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Where to mount the IMU?
Validation of joint angle
kinematics and sensor selection
for activities of daily living

Lena Uhlenberg1,2* and Oliver Amft1,2

1Hahn-Schickard, Freiburg, Germany, 2Intelligent Embedded Systems Lab, University of Freiburg,

Freiburg, Germany

We validate the OpenSense framework for IMU-based joint angle estimation and

furthermore analyze the framework’s ability for sensor selection and optimal

positioning during activities of daily living (ADL). Personalized musculoskeletal

models were created from anthropometric data of 19 participants. Quaternion

coordinates were derived from measured IMU data and served as input to the

simulation framework. Six ADLs, involving upper and lower limbs were measured

and a total of 26 angles analyzed. We compared the joint kinematics of IMU-

based simulations with those of optical marker-based simulations for most

important angles per ADL. Additionally, we analyze the influence of sensor

count on estimation performance and deviations between joint angles, and

derive the best sensor combinations. We report di�erences in functional range

of motion (fRoMD) estimation performance. Results for IMU-based simulations

showed MAD, RMSE, and fRoMD of 4.8◦, 6.6◦, 7.2◦ for lower limbs and for lower

limbs and 9.2◦, 11.4◦, 13.8◦ for upper limbs depending on the ADL. Overall,

sagittal plane movements (flexion/extension) showed lower median MAD, RMSE,

and fRoMD compared to transversal and frontal plane movements (rotations,

adduction/abduction). Analysis of sensor selection showed that after three

sensors for the lower limbs and four sensors for the complex shoulder joint, the

estimation error decreased only marginally. Global optimum (lowest RMSE) was

obtained for five to eight sensors depending on the joint angle across all ADLs.

The sensor combinations with the minimum count were a subset of the most

frequent sensor combinations within a narrowed search space of the 5% lowest

error range across all ADLs and participants. Smallest errors were on average

< 2◦ over all joint angles. Our results showed that the open-source OpenSense

framework not only serves as a valid tool for realistic representation of joint

kinematics and fRoM, but also yields valid results for IMU sensor selection for a

comprehensive set of ADLs involving upper and lower limbs. The results can help

researchers to determine appropriate sensor positions and sensor configurations

without the need for detailed biomechanical knowledge.

KEYWORDS

framework validation, joint kinematics, multiscale modeling, sensor selection, wearable

inertial sensors

1 Introduction

Body-worn inertial measurement units (IMUs) are used to analyze human activity

and movement performance, including the assessment of execution quality and mobility,

e.g., in daily life, sports and rehabilitation (Balasubramanian et al., 2009; Spina et al.,

2013; Derungs et al., 2018; Tulipani et al., 2020). Sensor recordings, even from

multiple IMUs located at the human body, are a cost-effective method to acquire body
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movement in non-laboratory environments, where conventional

marker-based video motion capture (MoCap) is impractical.

Although multi-IMU systems have been used for over 40 years

to estimate relative limb alignment (Picerno, 2017), determining

key indicators of movement, i.e., joint angles is known to be

challenging. One of the main reasons is the inherently non-linear

problem to estimate sensor orientations (Saber-Sheikh et al., 2010).

Commercial IMU systems exist that use proprietary movement

estimation methods, where access to source code and tuning

parameters is restricted. Hence, results from those commercial

systems may not be reproducible or implemented with alternative

solutions.

One of the key challenges in setting up IMU-based body

movement monitoring is to determine sensor count and body

position that balances kinematic estimation accuracy and practical

aspects, including wearability concerns, computational cost, and

integration complexity. In particular, determining angles of joints

with multiple degrees of freedom (DoF), requires extensive

experience or more than the minimum-optimal number of IMUs.

For example, the 3-DoF shoulder joint has the greatest mobility in

the human body (Halder et al., 2000). During movement, shoulder

instability is counteracted by static (ligaments, joint capsules) and

dynamic (muscle contraction) stabilization (Terry and Chopp,

2000). Hence, unlike a 1-DOF hinge joint (e.g., elbow joint), it is

not straightforward to estimate its IMU count. In addition to joint

angles, the functional range of motion (fROM) is of great interest to

monitor individuals, as it is characterized as the necessary range of

movements to sustainmaximal independence and facilitate optimal

conditions for ADL performance in daily life (Korp et al., 2015;

Doğan et al., 2019). fRoM has been used in rehabilitation settings,

where therapists could customize training plans, track progress,

and ensure patients regain movement capabilities after injuries

and surgeries. Furthermore, ergonomic assessments in various

industries benefit from IMU-based fRoM analysis, e.g., to design

employees’ workstations, promote comfort, and minimize the risk

of musculoskeletal problems (Nam et al., 2019; Lim and D’Souza,

2020).

In this work, we investigate IMU-based monitoring of a

complementary ADL set, involving both upper and lower body

activities, to establish a performance baseline for joint angle

and fRoM estimation. We leverage the OpenSense framework

(Al Borno et al., 2022) to evaluate sensor position selection and

sensor count estimation. In particular, this paper provides the

following contributions:

1. We validate the open-source framework OpenSense for ADL

analysis by comparing the estimation for 26 joint angles

based on IMU data against gold-standard optical motion

capture (MoCap) data. Compared to previous work, we include

additional ADLs, larger participant group, more joint angles,

and subsequently perform a comprehensive error analysis with

additional motion-specific error metrics. Researchers using our

results can detect and mitigate IMU-based errors by evaluating

the accuracy of their simulations, algorithms, and systems to

process motion-related data.

2. We analyze the framework’s ability for sensor selection. We

iterate across all possible sensor combinations, participants, and

ADLs to find the lowest error as function of sensor count. The

results provide insight into how the sensor count affects the

estimation error per joint angle and can be used to determine

a minimum, close-to-optimal sensor count to estimate joint

angles for a complementary set of ADLs.

3. Within a narrowed search space of the 5% lowest error range,

we evaluated the most frequent sensor position combinations

and sensor positions that yield the minimal sensor count across

all participants and ADLs per joint angle. Results can help to

prioritize sensor positions and which positions to be omitted

without compromising ADL analysis accuracy, which may be

transferred to other ADLs, too. Results provide a systematic and

data-driven approach to sensor reduction, which will lead to

efficient and practical sensor deployments.

Our validation and performance analyses can assist wearable

system researchers and designers to determine realistic error ranges

for joint angles and functional range of motion depending on the

expected activities. In addition, sensor selection analysis inside an

established open-source environment can be used to determine

appropriate sensor positions without in-depth biomechanical

knowledge and to selectively place sensors for full-body motion

analysis according to the region of interest.

2 Related work

2.1 IMU-based joint kinematics

In the last decade, open-source IMU signal fusion algorithms

have profoundly improved in kinematic estimation performance,

e.g., Madgwick et al. (2011), Mahony et al. (2012), and Joukov

et al. (2018), and more precise methods for sensors-to-body

segment alignment were proposed (Pacher et al., 2020). Still, joint

angle analysis based on IMU data is often addressing periodic

lower limb movements, e.g., walking or running, over short

durations (5 s –1 min) only, and was evaluated with less than

ten participants (Weygers et al., 2020). Previous research utilized

IMUs to assess lower limb kinematics and found a root mean

square error (RMSE) of joint angles in the range of 5−10◦ (Robert-

Lachaine et al., 2017; Teufl et al., 2019). Compared to MoCap-

based kinematics, a greater consistency of angle measurements in

the sagittal plane than in the other two planes was observed. For

upper limbs Goodwin et al. (2021) investigated humeral elevation

in individuals with spinal cord injury and showed that shoulder

motionwas highly consistent withMoCap. In a study byWang et al.

(2022), joint angles obtained from five IMUs positioned on one side

of the upper body were compared with a markerless MoCap system

and a standard marker-based method. The findings indicated that

the RMSE for joint angles was smaller at the shoulders compared

to the elbows. However, in a systematic review by Poitras et al.

(2019), RMSE of the shoulder joint ranged between 0.2 and

64.5◦, indicating a large heterogeneity of studies and performed

movements.

The fRoM derived from joint angle estimations is of particular

interest in clinical settings and assures researchers an accurate

interpretation and processing of joint motion data. Doğan et al.

(2019) reported smaller fRoMs ( up to 40◦) assessing IMU-

based measurements of upper limbs and trunk joints compared

to MoCap measurements and attributed the differences to

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1347424
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Uhlenberg and Amft 10.3389/fcomp.2024.1347424

FIGURE 1

Illustration of all joint angles considered across all ADLs to investigate sensor position selection and sensor count estimation. Insight from the

investigation can support researchers and developers in the system design and to select optimal sensor configurations. L: Left body side; R: Right

body side.

measurement methods and protocols. Additionally, Rigoni et al.

(2019) compared IMU-based measurements with goniometer

measurements for shoulder RoM and Stołowski et al. (2023) for

hip joint RoM. Yet, only intra-class correlation coefficients were

analyzed with reported levels of agreement (mean difference ±

standard deviation), between −4.5−3.2,◦ for the shoulder joint

and < 9◦ for the hip joint, respectively. Moreover, Rigoni et al.

(2019) defined a change >10◦ as clinically relevant. In summary,

the previously described motions are not entirely representative

for real-life behavior as ADLs are usually a combination of

alternating lower and upper limb movements and might be

coupled too. So far, IMU-based analyses did not adequately assess

upper limb kinematics during daily activities, as mostly uniaxial

movements weremeasured (Picerno et al., 2019). Some studies have

demonstrated measures of accuracy, including waveform similarity

and amplitude comparison, that were consistent with estimates

of upper limb joint kinematics. In 2022, Uhlenberg et al. (2022)

introduced a framework based on OpenSense to estimate joint

angle accuracy in combined ADLs with three different sensor

fusion algorithms. The authors considered four ADLs with 10

participants and concluded that the most accurate estimations

were obtained using the Madgwick and Mahony filters. The

present work expands the existing framework by considering

additional ADLs, a larger participant group, more joint angles, and

a comprehensive error analysis with fRoM as additional motion-

specific error metrics.

Framework, sensor, and algorithm choices are closely

interrelated with the error metrics described above. Previous

studies have often used closed systems and algorithms to estimate

joint angle, such as Xsens sensors with proprietary algorithms.

The approach often involves filtering algorithms, of which many

become non-transparent black boxes and can be costly or limited

to specific settings and hardware (Al Borno et al., 2022). In this

work, we investigate several ADLs that combine upper and lower

limb movements using an open-source framework, a published

sensor fusion algorithm, and raw acceleration and orientation

data to validate the OpenSense framework and demonstrate the

versatility of kinematic simulations for IMU sensor selection.

2.2 Simulation framework

For rigorous testing and validation of algorithms applied to

IMU-based estimations, the simulation framework provides a

controlled environment to assess accuracy and reliability before

applying the tested methods to real-world scenarios. Within

the multitude of simulation frameworks, the OpenSim (Delp

et al., 2007) open-source software toolkit (Simbios, U.S. National

Institutes of Health Center for Biomedical Computation at

Stanford University) was used in this work for modeling and

simulating movement biomechanics. In addition, software with

capabilities similar to OpenSim, e.g., AnyBody (Rasmussen et al.,

2005; Damsgaard et al., 2006) or Alaska/dynamicus (Hermsdorf

et al., 2019) may be deployed too. However, OpenSim’s free

availability facilitates community modifications and enables users

to examine the source code to maximize reproducibility. Related

to OpenSim, OpenSense represents a novel open-source software

tool tailored to the examination of motion data from IMUs.

To date, the OpenSense workflow has been utilized to examine

kinematic drift during 10-min walking trials and motion variability

during gait (Bailey et al., 2021; Al Borno et al., 2022). In

addition, in recent work from Slade et al. (2022), the IMU-

based real-time solution OpenSenseRT was demonstrated to

analyze Fugl-Mayer assessment tasks and trunk movements. The

authors reported a RMSE for joint angle estimation of ∼5◦, a

difference accepted as reasonable for research and many clinical
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applications (Del Rosario et al., 2016; Slade et al., 2022). Compared

to the aforementioned literature, our work is not limited to the

lower limbs and instead covers the upper limbs with selected

ADLs too. Furthermore, the selected biomechanical model used

in our work contains 165 DoF (see Section 3.2), whereas the

model employed in the published OpenSense literature (Rajagopal

et al., 2016) features 37 DoF only. The increased flexibility of

the vertebrae (compared to trunk and head being one segment)

captures the full human movement complexity, especially in

scenarios where spinal mobility is an important factor, such as

performing everyday activities.

2.3 Sensor count and selection approaches

The number of sensors in a wearable system is directly related

to the amount and complexity of the available data. Sensor selection

often requires prior expert knowledge concerning the type of

movement. A common desire among researchers is to reduce the

number of required sensors while maintaining angle estimation

accuracy. However, a larger sensor count is often considered as

advantageous to maximize precision and versatility (Ancillao et al.,

2018), thus yielding more accurate measurements (Sy et al., 2021)

for a wide range of applications. Therefore, the critical sensor count

and selecting the corresponding sensor positions guide system

integration, calibration, and data processing strategies to ensure

optimal performance and reliability. Published literature focused

on reducing the sensor count by applying kinematic chain, double-

pendulum, and statistical shape models (Salarian et al., 2013; Hu

et al., 2015; Marcard et al., 2017). Additionally, optimal control

approaches were proposed (Dorschky et al., 2023) to investigate

sparse IMU sensor sets. However, a systematic quantitative analysis

of how adding or removing sensors affects performance in the

context of ADLs is missing. In our work, OpenSense serves as a

tool for sensor selection and as a platform for exploring, testing,

and evaluating over 8,000 IMU sensor combinations. Although the

kinematic chain within OpenSense should not be disrupted1 the

corresponding joint angles can be analyzed as a function of sensor

count and key sensor positions can be identified.

3 Methods

Figure 2 provides an overview on the simulation components

and processing steps. In the following subsections, we detail the

framework components and their implementation.

3.1 Data acquisition and processing

We recruited 19 healthy volunteers for the evaluation study.

All participants gave written consent prior to participation and

ethics approval was granted by an institutional ethics board. We

1 For breaks in the kinematic chain, OpenSense leaves the a�ected body

segment in the calibration pose, i.e., there is no interpolation of missing limb

orientation data.

derived body segment masses and joint centers using Visual3D (C-

Motion Inc., Germantown, USD) from the Conventional Gait

model in combination with IOR trunk model (Leardini et al., 2011;

C-Motion Inc., 2022). Table 1 details participant data.

We placed 54 reflective spherical MoCapmarkers at anatomical

landmarks and attached 16 IMUs (MyoMotion, Noraxon, USD)

to record each body segment (see Figure 3) using Noraxon Velcro

straps with IMU pockets. A calibrated and synchronized 11-camera

marker-based MoCap system (Qualisys, Gothenburg, Sweden) was

used to record gold-standard MoCap data. Both systems were

time-synchronized. MoCap and IMU data were recorded at a

sampling rate of 100Hz and filtered by a 6Hz lowpass Butterworth

filter. Participants performed a static reference trial, which was

used to reconstruct body segments, determine body dimensions,

joint centers, segment coordinate systems, and calibrate the IMU

sensors. Subsequently, participants were instructed to perform

each ADL three times. Data inspection was performed by two

independent examiners and involved labeling and filling of MoCap

marker gaps using Qualysis Track Manager, v. 2018.

3.2 Personalized biomechanical body
models

A biomechanical, personalizable body model was the basis for

all simulations. We used the OpenSim full-body thoracolumbar

spine model (Schmid et al., 2020), which, in contrast to previous

IMU-based simulations inside OpenSense (Bailey et al., 2021;

Al Borno et al., 2022; Slade et al., 2022), accounts for more DoF at

upper limbs and spine area (165 vs. 37 DoF). Personalization of the

biomechanical body model involved scaling, i.e., changing the body

mass properties body weigth and dimensions, by comparing static

distance measurements between defined model landmarks and the

registration of markers (static pose weights affect to what degree

a landmark-marker pair should be satisfied and were kept to the

default value of 1). In summary, model personalization included

body weight and measured motion capture markers.

3.3 Sensor fusion

The Madgwick sensor fusion algorithm (Madgwick et al., 2011)

was used to estimate orientation in quaternion coordinates q based

on the Python AHRS toolbox (Garcia, 2023). TheMadgwick filter is

a gradient-descent algorithm with filter gain β representing mean

zero gyroscope measurement errors, expressed as β =

√

3
4 ω̄β ,

where ω̄β is the estimated mean zero gyroscope measurement error

of each axis.

For joint angle kinematic analysis, Leave-One-Participant-Out

cross-validation (LOPOCV) was used to fit β per ADL, as described

by Uhlenberg et al. (2022). Participant data that was held-out

during training, was used for error analysis and results were

averaged across all folds.

For sensor selection analysis, β was set to 0.1, according to

published literature (Bailey et al., 2021; Al Borno et al., 2022), as

well as the majority voting of LOPOCV β-fitting results across

all angles, participants and ADLs. Our previous analysis on a
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FIGURE 2

Method overview. IMU and MoCap data were processed to create personalized biomechanical models. Orientation estimates (quaternion

coordinates), derived from IMU data using the Madgwick fusion algorithm, were used in OpenSense to animate biomechanical models in ADL

simulations for varying sensor combinations. Subsequently, IMU-based joint angle and functional range of motion di�erences (fRoMD) estimates

were compared to MoCap data and a sensor selection analysis was performed.

TABLE 1 Anthroprometic data of participants.

ID Height
[m]

Weight
[kg]

Age
[years]

Sex
[m/f]

BMI
[kg/m2]

Leg length
right [m]

Leg length
left [m]

P1 1.80 74 25 M 22.84 0.93 0.93

P2 1.77 85 46 M 27.13 0.99 1.00

P3 1.72 56 29 F 18.93 0.90 0.90

P4 1.71 56 23 F 19.15 0.95 0.94

P5 1.78 65 29 M 20.52 0.97 0.97

P6 1.83 79 25 M 23.59 0.99 0.99

P7 1.68 68 36 F 24.09 0.94 0.94

P8 1.72 67 27 M 22.65 0.89 0.88

P9 1.72 86 25 M 29.07 1.00 1.00

P10 1.79 74 22 M 23.10 0.95 0.95

P11 1.69 62 24 F 21.71 0.89 0.89

P12 1.91 80 29 M 21.93 1.07 1.09

P13 1.70 65 29 M 22.49 0.88 0.88

P14 1.75 75 28 M 24.49 0.93 0.93

P15 1.65 62 28 F 22.77 0.90 0.89

P16 1.82 95 31 M 28.68 0.98 0.98

P17 1.73 66 22 F 22.05 0.91 0.91

P18 1.45 48 21 F 22.83 0.76 0.78

P19 1.85 75 29 M 21.91 1.02 1.00

Mean 1.73 70.67 26.58 F = 7; M = 12 23.57 0.93 0.93

STD 0.10 10.95 3.81 2.33 0.07 0.07

In total, 19 healthy volunteers were included in the study.

smaller dataset showed that β = 0.1 provided lowest error and that

parameter variation yielded minor error variation in a band of±1◦

(Uhlenberg et al., 2022).

3.4 OpenSense

Pre-processed MoCap and IMU orientations (quaternion

coordinates) as derived from the sensor fusion algorithm (see

Section 3.3), were imported into OpenSim and linked to the

personalized biomechanical body models. A custom sensor

mapping was applied to link IMUs with corresponding rigid body

parts (e.g., pelvis, thigh, etc.), represented as a “Frame” (orthogonal

XYZ coordinate system). Shoulder IMUs were omitted since the

underlying OpenSense shoulder angle estimation (IMU IK solver)

does not consider the clavicle, but torso and humerus of the

corresponding body side for joint formation (Al Borno et al., 2022).

The initial IMU orientations were defined relative to the body

segments at which they were placed in the static reference trial.

Subsequently, the MoCap and static IMU reference data were used

to define the IMU orientations relative to the body model segments

as fixed rotational offsets. The modeled virtual IMU “Frames" were

assigned the rotational offsets relative to the underlying rigid body,

resulting in a calibrated body model.
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FIGURE 3

Marker and IMU setup for data acquisition in this work. In total 54 reflective spherical MoCap markers were placed at anatomical landmarks as well as

16 IMUs attached to body segments.

3.5 Sensor combinations

All sensor combinations included the pelvis IMU for

calibration, i.e., the smallest sensor count was two sensors. To

calculate the total number of combinations, the power set P (S) was

determined, where P(S) is the set including all subsets of S except

the empty set (see Equation 1). Hence, 8,191 sensor combinations

were simulated per participant and ADL.

P(S) =
∣

∣2S
∣

∣ =

|S|
∑

k=0

(

|S|

k

)

− 1. (1)

OpenSense requires a closed kinematic chain to move

subsequent body segments and provide meaningful error estimates.

Therefore, sensor combinations that break the kinematic chain, e.g.,

omitting the thigh IMU for knee/ankle angle estimation or omitting

the humerus IMU for elbow flexion angle, were discarded for the

corresponding joint angle as limbs remained in the calibration

pose. Consequently, the following number of sensor combinations

were analyzed: Pelvis angles: 8,191, hip joint angles (L/R): 7,168,

knee flexion (L/R): 6,144, ankle plantar flexion (L/R): 4,096, head

angles: 7,168, shoulder angles and arm elevation (L/R): 7,168, elbow

flexion (L/R): 6,144, and hand pronation (L/R): 6,144.

3.6 ADL simulation

For the MoCap-based reference model, the OpenSim inverse

kinematics (IK) solver was used, which minimizes the difference

between experimentally measured marker positions and the

corresponding virtual markers in the OpenSim model. For the

IMU-based model, the OpenSense IK solver was supplied with

quaternion coordinates to estimate the joint angles and fRoM.

The OpenSense IK solver was introduced by Al Borno et al.

(2022) and minimizes the weighted squared differences between

experimentally measured IMU orientations and the model’s virtual

IMU orientations via configurable weights (corresponding to

the static pose weights used for the OpenSim modeling) as

matching control per IMU. We reduced relative weights of distal

IMUs (tibia: 0.5 and foot: 0.01) to minimize the influence of floor-

embeddedmetal force plates (Al Borno et al., 2022). The force plates

were used for other research questions related to the evaluation

study, which are not relevant for this work.

A total of six ADLs, involving a combination of upper and

lower limb movements were analyzed: shelve ordering (SO), stairs

climbing (SC), walking (W), pen pickup (PP), jumping (J), and

getting up from the floor (G). The ADLs were selected to cover

everyday activities with alternating or combined involvement of

upper and lower limbs. Apart from walking, climbing stairs, and

jumping, the ADL “getting up from the floor” extends to similar

daily activities, e.g., getting in and out of a bathtub, a low chair, or

a car. The ability to reach and place items on shelves at different

heights is used in daily life when organizing or accessing items in

cupboards or shelves. Picking up a pen extends to similar activities

with small objects, e.g., picking up coins or using utensils.

3.7 Evaluation

3.7.1 Error and fRoM
Joint angle estimation performance of all 26

considered angles (see Figure 1) was evaluated by deriving
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absolute median error (MAD) and root mean square

error (RMSE) between IMU-based simulations and

reference MoCap measurements for each participant

and ADL according to Equations 2, 3.

MAD =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ , (2)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2, (3)

with n being is the total number of samples, ŷi represents the

simulation-based joint angle estimate, and yi represents the joint

angle derived fromMoCap measurements.

The difference of fRoM estimations between IMU-based data

and MoCap reference (fRoMD) were determined by Equation 4:

fRoM = θmax − θmin, fRoMD =
1

n

n
∑

i=1

∣

∣

∣
fRoMi − f̂RoMi

∣

∣

∣
, (4)

where θmax and θmin represent the corresponding maximum and

minimum joint angles, respectively.

As some data were not normally distributed, median and

interquartile range (IQR) were computed across all participants.

Outliers were defined as 1.5×IQR below or above the 25th and 75th

percentile.

3.7.2 Sensor count
We determined the lowest RMSE across all sensor

combinations per sensor count for all ADLs and participants

to assess the error effect per joint angle. To reduce the search

space for subsequent analyses, we considered all combinations

within the lowest 5% RMSE range across all sensor combinations.

We determined the frequencies (occurrence rate) of each sensor

combination across all participants and ADLs and compared them

to the sensor combination showing the lowest sensor count per

joint angle.

4 Results

We summarize estimation results for joint angle and fRoMD

and subsequently present results for the sensor selection analysis.

4.1 Joint angle estimation

As the evaluation of joint kinematics is one of the main

research components in the investigation of motion performance,

Figure 4 shows the most relevant joint angle MAD, RMSE, and

fRoMD averaged across participants for each ADL. Additionally,

Supplementary Table S1 summarizes all MAD, RMSE, and fRoMD

per joint angle, body side, and ADL. Walking, which primarily

involves lower limbs, showed lowest errors across all selected angles

compared to the other five ADLs (see Figure 4A; Table 2). Between

selected angles arm elevation showed the highest errors and largest

IQR with MAD, RMSE and fRoMD being 15.8◦, 16.8◦, 9.8◦,

respectively. The five remaining angles ranged between 1.5◦–5.2◦

for MAD, 1.7◦–5.9◦ for RMSE and 2.2◦–7.6◦ for fRoMD. Shelve

ordering (Figure 4B) with predominant upper limb involvement

showed larger errors and IQR for fRoMD for shoulder rotation

and elevation, hand pronation and arm elevation compared to

the other angles at the head and hip, except head rotation.

Errors for the upper limbs ranged between 3.0◦–18.1◦ for MAD,

4.9◦–22.6◦ for RMSE and 10.0◦–26.8◦ for fRoMD. For Pen

pickup (Figure 4C) elbow flexion and pelvis rotation showed

lowest errors within a range of 2.0◦–5.4◦ for all three error

metrics whereas arm elevation showed highest errors for all three

error metrics within a range of 14.6◦-34.6◦. Upper limbs showed

on average higher errors (MAD = 10.9◦, RMSE = 15.4◦, and

fRoMD = 8.8◦) and IQR compared to lower limbs (MAD = 4.2◦,

RMSE = 6.0◦, and fRoMD = 6.3◦) for this combined movement

task. Jumping (Figure 4D) showed minimal error and IQR for hip

adduction with MAD, RMSE and fRoMD being 1.5◦, 2.3◦, 2.8◦,

respectively. Again arm elevation showed highest errors and IQR

for the ADL. Getting up floor (Figure 4E) showed largest IQR for

fRoMD across all joint angles. Upper limbs showed on average

higher errors (MAD = 10.1◦, RMSE = 15.3◦, and fRoMD = 14.3◦)

and IQR compared to lower limbs (MAD = 4.7◦, RMSE = 6.6◦,

and fRoMD = 6.2◦) and comparable ranges to Pen Pickup (see also

Table 2). Comparing selected angles for stair climbing (Figure 4F),

arm elevation showed the highest overall errors with MAD= 35.8◦,

and RMSE = 35.2◦. However, fRoMD was comparably low with

16.6◦, respectively. The five remaining angles ranged between

1.3◦–10.1◦ for MAD, 1.7◦–10.7◦ for RMSE and 1.8◦–21.8◦ for

fRoMD.

Overall, arm elevation showed highest MAD, RMSE, and

fRoMD for the corresponding ADLs (∼22.6◦), followed by hand

pronation (∼12.7◦) and shoulder rotation (∼8.8◦). Consequently,

upper limbs showed higher error values across all error metrics

compared to lower limbs across all ADLs. Moreover, sagittal plane

movements, i.e., flexion/extension showed smaller errors across all

metrics compared to frontal, i.e., adduction/abduction and arm

elevation or axial plane movements, i.e., rotations.

4.2 Sensor count

Figure 5 shows the RMSE as function of sensor count per

participant across all ADLs for head, shoulder, and hip joint angles.

The joints were selected due to their comparably larger DoF, i.e.,

modeling complexity and proximity to the pelvis. Results for the

remaining joint angles can be found in Supplementary Figure S1.

For the head joint (Figures 5A, D, G) RMSE decreases for more

than two sensors and slightly increases again for 10–14 sensors.

The global minimum RMSE for the head joint was found for six

sensors. For the shoulder joint (Figures 5B, E, H), a steep drop after

two sensors can be observed, and RMSE continues to decrease up

to four sensors. Subsequently, for shoulder elevation (Figure 5B)

RMSE remains almost constant, while it increases again for

shoulder rotation (Figure 5E) and arm elevation (Figure 5H). The

minimum RMSE for shoulder joint was observed between four
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FIGURE 4

Errors of the most important joint angles per ADLs. (A) Walking (W). (B) Shelve ordering (SO). (C) Pen pickup (PP). (D) Jumping (J). (E) Getting up from

the floor (G). (F) Stairs climbing (SC). MAD, median absolute deviation; RMSE, Root mean squared error; fRoMD, functional range of motion

di�erence. Overall, smaller error and fRoMD were obtained for lower limb joints compared to upper limb joints. IMU-based estimation performance

varies depending on ADL and joint angle, which emphasizes the importance of validated frameworks and algorithms.

TABLE 2 Joint angle estimation performance for full body as well as upper and lower limbs for selected joint angles per ADL.

W SO PP

MAD RMSE fRoMD MAD RMSE fRoMD MAD RMSE fRoMD

Mean 4.6◦ 5.6◦ 5.3◦ 5.5◦ 8.0◦ 11.4◦ 6.9◦ 9.7◦ 7.3◦

Upper
limbs

7.1◦ 8.2◦ 7.8◦ 6.5◦ 9.6◦ 13.8◦ 10.9◦ 15.4◦ 8.8◦

Lower
limbs

3.8◦ 4.8◦ 4.5◦ 1.4◦ 1.8◦ 1.9◦ 4.2◦ 6.0◦ 6.3◦

J G SC

MAD RMSE fRoMD MAD RMSE fRoMD MAD RMSE fRoMD

Mean 5.2◦ 6.9◦ 7.4◦ 6.9◦ 10.1◦ 9.4◦ 7.4◦ 8.4◦ 7.7◦

Upper
limbs

9.1◦ 11.1◦ 12.2◦ 10.1◦ 15.3◦ 14.3◦ 13.4◦ 13.6◦ 9.7◦

Lower
limbs

2.6◦ 4.1◦ 4.2◦ 4.7◦ 6.6◦ 6.2◦ 3.4◦ 4.9◦ 6.4◦

MAD, median absolute deviation; RMSE, root mean squared error; fRoMD, functional range of motion difference. SO, shelve ordering; SC, stairs climbing; PP, pen pickup; W, walking; G,

getting up floor; J, jumping. Lower limbs show smaller errors and fRoMD compared to the upper limbs. The estimation accuracy depends on the ADLs performed and the involvement of the

corresponding limbs.

and six sensors, depending on the axis along which the movement

occurred. For the hip joint (Figures 5C, F, I) a slight decrease in

RMSE from two to three sensors was observed, after which RMSE

changed only marginally. Minimum RMSE for hip joint was found

at six to eight sensors, depending on the joint angle concerning

all ADLs. The shoulder joint resulted in the highest average RMSE

with∼ 9.0◦ compared to∼ 5.5◦ for the hip joint angles and∼ 3.6◦

for the head joint angles.

Overall, for three sensors at the lower limbs, and four sensors

at the complex shoulder joint, estimation error decreases only
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FIGURE 5

Error estimation as function of sensor count across all ADLs per joint angle. (A) Head flexion. (B) Shoulder elevation. (C) Hip flexion. (D) Head rotation.

(E) Shoulder rotation. (F) Hip rotation. (G) Head lateral bending. (H) Arm elevation. (I) Hip abduction. Angles were selected due to the higher DoF, i.e.,

modeling complexity and proximity to the pelvis. Remaining joint angles can found in Supplementary Figure S1. The sensor count that leads to low

error varies depending on the considered joint angle. Complex joints with comparably large DoF may benefit from additional sensors, in particular for

distal body segments.

marginally, resulting in an optimum (lowest RMSE) sensor count

of five to eight, depending on the joint angle across all ADLs.

Additionally, Figure 6 shows example time series signals of

shoulder and hip rotations per sensor count for Pen pickup.

While the time series pattern for hip rotation matches the MoCap

reference even for two sensors, patterns of shoulder rotation

deviate. Agreement for the shoulder rotation increases from three

sensors onward, albeit at greater overall variability compared to hip

rotation.

Figure 7 shows the most frequent sensor combinations and

the sensor combination with the minimum sensor count within

the lowest 5% RMSE range across all ADLs and participants. For

example, for the head joint angles, the most important IMUs are the

pelvis, head and lumbar spine, after which the error decreases only

slightly (see also Figures 5A, D, G). For the shoulder joint angles,

the pelvis, thorax and the corresponding IMUs for the humerus

and radius, depending on the body side considered, showed to be

the most important IMUs (see also Figures 4B, E, H). The most

frequent sensor combinations showed that sensors on the opposite

side of the body or spinal sensors were included in the respective

sensor sets compared to the minimal sensor combination. Results

showed that the minimal sensor count combinations are a subset

of the most frequent sensor combinations across all ADLs and

participants. Additionally, Supplementary Tables S2–S8 show the

15 most frequent sensor combination sets.

Figure 8 shows the MAD distribution within the 5% lowest

RMSE range across all ADLs and participants. All sensor

positions yielded a median MAD below 6.4◦, except for shoulder

rotation (7.8◦), arm elevation (8.9◦), and hip rotation right (9.4◦).

IQR for all angles was on average below 1.2◦, ranging from 0.1◦–

5.2◦. Comparing left vs. right body side, angles showed error

differences that can be attributed to the ADL performance. In

particular, getting up from the floor and pen pickup consisted of

unilateral, partial execution. Actual pickup and lowering to the

floor may occur on either body side, according to the participant’s

preference and with shoulder, elbow, knee, and hip involvement

through flexion or extension, adduction or abduction, and rotation.

5 Discussion

Joint angle estimation performances for lower limbs (see

Figure 4; Table 2; Supplementary Table S1) are in agreement with

literature. Overall, median MADwas 4.8±2.6◦, median RMSE was

6.3 ± 2.9◦ and median fRoMD was 7.2 ± 4.1◦ for lower limbs. For

example, Al Borno et al. (2022) reported median RMSE between
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FIGURE 6

Example of time series comparison using increasing sensor count for pen pickup. (A) Hip rotation P11. (B) Hip rotation P14. (C) Shoulder rotation

P11. (D) Shoulder rotation P14. Lower limbs match the time series pattern more closely, with less sensors and less overall variation compared to

upper limbs.

FIGURE 7

Matching matrix of most frequent sensor positions and positions of minimal sensor count per joint angle within the lowest 5% RMSE range. The

minimal sensor count is a subset of the most frequent sensor combinations found across all ADLs and participants, a�rming the potential to reduce

sensors.
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FIGURE 8

MAD and interquartile range (IQR) per joint angle across all participants and ADLs within the lowest 5% RMSE range. As IQRs are low, on average 1.1◦,

a reduction to the minimal count combination is reasonable.

3−6◦ for lower limb joint angles, except hip rotation (12◦), during

10-min walk trials using OpenSense and Madgwick filter (same

filter gain of 0.1). Furthermore, Bailey et al. (2021) reported stride-

to-stride variability during treadmill gait of 4.4−6.7◦ for knee,

ankle, and hip flexion, as well as hip rotation using OpenSense

and Madgwick filter (same filter gain of 0.1). Compared to our

previous work, adding more ADLs, participants, and joint angles,

only slightly increased the median RMSE for lower limbs by

0.7◦ (Uhlenberg et al., 2022). In comparison to the above literature

that used OpenSense, our work is not limited to the lower limbs and

extends the range of upper limb movements.

For upper limbs, our median RMSE ranged between 1.9−16.3◦,

with arm elevation angles showing largest errors. However, median

RMSE across all upper limb angles was 9.2 ± 7.1◦, 11.5 ± 7.3◦,

and 13.8 ± 7.5◦ for MAD, RMSE, and fRoMD, respectively (see

Figure 4; Table 2; Supplementary Table S1). Compared to previous

work (Uhlenberg et al., 2022), and similar to the lower limbs

analysis, a minor increase in median RMSE by 1.5◦ was

observed for upper limbs. In comparison, Wang et al. (2022)

reported median RMSE for their 5-IMU system ranging between

23.8−62.6◦, with overall median RMSE below 30◦ across activities

including grasping, lifting small/heavy objects, and reaching

overhead. IMUs were mounted at one side of the upper body only

and tended to overestimate shoulder rotation. Picerno et al. (2019)

estimated uni-axial arm elevation in frontal, scapular, and sagittal

planes with 3◦ and elbow flexion-extension with an error of 2◦

compared to an optoelectronic stereophotogrammetric system.

Our results showed larger median RMSE with 4.7◦ for elbow

flexion and shoulder rotation (14.4◦), which could be explained by

the multi-axial character of our selected ADLs (Robert-Lachaine

et al., 2017). Compared to the aforementioned literature, our work

contributes to a broader knowledge base on upper limb angle

estimation with IMUs and leverages the open-source framework

OpenSense with validated biomechanical models. The movements

covered in the present work are more complex, considering

their DoF and everyday activity character, compared to previous

work.

Lower limbs showed smaller joint angle estimation errors of

4.4◦, 5.2◦, 6.6◦ for MAD, RMSE, and fRoMD, compared to upper

limbs. The relatively smaller errors at lower limbs may be explained

by the larger, structurally more stable body segments that tend to

exhibit more consistent and predictable motion patterns during

activities, compared to upper limbs. Slade et al. (2022) reported

mean lower limb errors ranging from 3.9to8.4◦ for walking and

running and 2.6−7.9◦ for upper limbs during Fugl-Meyer tasks of

food cutting (participants picked up a cutting utensil, bent over a

dish, and performed a cutting motion before placing the utensil

back down). Authors used a constrained upper body model in

OpenSense with, e.g., trunk and head represented in one segment,

which explains the smaller arm and shoulder elevation/rotations

errors compared to the results presented in this work. Furthermore,

only five participants were analyzed, a comparably small RoM, and

no overhead activities were considered. Furthermore, shoulders

and arms are associated with a larger amount of soft tissue

and tendon interaction during movement execution, which may

introduce artifacts in IMU-based measurements. In addition,

hand pronation may not have been fully reconstructed in this

work as our experimental study lacked markers and IMUs at

the hands. Instead, markers were attached to wrists and IMUs

to the distal end of the radius bone, hence movements may

have been underestimated by IMU-based simulations. Moreover,

RMSE ranges of IMU-based measurements compared to MoCap

were reported by Poitras et al. (2019) in a systematic review

paper. Authors reported the following RMSE error ranges, which

also confirm our results of larger upper limb error ranges

compared to lower limb ranges: neck (1−9◦), pronation (3−30◦),

elbow (0.2−30.6◦), shoulder (0.2−64.5◦), pelvis (0.4−8.8◦),

hip (0.2−9.2◦), knee (1−11.5◦), ankle (0.4−18.8◦). They attributed

the large variability to the nature of performed movements and

used devices.
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The fRoMD results of our work are also in line with ranges

reported in related literature. For lower limbs we showed on

average 7.2◦ (1.7−20.7◦ range) and 13.2◦ (2.1−40.9◦ range) (see

Supplementary Table S1) for upper limbs across all ADLs and

participants. In comparison, Doğan et al. (2019) reported fRoM

differences up to 40◦ depending on the shoulder joint angle. The

parameter fRoMD, which is derived from the accuracy of the

joint angle estimation, becomes particularly sensitive if the initial

estimation already deviates by up to 10◦ or more (see Figure 4

arm elevation angle). The described deviation could explain the

considerably larger ranges in fRoMD compared to MAD or RMSE.

Generally, most of related work considered either upper or

lower limbs, whereas ADLs are usually a combination of both and

also coupled, e.g., picking up a pen involves lower leg flexion,

torso flexion and lower arm extension. Our analysis demonstrated

that combining multiple movements led to increased error ranges,

which also aligns with published literature (Robert-Lachaine et al.,

2017; Poitras et al., 2019). The results represent a key factor

when designing rehabilitation or assistive devices that aim to

support users in performing complex ADLs. IMU systems could

be optimized for multi-movement ADL scenarios, to better deal

with the complex ADL motion. Moreover, our work includes

a comprehensive set of error metrics to estimate joint angles

in both upper and lower limbs and covers a large number of

participants across different ADLs and joint angles. Furthermore,

our assessment of error ranges per ADLs highlights the importance

of considering the context in which IMU-based motion capture is

applied. ADLs showed varying error levels (see Figure 4), which

may affect the suitability of IMU-based methods for specific ADLs.

As a conclusion, it seems useful to tailor IMU-based solutions to

the requirements of specific ADLs, thus optimizing their accuracy

for real-world applications. The larger IQR for upper limb joint

angles indicate greater variability among participants. The result

has important clinical implications, as it suggests that upper

limb mobility might require more individualized and adaptive

rehabilitation strategies. Healthcare providers should consider the

interpersonal variation when designing treatment plans and select

assistive devices to meet the specific needs of their patients with

mobility impairments.

We investigated sensor selection for IMU-based motion

capture. By systematically varying sensor combinations, we

demonstrated the impact of the sensor positioning on system

performance, including accuracy and precision of motion capture.

Our results underscore the importance of careful sensor selection

in the design of IMU systems for specific applications. We

determined the sensor count at which performance changes

only marginally (see Figures 5, 6). The threshold for marginal

performance change provides valuable insights for researchers and

engineers in the field, e.g., for optimizing sensor configurations,

considering both accuracy and cost-effectiveness. With the

threshold formarginal performance change, resource-efficient IMU

systems can be configured without compromising performance.

Our results showed the relationship between sensor count, and the

joint angles considered (see Figure 5). For example, the optimum

sensor count for the hip/ pelvis angle was found to be six to ten

sensors. However, the error changed marginally between two and

ten sensors. Similar error curves were found for many other body

positions. In contrast, for the complex shoulder joints, our analysis

showed a steep decline in RMSE up to three to four sensors.

We analyzed the most frequent sensor combinations and the

minimum sensor count among the sensor combinations that were

within the lowest 5% RMSE range across all ADLs and participants,

which resulted in an average of 341 combinations considered in the

analysis (range 205–410 combinations depending on joint angle).

However, the workflow is not limited to a particular error threshold.

Alternatively, percentiles or quartiles of all sensor combinations

may be used to further reduce the sensor count. Nevertheless, our

analysis confirms that the approach to select sensor combinations

yields meaningful results.

We showed a subset of the most frequent sensor combinations

consistently performed well across various ADLs (see Figures 7,

8; Supplementary Tables S2–S8). For example, if all ADLs of

the present investigation shall be covered, four sensors at,

e.g., lumbar/thorax, humerus, radius, and head, would yield a

performance within the lowest 5% RMSE range for all upper limb

joint angles. Similarly, four sensors at, e.g., pelvis, femur, tibia,

and foot, would yield a performance within the lowest 5% RMSE

range for all lower limb joint angles of our investigation. However,

the optimal sensor configuration depends on the considered joint

angles. Since OpenSense cannot deal with missing body segment

data, all 14 body segment IMUs would be needed to estimate

all 26 joint angles simultaneously. Often though, not all joint

angles are needed for a full body assessment and sensor count can

be reduced, e.g., for pathological movement pattern analyses or

to investigate the interconnection of specific movement patterns.

Certainly, more selective sensor configurations can be derived

when the ADL count or the number of joint angles to be monitored

is reduced. To estimate optimal sensor positions, Figure 7 provides

a matching matrix between sensor position and joint angles. Our

results can guide the development of standardized IMU systems,

thus simplifying sensor selection and body position selection for

practitioners and researchers. Standardized sensor configurations

can enhance interoperability and facilitate comparisons of results

between studies.

For some joint angles, error increased (independent of the

metric) with a larger sensor count, in particular after 9–10

IMU sensors (see Figure 5). With increasing sensor count, we

expect that the estimation model becomes determined or over-

determined. Hence, additional sensors do not necessarily add

new, independent information. Instead, additional sensors may

introduce noise and artifacts, as they will be located at increasingly

irrelevant body positions. We hypothesize that increasing sensor

count, and therefore potentially accumulating noise, hampers

estimation performance of the OpenSense IK solver. The analysis

data (Figure 5) can be interpreted accordingly: For peripheral joint

angles that can be accurately estimated with 2–3 sensors, any

additional, sensor position that is distant to the relevant joint

may introduce irrelevant motion information. Thus, uncertainty

and error, as can be seen, e.g., for arm elevation, increase

profoundly with more than six sensors. In contrast, joint motion

at the body core, e.g., hip flexion, almost any body position is

involved in the motion. Consequently, additional sensors do not

introduce artifacts, but instead, provide consistent information

from further body positions and thus there is no error increase
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observable. Future work may proceed to analyze error sources for

increased sensor count in more detail and possibly categorized

by sensor combination or ADL. Moreover, filtering strategies

shall be investigated to increase robustness of the OpenSense

estimation. From a practical viewpoint, increasing the IMU sensor

count renders calibration and synchronization more complex.

Therefore, diligent consideration of sensor relevance, data fusion

methodology, and overall system design is important, which is what

the framework proposed in this work can support.

Sensor selection results can be used and further improved by

complementing them with other existing methodologies for sensor

reduction, e.g., optimal control problems defined in OpenSim using

direct collocation (MOCO) (Dembia et al., 2020) or kinematic

chain approaches (Salarian et al., 2013; Hu et al., 2015; Marcard

et al., 2017). Further work may be directed to refine our approach

and extend it to a wider methods and scenario range. For example,

Sy et al. (2021) proposed a constrained Kalman filter to estimate

lower limb kinematics in the sagittal plane with three sensors.

The authors showed hip and knee flexion angles with RMSE

of ∼ 10◦ derived from three IMUs, located on the pelvis and

both shanks.

The biomechanical model used in our work (Schmid et al.,

2020) contains 165 DoF compared to the model used in the

published literature using OpenSense (Rajagopal et al., 2016;

Bailey et al., 2021; Al Borno et al., 2022) with 37 DoF only. In

particular, the latter model excludes spinal mobility and treats the

trunk and head as a single segment. While the 37-DoF model

may be suitable for certain research objectives, it cannot capture

the full complexity of human movement, especially in scenarios,

where spinal mobility is an important factor, e.g., for ADLs. The

DoF-difference is an important system design factor. A more

complex biomechanical model requires a larger number of sensors

to accurately capture and represent joint mobility and human

movement. As a result, a larger sensor count at shoulders and

hip area may have been estimated by our analysis, than if we

had deployed the 37-DoF model. The choice of biomechanical

model should be tailored to the detail level required for the

analysis.

Compared to the specifications (data sheet) of proprietary

IMU solutions, e.g., Noraxon Ultimum Motion and Xsense

MVN Animate, our study found larger errors. The difference can

be attributed to the inherent complexity of ADL movements,

including natural, multi-dimensional motions, as well as

the variability between participants, including differences in

body morphology and movement patterns. In combination,

complex ADL movements and interpersonal variability

contribute to the estimation error across a heterogeneous

group of study participants, including BMI and body segment

lengths (see Table 1). To date, there exists no standard movement

protocol to evaluate body-worn IMU systems for ADLs, nor is

it a common practice to publish movement protocols with the

respective system. In particular, the exact movements considered

to assess performance of the above-mentioned IMU-based motion

analysis systems have not been documented. Further studies

may repeat the experimental protocol proposed here with other

IMU-based solutions. However, the error estimation performance

would most likely also differ due to the natural variance in

movement execution. Furthermore, combining IMU sets from

several manufacturers for simultaneous measurements may

constrain participant movement. Unlike proprietary systems,

however, our approach can be repurposed and implemented

with various IMUs. Our results suggest that open-source

IMU-based kinematic estimators can provide a transparent,

reproducible, and collaborative alternative to researchers and

developers, especially when customization is crucial. The

ability to fine-tune and expand the approach according to

specific needs and preferences opens opportunities for further

investigations and developments, e.g., on algorithms and sensors,

thus contributing to the continuous improvement of IMU-based

systems.

6 Conclusion

We validated full-body 3D joint kinematics and fRoM estimates

from body-worn IMU sensors using personalized biomechanical

models. We showed that the OpenSense framework is a valid tool

for sensor selection and may guide sensor reduction decisions

for ADL analysis. We estimated joint angles and fRoM during

dynamic motion simulations of common ADLs. Our simulations

based on IMU data showed joint kinematics and fRoM estimates

that correspond with MoCap reference data, thus affirming that

the kinematic analyses are viable for movement monitoring in

wearables.

In general, smaller MAD, RMSE, and fRoMD were observed

for lower limb joint angles compared to upper limb joints, which

can be attributed to the larger amount of soft tissue and tendon

interaction at upper limbs as well as larger and structurally more

stable body segments at lower limbs. In particular, for the shoulder,

e.g., involvement of rotator cuff, the joint angle estimation is more

challenging compared to lower limb joints. The iteration over all

possible sensor pairs (2–14 sensors) with more than 8,000 possible

combinations per joint angle, participant, and ADL showed that

a near optimum estimation performance was already achieved

by two sensors for the lower limb joints and four sensors for

upper limb joints. Additionally, we identified the best sensor

positions per sensor count. Our analysis of the most frequent

sensor position combinations within the lowest 5% RMSE range

revealed that the sensor positions for the minimum sensor count

were a subset of the most frequent sensor combinations. Error

deviations across all joint angles were on average <2◦ MAD.

Consequently, sensors of the minimum-optimal set can be used for

kinematic estimation with adequate performance, thus minimizing

total sensor count.

By validating the OpenSense framework for a comprehensive

set of ADLs, we improve reproducibility of IMU-based motion

analysis compared to previously published modeling and

simulation techniques, especially in the context of complex

combined movements. Our results can help researchers to

determine appropriate sensor positions without the need for

detailed biomechanical knowledge. The flexible sensor selection

empowers developers to tailor sensor configurations (amount

of sensors and sensor positions) for specific applications. Our

approach can be applied to optimize data collection and analysis

for a wide range of movement monitoring wearables, from sports

and fitness devices to healthcare and augmented reality solutions.
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