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Convolutional neural networks (CNNs) have revolutionized image recognition.
Their ability to identify complex patterns, combined with learning transfer
techniques, has proven e�ective inmultiple fields, such as image classification. In
this article we propose to apply a two-step methodology for image classification
tasks. First, apply transfer learning with the desired dataset, and subsequently, in
a second stage, replace the classification layers by other alternative classification
models. The whole methodology has been tested on a dataset collected at
Conil de la Frontera fish market, in Southwest Spain, including 19 di�erent
fish species to be classified for fish auction market. The study was conducted
in five steps: (i) collecting and preprocessing images included in the dataset,
(ii) using transfer learning from 4 well-known CNNs (ResNet152V2, VGG16,
E�cientNetV2L and Xception) for image classification to get initial models, (iii)
apply fine-tuning to obtain final CNN models, (iv) substitute classification layer
with 21 di�erent classifiers obtaining multiple F1-scores for di�erent training-
test splits of the dataset for each model, and (v) apply post-hoc statistical
analysis to compare their performances in terms of accuracy. Results indicate
that combining the feature extraction capabilities of CNNs with other supervised
classification algorithms, such as Support VectorMachines or Linear Discriminant
Analysis is a simple and e�ective way to increase model performance.

KEYWORDS

supervised learning, classification, fish species, SVM, LDA, deep learning, multiple

comparison analysis

1 Introduction

Convolutional neural networks (CNNs) have radically transformed the field of image
processing and computer vision over the past decade. Leveraging their unique architecture,
which mimics human visual processing, CNNs have consistently demonstrated their
ability to extract intricate patterns and features from images, often outperforming human
performance on specific tasks. This, together with data augmentation techniques—through
rotation, zooming, panning, and other techniques—that allow the size and diversity of the
training dataset to be expanded, is a well-established approach for similar tasks, widely
recognized in the scientific community.

Several studies, such as those by Norouzzadeh et al. (2018), Allken et al. (2019),
Barbedo (2019), Kaya et al. (2019), Montalbo and Hernandez (2019), and Palmer et al.
(2022), highlight the effectiveness of CNNs in animal species classification. The adoption
of pre-trained models such as ResNet-50, VGG16, and Xception underlines a fundamental
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trend in the deep learning community: transfer learning. Instead
of training a model from scratch, researchers leverage pre-trained
models on large datasets such as ImageNet to benefit from their
already learned features. These models are then refined on specific
datasets, often yielding superior results in a fraction of the original
training time. We could highlight the following studies in this
field ResNet-50 (He et al., 2016a), ResNet152V2 (He et al., 2016b),
VGG16 (Simonyan and Zisserman, 2014), EfficientNetV2L (Tan
and Le, 2021), Xception (Chollet, 2017), AlexNet (Krizhevsky et al.,
2012), and GoogleNet (Szegedy et al., 2014).

The works cited employ a range of pre-trained models,
each with its architecture and strengths. For instance, ResNet
models, with their residual connections, are known to alleviate
the vanishing gradient problem in deep networks (He et al.,
2016a; Huang et al., 2017). On the other hand, EfficientNet
architectures scale all dimensions of the model (width, depth, and
resolution) based on a set compound coefficient, making them
extremely efficient. These models, when paired with strategic data
augmentation, can discern subtle differences among animal species,
even those imperceptible to the human eye (Ibraheam et al., 2021).

Despite the prowess of CNNs, innovation in the field of
machine learning continues unabated. The classification model
presented in this paper represents this evolutionary process. Rather
than relying solely on end-to-end training of CNNs, the model
presented here employs a two-step process. First, feature extraction
is performed using a CNN. These extracted features, rich in
information content, are fed into a supervised learning model,
which can be either a traditional machine learning algorithm
or another neural network variant. This hybrid approach aims
to harness the strength of CNNs in feature extraction and
combine it with the robustness of other classification algorithms,
potentially providing more accurate and interpretable results.
Crucially, the selection of the definitive model will be based on
a rigorous hypothesis testing process, ensuring that the chosen
approach not only performs well in theory but also stands up to
empirical scrutiny.

The supervised learning models used in this paper range from
dimensionality reduction algorithms such as linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA),
through the generation of single and multiple decision trees, the
latter known as Random Forest (RF), the use of Kernel methods
such as support vector machines (SVM), the use of non-parametric
classification methods such as the k-nearest neighbor (K-NN)
algorithm and the use of probabilistic classification methods such
as the Gaussian Naive Bayes (GNB) algorithm. All of them
have been used independently for the classification of different
biogeochemical species (Franco et al., 1990; Cutler et al., 2007;
Munoz et al., 2013; Pundlik, 2016; Saberioon et al., 2018; Shang and
Li, 2018; Deep andDash, 2019; Knauer et al., 2019; Luan et al., 2020;
Nuraini, 2022).

In essence, while CNNs have paved the way for unparalleled
advancements in image classification, the ever-evolving landscape
of machine learning ensures that newer, potentially more efficient
methods will be needed.

Transfer learning is a common and effective approach in this
field and has many advantages, such as a great reduction in training
times and a better performance, specially for small datasets, where
training from scratch may result in a severe overfitting. The usual

approach consists on removing the final layers responsible for
classification and replace them with new layers (usually fully-
connected). The pre-trained model’s weights are frozen, and only
the weights of the new layers are trained on the specific dataset.

Previous models, which utilized the entire neural network,
usually have a higher computational cost and possibly, a higher
risk of overfitting when compared to some classic classification
algorithms. The proposed technique allows for the exploration of
different approaches and the identification of the classifier that best
suits the characteristics of our data.

This work proposes a methodology for the design of a
classification model using transfer learning and replacing the
final layers by other alternative classifiers instead of using a
set of fully-connected layers. In order to statistically assess the
performance, a multiple comparison analysis has been applied to
check whether there are differences in performance between the
different classification models. This methodology has allowed to
improve the generalization ability of the final model in a real-
world scenario (fishmarket image recognition), getting a significant
increase in performance.

2 Materials and methods

2.1 Dataset

The southern Spanish fish market has a rich history and a
wide variety/range of seafood products. Most auction facilities,
taking a leap toward modernity, have adopted digital platforms
for their operations. These platforms primarily use photography
to showcase their products to prospective buyers. However, by
analysing these images, researchers can determine the size, species
and weight, ensuring that fishing practices conform to sustainable
standards. Many studies such as Dobeson (2016) and Jarek
and Mazurek (2019) show that the integration of technological
advances can significantly improve the traceability of sales and
auction processes.

The dataset used for this study was gathered from sales
conducted at the Conil de la Frontera (36◦17’44.1”N 6◦08’16.9”W)
fish market, where each sold box is associated with an image. The
images are captured within the sales box where only specimens
of the same species of fish appear. Once the fishing vessel has
unloaded its cargo and placed the catches in their sales boxes,
they are transferred to a conveyor belt where they are weighed,
and an image is captured for publication on the auction portal
of the fish market. The photos have dimensions of 800 × 480
pixels with a resolution of 96 pixels per inch (ppi) at a fixed
height of approximately 1 meter at the point where the box
is weighed. Additionally, no additional lighting or flash is used
beyond what is present in the room where these measurements are
conducted.

These images are stored alongside auction sales data, including
size, weight, and the Food and Agriculture Organization of the
United Nations Code (FAO) which refers to the abbreviated
nomenclature of the species, among other information,
though private data of both buyers and sellers has been
anonymized. The original raw dataset comprises 12,525
images representing 80 different species across 38 distinct

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1326452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jareño et al. 10.3389/fcomp.2024.1326452

FIGURE 1

Main species of the fishing port of Conil de la Frontera. (A) Pagrus pagrus. (B) Plectorhinchus mediterraneus. (C) Argyrosomus regius. (D) Pagrus
auriga.

days. However, there’s a noticeable class imbalance issue,
with some species having fewer than 30 sample images,
while more common species such as those depicted in
Figures 1A–D have 1.217, 2.167, 836 and 1.120 instances,
respectively.

To address class imbalance, the study focuses on the 19
species that have over 200 sales instances. The dataset is divided
in a manner such that every species has 80% of their instances
in training, 10% for validation and 10% for testing, henceforth
keeping the balance in all the stages. Data augmentation techniques
(Shorten and Khoshgoftaar, 2019) are applied to the training
data, with the aim to increase instances for each species to a
minimum of 500, greatly improving system performance. This
approach enables the network to learn from image variations,
including fish distribution, caliber differences, blood stains, camera
water droplets, and snow in boxes, thus facilitating knowledge
extrapolation. The original image set is retained, and new
images are generated using transformations such as mirroring,
rotation, blur, optical distortion, and hue-saturation adjustments.
These are performed using the Albumentations framework
(Buslaev et al., 2020), a Python library for fast and flexible
image augmentations.

Therefore, the resulting dataset consists of 10,632 instances,
representing 19 target species, with an average of 640 images per
class. Furthermore, 20% of the dataset is reserved for test and
validation purposes. Therefore, it is divided into training (80%–
8,505 original instances, 12,095 with data augmentation), validation
(10%–1,064 instances), and testing (10%-1,063 instances).

As established in the introduction, this study aims to conduct
a comparative analysis among various classification models

based on convolutional neural networks (CNNs) and distinct
supervised learning models that do not utilize neural networks
for classification.

2.2 CNN models and supervised learning

A CNN is a deep learning model designed for the processing
of grid-structured data, such as images or matrix data. In contrast
to conventional neural networks, CNNs employ a specialized
architecture that leverages the spatial correlations in data by
applying convolutional filters across successive layers (Goodfellow
et al., 2016). These filters autonomously acquire local features,
such as edges, textures, and shapes, which accumulate to construct
increasingly abstract and meaningful representations as one delves
deeper into the network.

One of the main advantages of CNNs is their inherent
capacity to autonomously extract features from input data without
necessitating prior preprocessing. Instead of requiring the manual
design and selection of pertinent features for a specific task, CNNs
dynamically and hierarchically acquire the most discriminative
features during the training process. This attribute renders
them exceptionally potent for various computer vision tasks,
including but not limited to image classification, object detection,
segmentation, and face recognition.

Pre-trained networks refer to CNNmodels that have undergone
training on extensive datasets, such as ImageNet, and have garnered
widespread popularity within the deep learning community
(Hussain et al., 2019). The current study will employ these
pre-trained models, including ResNet152V2 (He et al., 2016b),
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VGG16 (Simonyan and Zisserman, 2014), EfficientNetV2L (Tan
and Le, 2021), and Xception (Chollet, 2017), as a foundation. These
models have acquired the ability to discern a diverse array of visual
features, rendering them a robust basis for various computer vision
tasks. By harnessing the wealth of knowledge embedded in these
models, substantial time and resources can be conserved, as there is
no need to initiate training from scratch, leading to expedited access
to high-quality results.

Let the VGG16 CNN architecture shown in Figure 2 work as
an example. It can’t be used without applying transfer learning
(Goodfellow et al., 2016), a technique used to extrapolate pre-
trained CNN models to new classification problems. CNNs can be
divided in two main parts: the convolution layers where the feature
extraction is performed, and the fully connected layers (Multi Layer
PerceptronMLP) where the classification is performed based on the
features extracted. Since the original number of classes is different
of ours, the last part of the CNN architecture is replaced with a
new Fully Connected Neural Network (FCNN) which matches our
number of fish species, 19.

The initial feature extraction layers remain unchanged,
as they retain the knowledge acquired from the ImageNet
dataset. However, the classification layers are substituted with a
GlobalAveragePooling2D layer followed by a Dense-Softmax output
layer which will serve as the classification layer.

To perform the comparison, the same number of features has
been employed for all algorithms. These features are extracted
by the CNN models in their convolutional stage. Given this,
VGG16 results in 14 × 14 × 512 = 100,352 (as seen in Figure 2)
neurons after the final pooling and flattening of neurons across all
convolutional layers. Therefore, it will be the number of features
extracted by VGG16 for the comparison among all supervised
learning models. Ultimately, the goal is to utilize the feature
extractor of CNN models in their convolutional stage, which was
employed in the fully-connected layers of the original model for
the classification, as a feature extractor that will feed the features to
the supervised learningmodels. Thus, within the same CNNmodel,
comparisons are made with the same number of extracted features,
and among different CNN models, the number of these features
will vary.

The workflow for training and validating the models is
outlined in Algorithm 1. The system begins by initially training
and evaluating the proposed CNN-based model. Subsequently, the
final classification layers are removed, and the model’s output is
set to the features extracted from the convolutional layers. This
modified model is then used as a feature extractor for the proposed
supervised learning classifier models.

During the supervised learning process, all images are
preprocessed using the feature extractor obtained from the original
CNN, which will serve as input for the proposed models.
The results of each combination of the CNN model and the
supervised learning model are evaluated through the mean
of five executions of 10-fold Cross-Validation. The algorithms
employed are those mentioned in the Introduction, namely:
Linear Support Vector Machine (SVM), Radial kernel SVM,
Polynomial SVM, Random Forest, Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis, Gaussian Bayes, Decision
Tree, and K-NN with K values ranging from 1 to 29 in steps
of 2.

FIGURE 2

VGG16 CNN architecture. An input image of size 224 × 224 is
supplied, followed by a sequence of convolutional and pooling
layers, culminating in a single hidden layer comprising 4,096
neurons that feed into the output classification layer for the desired
number of classes. When applying transfer learning, only the input
layer and the final fully-connected layer are modified.
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Input: models_list = ["ResNet152V2", "VGG16", "EfficientNetV2L", "Xception"]

classifiers_list = ["SVMlin",“SVMrbf", “RandomForest", "LDA", "QDA", “1-NN", "2-NN"...]

for i in [1,30] do

trn_data, val_data, tst_data = create_dataset()

for each CNN_MODEL in models_list do

train(CNN_MODEL, trn_data, val_data)

evaluate(CNN_MODEL, tst_data)

FEAT_CNN_MODEL = remove_classification_FCN_layers(CNN_MODEL)

trn_feat, val_feat, tst_feat = extract_features(FEAT_CNN_MODEL, trn_data, val_data, tst_data)

for each CLASSIFICATION_MODEL in classifiers_list do

CV_scores(CLASSIFICATION_MODEL, trn_feat, val_feat, tst_feat)

end for

end for

end for

Algorithm 1. Workflow for training and validation.

TABLE 1 Training hyperparameters summary: the batch size was chosen according to the memory constraints of the GPU.

Optimizer Loss function Learning rate Epochs Batch size

Frozen layers
Adam Categorical crossentropy

1e-3 35 64

Fine-tuning 1e-5 5 16

The selection of epoch values for both training phases was made following an analysis of the learning curves, where clear signs of overfitting were observed at those specific points. Notably, in

the fine-tuning phase, an increase in the number of epochs had a substantial impact on the validation error.

Therefore, we have a total of 23 algorithms and 4 pre-trained
CNN models, resulting in 23 · 4 + 4 = 96 distinct models.
The remaining 4 models correspond to the original CNN+MLP
(CNN with a classification layer based on a MLP) models that were
trained separately.

2.3 Model training and evaluation

In this work, the training and evaluation of all models
was developed in Python 3.10 using the scikit-learn package
v1.2.2. From this package, four modules were used for modeling
(tree, neural_networks, mixture, and ensemble), while the metrics
module was used for performance calculations. Since the Transfer
Learning technique has been used, the training stage is performed
in two phases in order to improve the performance of the results.
First, the convolutional layers of the model are frozen so that
the training will affect just the Fully Connected (FC) layers. We
use “categorical crossentropy” as the loss function and the Adam
optimizer with its default hyperparameters of learning rate and
decay (Goodfellow et al., 2016). The model is trained in 35 epochs
and with a batch size of 64. The batch size has been selected to
ensure optimal placement of the model within the GPU’s shared
memory. Using a larger batch size would risk memory overflow,
while a smaller batch size tends to result in overfitting. The GPU is
an NVIDIA GeForce RTX 3090Ti with 24GiB of memory, of which
22.4GiB is used for model storage.

Once the model has been fully trained with these parameters,
a fine-tuning training phase is performed in order to adapt
the whole network to this specific problem and increase its
performance. In this stage, all the layers are unfrozen, so that

the training changes all the weights of the model. However,
a low learning rate, specifically 1e-5, is set to ensure only
minor adjustments are made to the model’s weights, avoiding
drastic changes. Furthermore, as we are updating all layers,
the size of the model in the GPU increases, necessitating a
reduction in the batch size to 16. All these parameters are
shown at Table 1. The selection of values is motivated by
hyperparameter tuning through grid search, aiming to enhance
the f-score and reduce the training time for all proposed CNN
models.

To assess the performance of our model, we will focus on
the concept of model evaluation, with a particular emphasis
on its relevance to CNN models. We will delve into the
common metric used to gauge the effectiveness of CNNs in
various computer vision tasks, providing crucial insights into
their object classification capabilities. By comprehending and
interpreting these evaluation metric, we can make informed
decisions concerning model selection, optimization, and
deployment. The performance of our models will be quantified
using the mean F1-Score of all the species, which is defined
by Equations 1–3:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1Score = 2 ·
precision · recall

precision+ recall
(3)
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TABLE 2 Multiple models are subjected to pairwise comparisons using the Games-Howell test.

Model1 Model2 Mean di�erence Std. error t-value p-value Upper limit Lower limit

EfficientNetV2L ResNet152V2 –0.0642 0.0017 26.5849 0.001 8.7991 –8.9275

EfficientNetV2L VGG16 –0.0099 0.0022 3.1598 0.9 9.0081 –9.0278

EfficientNetV2L Xception –0.0634 0.0018 24.896 0.001 8.8531 –8.9798

ResNet152V2 VGG16 0.0543 0.0024 15.8547 0.001 8.922 –8.8135

ResNet152V2 Xception 0.0008 0.002 0.2722 0.9 8.8166 –8.815

VGG16 Xception –0.0535 0.0025 15.2051 0.001 8.7947 –8.9017

The classification models based on CNN were compared using the four proposed pretrained networks. Models with a p-value of 0.9 are indistinguishable from each other, while those with a

p-value of 0.001 are considered different. It is observed that the models grouped into two pairs, and these pairs are distinguishable from each other, as confirmed by the differences in their means

values. The resulting pairs are EfficientNetV2L-VGG16 and ResNet152V2-Xception. Mean difference is computes as µ = µ2 − µ1 .

FIGURE 3

Sample distribution for F-Score results using CNN-MLP models. It is observed that E�cientNetV2L and VGG16 get better results, while ResNet152V2
and Xception results are not so competitive, in good agreement with the statistical analysis results. It is also evident that the variances of the
distributions of F-score for each model are not equal (i.e., VGG16 clearly shows a more dispersed distribution than E�cientNetV2L).

Where TP stands for True Positives, FP for False Positives and
FN as False Negatives.

For a correct evaluation of the proposed models, we carefully
assembled a total of 30 distinct datasets, dividing each one into
training, validation, and test sets. First, each model was trained
using the training and validation sets and the F1 metric was then
calculated using test data for each dataset. Finally, the average F1-
score was obtained. This method enables us to cover a diverse array
of scenarios, representing various sets of instances that can be fed
into the network, and statistically demonstrate the performance of
the models. Henceforth, the metrics presented for each experiment
are the outcomes of 30 iterations of each proposed model.

3 Results and discussion

This section presents the results from 30 executions of the
96 proposed models. Among these, four are associated with the
original CNN+MLP pretrained CNN models, while the remaining
92 pertain to the CNN+supervised learning proposed algorithms.

The final objective of this work is to perform a well-founded
comparison between the proposed models. To achieve this, we
employ the comparative model analysis discussed in Pizarro et al.
(2002). This paper introduces a novel approach to model selection
that is based on hypothesis testing.

When comparing the models, the first thing that comes to
mind is to determine whether there are statistically significant
differences between the means. In this case, the usual approach
is apply Analysis of Variance (ANOVA). However, ANOVA has
a number of assumptions that should hold for valid inferences:
normality, homoscedasticity(uniform variance across all groups)
and independence of cases among others.

The Shapiro-Wilk test is a well-known test to evaluate whether
the dataset is normally distributed within each model. If the p-
value obtained exceeds the significance level, the null hypothesis
(the population is normally distributed) cannot be rejected. This
test is applied to each group, so the test generates a p-value for each
of the models, allowing us to determine which models individually
adhere to a normal distribution. With a significance level of 0.01, it
was obtained that all p-values were greater than 0.01, and the null
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TABLE 3 Games-Howell model comparison for the top CNN+MLP models, in comparison with their sub-models utilizing supervised learning algorithms

for classification results.

Model1 Model2 Mean
di�erence

Std. error t-value p-value Upper
limit

Lower
limit

EfficientNetV2L EfficientNetV2L-Decision tree –0.1692 0.0014 86.5853 0.001 9.4111 –9.7494

EfficientNetV2L EfficientNetV2L-GaussBayes –0.0032 0.0012 1.882 0.9 9.7162 –9.7225

EfficientNetV2L EfficientNetV2L-K-NN k = 1 –0.0312 0.0012 19.1629 0.001 9.7694 –9.8318

EfficientNetV2L EfficientNetV2L-K-NN k = 3 –0.0251 0.0012 15.4471 0.001 9.7753 –9.8255

EfficientNetV2L EfficientNetV2L-K-NN k = 5 –0.0193 0.0012 11.4817 0.001 9.6988 –9.7375

EfficientNetV2L EfficientNetV2L-K-NN k = 7 –0.017 0.0012 9.8946 0.001 9.666 –9.7

EfficientNetV2L EfficientNetV2L-K-NN k = 9 –0.0156 0.0012 9.0705 0.001 9.6659 –9.6971

EfficientNetV2L EfficientNetV2L-K-NN k = 11 –0.0146 0.0012 8.5709 0.001 9.6807 –9.71

EfficientNetV2L EfficientNetV2L-K-NN k = 13 –0.0139 0.0012 8.2055 0.001 9.6884 –9.7163

EfficientNetV2L EfficientNetV2L-K-NN k = 15 –0.0134 0.0012 7.7069 0.9 9.6478 –9.6746

EfficientNetV2L EfficientNetV2L-K-NN k = 17 –0.0129 0.0012 7.3586 0.9 9.6378 –9.6636

EfficientNetV2L EfficientNetV2L-K-NN k = 19 –0.0121 0.0012 6.888 0.9 9.6425 –9.6666

EfficientNetV2L EfficientNetV2L-K-NN k = 21 –0.0119 0.0012 6.7677 0.9 9.6379 –9.6617

EfficientNetV2L EfficientNetV2L-K-NN k = 23 –0.0116 0.0012 6.5889 0.9 9.6351 –9.6583

EfficientNetV2L EfficientNetV2L-K-NN k = 25 –0.0116 0.0012 6.5662 0.9 9.632 –9.6551

EfficientNetV2L EfficientNetV2L-K-NN k = 27 –0.0111 0.0012 6.3741 0.9 9.6474 –9.6696

EfficientNetV2L EfficientNetV2L-K-NN k = 29 –0.011 0.0012 6.3265 0.9 9.6473 –9.6693

EfficientNetV2L EfficientNetV2L-LDA 0.0314 0.0012 18.8338 0.001 9.7713 –9.7085

EfficientNetV2L EfficientNetV2L-Linear SVM 0.0331 0.0011 20.3917 0.001 9.8355 –9.7692

EfficientNetV2L EfficientNetV2L-Poly SVM 0.0306 0.0011 19.1619 0.001 9.8828 –9.8215

EfficientNetV2L EfficientNetV2L-QDA –0.8589 0.001 612.2118 0.001 9.6248 –11.3426

EfficientNetV2L EfficientNetV2L-RBF SVM 0.0386 0.0011 24.0823 0.001 9.8821 –9.805

EfficientNetV2L EfficientNetV2L-RandForest –0.35 0.0014 173.8726 0.001 9.2309 –9.9308

VGG16 VGG16-Decision Tree –0.2188 0.0022 71.2309 0.001 9.7734 –10.2111

VGG16 VGG16-GaussBayes –0.0691 0.0021 23.7781 0.001 10.1981 –10.3362

VGG16 VGG16-K-NN k = 1 –0.0786 0.002 27.2227 0.001 10.2245 –10.3817

VGG16 VGG16-K-NN k = 3 –0.0689 0.002 23.8557 0.001 10.2295 –10.3674

VGG16 VGG16-K-NN k = 5 –0.0636 0.002 22.1344 0.001 10.2718 –10.399

VGG16 VGG16-K-NN k = 7 –0.062 0.002 21.6174 0.001 10.2775 –10.4016

VGG16 VGG16-K-NN k = 9 –0.0615 0.002 21.4153 0.001 10.276 –10.399

VGG16 VGG16-K-NN k = 11 –0.0618 0.002 21.4104 0.001 10.2395 –10.3631

VGG16 VGG16-K-NN k = 13 –0.0619 0.002 21.4012 0.001 10.2281 –10.3519

VGG16 VGG16-K-NN k = 15 –0.0624 0.002 21.5769 0.001 10.2257 –10.3506

VGG16 VGG16-K-NN k = 17 –0.0629 0.0021 21.5605 0.001 10.1793 –10.3051

VGG16 VGG16-K-NN k = 19 –0.0634 0.0021 21.747 0.001 10.1819 –10.3087

VGG16 VGG16-K-NN k = 21 –0.0641 0.0021 21.9499 0.001 10.174 –10.3021

VGG16 VGG16-K-NN k = 23 –0.0647 0.0021 22.2589 0.001 10.1936 –10.323

VGG16 VGG16-K-NN k = 25 –0.0655 0.0021 22.4896 0.001 10.1827 –10.3137

VGG16 VGG16-K-NN k = 27 –0.066 0.0021 22.7513 0.001 10.209 –10.341

(Continued)
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TABLE 3 (Continued)

Model1 Model2 Mean
di�erence

Std. error t-value p-value Upper
limit

Lower
limit

VGG16 VGG16-K-NN k = 29 –0.0669 0.0021 23.0788 0.001 10.2066 –10.3405

VGG16 VGG16-LDA –0.0118 0.002 4.1593 0.9 10.4159 –10.4394

VGG16 VGG16-Linear SVM –0.0169 0.0021 5.7614 0.9 10.2432 –10.2095

VGG16 VGG16-Poly SVM –0.0065 0.0021 2.2003 0.9 10.1645 –10.1775

VGG16 VGG16-QDA –0.574 0.002 198.0999 0.001 9.7063 –10.8544

VGG16 VGG16-RBF SVM –0.0094 0.0021 3.2381 0.9 10.2645 –10.2833

VGG16 VGG16-RandForest –0.4587 0.0024 134.1629 0.001 9.2351 –10.1526

Mean difference is computed as µ = µ2 − µ1 . Four sub-models demonstrate significantly superior performance when compared to their MLP counterparts (p-values and mean differences

highlighted in bold). Models that utilize support vector machines or linear discriminant analysis algorithms have shown a significant performance improvement in comparison to their MLP

versions.

FIGURE 4

Sample distribution for F-score results using E�cientNetV2L model (shown as “E�Net”), CNN+MLP and four sub-models that exhibit significantly
better performance than the MLP version (see Table 3) models are shown. Models employing SVM or LDA classification algorithms have shown
improved performance compared to their MLP versions. This statistically proven improvement is clearly evident in the figure, where models utilizing
the proposed supervised learning algorithms exhibit a higher mean and a more concentrated distribution of F-Score.

hypothesis for each group that the data are normally distributed
could not be rejected.

The second tested assumption was the homogeneity of
variances. In this case, the Levene test was conducted with the null
hypothesis that the variances of all groups are equal. The Levene
test applied to all groups gave a p-value of 3.4154e-70, leading to the
rejection of the null hypothesis, indicating the presence of different
variances among the groups.

Post hoc tests, such as Bonferroni (1936), Tukey (1949),
Duncan (1955), Dunnett (1955), etc. Galindo et al. (2000) allow
testing for differences between multiple group means while also
controlling for the family-wise error rate, that is, the probability
of at least one false conclusion in a series of hypothesis tests.
However, most of these tests rely on the equal variance assumption.
When the homoscedasticity assumption is not met, which was
our case, alternative tests might be used. In such situation, the
Games-Howell, Tamhane’s T2, Dunnett’s T3, and Dunnett’s C

tests can be applied (Shingala and Rajyaguru, 2015). The Games-
Howell test is similar to Tukey’s test, but it does not assume equal
variances and sample sizes (provided that there are more than five
samples in each group) (Games et al., 1979). In our case, this last
prerequisite is also easily met, as there are 30 runs for each model.
The Games-Howell used routine performs a pairwise comparison
among groups which returns a p-value bounded between 0.001 and
0.9. This is due to the fact that the calculation of the p-value uses
scalar minimization and results are bound to be between 0.001 and
0.9, as described in the documentation of statsmodel package
(Seabold and Perktold, 2010). Therefore, a p-value = 0.001 in the
results should be interpreted as p-value≤ 0.001, and a p-value = 0.9
should be interpreted as p-value ≥ 0.9.

Consequently, a pairwise model comparison using Games-
Howell routine was conducted among the CNN-MLP models (see
Table 2) using four different pre-trained models (EfficientNetV2L,
ResNet152V2, VGG16, and Xception). From the results, there is
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TABLE 4 F-Score performance obtained by di�erent models in 30

independent executions.

Model µ σ max min

EfficientNetV2L 0.91862 0.00727 0.93193 0.90588

EfficientNetV2L-Decision Tree 0.74943 0.00709 0.75856 0.73174

EfficientNetV2L-GaussBayes 0.91545 0.00488 0.92988 0.90443

EfficientNetV2L-K-NN k = 1 0.88745 0.00432 0.89655 0.8794

EfficientNetV2L-K-NN k = 11 0.904 0.00507 0.91381 0.89284

EfficientNetV2L-K-NN k = 13 0.90468 0.00501 0.91334 0.89342

EfficientNetV2L-K-NN k = 15 0.9052 0.0054 0.91557 0.89334

EfficientNetV2L-K-NN k = 17 0.9057 0.00551 0.91634 0.89361

EfficientNetV2L-K-NN k = 19 0.90657 0.00547 0.91738 0.89367

EfficientNetV2L-K-NN k = 21 0.90673 0.00552 0.91702 0.89479

EfficientNetV2L-K-NN k = 23 0.90702 0.00556 0.91802 0.8958

EfficientNetV2L-K-NN k = 25 0.90703 0.0056 0.91785 0.89571

EfficientNetV2L-K-NN k = 27 0.9075 0.00543 0.91868 0.89561

EfficientNetV2L-K-NN k = 29 0.90758 0.00543 0.91849 0.89621

EfficientNetV2L-K-NN k = 3 0.89349 0.00432 0.90196 0.88486

EfficientNetV2L-K-NN k = 5 0.89927 0.00488 0.90743 0.88971

EfficientNetV2L-K-NN k = 7 0.90162 0.00518 0.91354 0.8921

EfficientNetV2L-K-NN k = 9 0.90303 0.0052 0.91294 0.89165

EfficientNetV2L-LDA 0.95003 0.00472 0.95882 0.94268

EfficientNetV2L-Linear SVM 0.95177 0.00431 0.95889 0.94166

EfficientNetV2L-Poly SVM 0.94923 0.00401 0.95564 0.94167

EfficientNetV2L-QDA 0.0597 0.00059 0.06095 0.05848

EfficientNetV2L-RBF SVM 0.9572 0.00406 0.96251 0.94792

EfficientNetV2L-RandForest 0.56865 0.00752 0.5802 0.54518

VGG16 0.90873 0.01456 0.93036 0.87622

VGG16-Decision Tree 0.68988 0.00656 0.70418 0.67646

VGG16-GaussBayes 0.83967 0.00398 0.84483 0.83097

VGG16-K-NN k = 1 0.83014 0.00362 0.83743 0.82391

VGG16-K-NN k = 11 0.8469 0.00364 0.85531 0.84085

VGG16-K-NN k = 13 0.84681 0.00376 0.85553 0.83988

VGG16-K-NN k = 15 0.84629 0.00377 0.85517 0.83853

VGG16-K-NN k = 17 0.84585 0.00422 0.85406 0.8371

VGG16-K-NN k = 19 0.84534 0.00419 0.85413 0.83727

VGG16-K-NN k = 21 0.84466 0.00426 0.85388 0.83628

VGG16-K-NN k = 23 0.84399 0.00407 0.85157 0.8352

VGG16-K-NN k = 25 0.8432 0.00416 0.85097 0.8349

VGG16-K-NN k = 27 0.84274 0.0039 0.8509 0.83496

VGG16-K-NN k = 29 0.84178 0.00392 0.85016 0.83328

VGG16-K-NN k = 3 0.83981 0.00367 0.84739 0.83248

VGG16-K-NN k = 5 0.84516 0.00329 0.85145 0.83701

(Continued)

TABLE 4 (Continued)

Model µ σ max min

VGG16-K-NN k = 7 0.84669 0.00325 0.85294 0.8405

VGG16-K-NN k = 9 0.84725 0.00327 0.85503 0.84089

VGG16-LDA 0.89695 0.00218 0.90229 0.8932

VGG16-Linear SVM 0.92558 0.00437 0.93284 0.91601

VGG16-Poly SVM 0.90223 0.00488 0.9125 0.89286

VGG16-QDA 0.33471 0.00385 0.34262 0.3287

VGG16-RBF SVM 0.89933 0.00392 0.90939 0.8915

VGG16-RandForest 0.45 0.01019 0.47693 0.43398

Columns correspond to mean (µ), standard deviation (σ ), maximum (max), and minimum

(min) values. The EfficientNetV2L and VGG16 models are displayed, as they are considered

statistically superior in F-Score performance compared to the other proposed models (seen

at Table 2). Models whose performance is statistically indistinguishable from each other are

highlighted. It can be seen that the highlighted models are distinctly set apart from the

others in terms of performance; the minimum value achieved by these models surpasses

the maximum of the remaining models by 0.01, as evidenced by the maximum achieved by

EfficientNetV2L. Therefore, the results obtained from the Games-Howell (shown at Table 3)

comparison are deemed sufficiently representative.

no evidence that EfficientNetV2L and VGG16 are significantly
distinguishable from each other (p-value ≥ 0.9), as it happens
with ResNet152V2 and Xception (p-value ≥ 0.9). However,
these pairs are significantly distinguishable from each other(p-
value ≤ 0.01), resulting in two distinct pairs of models, with
one pair apparently outperforming the other (see Figure 3).
The boxplot displays the sample distribution for each model.
It is also notable that the models’ variances are not equal;
EfficientNetV2L and VGG16 exhibit notably different standard
deviations, being VGG16 results more dispersed than those
obtained by EfficientNetV2L.

Finally, the CNN-MLP models were compared with their sub-
models using supervised learning algorithms for classification to
determine which ones serve as the best classifiers. We validated
models that, while demonstrating a better average than their
MLP classifier counterparts, were significantly distinct from them.
Therefore, it was observed that four sub-models had significantly
better performance than the MLP version (see Table 3 and
Figure 4). Models employing SVM or LDA algorithms have shown
improved performance compared to their MLP versions, with
an average F-Score enhancement of 0.03. Furthermore, these
four models are deemed significantly distinguishable from the
MLP model while also being statistically indistinguishable from
each other.

The F-Score performance of various models was assessed
through 30 independent executions (Tables 4, 5). Notably, the
EfficientNetV2L and VGG16 models are presented as they are
deemed statistically superior in F-Score performance compared
to the other proposed models (refer to Table 2). Models with
statistically indistinguishable performance are emphasized. It can
be seen that these highlighted models distinctly outperform the
others; the minimum value achieved by these models exceeds the
maximum of the remaining models by 0.01, as demonstrated by the
maximum achieved by EfficientNetV2L. Consequently, the results
obtained from the Games-Howell comparison (refer to Table 3) are
considered representative proposed models’ performance.
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TABLE 5 F-Score performance obtained by di�erent models in 30

independent executions.

Model µ σ max min

ResNet152V2 0.85446 0.01022 0.87183 0.83194

ResNet152V2-Decision Tree 0.60688 0.00578 0.61867 0.59539

ResNet152V2-GaussBayes 0.84648 0.00414 0.85391 0.83523

ResNet152V2-K-NN k = 1 0.79454 0.00471 0.80279 0.78353

ResNet152V2-K-NN k = 11 0.80992 0.00515 0.81805 0.79556

ResNet152V2-K-NN k = 13 0.80894 0.0055 0.81714 0.79605

ResNet152V2-K-NN k = 15 0.80781 0.00553 0.81715 0.79499

ResNet152V2-K-NN k = 17 0.80645 0.00572 0.81576 0.79188

ResNet152V2-K-NN k = 19 0.80472 0.00583 0.81485 0.78915

ResNet152V2-K-NN k = 21 0.80306 0.00552 0.8128 0.78939

ResNet152V2-K-NN k = 23 0.80169 0.006 0.81181 0.78645

ResNet152V2-K-NN k = 25 0.79998 0.00599 0.80972 0.7848

ResNet152V2-K-NN k = 27 0.79859 0.00613 0.80955 0.78396

ResNet152V2-K-NN k = 29 0.79705 0.00603 0.80752 0.78369

ResNet152V2-K-NN k = 3 0.8001 0.00485 0.80922 0.78911

ResNet152V2-K-NN k = 5 0.80874 0.00414 0.81663 0.79916

ResNet152V2-K-NN k = 7 0.81048 0.00507 0.81862 0.79877

ResNet152V2-K-NN k = 9 0.81039 0.00518 0.81812 0.79682

ResNet152V2-LDA 0.9353 0.0021 0.93925 0.93018

ResNet152V2-Linear SVM 0.93648 0.00224 0.94016 0.9323

ResNet152V2-Poly SVM 0.929 0.00271 0.93479 0.92453

ResNet152V2-QDA 0.0711 0.00196 0.07545 0.0685

ResNet152V2-RBF SVM 0.93147 0.00233 0.93585 0.9266

ResNet152V2-RandForest 0.37039 0.00554 0.38028 0.36217

Xception 0.85525 0.01085 0.87798 0.83806

Xception-Decision Tree 0.53283 0.00458 0.5424 0.52474

Xception-GaussBayes 0.81987 0.00302 0.82475 0.81359

Xception-K-NN k = 1 0.76913 0.00326 0.77555 0.76229

Xception-K-NN k = 11 0.79191 0.00379 0.80112 0.78491

Xception-K-NN k = 13 0.79135 0.00383 0.80062 0.78518

Xception-K-NN k = 15 0.79049 0.00403 0.80017 0.78353

Xception-K-NN k = 17 0.78897 0.00419 0.798 0.78109

Xception-K-NN k = 19 0.78763 0.00426 0.79704 0.78025

Xception-K-NN k = 21 0.78612 0.0041 0.79439 0.77685

Xception-K-NN k = 23 0.78461 0.00455 0.7949 0.77488

Xception-K-NN k = 25 0.783 0.00425 0.79157 0.77484

Xception-K-NN k = 27 0.78136 0.00452 0.79181 0.77156

Xception-K-NN k = 29 0.77999 0.00454 0.79012 0.7696

Xception-K-NN k = 3 0.77678 0.00378 0.78602 0.7699

Xception-K-NN k = 5 0.78817 0.00358 0.79674 0.78135

(Continued)

TABLE 5 (Continued)

Model µ σ max min

Xception-K-NN k = 7 0.79136 0.00408 0.80258 0.78244

Xception-K-NN k = 9 0.79222 0.00366 0.80125 0.78505

Xception-LDA 0.91502 0.00241 0.91826 0.91084

Xception-Linear SVM 0.92613 0.00269 0.93137 0.92122

Xception-Poly SVM 0.92063 0.00201 0.92478 0.91646

Xception-QDA 0.0743 0.00195 0.07785 0.07126

Xception-RBF SVM 0.91806 0.00204 0.92256 0.91471

Xception-RandForest 0.33876 0.00349 0.34749 0.32937

Columns correspond to mean (µ), standard deviation (σ ), maximum (max), and minimum

(min) values. The ResNet152V2 and Xception models are displayed, they are considered

statistically inferior in F-Score performance compared to the other proposed models (seen

at Table 2). Models whose performance is statistically indistinguishable from each other are

highlighted. Although it is seen that they are statistically superior, there are other models that,

while achieving decent results, are indistinguishable from the highlighted models and other

models that are statistically inferior to the top-performing models. Consequently, they have

not been highlighted as they are surpassed by the highlighted models.

4 Conclusions

In this research paper, we have tackled the challenging task
of automating the labeling of fish species through the application
of deep learning techniques. Specifically, we examined the efficacy
of four different pre-trained neural networks, including ResNet,
VGG16, EfficientNetV2L, and Xception, using transfer learning.
After transfer learning, we harnessed the knowledge these networks
had gained from large-scale datasets and fine-tune them to our
specific fish image dataset.

The initial phase of our investigation involved transfer learning,
where all the pre-trained layers were kept frozen, allowing only
the last layer to be customized to our dataset. Subsequently, we
employed fine-tuning, which permitted us to update the pre-
trained layers. This two-step approach aimed to leverage the
powerful representations learned by these networks while adapting
them to the nuances of our fish image dataset.

To further enhance the performance of our system, we decided
to replace the final layers of the pre-trained networks with 23
distinct classification models, including Support Vector Machines
(SVM), Linear Discriminant Analysis (LDA), Random Forests, and
k-Nearest Neighbors (K-NN), among others. This diverse set of
classifiers allowed us to explore whichmodelmight bemost suitable
for the classification task using the features extracted from the
pre-trained CNN.

To determine the best-performing model among the extensive
pool of candidates, we conducted a rigorous comparative analysis.
It’s worth noting that we encountered a deviation from the
homoscedasticity assumption in our data. To address this issue,
we applied the Games-Howell method, which is an improved
and robust alternative to the Tukey-Kramer method. The Games-
Howell method was specifically selected because of its suitability for
scenarios where the homoscedasticity assumption is violated.

Our comparative analysis, rooted in the Games-Howell test, has
demonstrated that not all pre-trained networks are created equal
when it comes to fish species recognition. Specifically, EfficientNet
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and VGG16 emerged as the top performers, significantly
outshining ResNet and Xception in our dataset. This highlights the
importance of carefully selecting a pre-trained network that aligns
with the specific nuances of the task at hand, and it underscores that
not all deep learning architectures are universally applicable.

Moreover, our exploration of the final stage of the CNN
architecture revealed a promising strategy for performance
enhancement. The integration of classifiers like SVM and LDA as
the concluding layer of the CNN framework led to a substantial
improvement in the F-score, namely, from 0.92 to 0.95. This result
suggests that the incorporation of sophisticated classifiers can serve
as a powerful tool to boost the accuracy and reliability of CNNs
in image classification tasks. This strategy should certainly be
considered and explored in similar cases, opening up opportunities
for enhancing the capabilities of deep learning models in a variety
of applications.

Lastly, the comparison between the CNN-MLP models
and their sub-models employing supervised learning algorithms
unveiled a set of four models that exhibited significantly superior
performance to their MLP counterparts. The integration of support
vector machines and linear discriminant analysis algorithms led to
an average F-score enhancement of 0.03, showcasing the potential
of these classifiers in image classification tasks.

We may conclude that our study provides valuable insights
into the intricate world of deep learning and image classification,
emphasizing the importance of model selection, the strategic
integration of classifiers, and the careful consideration of statistical
testing techniques. These findings not only contribute to the field
of automatic fish species labeling but also offer a roadmap for
researchers in diverse domains seeking to leverage deep learning
and statistical analysis to enhance their own classification tasks.
This work paves the way for more robust and efficient approaches
to image classification and serves as a foundation for further
exploration in the realm of computer vision and machine learning.
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Saberioon, M., Císař, P., Labbé, L., Souček, P., Pelissier, P., and Kerneis, T.
(2018). Comparative performance analysis of support vector machine, random forest,
logistic regression and k-nearest neighbours in rainbow trout (oncorhynchus mykiss)
classification using image-based features. Sensors 18:1027. doi: 10.3390/s18041027

Seabold, S., and Perktold, J. (2010). “Statsmodels: econometric and statistical
modeling with python,” in Proceedings of the 9th Python in Science Conference (Austin,
TX), 10–25080. doi: 10.25080/Majora-92bf1922-011

Shang, Y., and Li, J. (2018). “Study on echo features and classification methods of
fish species,” in 2018 10th International Conference on Wireless Communications and
Signal Processing (WCSP) (IEEE), 1–6. doi: 10.1109/WCSP.2018.8555591

Shingala, M. C., and Rajyaguru, A. (2015). Comparison of post hoc tests for unequal
variance. Int. J. New Technol. Sci. Eng. 2, 22–33. Available online at: https://www.ijntse.
com/upload/1447070311130.pdf

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big Data 6, 1–48. doi: 10.1186/s40537-019-0197-0

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2014).
“Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 1–9. doi: 10.1109/CVPR.2015.7298594

Tan, M., and Le, Q. (2021). “Efficientnetv2: smaller models and faster training,” in
International Conference on Machine Learning (PMLR), 10096–10106.

Tukey, J. W. (1949). Comparing individual means in the analysis of variance.
Biometrics 5, 99–114. doi: 10.2307/3001913

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1326452
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1109/SPIN.2019.8711657
https://doi.org/10.1080/03085147.2016.1224143
https://doi.org/10.2307/3001478
https://doi.org/10.1080/01621459.1955.10501294
https://doi.org/10.1016/S0003-2670(00)83471-6
https://doi.org/10.1007/3-540-44522-6_82
https://doi.org/10.1037//0033-2909.86.5.978
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1007/978-3-319-97982-3_16
https://doi.org/10.3390/ai2040034
https://doi.org/10.18267/j.cebr.213
https://doi.org/10.1016/j.compag.2019.01.041
https://doi.org/10.3390/rs11232788
https://doi.org/10.1016/j.fishres.2020.105534
https://doi.org/10.1109/ICSEngT.2019.8906433
https://doi.org/10.1007/s00477-012-0652-3
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.30865/ijics.v6i3.5565
https://doi.org/10.1016/j.fishres.2021.106166
https://doi.org/10.1016/S0925-2312(01)00653-1
https://doi.org/10.1109/ISMS.2016.57
https://doi.org/10.3390/s18041027
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1109/WCSP.2018.8555591
https://www.ijntse.com/upload/1447070311130.pdf
https://www.ijntse.com/upload/1447070311130.pdf
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.2307/3001913
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Automatic labeling of fish species using deep learning across different classification strategies
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 CNN models and supervised learning
	2.3 Model training and evaluation

	3 Results and discussion
	4 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


