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Human-Building Interaction (HBI) relies on sensor-actuator networks that 
are increasingly supported by Artificial Intelligence (AI). This paper presents a 
novel AI-supported Design-to-Robotic-Production-Assembly and -Operation 
(D2RPA&O) approach for reconfigurable furniture. It involves a multidisciplinary 
approach that relies on the integration of various domains such as architecture, 
robotics, computer, and material science. It contributes to the advancement of 
HBI by employing spatial reconfiguration relying on AI and lightweight material 
design, which is of relevance, particularly when the furniture consists of non-
identical but similar components that are re−/ configured in a variety of possible 
combinations.
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1 Introduction

Human-Building Interaction (HBI) relying on sensor-actuator networks is increasingly 
supported by Artificial Intelligence (AI) at various scales (Alavi et al., 2019). In the case study 
presented in this paper, the novel AI-supported approach relies on Design-to-Robotic-
Production-Assembly and -Operation (D2RPA&O) methods that are employed for developing 
reconfigurable furniture. These methods integrate robotics in building processes and buildings 
(Bier and Knight, 2014; Robotic Building and Bier, 2018; Pillan et  al., 2020) by (a) 
computationally designing and robotically constructing building components (D2RP&A), and 
(b) by operating those components interactively (D2RO). While some of the methods and 
techniques used by the involved disciplines in the furniture design process are only developed 
conceptually, others are virtually and/ or physically prototyped.

1.1 State-of-the-art

HBI goes back to notions of Interactive Architecture (IA) relying on intelligence integrated 
into the built environment that has been defined already in the 70s as ‘architecture machines’ 
and ‘intelligent environments’ adapting to their users’ needs (Negroponte, 1975; Pask, 1975). 
Later, Ambient Intelligence (AmI) was defined as a built environment imbued with computing 
hardware and software technology to benefit its occupant(s) (Zelkha et  al., 1998). More 
recently, architecture concerned with interaction between human and non-human agents has 
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proliferated at various scales ranging from furniture to urban scale 
(Negroponte, 1975; Pask, 1975; Zelkha et al., 1998; Fox and Kemp, 
2009; Fox, 2010; Oosterhuis and Bier, 2013; Bier and Knight, 2014; 
Robotic Building and Bier, 2018; Alavi et al., 2019; Pillan et al., 2020).

At furniture scale, examples such as The Big Data (2016) furniture 
and Media Block Chair (2012) are relevant as they demonstrate 
furniture reacting to people’s movement by changing color.1 Such 
furniture takes advantage of location-based context-aware services 
and Internet connectivity that are ubiquitously available. Big Data 
furniture, for instance, communicates with users by changing colors 
in response to users’ movement. The movement and behavior of users 
as well as environmental data patterns are shared on an online 
database that is used to modulate user experience.

While these examples rely on sensor-actuator networks and 
involve some level of intelligence they do not involve AI relying on 
Computer Vision (CV)2 for spatial reconfiguration as in the presented 
case study. With AI progressing and evolving in time through various 
stages of innovation and practical application, spatial reconfiguration 
is challenged to integrate multimodal technologies and improve HBI.

1.2 Contribution

The presented case study implemented with MSc students at 
Technical University (TU) Delft integrates AI-supported multimodal 
technologies into an alternative design approach relying on D2RPA&O 
methods. It addresses both the technical as well as architectural 
aspects from the early stages of the design process. It introduces as 
main features spatial reconfiguration relying on object recognition 
and lightweight material design. These are of relevance, particularly 
when the furniture consists, as in this case, of non-identical but similar 
furniture components that are re−/configured in a variety of 
possible combinations.

2 Implementation

Implemented with a group of architecture students tutored by 
experts from architecture, robotics, and computer science, as well as 
interaction and structural design, the project focused on the 
development of furniture components that offer reconfigurable indoor 
seating areas for accommodating various activities such as workshops 
(involving collaborative work sessions), events (requiring a stage and 
seating for the audience), group and individual studying activities next 
to temporary exhibitions taking place simultaneously or in short 
sequence. Hence spatial reconfiguration was paramount. Furthermore, 
the furniture was supposed to be  taking structural, functional, 
environmental, and assembly considerations into account and have 
degrees of porosity, where the degree and distribution of porosity, i.e., 

1 Links to projects: https://www.bassala.com/big-data-furniture and https://

www.teamlab.art/w/mediablockchair/.

2 AI is usually used to solve problems that typically require human intelligence 

such as learning, reasoning, problem-solving, perceiving, etc., while CV as a 

subfield of AI particularly focuses on interpreting visual data.

density would facilitate both passive (structural strength, physical 
comfort, etc.) and active behaviors (interaction, etc.).

The approach involved D2RPA&O methods with the aim to 
improve spatial experience, process- and material-efficiency as well as 
embed intelligence in building processes and buildings by (a) 
computationally and robotically optimizing design and material 
production, (b) AI-supporting dis−/re−/assembly process, and (c) 
embedding sensor-actuators that enable interaction with users and the 
physically built environment. While these procedural steps were all 
implemented, they achieved various degrees of completion. For 
instance, the material production was implemented on a fragment, the 
AI model was tested on a synthetic data set, and the interaction was 
developed only conceptually at this stage. Future work will involve 
completing all steps in order to test the proposed varied and multiple 
use of the space in the library by allowing users to modify the 
configuration of furniture to meet their changing needs.

2.1 D2RPA&O

The D2RPA&O process relied on a Voronoi-based design that 
facilitates spatial reconfiguration by detaching and reattaching 
furniture components, i.e., booths to create various functional 
configurations. The challenge for users to identify availability of 
components and possible reconfiguration modes ranging from 
dispersed to clustered configurations that are serving varying activities 
has been addressed by means of interactive lighting, color coding, and 
AI-supported object recognition (Figure  1). Furthermore, the 
challenge for users to move components from one location to another 
has been addressed by implementing a highly porous, lightweight 
material design. All aspects were developed at conceptual level and 
achieved various degrees of implementation ranging from design to 
virtual and physical prototyping.

2.1.1 Conceptual design
The need for spatial reconfiguration has been identified by 

investigating user demands that were captured through a series of 
behavioral observations in the library space. These included the analysis 
of current occupancy patterns in terms of number of occupants and type 
of activities performed over one week. Additional unstructured 
observations were implemented ahead of the study by the students as 
they were themselves users of the library. Patterns of stagnation and 
movement were observed to understand how long users spend in various 
sections of the library and how users interact with others and various 
concerns were identified as for instance the reduced reconfigurability 
options of the furniture and lack of insight into available furniture 
meeting requirements for various activities and their location.

The occupancy pattern of the library showed large variability in 
terms of number of occupants during the year (with strong 
fluctuations in exam vs. vacation periods) and activities. However, 
even if the largest number of occupants were single users, the space 
was also used by groups of people for joint activities and one of the 
problems was the lack of furniture that could accommodate and adapt 
to user demands during respective activities. Reconfigurability and 
adaptability emerged therefore as the key objective of the presented 
design solution.

Reconfiguration has various challenges in terms of function, form, 
and requirements for lightweight. While precedents such as Media 
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Block Chair presented interactive features, Cloud City, Office Excavate, 
FRGM: 1, and Voronoi Helmet3 showcased the potential of Voronoi-
based design at building, component, and material scale. Hence, these 
approaches were adopted and enhanced using AI.

2.1.2 Computational design
Aspects of computational design were addressed by generating a 

Voronoi-based design at macro (i.e., building), meso (i.e., component), 
and micro (i.e., material) scales. This implies that the Voronoi-based 
material design of components and the assembly of components into 
a larger structure to facilitate spatial reconfiguration is scalable.

In order to optimize production and assembly of the furniture 
components, functional, structural, and material design studies were 
implemented. To optimize functional requirements in relation to 

3 Links to Cloud City, Office Excavate, FRGM: 1, and Voronoi Helmet: https://

www.metalocus.es/en/news/tomas-saraceno-roof-cloud-city-met, https://

www.coroflot.com/GrahamKelman/Office-Excavate, http://www.goetz-

schrader.com/crack01.html, and https://www.designboom.com/design/

voronoi-bicycle-helmet-08-10-2020/.

activity patterns, reconfiguration by dis−/ reassembly of furniture 
components was chosen. To structurally optimize the Voronoi-based 
furniture components, a Karamba3D simulation that provided insight 
into the forces and deformations of the components, both for the 
isolated wireframe as for the surface elements (Figure  2) was 
implemented. The Voronoi-based material design with various cell 
densities is mapped onto the frame and surface elements according to 
the optimization results. The variable densities pattern is efficient in 
terms of the material used versus the resulting degree of stiffness of 
the object and weight reduction.

The pattern is calculated based on the stress distribution (Figure 3) 
and the load cases that are used are the combination of the loads from 
the overall model and the forces on the component due to its own 
weight. The main aim of this study was to improve the mechanical 
performance of the components while keeping them as lightweight as 
possible. After all, excessive weight would considerably impact 
their movability.

The considered material is thermoplastic elastomer (TPE) with a 
density of 1.1 g/cm3. The paneling geometry is thickened to 10 mm 
and based on this volume distributed loads are applied to the surfaces 
of the panels. Loads applied are line loads based on the weight of the 
panels. The resulting principal stress concentrations are translated into 

FIGURE 1

Red movable Voronoi-based component (left) and available component lighted green (left and right).

FIGURE 2

Structural design at component scale involved analysis of tension and compression (left and left-middle) and deformation and stiffness (right-middle 
and right).
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a point cloud with a higher density around the edges. The framework 
is thickened and calculated separately. Since the booths are 
freestanding simple supporting points are used for the structural 
analysis that creates a point cloud based on the relative stress densities. 
The point cloud is then transformed into a Voronoi pattern.

An additional structural analysis is run to determine the final 
values for the cell sizes and wireframe thicknesses. The Voronoi edges 
are thickened, and the volume is calculated. The applied loads are 
based on the weight of TPE and the volume of the wireframe structure. 
The structural analysis shows the deformation of the wireframe. The 
final thickness of the edges and cell size parameters are determined by 
a resulting deflection of less than 10 mm for each cell.

2.1.3 Interaction design
The primary goal to create a user-centered spatial experience and 

provide effective and adaptive spatial configurations to meet current user 
needs in the library includes consideration for accommodating changing 
use (single or group use, with various levels of privacy) and user-furniture 
interaction through responsive lighting in order to communicate users 
the potential availability of furniture components (Figure 1).

The user-light interaction system was conceptually designed to 
provide visual comfort and information to users. The use of indoor 
lighting for communicating with users while providing appropriate 
indoor visual conditions was developed and tested in previous work 
(Ackerly and Brager, 2013; Meerbeek et al., 2016; Luna-Navarro et al., 
2020) and has been applied to this case study. While Light-emitting 
Diodes (LEDs) are integrated into the furniture to provide comfortable 
direct lighting, various, changing colors are used to communicate if it 
is available. Using an active system of pressure sensors integrated into 
the seats, the furniture responds to various types of use. Outward 
lighting signals availability, whereas inward lighting illuminates the 
occupied components while in use.

The challenges related to the integration of micro-controllers, 
sensors and actuators, i.e., LEDs into the furniture components 
involved ensuring that the physical and virtual subcomponents 
communicate data to the cloud and data is processed fast enough to 
allow for smooth uninterrupted interaction. This has been, however, 
only developed conceptually in this study, with the physical 

prototyping focusing on the materialization of variable stiffness with 
cushioning based on structural and ergonomic considerations.

2.1.4 Material design and robotic prototyping
Component and material design was Voronoi-based and involved 

consideration with respect to stability, lightweight, and comfort 
requiring variable stiffness and 3D printing without support.4 The 
variable stiffness concept developed in previous research (Hidding 
et al., 2019) has been implemented in this case study in order to create 
cushioning for the seating areas while keeping the structural integrity 
of the furniture components, i.e., booths intact. The cushioning 
principle was prototyped by robotically milling into Expanded 
Polystyrene (EPS) that in this case was emulating the support surface, 
which has high stiffness. On top of the support surface is the cushioning 
surface with low stiffness and is implemented by 3D printing with 
Thermoplastic Polyurethane (TPU). The imprint of the Voronoi-based 
pattern designed to serve as cushioning surface was milled out of the 
EPS so the 3D printed part could be fitted onto the surface (Figure 4).

The variable stiffness design of the cushion is based on structural 
analysis, where the stiffness is controlled by the cell sizes implying that 
the smaller the cells, the denser the material and, therefore, the stiffer 
the structure. The design of the cells with their varying size and 
distribution depends on the structural analysis as well as the 
requirements for printing without support. In this context, the material 
design and prototyping approach relied on optimized material 
distribution based on structural optimization ensuring minimized 
material use and reduced production time. When compared with other 
production methodologies, the robotic prototyping of the Voronoi-
based components has several major advantages. Firstly, it allows the 
production of complex geometries by linking the parametric design 
with the production data of the robotic equipment (D2RP). In the case 
of robotic 3D printing, the angles of the geometry have to be optimized 

4 This implies that the angles of the faces of the Voronoi cells have to 

be within 3D printing tolerances with printing angles between −45 to +45 

degrees in relation to the printing bed.

FIGURE 3

Structural design at material scale without and with optimization (left and right, respectively) showing variation in density of Voronoi cells that are 
represented in varying colors on x and y coordinates in meters.
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to be within the angle constraints of −45 to +45 degrees for printing 
without support material (Hidding et al., 2019). Also, the size of the 
components and subcomponents are optimized to fit in the bounding 
box determined by the reachability of the robotic arm. The printability 
of the material, TPE, and its recyclability have to be considered as well.

2.2 Computer vision and artificial intelligence

Computer Vision (CV) as an Artificial Intelligence (AI) module 
is used for the identification of (a) detached furniture components and 
(b) the places where the components are supposed to be reattached 
(Figure 5). Specifically, a Deep Learning (DL) model5 is trained from 
scratch on a synthetic dataset. The input and output of the model are 
images, pointing for the input at a specific detached, i.e., stand-alone 

5 Deep learning is a machine learning method, which is based on artificial 

neural networks that are built using principles of organization in the biological 

neural networks of animal brains (https://news.mit.edu/2017/

explained-neural-networks-deep-learning-0414).

component, and for the output indicating its position and orientation 
in the constellation.

2.2.1 Task description
The CV task was initially cast as a 3D puzzle reconstruction, where 

all the components are considered unique pieces of the constellation 
having their own individual base configuration. The problem could 
be formulated as a visual placement recognition for machine vision, 
given adequate training data with various configurations of missing 
pieces in the constellation (Figure 5). Even though an exciting CV 
challenge, the 3D puzzle reconstruction appeared out of the scope for 
this student project. The problem has then been reformulated to object 
recognition which is a well-known computer vision task with available 
model architectures. The components are labelled with ID numbers 
that are the keys to the correct placement in the constellation. Thus, 
the challenge is to predict the object’s ID number given an input image 
of the component taken by the user.

2.2.2 Dataset
A synthetic training and validation dataset is created to 

develop a deep learning model for the object detection task. Due 

FIGURE 4

Material design (left) and prototyped fragment (middle and right) using robotic subtractive and additive methods.

FIGURE 5

Object and placement recognition for the missing component (left), input image with the missing part (right).
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to the specific configuration for this problem, no pre-trained 
model was available for effective deployment, hence, the students 
trained an object detection model from scratch to meet the 
requirements for this project. For the training set, Voronoi-based 
components are randomly distributed in a 3D model of the library 
(Figure  6), and around 3,000 images were generated from the 
scattered objects from different viewpoints. 80% of the data was 
used for training and 20% for evaluation. The synthetic dataset is 
curated by simulating a realistic scenario where the images are 
taken from real objects at the library. A generalization gap is, 
however, expected due to the distribution mismatch caused by 
lighting, shadowing, and occlusion, which are present in a real 
setting. This gap is increased by the differences between the 3D 
model and the 3D-printed elements.

The differences between the digital files and physical objects after 
3D printing could be significant enough for the AI to perform poorly 
on photographs of these components. Creating 3D models that have the 
3D-printed layers in the models could help to create training images 
that more closely resemble the produced components. Labelled 
photographs of the produced components could also be used to re-train 
the model in the case of poor performance. This has been, however, not 
the focus of this study and will be implemented in the next step.

2.2.3 Model and results
The Yolo object detection model (Redmon et al., 2016) is trained 

on the created dataset to predict the object’s ID number for the 
Voronoi-based components with acceptable accuracy and confidence. 
An online demo6 and screenshots from the demo (Figure 6) show 
randomly placed components that are detected in real time using the 
trained object detection model. The probability of specific 
components being present within the bounding box is shown in the 
right text box next to the box (Figure 6 right). These probabilities are 
used to classify an object as a true positive (correctly detected) or 
false positive (wrongly detected). Setting a confidence level as a 
hyperparameter for measuring the precision score for the object 
detection model. In this case, a confidence level of 0.95 from 1.00 has 

6 Link to RB-page: http://www.roboticbuilding.eu/project/

human-robot-interaction-for-d2ra/.

been achieved. There is a trade-off between precision and recall, 
therefore for such a high confidence level false negatives 
are increasing.

3 Discussion and future work

Presented case study outlines D2RPA&O strategies for AI-supported 
furniture reconfiguration as part of a larger HBI approach. Developed 
computational, interaction, material design, robotic production, and 
AI-supported assembly approaches (Figure  7) facilitate furniture 
adaptation to various functions and spatial requirements by allowing 
users to modify furniture configurations to meet changing needs in the 
multi-functional space of the TU Delft library.

In the presented case study, individual furniture components were 
re−/ arranged to create various spatial configurations by moving, de−/ 
re−/ attaching, and/ or nesting together components. In this context, 
two main configurations, clustered (Figure 5) and dispersed (Figure 6), 
were considered. Additional solutions for individual cluster 
configurations will be investigated in the next iteration to identify the 
limitations of the system in terms of number of furniture components 
and their possible recombination in relation to the available space. 
Furthermore, by physically prototyping whole components and using 
photographs of the produced components to re-train the AI model the 
feasibility of this approach for real-life applications will be demonstrated.

In furniture components integrated interactive lighting was 
designed to facilitate user engagement via color- and intensity-changing 
LED lights that adjust to users’ preferences and communicate various 
states (un−/ available) and moods (open/ closed). In this context, HBI 
relied on the integration of technology, design, and user-centered 
approaches to create spaces that are responsive to the needs and 
behaviors of their occupants. It involved developing an understanding 
of the needs, preferences, and behaviors of the people who occupy the 
space. However, in order to make reconfiguration accessible to people 
of all abilities the robotization of the system is considered in the future.

4 Conclusion

While employed AI-supported approach presented in this 
paper is not new, its integration with D2RPA&O methods advances 

FIGURE 6

Random camera and components distribution within the 3D model of library (top view left), an example input image from the setting (middle), and 
object recognition (right) implemented via an app on the phone.
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however current state-of-the-art in HBI mainly through the 
integrative multimodal approach. It contributes to the 
advancement of HBI by employing spatial reconfiguration relying 
on AI and lightweight material design, which is of relevance, 
particularly when the furniture consists of non-identical but 
similar components that are re−/ configured in a variety of 
possible combinations.

The D2RPA&O methods ensuring reduction of material use and 
production time via various optimization techniques are 
complemented by AI-supported spatial reconfiguration approaches 
with the ultimate goal of improving efficiency of space use and users’ 
comfort while decreasing environmental impact.

The evaluation and testing were implemented by computationally 
designing the structure, simulating the whole process and prototyping 
a fragment at 1:1 scale. Since the focus was on the integration of 
various research areas involving architecture, computer science, 
interaction, and structural design, the study met its objectives as all 
aspects were considered although D2RO remained at conceptual and 
computational design levels, while D2RP&A reached virtual and 
physical prototyping levels (Figures 7, 8).

The use of lightweight material design for physical dis−/ 
reassembly and the use of lights to provide user-building interaction 
strategies by communicating to users which furniture components 
and when they are available were conceptually and to some degree 
physically explored, though, tests with users still need to be conducted 
in order to evaluate user response and satisfaction with proposed 
interaction strategy. Also, the use of AI on physically prototyped 
components needs verification and operability by users with variable 
physical abilities needs consideration, which will be  addressed in 
the future.

The collaborative approach required the integration of all aspects 
from the very beginning of the process. While architecture focused on 
function and form meeting structural and material design 
requirements, the interaction aspects relied on the integration of 
CV. The project, however, did not get to the point of testing the CV 
approach on a physically prototyped furniture component missing to 
establish the feasibility of the CV to adequately operate in situ, i.e., 
under realistic conditions. In future, the feedback from the 
performance of the CV on the physically prototyped furniture 
component will be used to update the training of the algorithm. For 

FIGURE 7

Diagram showing the workflow of AI-supported assembly using an app on a phone to identify the components and their base placement location in 
real-time.
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FIGURE 8

Diagram showing D2RP process reaching prototyping level.
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legitimate research purposes the data set used in this study can 
be obtained by contacting the corresponding author.
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