheme for SR = 0.5. (A) Cover image. 4.2.03 “Mandrill (a.k.a Baboon)”. (Reproduced from SIPI Image Database,

University of Southern California, https://sipi.usc.edu/database/database.php?volume=misc&image=10#top, licensed under CC BY 4.0). (B) Secret

image. 5.1.09 “Moon surface” (Reproduced from SIPI Image Database, University of Southern California, https://sipi.usc.edu/database/database.php?

volume=misc&image=14#top, licensed under CC BY 4.0). (C) Encrypted secret image. (D) Embedded cover image. (E) Recovered secret image.

(iii) The lowest value is observed for secret image S4, which

features grayscale properties.

(iv) The above data inferred that the recovering property of the

images depends on the color and contrast of the original

secret images.

(v) The values of SSIM between secret image remain high for

higher sampling ratios, irrespective of the secret images.

The above data inferred that the recovering property of

the images depends on the color and contrast of the original

secret images.
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TABLE 3 PSNR between the original secret image and recovered secret image.

Image and SR S1 S2 S3 S4 S5 S6 S7 S8 S9

0.1 24.7517 21.3559 20.1044 12.805 18.2863 21.1046 23.7951 18.7646 15.6291

0.2 27.5951 23.9324 22.6922 14.67 20.7899 25.6171 26.8723 21.2567 18.8289

0.3 28.8929 25.5621 24.7318 17.154 22.4738 27.7256 28.5454 24.0827 20.8939

0.4 30.1668 27.6086 26.5362 18.924 24.1063 29.7632 30.2877 25.9779 22.6971

0.5 31.6895 29.3394 28.5312 21.223 26.0313 32.412 32.605 27.5091 25.2561

0.6 32.7756 30.5878 30.8485 22.262 27.479 33.9109 33.9574 29.0362 26.5914

0.7 34.0513 31.9074 33.0904 23.96 29.2919 35.3268 35.7507 30.371 28.3401

0.8 35.9029 34.7274 35.5804 25.809 31.3642 36.909 37.5728 32.5896 30.1579

0.9 38.3991 36.902 37.655 28.179 33.8124 38.9995 39.6598 34.9101 31.9133

TABLE 4 SSIM between the original secret image and recovered secret image.

Image and SR S1 S2 S3 S4 S5 S6 S7 S8 S9

0.1 0.4638 0.3916 0.407 0.2891 0.2577 0.3767 0.48 0.2871 0.2192

0.2 0.5913 0.4844 0.505 0.3845 0.4173 0.5931 0.6262 0.3878 0.3719

0.3 0.6635 0.5377 0.588 0.4812 0.5398 0.6823 0.699 0.5106 0.487

0.4 0.7289 0.6406 0.651 0.547 0.6351 0.7568 0.7753 0.5828 0.5721

0.5 0.7967 0.6854 0.721 0.6409 0.7311 0.8486 0.8492 0.6417 0.6924

0.6 0.8378 0.7121 0.811 0.6689 0.7935 0.8867 0.8878 0.7001 0.7486

0.7 0.8765 0.7618 0.87 0.7239 0.8523 0.9131 0.9195 0.7461 0.8002

0.8 0.9169 0.858 0.92 0.786 0.9017 0.9363 0.9459 0.829 0.8546

0.9 0.9521 0.9103 0.948 0.843 0.9413 0.9597 0.963 0.891 0.8952

FIGURE 8

Comparison of the PSNR of the proposed method with existing methods.
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TABLE 5 Correlation of plain image and cipher image.

S.no Secret
image

Correlation direction

Horizontal Vertical Diagonal

Plain image Cipher
image

Plain
image

Cipher image Plain image Cipher image

1 S1 0.9033 0.0031 0.9398 0.0004 0.9030 -0.0003

2 S2 0.9513 -0.0098 0.9348 -0.0072 0.8881 0.0099

3 S3 0.9548 0.0237 0.9749 0.0038 0.9413 0.00388

4 S4 0.8680 -0.0027 0.8692 0.00565 0.7491 0.0055

5 S5 0.9422 0.0002 0.8962 -0.0002 0.8468 -0.0098

6 S6 0.9737 0.0029 0.9626 0.00047 0.9531 -0.0031

7 S7 0.9402 0.0052 0.9570 0.0125 0.9085 0.0209

8 S8 0.9778 0.0034 0.9557 0.0032 0.9315 -0.0017

9 S9 0.9667 0.0045 0.9426 -0.0087 0.9308 -0.0033

FIGURE 9

Plain image correlation: (A) horizontal, (B) vertical, and (C) diagonal. Cipher image correlation, (D) horizontal, (E) vertical, and (F) diagonal.

6.2.2 Comparison of PSNR and SSIM values with
existing methods

To prove the effectiveness of the proposed algorithm in

compressing the secret image, the PSNR values obtained from

the proposed method are compared with some of the existing

methods in the literature. The comparison results are presented

as bar plots in Figure 8. A Lena image of size 256 X 256 is taken

as the test image. From the plot, it is evident that the PSNR

value obtained with the proposed method for an SR of 0.25 is

almost 5-10 dB higher than the values presented in methods

(Zhou et al., 2016, 2014). The value is almost closer to the values

presented by methods (Musanna and Kumar, 2020; Yu et al.,

2010; Xu et al., 2019). A similar kind of pattern is observed for

other SRs as well. It is thus obvious that the proposed method

is capable of successfully decompressing the image data without

much loss.
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FIGURE 10

Histogram of (A, B) secret image, (C, D) encrypted secret image, (E, F) carrier image, and (G, H) embedded carrier image.
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FIGURE 11

Recovered secret image with noise intensities of (A) 5, (B) 10, (C) 15, and (D) 30. (Adapted from 5.1.11 “Airplane”, SIPI Image Database, University of

Southern California, https://sipi.usc.edu/database/database.php?volume=misc&image=16#top, licensed under CC BY 4.0).

6.3 Encryption performance analysis

6.3.1 Correlation coe�cient
The strength of the linear relationship between any two

variables is investigated with the help of correlation analysis.

The correlation coefficient gives the measure of the association

among any two variables and is expressed as values between

-1 and +1. An effective encryption scheme should have a smaller

correlation coefficient value for its encrypted image compared

to the original image. The values of the correlation coefficient

between neighboring pixels in the horizontal, vertical, and diagonal

directions, of both the original image data and its corresponding

encrypted data are shown in Table 5. The values are computed by

selecting 5000 random pairs of adjacent pixels in each direction.

From the tabulated values, it is clear that the correlation coefficient

value of the plain image is closer to 1 in all three directions

considered. For cipher images, the correlation value is almost equal

to zero irrespective of the type of image. A pictorial representation

of the correlation among pixels is presented with the aid of a scatter

plot in Figure 9. It is evident from the plot that a kind of linear

relationship among the pixels of the original image is visible, while

the data points are well scattered in the case of cipher images.

Thus, both the tabulated values and the scatter plot prove that, with

the suggested encryption approach, the tight linear link between

neighboring pixels of the original image is significantly reduced

in their corresponding encrypted image, making it difficult for

attackers to recover any valuable information.

6.3.2 Histogram analysis
Image histogram serves as a graphical depiction of the

tonal distribution of a digital image. Histogram analysis is

commonly carried out to demonstrate the system’s invulnerability

to statistical attacks. Since each image has a unique histogram

distribution, they are more liable to statistical attacks. Histogram

plots are used to examine the encryption algorithm’s ability to

disrupt the regularity in the pixel distributions of the images.

Figure 10 shows the histogram plots of the plain secret image,

encrypted secret image, plain carrier image and embedded

carrier image.
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It can be observed from the plots that the histograms of

two plain secret images are radically distinct, while their cipher

images have similar histograms. Thus, when attackers examine the

histograms of the encrypted images, they gain no understanding of

the underlying data.

One of the main requirements of a meaningful encryption

scheme, is that the attackers should not have any knowledge

that the carrier image is carrying the secret image. Thus, it

is necessary for the histograms of embedded carrier images

to be almost similar to those of the carrier images before

embedding. Figures 10G, H demonstrates the same, and thus,

the proposed embedding process protects the system against

statistical attacks.

6.3.3 Noise analysis
It is quite obvious for any data transmitted over a long

distance to be corrupted by noise. A good encryption - decryption

scheme should not be vulnerable to such corruptions. The

recovery performance of the proposed encryption scheme with

data distorted by noise, is examined to verify the system’s

immunity to such noise attacks. Noise signals of different

intensity levels, varying from 5 to 30, are initially added to

the carrier image, and the ability of the proposed scheme to

recover back the cipher image is analyzed. Figure 11 shows the

recovered cipher images after adding noise of intensities 5, 10,

15 and 30. It is noticeable from these figures that irrespective

of the noise intensities added to the secret image, the proposed

scheme is still able to recover the actual image with low loss

of data.

6.3.4 Occlusion analysis
Occlusion in an image occurs when some part of image is

obscured. Figure 12 shows the recovered secret image when some

parts of the cover image are lost. Lena and plane images are

taken as the cover image and secret image for this analysis.

Similar to some unwanted noise being added to the images

when transmitted over a channel, there is a greater chance of

some part of the image data being lost during transmission.

Additionally, some hackers may destroy specific data chunks

to deceive the data owners/users. Any encryption scheme must

be capable of retrieving images even if some parts of the

images are obscured. It is clear from the qualitative results

that, irrespective of the area of loss of data, our proposed

scheme is able to recover the secret image with the same

quality as that of one that is recovered when there is no loss

of data.

6.4 Computational complexity analysis

6.4.1 Execution time
The computational complexity of the proposed scheme is

calculated by measuring the amount of time required for each of

the processes to execute. Figure 13 shows the execution time of

different processes in the proposed scheme for different sampling

ratios. From the figure, it is clear that the total time taken

FIGURE 12

Occlusion analysis. (A, C, E, G, I) Images occluded on left corner,

right corner, left bottom, right bottom and center. (Adapted from

“Lena”, SIPI Image Database, University of Southern California,

licensed under CC BY 4.0). (B, D, F, H, J) Corresponding recovered

secret image. (Adapted from 5.1.11 “Airplane”, SIPI Image Database,

University of Southern California, https://sipi.usc.edu/database/data

base.php?volume=misc&image=16#top, licensed under CC BY 4.0).
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FIGURE 13

Execution time of di�erent processes of the proposed scheme.

for the entire process of compression, encryption, embedding

and recovery is 1.932468 seconds for an SR of 0.25, 2.664704

seconds for an SR of 0.5 and 3.761648 seconds for an SR of

0.75. Of all the processes, decompression of images takes more

time because of the use of greedy algorithms for recovering

compressed images. The embedding process takes less than 1

second, and the time for de-embedding is much less than the

embedding process.

7 Conclusion

In this research, a novel compression-encryption technique

utilizing the compressive sensing paradigm was described. A

novel chaotic map with superior properties over the current

maps is suggested. Both the encryption and compression

operations uses the sequence that is produced by the suggested

chaotic map. Meaningful encrypted images are then obtained

by embedding the compressed image on a carrier image.

Validation of the embedding and encryption procedure was

achieved through a variety of experimental outcomes and it

has been proved that the suggested technique outperforms

several other existing algorithms. Furthermore, it has been

demonstrated that the embedding process takes very less time

than the compression method. However, the major limitation

of the proposed work is the usage of Discrete Wavelet

transform (DWT) onto the carrier image. Since, one level

of DWT splits the carrier image into bands of reduced

dimension, the secret images have to be compressed before

embedding. Also, no images can be embedded onto lower

band (LL) of the transformed image, since it retains most

of the information of the carrier image that is required for

its reconstruction.
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