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OSPS-MicroNet: a distilled
knowledge micro-CNN network
for detecting rice diseases

P. Tharani Pavithra and B. Baranidharan*

Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur,

Tamil Nadu, India

More than half of the world’s population relies on rice as their primary

food source. In India, it is a dominant cereal crop that plays a significant

role in the national economy, contributing to almost 17% of the GDP and

engaging 60% of the population. Still, the agricultural sector faces numerous

challenges, including diseases that can cause significant losses. Convolutional

neural networks (CNNs) have proven e�ective in identifying rice diseases

based on visual characteristics. However, CNNs require millions of parameters,

resulting in high computational complexity, so deploying these models on

limited-resource devices can be di�cult due to their computational complexity.

In this research, a lightweight CNN model named Oryza Sativa Pathosis Spotter

(OSPS)-MicroNet is proposed. OSPS-MicroNet is inspired by the teacher-student

knowledge distillation mechanism. The experimental results demonstrate that

OSPS-MicroNet achieves an accuracy of 92.02% with only 0.7% of the network

size of the heavyweight model, RESNET152. This research aims to create a

more streamlined and resource-e�cient model to detect rice diseases while

minimizing demands on computational resources.
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convolutional neural network (CNN), rice leaf diseases, ResNet152, MobileNet, OSPS-
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1 Introduction

Rice is a cereal grain that is a staple food for more than half of the world’s population,

mainly in Asia and Africa. Rice is an essential agricultural commodity, and it is the third

most produced crop in the world after sugarcane and maize. It is an essential crop for

human nourishment, providing more than one-fifth of humans’ calories globally (Tharani

and Baranidharan, 2023). In India, it is one of the foremost and dominant cereal collects,

and it is grown in various regions of the country. Rice is a staple crop that thrives in rain-fed

regions with a temperature of 25◦C and a precipitation of over 100 cm. Rice is cultivated

more commonly on irrigated lands with lower precipitation (https://www.statista.com/

topics/4868/agricultural-sector-in-india).

According to the latest estimates, India has achieved a record production of rice during

the 2021–2022 crop year, which runs from July to June. The total rice production during

this period is estimated to be 130.29 million tons, where the current production exceeds

the average production of the past 5 years by 13.85 million tons, which were 116.44 million

tons (https://agricoop.gov.in/Documents/annual_report_english_2022_23.pdf).

However, rice production facesmany challenges, and one of the significant challenges is

the spread of diseases in crops, causing several sufferers. During the year 2021, agricultural

practitioners encountered significant challenges, including∼33% loss due to diseases such
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as blast, bacterial sheath blight, false smut, tungro, and brown

spots that emerged and were caused by heavy rainfall during the

Northeast monsoon (Temniranrat et al., 2021).

Rice diseases constitute a significant challenge for rice farmers

worldwide, as they can significantly reduce the yields and quality of

rice crops. The five rice diseases that are taken into account in this

paper are as follows:

1.1 Rice blast

The pathogen infects rice plants in the form of spores, resulting

in the formation of lesions or spots on various plant parts, including

the leaves, leaf collar, panicle, culm, and culm nodes. The pathogen

remains capable of producing spores for over 20 days, posing a

severe threat to susceptible rice crops (Liu and Zhang, 2021). This

disease affected even “Manuvarna,” a new rice type announced by

the Kerala Agricultural University, cultivated on around 250 acres

of land in the Wayanad region (Tharani and Baranidharan, 2023).

1.2 Brown spot

It is a fungal ailment that primarily affects rice plants, targeting

various plant parts such as leaves, glumes, seedlings, sheaths, stems,

and grains of mature plants. The presence of dark coffee-colored

spots is notable in the panicle, and severe infestations can lead

to spot formation in the grains, resulting in reduced yield and

compromised milling quality (Terensan et al., 2022).

1.3 Bacterial sheath blight

Generally, it will be first noticed during the heading stage of

the rice plant. Over time, these lesions expanded both in length

and width, exhibiting a wavy margin, and gradually turned a straw

yellow color, eventually covering the entire leaf. As the disease

advanced, the lesions spread across the entire leaf blade, giving it

a straw-colored appearance (Singh et al., 2019).

1.4 Tungro

Rice tungro disease is a result of the synergistic action of

two viruses, which are transmitted by leafhoppers. This disease

manifests through symptoms like leaf discoloration, stunted

growth, decreased tiller numbers, and partially filled grains. Tungro

disease also affects certain wild rice relatives and other grassy weeds

commonly found in rice paddies. Infections can take place at any

growth stage of the rice plant, although they are most commonly

observed during the vegetative phase. The tillering stage of the plant

is particularly susceptible to the disease’s impact (Singh et al., 2023).

1.5 False smut

The pathogen responsible for rice false smut, known as

Ustilaginoidea virens, enters the rice spikelet through a small gap

before heading. The main source of infection is the presence of

chlamydospores in the soil. During the vegetative stage of rice

growth, the fungus establishes itself by colonizing the tissue located

at the growing points of the tillers. The impact of rice false smut is

primarily qualitative, affecting the visual appearance of the crop.

It is crucial to remove the brown “smut balls” to preserve the

visual integrity of the harvested rice (https://en.wikipedia.org/wiki/

Ustilaginoidea_virens).

The agricultural sector is actively exploring innovative

strategies to enhance crop yields due to unpredictable climate

changes, rapid population growth, and concerns about food

security. Artificial intelligence in agriculture, often referred to as

“Agriculture Intelligence,” is becoming an integral part of the

industry’s technological evolution. It finds applications in precision

farming, disease detection, and crop phenotyping, leveraging tools

such asmachine learning, deep learning, image processing, artificial

neural networks, convolutional neural networks, Wireless Sensor

Network (WSN) technology, wireless communication, robotics,

the Internet of Things (IoT), various genetic algorithms, fuzzy

logic, and computer vision. The integration of these technologies

enables a reduction in the extensive use of chemicals, leading

to decreased expenses, improved soil fertility, and increased

productivity (Pathan et al., 2020).

For example, Wang et al. devised a new method to

improve the efficiency of the seeding motor control system

in electric-driven seeding (EDS). This approach involves the

utilization of a genetic particle swarm optimization (GAPSO)-

optimized fuzzy PID control strategy. The complexity of

determining fuzzy controller parameters was tackled by

integrating two quantization factors for the fuzzy controller’s

input. Moreover, the introduction of three scaling factors

for the output of the fuzzy controller further refines the

system. This innovative strategy aims to enhance the

performance of electric-driven seeding by addressing challenges

associated with fuzzy controller parameterization (Wang et al.,

2022).

Zhou et al. developed a specialized system for controlling the

application of liquid fertilizer, utilizing a fuzzy PID algorithm

to integrate precise variable fertilization and targeted deep

fertilization technologies. The primary emphasis was on

developing the fertilization equipment and implementing

an adaptive fuzzy PID control strategy tailored for targeted

variable fertilization. Following this, a mathematical model was

formulated for the control system of liquid fertilizer used in

targeted variable fertilization, specifically designed to meet the

needs of intertillage and fertilization in corn crops (Zhou et al.,

2023).

This multi-faceted approach aligns with the industry’s quest

for sustainable and efficient agricultural practices. Convolutional

neural network (CNN)-based computer vision shows promising

results in identifying the above-mentioned rice diseases early

and accurately, which can assist in managing and controlling

these diseases. However, most of the existing CNNs have a huge

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1279810
https://en.wikipedia.org/wiki/Ustilaginoidea_virens
https://en.wikipedia.org/wiki/Ustilaginoidea_virens
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tharani Pavithra and Baranidharan 10.3389/fcomp.2024.1279810

number of parameters, which makes them less desirable for

edge devices or low-power platforms. This is primarily due to

hardware limitations and low memory constraints on portable

computing devices. To make CNNs viable and practical in such

resource-constrained environments, this paper mainly focuses

on techniques that aim to minimize the computational and

memory requirements of CNN models, enabling them to run

efficiently on edge devices and low-power platforms (Zhang et al.,

2019).

In this research paper, we introduce OSPS-MicroNet, a

lightweight convolutional neural network (CNN) model developed

through the application of the teacher-student network paradigm.

The model leverages the knowledge distillation process to enable

efficient model compression, transferring insights from a larger,

computationally intensive teachermodel to amore streamlined and

resource-efficient student model.

Our choice of teacher models comprises two pre-trained CNNs,

namely, ResNet152 and MobileNet. These well-established models

serve as the source of knowledge for our proposed OSPS-MicroNet.

The utilization of these advanced architectures not only ensures

a robust foundation but also facilitates the extraction of valuable

insights for the creation of an effective student model.

The resultant student model, referred to as OSPS-MicroNet,

is designed with a minimal number of parameters, ensuring a

lightweight and computationally efficient architecture. Through the

knowledge distillation process from ResNet152 and MobileNet,

OSPS-MicroNet achieves notable accuracies of 92.02 and 90%,

respectively. This demonstrates the effectiveness of our custom-

built model in capturing and retaining the essential knowledge

distilled from the more complex teacher models.

In conclusion, OSPS-MicroNet, with its innovative application

of the teacher-student network paradigm and knowledge

distillation, presents a promising approach to model compression.

The successful transfer of knowledge from ResNet152 and

MobileNet to OSPS-MicroNet showcases the potential for

achieving high accuracy with a significantly smaller and more

resource-efficient neural network.

The paper systematically presents its research on the detection

of rice leaf diseases through computer vision. Beginning with

a thorough literature review in Section 2, it establishes a

contextual foundation for its contributions by examining prior

research endeavors. Section 3 details the methodology, including

dataset collection in Section 3.1 and in-depth exploration of the

convolutional neural network (CNN) and the unique teacher-

student network dynamics employed in crafting the OSPS-

MicroNet model in Sections 3.2 and 3.3, respectively. The

convolutional models chosen for knowledge distillation are

elucidated in Section 3.4. Section 4 delves into the operational

principles of the CNN models, providing a comprehensive

analysis of the architecture and functionality, with a focus

on the student model, OSPS-MicroNet. The paper concludes

that a more streamlined architecture can outperform its larger

counterparts in specific domains through effective knowledge

transfer, substantiating this claim with experimental results and

critical evaluation. Overall, the structured approach ensures a clear

presentation of the research process and findings in the realm of

rice leaf disease detection through computer vision.

2 Literature survey

Numerous studies have focused on using deep learning models

to identify rice leaf diseases. Many of these studies employ fine-

tuned, general-purpose models, and some propose adaptations of

conventional CNN models to precisely classify diseased leaves.

Upadhyay and Kumar present an efficient method for

identifying and recognizing rice plant diseases using lesion size and

color in leaf images. The method presented in this study involves

using Otsu’s global thresholding technique to binarize images and

eliminate background noise. The anticipated model employs fully

connected layers of convolution to detect three types of rice diseases

and has been trained with 4,000 samples of diseased rice leaves and

4,000 healthy leaf images (Upadhyay and Kumar, 2022).

Temniranrat et al. created an automatic and user-friendly LINE

Bot System that can spot paddy crop diseases from real paddy field

images to aid rice farmers in enhancing the yield and quality of

their crops. The implementation of the LINE Bot system utilizes

YOLOv3, which was identified as the most effective performance

technique in previous research, to analyze the images and detect

any diseases present. The results are then displayed in a clear and

easy-to-understand format for the users (Temniranrat et al., 2021).

Patil and Kumar developed a rice-fusion framework that

involves two stages. First, numerical features are extracted from

data related to agriculture andmeteorology that is gathered through

sensors. Second, visual features are extracted from images of rice

captured by cameras. By processing the fused features through the

dense layer, the framework produces a single diagnosis for the rice

disease (Patil and Kumar, 2021).

Yang et al. designed a mobile crop disease identification system

to be adaptive to poor network environments. The system utilizes

rice morphological characteristics for offline acknowledgment of

rice false smut (RFS) using support vector machine (SVM) models

(Yang et al., 2021).

Jiang et al. examined three distinct diseases in the paddy

crop and two types of diseases that prevail in the wheat crop. A

dataset of 40 images for each leaf disease has been gathered and

improved to enhance the performance of the Visual Geometry

Group Network-16 (VGG16) archetypal. The technique suggested

to enhance the VGG16 model employs the principle of multi-

task learning. Furthermore, transfer learning and alternate learning

methods are utilized with the pre-existing ImageNet model to

further boost the VGG16 model’s precision (Jiang et al., 2021).

Wang et al. presented an innovative slant idea called ADSNN-

BO for detecting and classifying rice diseases from images

of rice leaves. The proposed ADSNN-BO model follows the

MobileNet architecture, is enhanced with an attention mechanism,

and is optimized using Bayesian optimization. Feature analysis

techniques, such as activation mapping and filter visualization, are

employed to ensure interpretability. The findings indicate that the

attention-based mechanism employed in the ADSNN-BO model

leads tomore effective learning of informative features (Wang et al.,

2021).

In the study by Chen et al., a frame-based imaging spectroscopy

device for near-earth remote sensing was used to examine a

complex planting environment. To distinguish between healthy

and U. virens-infected rice, a mixed detection method was utilized.
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The study involved the creation of 49 different arrangements and

over 196 differentiation models, which included seven sowing data

plots, two farm management types, and 23 pattern recognition

methods. The accuracy of the models was verified, and in most

cases, it is above 95%. The accuracy was exceptionally high

when deep learning-based feature sequences were used, with most

accuracies reaching 100% after 100 epochs and iterations (Chen

et al., 2022).

Three spectroscopic methods were used in a study by Feng et al.

to identify three distinct diseases that impact rice plants, namely,

leaf blight, rice blast, and rice sheath blight. These methods include

visible/near-infrared hyperspectral imaging (HSI) for spectral data,

mid-infrared spectroscopy (MIR), and laser-induced breakdown

spectroscopy (LIBS). Identification models were developed using

each spectroscopic method (Feng et al., 2020).

Yang et al.’s study introduces a novel approach for the effective

and precise identification of rice leaf diseases, utilizing a stacking-

based integrated learning model. The model incorporates four

distinct convolutional neural networks: an enhanced AlexNet,

an improved GoogLeNet, ResNet50, and MobileNetV3. These

networks serve as the foundational learners within the stacking

framework, while a support vector machine (SVM) functions as

the sub-learner. The proposed method leverages the combined

strengths of the aforementioned convolutional neural networks and

the SVM to enhance the overall disease classification performance

(Yang et al., 2023).

Fenu and Malloci explored the use of an ensemble learning

paradigm to construct a robust network for predicting four

different pear leaf diseases. To achieve this, they considered

several well-known neural network architectures. By comparing

these architectures, they identified their strengths and weaknesses

in disease prediction. The ensemble learning approach involves

combining these diverse neural network models to enhance

predictive performance. They adopted the bagging strategy, which

entails training multiple instances of each network architecture on

bootstrapped subsets of the DiaMOS Plant dataset. This process

helps to introduce diversity in the ensemble, reducing overfitting

and enhancing generalization capability (Fenu and Malloci, 2023).

Tuncer et al. developed a novel approach to plant leaf disease

recognition and classification that has been developed by merging

the Inception architecture with depth-wise separable convolutions.

This technique significantly reduces the number of parameters and

computational costs without compromising the accuracy of the

model. The study involved training and testing the hybrid model

using k-fold cross-validation to identify healthy and diseased leaves

(Tuncer, 2021).

Bhatia et al. proposed a novel technique for feature extraction in

plant disease detection. This technique helps in expanding a small

data collection into a highly valued feature space. This expansion

generates new features that can effectively capture underlying

patterns and trends in the data, resulting in improved accuracy and

speed of plant disease detection. By integrating the FMTD function,

the proposed technique can achieve both efficient and accurate

plant disease detection (Bhatia et al., 2022).

Sriwanna developed a system to predict rice blast disease

by analyzing weather data. The study aimed to determine

the most effective weather features out of fifteen by utilizing

an ensemble method to rank them. The researchers also

evaluated the effectiveness of the anticipated feature ranking

technique using five diverse classification representations,

namely, multilayer perceptron, SVM, Naive Bayes, decision tree,

and K-nearest neighbors. They are evaluated with a standard

classification valuation system of measurement to assess the

models’ performance (Sriwanna, 2022).

Lu et al. introduced a novel approach to tackle the challenges

associated with differentiating subtle variations for various rice

crop ailments and achieving a higher appreciation rate in

the presence of noise interference. The method focuses on

enhancing the deep residual shrinkage network. To achieve

this, the original network is augmented with an InceptionA

module, which serves the purpose of reducing network parameters,

lowering arithmetic cost, and enhancing the model’s non-linearity.

Additionally, the original residual structure’s convolutional kernels

are substituted with multiple smaller-sized convolutional kernels.

These modifications aim to optimize the model’s performance

in terms of accuracy and efficiency while addressing the specific

challenges posed by rice disease recognition (Lu et al., 2023).

Sridevi and Kiran Kumar present a novel rice disease prediction

model comprising three main phases. First, pre-processing involves

the application of median filtering (MF). In the next phase, various

features are extracted, including discrete wavelet transform (DWT)

and scale-invariant feature transform (SIFT). These extracted

features are then fed into a classification system consisting of multi-

layer perceptron (MLP) and long short-term memory (LSTM)

networks. Finally, the model produces predicted outcomes for rice

disease detection (Sridevi and Kiran Kumar, 2022).

Liu and Zhang introduced a novel approach, termed PiTLiD,

leveraging the pre-trained Inception-V3 convolutional neural

network and transfer learning to detect plant leaf diseases

using phenotype data from plant leaves, particularly in scenarios

with small sample sizes. To assess the resilience of their

proposed method, they conducted experiments on various datasets

characterized by a limited number of samples (Liu and Zhang,

2022).

In recent times, researchers have made significant strides in

the development of robust deep-learning models designed to

autonomously identify and classify rice diseases. However, the

inherent challenge lies in the substantial size, complexity, and

heightened computational demands of these advanced models.

As a consequence, deploying such models in environments

characterized by resource constraints becomes a formidable task.

Given this scenario, there arises a compelling necessity and

imperative to innovate lightweight models that can circumvent

these challenges without compromising on accuracy. The demand

for such models is underscored by the need to extend the

application of automated disease identification and classification

to resource-constrained environments where the deployment of

heavy-weight models is unfeasible.

The quest for lightweight models represents a pivotal avenue

in the evolution of deep learning applications, emphasizing the

importance of striking a delicate balance between model simplicity

and predictive accuracy. By addressing the challenges associated

with size and computational requirements, these innovative models

have the potential to democratize the benefits of automated ailment
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identification in rice crops, making it accessible and feasible across

a broader spectrum of environments. In essence, the drive toward

lightweight models exemplifies a commitment to advancing the

practicality and applicability of deep learning solutions in real-

world scenarios with limited computational resources.

3 Methodology

In resource-constrained computing environments, the

practicality and feasibility of convolutional neural networks

(CNNs) hinge on the implementation of efficient model design

and optimization techniques. In this context, we employ the

teacher-student neural network technique, a pivotal strategy

that plays a crucial role in mitigating the computational and

memory requirements of CNNmodels. By doing so, this technique

enhances the overall performance of the model, rendering it adept

at running efficiently on edge devices and low-power platforms.

The computational cost stands out as a fundamental metric,

quantifying the resources that a neural network utilizes during its

training or inference phases. These resources encompass processing

power, memory allocation, and time consumption (Laudani et al.,

2015). In this pursuit, OSPS-MicroNet is meticulously optimized

with well-defined workflows, strategically designed to minimize the

computational cost associated with both training and deploying

the network.

This optimization not only underscores the efficiency of

OSPS-MicroNet but also positions it as a pragmatic solution

for deployment in scenarios where computational resources are

limited. By addressing the critical aspects of computational cost, the

implemented teacher-student neural network technique, coupled

with the inherent design of OSPS-MicroNet, ensures a judicious

allocation of resources, making it well-suited for operation in

resource-constrained environments.

3.1 Dataset collection

This paper focuses on the major five diseases as outlined in

Figure 1 that affect rice plants: (i) blast, (ii) brown spot, (iii) tungro,

(iv) false smut, and (v) bacterial sheath blight.

In South India, heavy rainfall and favorable conditions led

to the damage of rice crops in 2021, which fell into five disease

categories, namely, blast, brown spot, false smut, bacterial leaf

blight, and tungro. In December 2021, real-time data of affected

and healthy rice crop images were collected in the open fields

of Melmaruvathur (latitude 12.435330 and longitude 79.832932),

Kavaraipettai (latitude 13.360368 and longitude 80.142750), and

Gummidipoondi (latitude 13.409340 and longitude 80.131410)

regions in Tamil Nadu. Around 1,500 images were collected in the

open field. These images were captured using Xiaomi and Redmi

phones with a resolution of 48 megapixels, but they were prone to

noise and distortion due to the uncontrolled environment in the

open field, as well as lighting effects and backgrounds.

To obtain more images for training a convolutional neural

network, additional images were collected from various sources,

including Kaggle (Rice Leafs Diseases Dataset), UCI Machine

Learning Repository (Rice Leaf Diseases Dataset), and Computers

and Electronics in Agriculture (Mendeley data, “Rice Leaf Diseases

Image Samples” dataset by Sethi, Prabira Kumar). Around 5,500

images were collected from these sources. However, preparing

image data for CNN training is a significant challenge, especially

when the images in the training database are different sizes.

Therefore, data augmentation altered the images to fit the network’s

expected input size of 224 × 224. Normalization was also

FIGURE 1

Diseases that impinge on rice plants.
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performed to avoid gradient propagation issues, and erosion,

dilation, opening, and closing operations were used to improve

the darker and brighter regions of the input images. The training

and test dataset for theMobileNet, ResNet152, andOSPS-MicroNet

models consisted of 7,000 pre-processed images.

3.2 Convolutional neural network

Convolutional neural networks (CNNs) exhibit remarkable

versatility, making them suitable for processing diverse data types,

including images, videos, audio, speech, and natural language.

Structurally, a CNN comprises multiple layers, commencing with

a convolutional layer and progressing through pooling and ReLU

activation, ultimately culminating in a fully connected layer.

The pivotal strength of a CNN lies in its convolutional layers,

where it adeptly learns filters tailored for specific tasks, such as

detection. This process has a cascading effect, where the output

from one convolutional layer serves as the input for the next. After

the convolutional layers, the pooling layer assumes a critical role

by downsampling the data, leading to substantial reductions in

computational demands, memory needs, and parameter counts.

Fully connected layers, aptly named, establish comprehensive

connections with their preceding layers. Typically, these layers

employ functions like “sigmoid” or “softmax” in the concluding

layer to generate predictions regarding classes. At its core,

convolutional layers discern features extracted from input data,

subsequently condensed by the pooling layers. Leveraging these

high-level features, fully connected layers usually perform the

classification of input data into predefined categories in the

final stages.

Moreover, the classification layer not only categorizes data but

also extracts features essential for both classification and detection

activities. This distinctive structural composition and sequential

operation of layers empower CNNs to excel in a myriad of data

processing tasks (Tugrul et al., 2022).

3.3 Teacher-student network dynamics

A teacher-student model represents a distinctive class of neural

networks wherein a sophisticated model, termed the “teacher,” is

employed to instruct a simpler, more modest model referred to

as the “student” to emulate its behavior. Typically, the teacher

model demands more extensive computational resources and

boasts higher accuracy, contrasting with the lightweight nature

of the student model, rendering it suitable for deployment in

environments constrained by resources.

By training the student model to glean knowledge from the

teacher model, it becomes adept at undertaking new tasks without

necessitating the exhaustive retraining of the teacher model from

scratch. This methodology not only accelerates and streamlines the

model training process but also fosters efficient knowledge transfer,

thereby enhancing the overall adaptability and versatility of the

student model. Figure 2 depicts the generalized architecture.

In essence, the Teacher-Student paradigm stands as a strategic

approach to harness the strengths of a powerful, computationally

intensive model to cultivate a compact and resource-efficient

counterpart. This not only facilitates the deployment of models in

resource-limited settings but also contributes to the optimization of

training procedures, ultimately leading to faster and more effective

model training outcomes.

FIGURE 2

Generalized architecture of the teacher-student model (https://medium.com/analytics-vidhya/knowledge-distillation-in-a-deep-neural-network).
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The model’s performance is increased by reducing the

parameters of a neural network, which in turn minimizes the

computational and time complexity of the model. This method

is very useful when computational resources or memory size is

limited. The working methodology of the teacher-student network

is as follows:

1. Training-teacher network: the teacher network is trained with

large and complex datasets before using them as a basis for

other models or tasks. The training process utilizes significant

computational resources, such as high-performing GPUs, and

may be performed offline or on dedicated servers. The teacher

network learns the complex patterns and relationships in

the data, which can be used to improve the accuracy and

performance of other models. Due to the high computational

demands of this step, it may not be feasible to perform it in

real-time or on less powerful hardware.

In this paper, two pre-trained CNNmodels, namely, ResNet152

and MobileNet, are used as teacher networks.

2. Training-student network: the purpose of a loss function is to

quantify the difference between the output of a teacher network

and the corresponding output of a student network. The student

network is trained through backpropagation, which involves

calculating the gradient of the loss function concerning the

weights and biases of the student network. This gradient is

then used to update the network’s parameters in a manner that

minimizes the loss function.

3. Error backpropagation: the gradient computation involves a

process called error backpropagation, which propagates the

error from the output layer of the student network to its

input layer. In this process, the gradient of the loss function

concerning the outputs of the student network is first computed

and then propagated backward through the layers of the network

using the chain rule of calculus.

In the backpropagation process, knowledge distillation is

employed to establish the correspondence between the teacher

and student networks. In addition to replicating the outputs of

the teacher network, this method involves training the student

network to mimic the internal representations or activations of the

teacher network. This helps the student network to better capture

the underlying patterns and relationships in the data, leading to

improved performance on new tasks. To accomplish this, we can

utilize the teacher network’s activations as supplementary inputs

to the student network and train the student network to generate

comparable activations through a distinct loss function (Mirzadeh

et al., 2019; Wang et al., 2019; https://kears.io/examples/vision/

knowledge_distillation).

4. Knowledge distillation: it is a technique applicable to any

model, aiming to compress and transfer knowledge from a

computationally intensive large deep neural network (referred

to as the teacher) to a smaller neural network (known as

the student). By doing so, the student network achieves

improved inference efficiency while maintaining the essence of

the teacher’s expertise. In this technique, the soft output of the

teacher model, which includes class probabilities and represents

the model’s uncertainty about the prediction, is employed to

teach a smaller and simpler model that could not learn the

representations on its own. In a classification process, if a teacher

model is employed, its final neural network layer would utilize

the Softmax function.

The Softmax function takes a vector of real numbers, called

logits, and applies the following formula 1 to obtain a

probability distribution:

yi(x | t) =
e
zi(x)
t

∑

j e
zj(x)

t

(1)

where t stands for temperature, which controls the evenness of the

probability distribution generated by the Softmax function.

The cross-entropy loss function measures the dissimilarity

between predicted and actual probabilities. For each possible class,

the loss is the negative logarithm of the predicted probability

multiplied by the actual probability. The negative sign tells us that

the loss is minimized when the predicted probability is close to the

actual probability.

The below formula 2 represents the loss function,

namely, cross-entropy, for a classification problem with

predicted probabilities.

E(X|t) =
∑

i

ŷi(X|t)log yi(X|t) (2)

where yi(x | t) is the output of the distilled model and
∑

i
ŷi(X|t) is

the output produced by the large model on the same record using a

high value of softmax temperature “t” for both models.

The distillation loss function is typically defined as the

difference between the “soft” student predictions and the “soft”

teacher labels, where “soft” refers to the fact that the predictions

and labels are represented as probability distributions over the

possible classes rather than as discrete values. By minimizing this

difference, the student model learns to approximate the more

complex behavior of the teacher model, often resulting in improved

performance on the task at hand.

3.4 Convolutional models for knowledge
distillation

3.4.1 Teacher network
3.4.1.1 ResNet152

A residual neural network, also known as ResNet, is an artificial

neural net that utilizes skip connections or shortcuts to make

the network much deeper than previous neural networks. Skip

connections jump over some layers in the ResNet, allowing the

network to learn residual functions instead of directly trying to

learn the underlying mapping. These residual functions make it

easier to optimize the network and avoid the vanishing gradient

problem. In the below Figure 3 of the residual network, a layer ℓ

– 1 is bounced over initiation from ℓ – 2.

Forward propagation is performed with weight matrices Wl−1,l

and Wl−2,l with layers l−2 to l as in Equation 3
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FIGURE 3

Residual neural network in canonical form (https://en.wikipedia.org/

wiki/Residual_neural_network; He et al., 2016).

aℓ
: = g

(

Wℓ−1,ℓ · aℓ−1 + bℓ +Wℓ−2,ℓ · aℓ−2
)

(3)

where g is the activation function and aℓ is the neuron

activation for layer l.

Backward propagation with skip paths is given by Equation 4

1wℓ−2,ℓ
: = −η

∂Eℓ

∂wℓ−2,ℓ
= −ηaℓ−2 · δℓ (4)

where η is the learning rate and δℓ are the error signals

of neurons.

It gives amazing performance when used with transfer learning.

However, it can be computationally expensive due to its many

layers, which may make it impractical for some applications with

limited computational resources, like mobile devices. So, it is

selected as one of the teacher models.

The overall structure of ResNet152 used as a teacher model

consists of 59,423,110 parameters.

3.4.2 Student network
3.4.2.1 OSPS-MicroNet

OSPS-MicroNet is a compact student network characterized

by a modest parameter count of 460,444. This neural network

adopts a straightforward architecture, comprising six convolutional

2-dimensional layers (Conv2d). These layers utilize the rectified

linear unit (Relu) as the activation function, employ a stride size

of 2, and culminate in Maxpooling operations after each layer.

The network architecture further involves the flattening of the

processed data, resulting in an output shape of 64. Subsequently,

four dense layers follow suit, each featuring output shapes of 600,

300, 150, and 6, respectively. This structured design is summarized

in Table 1.

The streamlined and precisely defined structure of OSPS-

MicroNet underscores its inherent simplicity, rendering it

a highly efficient neural network. Specifically engineered

with a deliberate emphasis on a reduced parameter

TABLE 1 Structure of OSPS-MicroNet model.

Layer (type) Output shape Size of parameters

Conv2d (None, 56, 56, 16) 1,216

conv2d_1 (None, 14, 14, 32) 4,640

conv2d_2 (None, 4, 4, 48) 13,872

conv2d_3 (None, 1, 1, 64) 27,712

conv2d_4 (None, 1, 1, 128) 73,856

conv2d_5 (None, 1, 1, 64) 73,792

flatten (None, 64) 0

Dense (None, 600) 39,000

dense_1 (None, 300) 180,300

dense_2 (None, 150) 45,150

dense_3 (None, 6) 906

Trainable parameters 460,444

Non-trainable parameters 0

Total parameters 460,444

count, OSPS-MicroNet is strategically designed to excel in

resource-constrained environments.

Upon comparing the parameter sizes of prominent models as

in Figure 4 such as ResNet152 and MobileNet, OSPS-MicroNet,

functioning as a student model, emerges with a significantly

minimized number of parameters. This deliberate reduction not

only optimizes computational resources but also aligns with the

unique demands of environments where constraints on resources

are a critical consideration.

In essence, OSPS-MicroNet distinguishes itself as a model of

choice for scenarios where efficiency and resource optimization

are paramount. The juxtaposition of its minimal parameter

counts against more resource-intensive models like ResNet152

and MobileNet accentuates its suitability for applications in

diverse settings, particularly those characterized by limitations in

computational resources. The data flow of the proposed OSPS-

MicroNet is depicted in Figure 5, while Algorithm 1 elucidates the

model’s functioning.

4 Experimentation results and
discussions

In the experimental setup, the training and testing processes

were conducted in three distinct phases. During Phase I,

RESNET152, MobileNet, and OSPS-MicroNet were individually

trained and tested. Subsequently, Phase II involved using

ResNet152 as the teacher network and instructing OSPS-MicroNet

as the student network. In Phase III, MobileNet assumed the role

of the Teacher network, guiding OSPS-MicroNet as the student

network. The training dataset consisted of ∼7,000 images, pre-

processed by resizing to dimensions of 224× 224 pixels.

The experiments were implemented using TensorFlow library

functions and Keras on Google Colab Pro Plus. All convolutional

neural network (CNN) models underwent training for 25 epochs,

employing the Adam optimizer with a learning rate of 0.01 and
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FIGURE 4

Comparison of parameter size.

FIGURE 5

Dataflow of the proposed OSPS-MicroNet model.

a batch size of 32. The normalization technique utilized is “Zero

scaling,” which involves normalizing or scaling the values of a

variable about its mean or median. This process results in a

distribution centered around zero. The dataset encompassed six

classes, including five types of rice diseases (blast, brown spot,

bacterial sheath blight, false smut, and tungro) and a sixth class for

identifying healthy rice leaves.

In Phase I, RESNET152 exhibited the highest accuracy at

98.51%, followed closely by MobileNet at 98.40%. Conversely,

OSPS-MicroNet achieved an accuracy of ∼20.40%. This notable
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difference can be attributed to the inherent characteristics of

student models, which are intentionally designed to be smaller

and less complex than their teacher counterparts. The reduced size

and complexity of OSPS-MicroNet resulted in comparatively lower

performance and less accurate predictions, underscoring a trade-off

between model size and accuracy.

The superior accuracy of RESNET152 can be primarily

attributed to its substantial parameter size. RESNET152

boasts roughly 16 times more parameters than MobileNet

and an impressive 129 times more parameters than

OSPS-MicroNet. This stark contrast in parameter size

1.Input: D={X} //7000 images of rice

diseases

2.T1//pre-trained CNN Teacher model

ResNet152

3.T2//pre-trained CNN Teacher model

MobileNet

4. // To train the student model S using

knowledge distillation from two pre-trained

teacher models T1 and T2

for each image xi in the dataset X:

Set S (Student Model) to the output of

T1 for the input xi.

Set S to the output of T2 for the same

input xi.

Use Equation (2) to compute the loss

function with S.

Apply backpropagation to update the

parameters of S based on the computed

distillation loss.

end for

Algorithm 1. Training the OSPS-MicroNet student model using

pre-trained teacher models ResNet152 and MobileNet.

elucidates the critical influence of model complexity on

predictive accuracy.

Visual representation of the accuracy trends for RESNET152,

MobileNet, and OSPS-MicroNet can be observed in Figures 6–8,

respectively. These graphical representations provide a

comprehensive overview of the performance dynamics exhibited

by each model throughout the experimental phases.

In Phase II, the teacher-student network was strategically

employed to enhance the performance of the proposed lightweight

CNN model. RESNET152 served as the teacher network, guiding

the learning process of OSPS-MicroNet, the designated student

network. In this phase, OSPS-MicroNet achieved an accuracy of

92.02%, showcasing a remarkable advancement from its initial

accuracy of 20.40%. The Figure 9 demonstrates the accuracy of

the OSPS-MicroNet model compared to its teacher, ResNet152.

This substantial improvement can be attributed to the process

of knowledge distillation, wherein the student model is imparted

with an understanding of the relative importance and uncertainties

associated with different classes.

The notable accuracy boost was achieved through efficient

and focused knowledge distillation from the more complex

RESNET152. While RESNET152 boasts 59 million parameters,

OSPS-MicroNet operates with a significantly leaner parameter

count of only 0.46 million. Despite the accuracy of OSPS-MicroNet

lagging behind RESNET152 by 6%, the parameter size of OSPS-

MicroNet is merely 0.77% of RESNET152′s size. Remarkably,

OSPS-MicroNet, occupying <1% of the parameter space of

RESNET152, still achieves an impressive accuracy of 92.02%.

This underscores the pivotal role played by teacher models in

transferring knowledge and expertise to their student counterparts.

Even when student models are smaller and less complex,

the distillation of knowledge from teacher models significantly

enhances their performance. By distilling the wealth of knowledge

held by the teacher model, students can leverage valuable insights,

augmenting their capabilities and effectiveness in achieving high

accuracy, despite their compact size and reduced complexity.

FIGURE 6

ResNet152 model accuracy graph chart.
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In Phase III of the experiment, MobileNet assumed the

role of the teacher network, guiding the learning process of

OSPS-MicroNet, the designated student network. Notably, in this

phase, OSPS-MicroNet achieved an accuracy of 90%, a significant

improvement from its initial accuracy of 20.40% in Phase I. Once

again, this substantial increase in accuracy for OSPS-MicroNet was

made possible through the process of knowledge distillation. The

Figure 10 demonstrates the accuracy of the OSPS-MicroNet model

compared to its teacher, MobileNet.

However, when compared to Phase II, where RESNET152

served as the teacher network, the accuracy in this phase

experienced a reduction of <2%. It is noteworthy that MobileNet,

with 3 million parameters, contrasts with RESNET152, which

boasts 59 million parameters. The discernible trend from

prior sections underscores that knowledge distillation from

a heavyweight network, such as RESNET152, tends to yield

superior results.

This observation highlights the impact of the choice of the

teacher network on the efficacy of knowledge distillation. The

inherent complexity and richness of information in heavyweight

networks contribute significantly to the enhanced learning

and performance of lightweight student networks. Despite the

reduction in accuracy compared to Phase II, the outcome in Phase

III still represents a noteworthy advancement for OSPS-MicroNet,

emphasizing the intricate interplay between the teacher-student

dynamics and the underlying network architecture.

Figure 11 presents a comparative chart depicting the accuracy

of the OSPS-MicroNet model in two scenarios: first when

executed independently as a stand-alone system, and second when

executed with distilled knowledge acquired from both ResNet152

and MobileNet.

To facilitate the deployment of models on low-power or

mobile devices, where the utilization of large and computationally

intensive teacher models is impractical, smaller student models are

FIGURE 7

MobileNet model accuracy graph chart.

FIGURE 8

OSPS-MicroNet model accuracy graph chart.
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FIGURE 9

OSPS-MicroNet model accuracy to its teacher ResNet152.

FIGURE 10

OSPS-MicroNet model accuracy to its teacher MobileNet.

employed to emulate the behavior of their teacher counterparts.

The OSPS-MicroNet student model, specifically designed to be

both precise and compact in comparison to ResNet152 and

MobileNet, emerges as an optimal choice for deployment on such

resource-constrained devices.

5 Conclusion

Early identification of rice leaf diseases will mitigate its

widespread and huge economic loss. In particular, the spread of

blast, bacterial sheath blight, false smut, tungro, and brown spot

poses a significant challenge to rice yield and leads to significant

losses. However, recent developments in CNN algorithms have

made it possible to detect these diseases, but the huge model size

is a major concern for its real-time implementation. In this paper,

a new micro-CNN model named OSPS-MicroNet was proposed

using a teacher-student knowledge distillation process. ResNet152

and MobileNet are used as “teacher” models, and a lightweight

OSPS-MicroNet model as the “student” model, which takes up

only 0.7% of the teacher model. After training on a dataset of

around 7,000 pre-processed images, the OSPS-MicroNet model

achieved an accuracy of 92.02% when knowledge is distilled from

ResNet152 as its teacher model and 90% when knowledge is

distilled from MobileNet as its teacher model. The experimental

results have clearly demonstrated the efficiency and compactness of

the lightweight OSPS-MicroNet model in detecting diseases when

it is trained using a heavyweight teacher model. In the future,
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FIGURE 11

Comparison chart of OSPS-MicroNet model accuracy.

the OSPS-MicroNet is intended to be deployed on mobile devices

to identify rice leaf diseases in a cost-efficient way. As per the

submitted Patent Application No. (202341027943), this model has

been formally filed with the Indian Patent Office and is currently in

the published stage.
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