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Over the last decade, deep generative models have evolved to generate

realistic and sharp images. The success of these models is often attributed

to an extremely large number of trainable parameters and an abundance

of training data, with limited or no understanding of the underlying data

manifold. In this article, we explore the possibility of learning a deep generative

model that is structured to better capture the underlying manifold’s geometry,

to e�ectively improve image generation while providing implicit controlled

generation by design. Our approach structures the latent space into multiple

disjoint representations capturing di�erent attribute manifolds. The global

representations are guided by a disentangling loss for e�ective attribute

representation learning and a di�erential manifold divergence loss to learn

an e�ective implicit generative model. Experimental results on a 3D shapes

dataset demonstrate the model’s ability to disentangle attributes without

direct supervision and its controllable generative capabilities. These findings

underscore the potential of structuring deep generative models to enhance

image generation and attribute control without direct supervision with ground

truth attributes signaling progress toward more sophisticated deep generative

models.
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1 Introduction

Data-driven deep learning techniques have resulted in numerous advances, but several

findings have demonstrated the brittleness of such models in different end tasks (Nguyen

et al., 2015; Pontin, 2018). Many reasons have been hypothesized for such empirical

behavior, chief among which is the realization that there is a need to leverage known

physical laws such as the physics of image formation, the interaction of light with

surfaces, and disentangling the effects of intrinsic object-related shape from photometric

variation into deep learning frameworks (Bronstein et al., 2017). Several studies show

that even simple unaccounted for shifts in data can lead to large losses in performance.

Furthermore, from information theoretic perspectives (Achille and Soatto, 2018), the

concepts of invariance and task performance are considered at odds with each other (e.g.,

discrimination). Information theoretic metrics for invariance seek to reduce the dimension

of representations (Achille and Soatto, 2018), whereas metrics for a specific end-task such

as classification seem to benefit from larger representation dimension. Thus, it seems that

one cannot achieve true invariance while maintaining high end-task performance nor
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can one achieve high end-task performance while guaranteeing

invariance. Information theoretic analysis suggests the need for a

middle ground, where a geometric treatment of feature spaces and

loss functions can potentially allow deep representations to find

practical tradeoffs between task performance and invariance.When

applied to generative models, invariance often refers to achieving

a clean disentanglement of control variables–that correspond

specifically to physical factors, such as pose, lighting, and shape–

where modifying the control variable can be done in isolation,

without affecting other variables.

In vision literature, much prior knowledge exists about how

light interacts with surface geometry and reflectance properties, the

workings of projective geometry, and how temporal dynamics can

be used to explain observed dynamic scenes. These physical laws

and properties constrain the set of feasible or valid observations

from image sensors. Images are often constrained to lie in low-

dimensional subsets (of large Euclidean spaces), more formally

referred to as image manifolds. While numerous efforts have

sought to characterize these image manifolds, both empirically

and theoretically, throughout the last two decades (Turaga and

Srivastava, 2015; Shao et al., 2018), how they are integrated into

controllable and disentangled generative architectures is still an

open question. In prior study (Shukla et al., 2019), we have shown

that several of these constraint sets can be relaxed to subspace-

type or sphere-type constraints. Different such constraints can be

accommodated by constraining the features from the latent space

to have orthogonality properties, as a proxy for physical factor

disentanglement.

In the context of generative models, while there exist many

different classes of architectures, a common theme is to learn the

underlying distribution of the dataset. Once trained, it can be used

to sample novel data points from the underlying distribution. There

are diverse types of generative models, including but not limited

to generative adversarial networks (GANs; Goodfellow et al.,

2014) and variational autoencoders (VAEs; Kingma and Welling,

2013), each with pros and cons. These generative models generally

have a low-dimensional latent space modeled using a Gaussian

or uniform distribution, and they map these low-dimensional

points to complex high-dimensional data points, matching the

distribution of the training dataset. Generative models are versatile

and used in various applications such as text-to-image models

(Zhang et al., 2023), image-to-image translation (Zhu et al., 2017),

domain adaptation (Hoffman et al., 2018), image editing (Zhu

et al., 2020), and inverse problems (Asim et al., 2020). Furthermore,

these generative models can offer explainable and controllable

representation, leading to disentangled representations, a key area

of interest. How do we encode the geometric nature of the

output space in the loss function of generative model is still an

open question. In this article, we make some concerted advances

toward that viamanifold-divergence loss functions and latent-space

orthogonality properties.

One major challenge in existing approaches is the trade off

between their ability to disentangle different attributes and their

ability to generate novel samples. Most existing studies are based

on VAEs and GANs that encourage factorization of the latent

space. Methods based on VAE add a regularizer to the loss

function to encourage disentanglement in the encoder distribution.

Owing to their ability to capture explainable and controllable

representation, they have been used in applications in computer

vision, recommender systems, graph learning (Ma et al., 2019;

Wang et al., 2020), and various downstream tasks. VAEs are

auto-encoder models that map low-dimensional representation to

images with a goal of image reconstruction. As, the network only

focuses on reconstruction and mapping to it to Gaussian prior, it

has weak disentanglement. Thereafter, β-VAE proposed to add a

hyperparameter β that provides a tradeoff between regularization

and reconstruction. However, the generated images have low

reconstruction quality. With the success of geometric constraints

in different learning scenarios, they have been recently explored in

the context of unsupervised disentangled representation learning.

In this study, we draw from several prior threads of studies,

several of which we have pursued, including orthogonality

constraints on latent spaces, chart-autoencoder-inspired

architectures, and graph divergence measures as differentiable loss

functions. We develop a controllable generative architecture that

integrates the following components: (a) a generative architecture

motivated by chart-autoencoders to promote separation of latent

space in a set of disjoint latent spaces, (b) an orthonormality

constraint across latent spaces implemented as a proxy for

statistical independence to promote effective disentanglement, (c)

a differentiable graph theoretic divergence measure that serves

as an approximation to manifold-to-manifold divergence, as a

measure of discrepancy between the training-set and the generated

set. The contributions of this article are as follows:

• We propose a set of simple yet effective loss functions for

disentangled representation learning that combine the benefits

of orthogonality constraints in the latent space to promote

factor disentanglement, with a differentiable graph divergence

loss on the output to promote a manifold structure in the

output space.

• We develop an architecture that consists of encoding

latent spaces as attribute spaces that can be trained with

the aforementioned loss functions. This has the advantage

of providing image manipulation controls by navigating

individual attribute spaces.

• We show experimental results on the challenging 3D shapes

datasets, showing disentanglement of several meaningful

attributes, and their potential in generative modeling tasks.

2 Background

2.1 Notation

We use lowercase letters for scalars, bold lowercase letters for

vectors, and bold uppercase letters for matrices. We use G (X) =

(X,E) to define the complete directed graph over the vertex set X

with edges E, whereX = {x1, x2, . . . , xn} is a set of points inR
d. For

any edge, e ∈ E with adjacent vertices i and j, we denote the weight

of the edge by d (e) = d
(

xi, xj
)

= ‖xi − xj‖, where ‖.‖ denotes the

Euclidean norm. Following the notation fromDjolonga and Krause

(2017), we assume there is a function π that assigns a label to each

vertex, i.e., π :X → {1, 2}. We use x ∼ p to indicate that a random

vector x is drawn from a distribution p.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Shukla et al. 10.3389/fcomp.2024.1274779

2.2 Orthonormality in disentangled latent
spaces

Orthogonality in latent spaces is motivated as a proxy for

physical independence of variables. Specifically, our high-level

approach has been to promote the learning of disentangled

representations to account for physical variables such as rotation,

illumination, and shapes as elements of groups such as the special

orthogonal group, and Grassmannians.

Meanwhile, the illumination cone model is a pivotal concept

in computer vision, especially for tasks like facial recognition.

This model conceptualizes all potential images of an object under

varying lighting conditions as existing within a high-dimensional

space. Assuming Lambertian reflectance, and convex object-shapes,

one can show that the image space is a convex-cone in image

space (Georghiades et al., 2001). A relaxation of this model

leads to identifying cones as linear subspaces, which are seen

as points on a Grassmannian manifold Gn,k (n = image-size,

k = lighting dimensions, typically considered equal to number

of linearly independent normals on the object shape). Under

certain conditions of variance on the Grassmannian being low, a

distribution of points on the Grassmannian induces a distribution

on a high-dimensional sphere, whose dimension depends on n

and k (Chakraborty and Vemuri, 2015), which we have leveraged

in prior study to impose Grassmannian constraints in latent

spaces (Lohit and Turaga, 2017). Similarly, 3D pose is frequently

represented as an element of the special orthogonal group SO(3).

For analytical purposes, it is convenient to think of rotations

represented by quaternions, which are elements of the 3-sphere

S3 embedded in R
4, with the additional constraint of antipodal

equivalence. This makes rotations to be identified as points on a

real-projective space RP3. Real-projective spaces are just a special

case of the Grassmannian–in this case, of 1D subspaces inR4. From

a distribution on quaternions, we can induce a distribution in a

higher dimensional hyperspherical manifold.

Our previous approaches indicate that imposing these product-

of-sphere constraints via a simple orthonormality condition

improves model explainability, reduces calibration error, and

provides robustness to a variety of image degradation and feature-

pruning conditions (Choi et al., 2020). In this study, we show that

it improves the learning of disentangled representations as well.

Let zk represents the latent space representation corresponding

to the kth attribute. Now, for a disentangling network, the combined

orthogonal loss function is given by (1)

argminθ ,φ Ldis(θ ,φ)+ ‖ZZ⊤ − I‖2 (1)

where, Z = [z1, z2, . . . zk], with

zksubpart of the latent embedding: z = e(X).

2.3 Graph test statistics

In the context of controllable generative models, the main

goal is to train a generative model capable of transforming latent

space representations to samples generated by an unknown target

distribution. To ensure that the generated samples are drawn

according to a desired target distribution, it becomes essential

to measure the “closeness” between the latent space distribution

and the unknown target distribution. As traditional divergence

measures require knowledge of the underlying distributions, they

are not suitable for this task. In this article, we consider the k-NN

test statistic, a multivariate graph test statistics for computational

efficiency (Djolonga and Krause, 2017) that exhibit the desired

property of being distribution-free while acting as a good surrogate

for the divergence measure between distributions. Given that the

k-NN test statistic is inherently non-differentiable, a smoothing

process is introduced to approximate it with continuously

differentiable functions.

Let us consider the latent space representations, denoted by

z ∼ Q0, generated according to a distribution Q0. The generative

model then produces samples fθ (z) ∼ Q, where fθ is a differentiable

function parameterized by θ . The primary objective is to optimize

θ to produce samples that closely resemble the unknown target

distribution P. We now outline the procedure we employ to

compute this statistic as mentioned in Djolonga and Krause (2017).

First, we gather data samples from two distributions, denoted as

X0 ∼ P and X1 ∼ Q, which is aggregated to form a joint dataset

X = X0 ∪ X1. Then, we construct a complete graph G(X) on X, a

k-NN neighborhood denoted by U∗ is constructed by connecting

each point x ∈ X to its k-nearest neighbors (in Euclidean distance).

In order to distinguish between the two sets of data, we define a

group membership function, represented as a map π∗
:X → {0, 1},

which assigns the value 0 to elements in X0 and the value 1 to

elements in X1. Finally, the k-NN test statistic, denoted as Tπ∗ ,

is computed by evaluating the number of edges in U∗ connecting

points in X0 to points in X1, more formally for every edge e ∈ U∗

with adjacent vectors i and j, we denote by Iπ∗ (e) to mean I{π∗(i) 6=

π∗(j)}, where I is the indicator function. The k-NN test statistic is

then given by Tπ∗ (U∗) =
∑

e∈U∗ Iπ∗ (e). Under the null hypothesis

where the two distributions are equal, it results in a larger test

statistic.

As our objective was to design a generative model capable of

producing according to a target distribution P, we seek to identify

the optimal parameter θ by maximizing the expected test statistic

EX0∼P,Z∼Q0 [Tπ∗ (X0, fθ (Z))]. However, as Tπ∗ is not differentiable,

we use the differentiable k-NN test (Djolonga and Krause, 2017)

by relaxing it to expectations in natural probabilistic models by

designing a probability distribution over a subset of the edges U

to focus on feasible configurations (Djolonga and Krause, 2017).

To this end, the neighborhood U is drawn according to the Gibbs

measure with the temperature parameter λ. Subsequently, the

graph test statistic can be replaced by its expectation giving rise to

the smoothed statistic (Djolonga and Krause, 2017):

Tπ⋆

(

U⋆
)

→ Tλ
π⋆ : = EU∼P(.|d,λ) [Tπ⋆ (U)] =

∑

e∈U

Iπ⋆ (e)µ
(

d/λ
)

e
,

(2)

where µ
(

d/λ
)

e
denotes the marginal probability of the edge e. In

this study, we employ the smoothed k-NN test with k = 1, as

it provides the most computationally efficient differentiable test.

In this case, it has been shown that the smoothed graph test in

Equation (2) redcues to the following

Tλ
π⋆ (X0,X1) =

∑

i,j

I{π∗(i) 6= π∗(j)}
e−‖xi−xj‖/λ

∑

k6=i e
−‖xi−xk‖/λ

. (3)
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FIGURE 1

Overview of the proposed approach DAE-OG. Images are transformed with an encoder to a low-dimensional latent space. This representation is

partitioned into k disjoint subparts corresponding to k attributes and transformed by k attribute auto-encoders. This is followed by a decoder that

reconstructs the image from the concatenated attribute auto-encoder representations.

Although this test defined by Equation (3) can be used directly,

lower values of Tλ
π⋆ does not guarantee lower p-values; toward this,

Djolonga and Krause (2017) proposed an alternative test statistic

based on the notion of a smooth p-value defined as

tλπ⋆ =
Tλ

π⋆ − Eπ∼H0

[

Tλ
π

]

√

Vπ∼H0

[

Tλ
π

]

. (4)

We use this notion of the t-statistic in Equation (4) to define our

graph divergence loss as follows,

Lλ
stat(X0,X1) = −tλπ⋆ (X0,X1) = −

Tλ
π⋆ − Eπ∼H0

[

Tλ
π

]

√

Vπ∼H0

[

Tλ
π

]

. (5)

3 Proposed framework

In this section, we provide details of the proposed disentangled

generative model. An overview of the framework is shown in

Figure 1. We use autoencoder as the backbone of our model

and improve disentangling performance and reconstruction

quality through proposed constraints and divergence loss.

Specifically, we introduce an orthogonality loss to promote

disentangled representation and a manifold divergence loss to

learn the underlying data distribution. These losses improve

the disentanglement and generative performance of the model,

discussed in detail in the following sections.

Our approach first embeds the training images into a low-

dimensional representation followed by mapping disjoint parts

of these representations to low-dimensional latent vectors with

attribute auto-encoders, aiming to encode different attributes

in the data. This is followed by a decoder/generator network

that transforms representations from attribute auto-encoders to

an image.

3.1 Encoder network

Specifically, as the first step, images are transformed by the

encoder e(θ) to the latent representation ze ∈ R
nout . The

latent representation is partitioned into k equally sized subsets,

where k denotes the number of distinct attributes in the data.

The partitioned representations are transformed using k different

attribute auto-encoders.

3.2 Relevance of attribute auto-encoders

Specifically, we utilize attribute encoder networks that

transform a disjoint subset of latent representations further into

a lower dimension space. This allows the network to learn, from

disjoint latent dimensions, relevant and informative factors of

variations that control different aspects of the image. The choice

of the number of such attribute auto-encoders is empirically based

on observed factors of variations in the data. This is also based

on the assumption that the images are created by different factors

that can vary independently of each other, which is often the

case in practical situations. Each of the attribute auto-encoder

transforms the subset of latent representation to an integral latent

representation of dimension nk for the k
th attribute. We choose nk

as the number of unique variations in an attribute.

3.3 Decoder network

The decoder network is responsible for reconstructing an image

of the same size as the input using the embeddings from the

attribute encoders. The embeddings are stacked in-order and fed to

the decoder network for reconstruction. For the sake of simplicity,
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we refer to the combined parameters of attribute encoders and the

decoder network as φ and the mapping function as g.

3.4 Loss Functions

We now present details of our loss functions that enable

disentangled representation learning in an auto-encoder

framework. Our loss function consists of three parts that are

discussed below:

3.4.1 Reconstruction loss
Given an autoencoder, reconstruction loss measures the ability

of the network to reconstruct an image from the input image when

transformed into a low-dimensional space.

3.4.2 Enforcing orthogonality on latent
embeddings

We impose the orthogonality constraint on the initial

latent space. To achieve disentangled representation, we enforce

orthogonality constraint on representations of every image. The

encoder transforms the image to nout dimensions. In order to

ensure stability during network training, the subset dimensions are

normalized to unity, as given by Equation (1).

3.4.3 Enforcing Lstat on latent embeddings
Given an unknown target distribution, the main objective was

to learn an implicit generative model where one can sample from

without the ability to evaluate the distribution. This can be achieved

by minimizing a divergence loss that measures the difference

between the target distribution and a transformation on the latent

space and can be captured by enforcing theLstat on the initial latent

embeddings, as given by Equation (5).

The total loss function is given as follows:

L(θ ,φ) =argminθ ,φ ‖X− Xrecon‖2 + α1‖ZZ
⊤ − I‖2

+ α2Lstat(X, g(N )) (6)

where, Z ∈ R
nout = [ẑ1, ẑ2, . . . ẑk], Xrecon = g(e(X, θ),φ)

and ẑi = zi/‖zi‖2 for i = 1, 2, ..k

here zk represents the latent space representation

corresponding to the kth encoder and α1 and α2 are

hyperparameters for the weights corresponding to the two loss

functions. Here, we use θ to denote the encoder e parameters, and

φ denotes the combined parameters of the attribute auto-encoders

and the decoder for simplicity.

3.4.4 Generation
In order to generate new samples, we sample from a Gaussian

prior with zero mean and unit standard deviation. The normal

distribution is defined in the nout dimensional space.

4 Experimental setup and results

In this section, we present details about the experiments to

evaluate the effectiveness of our approach. Our approach is termed

Disentangled Attribute Encoder with Orthogonality and Graph

divergence—DAE-OG. We compare our approach DAE-OG with

the model without orthogonality constraint, referred to asDAE-G.

4.1 Setup

4.1.1 Dataset description
Our approach is evaluated on the 3D shapes dataset Burgess

and Kim (2018). This dataset consists of 3D shapes, procedurally

generated from six ground truth independent latent factors. These

factors are floor color, wall color, object color, scale, shape, and

orientation. For our experiments, we re-sample the dataset to have

five variations for two different objects with fixed floor hue.

4.1.2 Model
We implement the initial encoder with convolution layers

followed by a fully connected layer. Each of the attribute encoders

consists of FC and ELU layers. The decoder is constructed in the

same way as the encoder. For our experiments, we report results

with three and five attribute auto-encoders. We use the same

network architecture across all our experiments–an overview of the

architecture is shown in Table 1.

4.1.3 Training details
We adopt an annealing strategy for network training with the

loss function given in Equation (6). The models are trained for

1,000 epochs, with an initial learning rate of 3e − 4. The value of

hyperparameters α1 and α2 are selected as α1 = α2 = 0.1 and α1 =

α2 = 0.001 for 3 and 5 attribute spaces, respectively. We set nout to

96 and 105 for 3 and 5 attribute encoders, respectively. In case of 3

attribute encoder network, the nk corresponding to three attribute

encoders are 6, 9, and 5. In addition, in case of 5 attribute encoder

network, the nk corresponding to the five attribute encoders are 15,

8 10, 10, and 2. For the graph divergence loss, we use k = 1 in k-nn

test and λ = 0.1 for all our experiments.

4.2 Results

We compare the advantages of our model from both

qualitative and quantitative aspects, across many criteria including

reconstruction error, image quality, disentanglementmeasures, and

FID scores.

4.2.1 Reconstruction fidelity
We first evaluate the reconstruction fidelity of the model both

quantitatively and qualitatively. Few example images as well as

corresponding reconstructed images are shown in Figure 2 for

3 and 5 partitions of the latent space. We also report MSE in
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TABLE 1 Details of the network architectures used to design the generative model used across di�erent experiments.

Encoder: images−→ Conv(3, 16, 4, 4) + ELU Decoder: FC (nout , 128) + ELU

Conv(16, 32, 2, 2) + ELU FC (128, 2048) + ELU

FC (2048, 128) + ELU DConv(32,16,2,2) + ELU

FC (2048, nout), DConv(16, 3, 4, 4) + Sigmoid()−→ Images

Attribute auto-encoders

Encoder FC (nin ,128) + ELU Decoder FC (kn ,32) + ELU

FC (128,64) + ELU FC (32, 64) + ELU

FC (64, 32) + ELU FC (64,128) + ELU

FC (32,nk) FC (128, nout)

Here, nk denotes the internal dimension of the attribute autoencoder, chosen to be the number of unique labels in an attribute.

FIGURE 2

Some example images and the corresponding reconstructions from our proposed model DAE-OG and its improvement over DAE-G for three and

five attribute spaces. DAE-OG results in better visual quality.

TABLE 2 Comparison of MSE, PSNR, and FID of DAE-G and DAE-OGmodels for three and five attribute encoder models.

Method Three attribute encoder Five attribute encoder

MSE ↓ PSNR ↑ FID ↓ MSE ↓ PSNR ↑ FID ↓

DAE-G 0.054 14.25 154.53 0.016 19.48 146.49

DAE-OG 0.019 17.84 153.04 0.014 19.97 145.80

Bold means better performance.

Table 2. We observe that our approach consistently results in better

reconstruction quality both quantitatively and qualitatively.

4.2.2 Image generation
Images are generated by sampling from a normal distribution

in the initial encoder latent space. Example images are shown in

Figure 3 for 3 and 5 attribute encoders. We observe that DAE-OG

generates images that are visibly consistently better than DAE-G.

4.2.3 Latent space interpolation
Latent space manipulation is important for assessing the

performance of disentangling abilities of models in terms of

capturing independent and semantically meaningful factors of

variations. We show results by interpolating between two images

in the latent space of the initial encoder. The results show that

traversal in the latent space leads to smoother interpolation in

the image space as well. Specifically, owing to the orthogonality

constraint, we obtain better results as shown in the Figures 4–7.

4.2.4 Disentanglement and FID scores
A large number of disentanglement scores have been proposed

over the last several years that measure different aspects of

disentanglement. We use a few of them in this study to evaluate

the quality of disentanglement achieved owing to the contribution

of orthogonality constraint. The results are shown in Table 3.

We observe that the results with orthogonality constraints are

consistently better than their counterpart.

4.2.5 E�ect of orthogonality
As with the method DAE-OG, we observe smoother transition

within an attribute space. We note that imposing the orthogonality

loss term promotes disentanglement as seen in the low-dimensional
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FIGURE 3

Some example images generated from our proposed model with three and five attribute auto-encoders by using implicit sampling for DAE-G and

DAE-OG models.

FIGURE 4

Three example interpolation results in the latent space of three attribute encoders on DAE-G and DAE-OG (bottom row). DAE-OG achieves a

smoother interpolation.

visualization of the latent space in Figure 8, done via t-SNE (van der

Maaten and Hinton, 2008).

5 Discussion

The experimental datasets chosen here in our study use the

3D shapes dataset, which has simple objects and scenes; still has

sufficient complexity owing to shape change, view change, and

background changes. We do observe meaningful disentanglement

of variables in this case. We do anticipate that scaling to

more complex datasets is feasible and could form directions for

future study. Due to the special nature of disentanglement tasks,

where one needs to further provide some notion of meaning to

variable disentangled, common datasets used in literature to assess

disentangling models usually include datasets, which show some

natural transitions. These include (a) KITTI-masks–which contain

binary masks of pedestrians (Klindt et al., 2021), (b) the Natural
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FIGURE 5

Three example interpolation results in the latent space of five attribute encoder. The first and the last image in each row denotes the start and end of

the interpolation.

FIGURE 6

Interpolation along individual attribute space by keeping the other two attribute spaces frozen for a three attribute encoder-based model. For

DAE-OG, in 1st attribute space, we see variation in the size; in 2nd attribute space, we see variation in the color of the object; and in 3rd attribute

space, we see variation in shape.

Sprites dataset (Matthey et al., 2017), which consists of pairs of

rendered sprite images with generative factors from the YouTube-

VIS challenge, which we have experimented with before (Shukla

et al., 2019), and (c) the 3DIdent dataset (Zimmermann et al., 2021),

which contains objects rendered in 3D under differing lighting and

viewing conditions.

The dataset we have chosen (Kim and Mnih, 2018) is another

standard benchmark in this area, and is most similar to 3DIdent,

however with simpler objects. With more complex objects as in

3DIdent, some of the observed visual variation will be due to self-

shadowing and cast-shadowing, which would be an interesting

avenue to explore the impact on disentanglement performance.
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FIGURE 7

Interpolation along individual attribute space by keeping the other two attribute representations frozen for five attribute encoder-based model for

DAE-G and DAE-OG. DAE-OG results in smoother interpolation in each space, with only one attribute change in a given space.

TABLE 3 Disentanglement metric score.

Method Three attribute encoder Five attribute encoder

mig dcimig mig_sup jemmig mig dcimig mig_sup jemmig

DAE-G 0.0234 0.2832 0.1709 0.2271 0.0333 0.3172 0.1948 0.2273

DAE-OG 0.02760 0.2580 0.1589 0.2083 0.0278 0.3366 0.1885 0.2248

DAE-OG consistently outperforms DAE-G across the various disentanglement metrics.

6 Conclusion

In this article, we presented an approach to learning

disentangled representations in a generative framework.

In addition to disentanglement, our approach enables

diverse image generation and manipulation. We find that

orthogonality in the latent space encourages disentanglement

with a graph divergence loss that transforms the latent

space. Our results support the hypothesis that inductive

biases are crucial for learning disentangled representations.

In future, we would like to explore the possibility of

incorporating known attribute-specific constraints to

further improve the interpretability of the disentangled

representations.
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FIGURE 8

Two-dimensional visualization of the latent space representations showing the e�ect of orthogonality on the latent space representation for three

attribute latent spaces. Attributes are color-coded. We note that DAE-OG achieves more compact and smoother transitions within an attribute space.

Author’s note

This study was carried out when AS was at Geometric Media

Lab, Arizona State University.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/deepmind/3d-shapes.

Author contributions

AS: Conceptualization, Investigation, Methodology, Writing

- original draft, Writing - review & editing. RD: Investigation,

Writing - original draft. RS: Investigation, Writing - original

draft. AR: Writing - original draft, Writing - review & editing.

PS: Investigation, Writing - original draft, Writing - review &

editing. GD: Writing - original draft, Writing - review & editing.

VB: Investigation, Writing - original draft, Writing - review &

editing. PT: Conceptualization, Investigation, Writing - original

draft, Writing - review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by Defense Advanced Research Projects Agency

(DARPA) under Agreement No. HR00112290073.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Achille, A., and Soatto, S. (2018). Emergence of invariance and
disentanglement in deep representations. J. Machine Learn. Res. 19, 1947–1980.
doi: 10.1109/ITA.2018.8503149

Asim, M., Daniels, M., Leong, O., Ahmed, A., and Hand, P. (2020). “Invertible
generative models for inverse problems: mitigating representation error and dataset
bias,” in International Conference on Machine Learning (PMLR), 399–409.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017).
Geometric deep learning: going beyond euclidean data. IEEE Sign. Process. Mag. 34,
18–42. doi: 10.1109/MSP.2017.2693418

Burgess, C., and Kim, H. (2018). 3D Shapes Dataset. Available online at: https://
github.com/deepmind/3dshapes-dataset/

Chakraborty, R., and Vemuri, B. C. (2015). “Recursive fréchet mean computation
on the grassmannian and its applications to computer vision,” in IEEE International
Conference on Computer Vision, ICCV 2015, 4229–4237.

Choi, H., Som, A., and Turaga, P. K. (2020). Role of orthogonality constraints in
improving properties of deep networks for image classification. CoRR abs/2009.10762.
Available online at: https://arxiv.org/abs/2009.10762

Djolonga, J., and Krause, A. (2017). “Learning implicit generative models using
differentiable graph tests,” in Advances in Approximate Bayesian Inference NIPS
Workshop. Available online at: http://www.approximateinference.org/2017/accepted/
DjolongaKrause2017.pdf

Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. (2001). From few tomany:
illumination cone models for face recognition under variable lighting and pose. IEEE
Trans. Pattern Anal. Mach. Intell. 23, 643–660. doi: 10.1109/34.927464

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., et al. (2014). “Generative adversarial nets,” in Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014,Montreal, Quebec, Canada, eds. Z. Ghahramani,M.Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 2672–2680.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274779
https://github.com/deepmind/3d-shapes
https://doi.org/10.1109/ITA.2018.8503149
https://doi.org/10.1109/MSP.2017.2693418
https://github.com/deepmind/3dshapes-dataset/
https://github.com/deepmind/3dshapes-dataset/
https://arxiv.org/abs/2009.10762
http://www.approximateinference.org/2017/accepted/DjolongaKrause2017.pdf
http://www.approximateinference.org/2017/accepted/DjolongaKrause2017.pdf
https://doi.org/10.1109/34.927464
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Shukla et al. 10.3389/fcomp.2024.1274779

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., et al.
(2018). “CYCADA: cycle-consistent adversarial domain adaptation,” in International
Conference on Machine Learning (PMLR), 1989–1998.

Kim, H., andMnih, A. (2018). “Disentangling by factorising,” Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, eds. J. Dy and A. Krause, vol. 80 (PMLR), 2649–2658. Available online at:
https://proceedings.mlr.press/v80/kim18b.html

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114. doi: 10.48550/arXiv.1312.6114

Klindt, D. A., Schott, L., Sharma, Y., Ustyuzhaninov, I., Brendel, W., Bethge, M., et
al. (2021). “Towards nonlinear disentanglement in natural data with temporal sparse
coding,” International Conference on Learning Representations. Available online at:
https://openreview.net/forum?id=EbIDjBynYJ8

Lohit, S., and Turaga, P. K. (2017). “Learning invariant riemannian geometric
representations using deep nets,” in IEEE International Conference on Computer Vision
Workshops, ICCVWorkshops 2017 (IEEE Computer Society), 1329–1338.

Ma, J., Cui, P., Kuang, K., Wang, X., and Zhu, W. (2019). “Disentangled graph
convolutional networks,” in International Conference on Machine Learning (PMLR),
4212–4221.

Matthey, L., Higgins, I., Hassabis, D., and Lerchner, A. (2017). dsprites:
Disentanglement Testing Sprites Dataset. Available online at: https://github.com/
deepmind/dsprites-dataset/

Nguyen, A. M., Yosinski, J., and Clune, J. (2015). “Deep neural networks are easily
fooled: high confidence predictions for unrecognizable images,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 427–436.

Pontin, J. (2018). Greedy, Brittle, Opaque, and Shallow: The Downsides to Deep
Learning. Wired Magazine.

Shao, H., Kumar, A., and Fletcher, P. T. (2018). “The riemannian
geometry of deep generative models,” in 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW),
4288.

Shukla, A., Bhagat, S., Uppal, S., Anand, S., and Turaga, P. K. (2019). “PrOSe:
product of orthogonal spheres parameterization for disentangled representation
learning,” in 30th British Machine Vision Conference 2019, BMVC 2019, Cardiff, UK,
September 9-12, 2019 (BMVA Press), 88. Available online at: https://bmvc2019.org/wp-
content/uploads/papers/1056-paper.pdf

Turaga, P. K., and Srivastava, A. (2015).Riemannian Computing in Computer Vision,
1st Edn. Berlin: Springer Publishing Company, Incorporated.

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J.
Machine Learn. Res. 9, 2579–2605. Available online at: http://jmlr.org/papers/v9/
vandermaaten08a.html

Wang, X., Jin, H., Zhang, A., He, X., Xu, T., and Chua, T.-S. (2020). “Disentangled
graph collaborative filtering,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 1001–1010.

Zhang, C., Zhang, C., Zhang, M., and Kweon, I. S. (2023). Text-to-image
diffusion model in generative AI: a survey. arXiv preprint arXiv:2303.07909.
doi: 10.48550/arXiv.2303.07909

Zhu, J., Shen, Y., Zhao, D., and Zhou, B. (2020). “In-domain gan inversion for
real image editing,” in European Conference on Computer Vision (Berlin: Springer),
592–608.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired
image-to-image translation using cycle-consistent adversarial networks,”
in Proceedings of the IEEE International Conference on Computer Vision,
2223–2232.

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., and Brendel, W. (2021).
“Contrastive learning inverts the data generating process,” in Proceedings of the 38th
International Conference on Machine Learning, eds. M. Meila and T. Zhang (PMLR),
12979–12990.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1274779
https://proceedings.mlr.press/v80/kim18b.html
https://doi.org/10.48550/arXiv.1312.6114
https://openreview.net/forum?id=EbIDjBynYJ8
https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/
https://bmvc2019.org/wp-content/uploads/papers/1056-paper.pdf
https://bmvc2019.org/wp-content/uploads/papers/1056-paper.pdf
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.48550/arXiv.2303.07909
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Orthogonality and graph divergence losses promote disentanglement in generative models
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Orthonormality in disentangled latent spaces
	2.3 Graph test statistics

	3 Proposed framework
	3.1 Encoder network
	3.2 Relevance of attribute auto-encoders
	3.3 Decoder network
	3.4 Loss Functions
	3.4.1 Reconstruction loss
	3.4.2 Enforcing orthogonality on latent embeddings
	3.4.3 Enforcing Lstat on latent embeddings
	3.4.4 Generation


	4 Experimental setup and results
	4.1 Setup
	4.1.1 Dataset description
	4.1.2 Model
	4.1.3 Training details

	4.2 Results
	4.2.1 Reconstruction fidelity
	4.2.2 Image generation
	4.2.3 Latent space interpolation
	4.2.4 Disentanglement and FID scores
	4.2.5 Effect of orthogonality


	5 Discussion
	6 Conclusion
	Author's note
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


