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On the adversarial robustness of
aerial detection
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Deep learning-based aerial detection is an essential component in modern

aircraft, providing fundamental functions such as navigation and situational

awareness. Though promising, aerial detection has been shown to be vulnerable

to adversarial attacks, posing significant safety concerns. The sparsity of a

comprehensive analysis on the robustness of aerial detection exacerbates these

vulnerabilities, increasing the risks associated with the practical application

of these systems. To bridge this gap, this paper comprehensively studies the

potential threats caused by adversarial attacks on aerial detection and analyzes

their impact on current defenses. Based on the most widely adopted sensing

strategies in aerial detection, we categorize both digital and physical adversarial

attacks across optical sensing, infrared sensing, and Synthetic Aperture Radar

(SAR) imaging sensing. Owing to the di�erent imaging principles, attacks in

each sensing dimension show di�erent attack vectors and reveal varying attack

potentials. Additionally, according to the operational life cycles, we analyze

adversarial defenses across three operational phases: pre-mission, in-mission,

and post-mission. Our findings reveal critical insights into the weaknesses of

current systems and o�er recommendations for future research directions. This

study underscores the importance of addressing the identified challenges in

adversarial attack and defense, particularly in real-world scenarios. By focusing

future research on enhancing the physical robustness of detection systems,

developing comprehensive defense evaluation frameworks, and leveraging high-

quality platforms, we can significantly improve the robustness and reliability of

aerial detection systems against adversarial threats.

KEYWORDS

adversarial robustness, aerial detection, adversarial attack, adversarial defense, physical

adversarial attack

1 Introduction

Aerial detection, facilitated by airborne sensors mounted on aircraft platforms, is

essential for capturing high-resolution images of the earth’s surface, widely applied in

defense (Fingas and Brown, 2001), agriculture (Everitt et al., 1991), mining (Maathuis and

Genderen, 2004), andmapping (Connor et al., 2016). This aerial detection system, based on

deep learning, is indispensable for intelligence gathering, surveillance, and reconnaissance

operations. Unlike ground object detection, where the objects are typically on a stable

surface, aerial detection deals with dynamic and three-dimensional spaces, introducing

complexities related to altitude, speed, and varying perspectives (Wilkening, 2004). The

additional dimension in aerial detection provides a more comprehensive understanding

of the spatial relationships between objects in the airspace increasing the task success

probability of object detection.

Compared with ground detection, aerial detection usually covers a larger geographical

area and can detect a large range of ground targets in a short time to increase efficiency

(Dhillon and Verma, 2020; Galvez et al., 2018). However, as edge devices, aircraft platforms
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executing aerial detection cannot carry sufficient computing

facilities and resources. So aerial detection should be executed

under the circumstance of limited resources in practice. This

brings the problems that the model used in this scenario is more

lightweight than the traditional one, and it is more vulnerable to

adversarial attacks in practical world.

In fact, the emergence of adversarial examples has precipitated

significant concerns regarding the adversarial robustness of AI

models. These visually imperceptible perturbations can induce

misclassifications within deep learningmodels and systems, leading

to a cascade of consequential issues (Kurakin et al., 2016a,b). For

example, attackers post adversarial patches above or close to the

target, preventing the optical object detector onboard the drone

from making stable and accurate identities (Du et al., 2022). In

addition, attackers can also change the infrared characteristics of

targets by installing special light bulbs near the targets to attack

target detection under the infrared system (Zhu et al., 2021).

Given the complexity, openness, dynamics, and adversarial nature

unique to scenarios in aerial detection, AI-based sensors confront

a broader spectrum of attacks. These attacks compromise not only

target detection accuracy but also pose security risks by inducing

subsequent judgment or decision-making errors. Considering

the safety-critical nature of aerial detection, it is of paramount

importance to rigorously investigate and comprehensively study

the robustness of adversarial examples.

Despite a substantial body of research on adversarial attacks

and defenses in the context of aerial detection, a comprehensive

investigation is conspicuously absent. This sparsity of research

presents a severe risk to the safety of aerial detection systems,

as it increases their vulnerabilities to attacks. In this article, we

conduct an exhaustive review of existing research endeavors related

to adversarial attacks and defenses in the context of aerial detection,

aiming to provide an overall framework for better understanding

the adversarial challenges for aerial detection. Based on the most

widely adopted sensing strategies in aerial detection (Wilkening,

2004), we categorize both digital and physical adversarial attacks

in the context of aerial detection from perspectives including

optical sensing, infrared sensing, and SAR imaging sensing. Optical

sensors observe within the visible electromagnetic wave range

(Crawford, 1998), infrared sensors detect infrared radiation for

target identification (Norton, 1991), and SAR imaging sensors

utilize radar signals for target identification based on reflectivity,

shape, and size. Owing to the different imaging principles,

attacks in each sensing dimension show different attack vectors

and reveal different attack potentials. Besides adversarial attacks,

according to the operational life cycles, we also comprehensively

analyze adversarial defenses for aerial detection from three

operational phases including pre-mission, in-mission, and post-

mission. Finally, we pinpoint several directions for future studies

such as real-world attacks, defense, high-quality platforms, among

others. It is imperative to clarify that, within the context of our

study, the domain of aerial detection encompasses all surveillance

activities conducted from an elevated vantage point at a specified

altitude above the target of detection. This scope includes diverse

practices, including ground imaging through remote sensing and

satellite-based surveillance of terrestrial features. In summary, our

primary contributions can be summarized as follows:

• We present a comprehensive investigation of both digital and

physical adversarial attacks in the context of aerial detection

based on the most widely used sensing principles, delivering

an in-depth analysis of the evolution and progress within this

research domain.

• Besides attacks, we also systematically investigate the existing

adversarial defenses from the perspectives of the main

operational phases of aerial detection missions.

• We engage in an extensive discussion regarding the challenges

posed by real-world intelligent aerial detection and their

implications on subsequent operational stages.

2 Preliminaries

2.1 Adversarial example

In 2013, researchers, including Szegedy et al. (2013), made

a groundbreaking discovery within the realm of intelligent

algorithms in computer vision. They identified a minute form of

imperceptible noise, which, despite its inconspicuous nature to

the human eye, had the potential to mislead deep neural network

models. This newly defined phenomenon was termed an AE

(Goodfellow et al., 2014) and is characterized as follows:

f2(xadv) 6= y, s.t. ‖ x− xadv ‖≤ ǫ, (1)

In this context, where x represents the original data, xadv
denotes an adversarial example augmented with adversarial noise,

y stands for the category label assigned to the original data x, ‖ · ‖

symbolizes the measure of the distance between x and xadv, and ǫ

signifies any positive value. This expression conveys the concept

that even when the disparity between x and xadv is infinitesimal,

the neural network yields an erroneous classification outcome.

As research progresses, scholars have unveiled the extensive

impact of AEs across a spectrum of domains, including natural

language processing (NLP) (Zhang W. E. et al., 2020; Morris et al.,

2020; Qiu et al., 2022; Chang et al., 2021), speech recognition (Qin

et al., 2019; Cisse et al., 2017; Samizade et al., 2020; Schönherr

et al., 2018), as well as a diverse array of AI paradigms and

algorithms such as deep learning, reinforcement learning, and

statistical machine learning. The perturbing effects of AEs are

profound and multifaceted. Additionally, owing to its inherent

versatility, AEs can be harnessed to orchestrate black-box attacks

(Papernot et al., 2017; Liu et al., 2016; Guo et al., 2019; Ilyas

et al., 2017; Jia et al., 2019), circumventing the need for specific

knowledge concerning the target model. Notably, these attacks

transcend the boundaries between the digital (Jan et al., 2019; Kong

et al., 2020; Liu et al., 2020b) and physical (Kurakin et al., 2016a;

Kong et al., 2020; Song et al., 2018; Xu et al., 2020; Athalye et al.,

2018; Kurakin et al., 2018) realms, demonstrating their efficacy and

reach across both domains.

In the present research landscape, scholars have undertaken

exhaustive investigations into AEs, encompassing inquiries into

the underlying mechanisms of AEs’ successful incursions into

intelligent algorithms (Liu et al., 2023a), methods for enhancing the

likelihood of AE attack success (Liu et al., 2021; Yu et al., 2021),
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and strategies for fortifying defenses against AE attacks (Guo et al.,

2023; Liu et al., 2023b; Zhang et al., 2021). These research efforts

span an array of application domains for intelligent algorithms,

ranging from autonomous driving and navigation (Kong et al.,

2020; Boloor et al., 2019; Cao et al., 2019b,a; Tu et al., 2020; Zhou

et al., 2020; Liu et al., 2020a), facial recognition (Zhu et al., 2019;

Zhang B. et al., 2020; Sharif et al., 2019; Massoli et al., 2021;

Vakhshiteh et al., 2021), to target detection (Song et al., 2018; Xie

et al., 2017; Liu et al., 2019; Yang et al., 2018; Smith and Gal, 2018),

among others.

2.2 Aerial detection

In Aerial detection, the detection sensor on the aircraft carries

out object detection on the ground target. The formula for the

process is as follows:

minE(I,{y,b})∼DL(f (I), {y, b}), (2)

whereL(·) is the loss function that measures the difference between

the output of the detector f and the ground truth, f is the detection

processing and analysis system, I is the picture of the input detector,

y denotes the true category of the target, and b denotes the real

bounding box. When attacking the sensor in an aerial detection

scenario, given an object detector f and an input image I with the

ground truth label {y, b}, an adversarial example Iadv satisfies the

following:

f (Iadv) 6= {y, b} s.t. ‖I− Iadv‖ ≤ ǫ, (3)

where ‖ · ‖ is a distance metric and commonly measured via

ℓp-norm (p ∈{1,2,∞}).

In physical aerial detection scenarios, the itemsX = {x1, ..., xm}

on the ground are scanned via different sensors to produce an

image, where R denotes the process of generating an image

depicted as I = R(X).

In conclusion, to discuss physical attacks, the ground target

is scanned by the sensor into image Iadv, which could deceive

the object detector f (·) with attack mode A, minimizing M that

measures the performance of the detector:

minM
[

f (R(x1, ..., xm, x
A
adv), {y, b})

]

. (4)

Further, sensor R ∈ {Ro,Ri,Rs} which includes optical

sensors Ro which rely on the wavelength in the visible range of

electromagnetic waves for observation and imaging (Crawford,

1998), infrared sensors Ri which detect the infrared radiation

emitted or reflected by the target to carry out identification

(Norton, 1991), and SAR imaging sensorRs which use the antenna

to transmit and receive radar signals to the target, and identifies the

target type according to the reflectivity, shape and size of the target.

For different sensors, the attacker designs the attack mode

A ∈ {P,T,C,N,E} according to the sensor detection mechanism:

changing optical imaging results P to attack optical sensors,

changing thermal signature T and infrared radiation C to attack

infrared sensors, changing scattering properties N and texture

properties E to attack SAR imaging sensors.

For aerial exploration, since aerial imagery primarily acquired

from elevated platforms such as drones or satellites, provides an

unconventional top-down or oblique perspective, which results in

a counterattack on aerial imagery, Researchers must consider that

the adversarial example is similar in size or pixel to the detection

target, and consider the realizability of the adversarial example in

the physical environment. At the same time, due to the potential air

obstacles encountered by sensor imaging in aerial detection, such as

wires, clouds, rain, and other environmental elements, researchers

can use or eliminate this part when fighting attacks and defenses to

ensure attack efficiency and defense success probability.

3 Adversarial attack on aerial
detection

This study categorizes assaults on aerial detection sensors into

three distinct types: optical sensors, infrared sensors, and SAR

imaging sensors. These categorizations form the foundation for a

comprehensive synthesis of attack methodologies, implementation

modalities, underlying rationales, and specific mission objectives

across these sensor categories, as shown in Figure 1. The resulting

as shown in Table 1 encapsulates these findings for reference

and analysis.

Our emphasis is on distinguishing between physical attacks and

digital attacks.We assert that, within the domain of aerial detection,

certain digital attacks, such as mapping alterations on remote

sensing images, primarily aim to enhance existing algorithms.

In contrast, physical attacks, such as strategically placing objects

emitting counter signals near the target being detected, exert a

more substantial disruptive influence on the functionality of aerial

detection sensors.

However, physical attacks are susceptible to the influence

of various natural conditions, including light, cloud cover, and

other uncontrollable factors. A comprehensive description of these

variables in experimental settings can be challenging. In contrast,

digital attacks offer the advantage of being executed under ideal

conditions, providing researchers with a more convenient platform

to investigate strategies for countering attacks and to probe the

vulnerabilities in intelligent algorithms.

3.1 Adversarial attack on optical sensors

Optical sensors systematically capture visible light emanating

from objects within their natural surroundings, discerning

object categories based on distinct visible light performance

parameters. Subsequently, assailants often exploit optical sensors

by orchestrating nuanced yet meticulously crafted alterations to

optical characteristics or introducing image perturbations, thereby

undermining the efficacy of target detection. These manipulations

encompass subtle adjustments to target attributes such as color,

texture, or brightness within the visible spectrum of imaging

outcomes. These tactics aim to subtly distort the information

received by the detector.

To investigate adversarial attacks on optical sensors, researchers

have conducted extensive studies in both digital and physical

environments. These investigations typically consider the
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FIGURE 1

Adversarial attacks on aerial detection systems can be categorized based on the type of sensor targeted: optical sensors, infrared sensors, and SAR

sensors. For Optical sensors, adversarial attacks typically involve altering optical imaging results. Infrared sensors are usually targeted by modifying

the thermal signature or infrared radiation. In the case of SAR sensors, attacks are generally conducted by altering scattering properties or texture

properties.

operational principles of optical sensor imaging in aerial detection,

integrating the specific characteristics of aerial detection activities.

In the realm of fundamental model vulnerability research, Chen

et al. (2020) explored the mechanisms by which models can be

susceptible to attacks, emphasizing attack selectivity and model

vulnerability. Attack selectivity underscores the variability in the

impact of AE across diverse models, allowing attackers to achieve

superior results by selecting specific models. Model susceptibility,

on the other hand, pertains to amodel’s resilience against AE and its

capability to correctly identify such examples. Higher susceptibility

signifies a reduced ability of the model to recognize AEs.

3.1.1 Digital attacks on optical sensors
Numerous studies have investigated digital attacks on

optical sensors, commonly involving the incorporation of

adversarial patches or other elements capable of transmitting

attack information into resulting remote sensing images. The

majority of these studies emphasize enhancing attack strategies

targeting the detector. While this approach offers the advantage

of simulating attacks on optical sensors under ideal conditions,

enabling exploration of the mechanisms behind successful attacks

and algorithm vulnerabilities, it is essential to note its limitation in

disregarding the intricate weather conditions typically encountered

in aerial detection scenarios.

To facilitate multi-scale object detection in Unmanned Aerial

Vehicle (UAV) remote sensing images, Zhang Y. et al. (2022)

introduced amethod for adapting the patch size to the scaling factor

of the height label. Specifically, in digital attacks, the patch is resized

in accordance with the height label of the image to accommodate

targets of varying scales. Consequently, this approach ensures that

the patch can yield effective attack outcomes on multi-scale targets

across real-world scenarios, regardless of their size.

Den Hollander et al. (2020) employed adversarial patches on

images of military targets to obscure them in automatic target

detection. Their experiments demonstrated that adversarial patches

are markedly more adept at concealing military targets compared

to noisy patches, resulting in higher attack success rates. The

authors also explored the impact of adversarial patch size on the

attack’s success rate, finding that larger patches are more effective

in disguising the target. However, this comes at the expense

of increased detectability of the attack. Consequently, selecting

an appropriately sized adversarial patch can enhance the overall

success rate of the attack.

To counter adversarial attacks on salient object detection

models in remote sensing images, Sun et al. (2023) introduced an

attack strategy termed “Adversarial Cloud”. This method generates

a cloud mask to simulate cloud cover in remote sensing images,

transforming the original image into an adversarial cloud image.

The objective is to deceive visual-based salient object detection
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TABLE 1 Overview of recent adversarial attack research against airborne detection sensors.

References Sensor type Attack method Attack mode Adversarial’s
knowledge

Target task

Zhang Y. et al. (2022) Optical Adversarial patch Digital White box & black box Detection

Den Hollander et al.

(2020)

Optical Adversarial patch Digital White box & black box Detection

Sun et al. (2023) Optical Adversarial perturbation Digital White box Detection

Lian et al. (2022) Optical Adversarial patch Digital White box Detection

Wang et al. (2023) Optical Adversarial perturbation Digital White box & black box Detection

Wang et al. (2024) Optical Adversarial perturbation Digital White box Classification

Du et al. (2022) Optical Adversarial patch Physical Not mentioned Detection

Shrestha et al. (2023) Optical Adversarial patch Physical White box Detection

Lian et al. (2023) Optical Adversarial patch Physical White box Detection

Tang et al. (2023) Optical Adversarial light Physical Black box Detection

Xu and Ghamisi (2022) Optical Adversarial perturbation Physical Black box Classification &

detection

Wang et al. (2021) Optical Adversarial patch Physical Black box Classification

Zhang et al. (2024) Optical Adversarial patch Physical White box Detection

Zhou et al. (2024) Optical Adversarial Patch Physical White box & black box Detection

Wei X. et al. (2023) Infrared Adversarial patch Physical White box & black box Detection

Qi et al. (2022) Infrared Adversarial patch Digital White box Detection

Wei H. et al. (2023) Infrared Adversarial patch Physical Black box Detection

Zhu et al. (2021) Infrared Adversarial light Physical Black box Detection

Zhang F. et al. (2022) SAR Adversarial perturbation Digital White box & black box Classification &

detection

Li et al. (2020) SAR Adversarial perturbation Digital White box & black box Detection

Du et al. (2023) SAR Adversarial perturbation Digital Black box Detection

Peng et al. (2021) SAR Adversarial perturbation Digital White box & black box Detection

Peng et al. (2022) SAR Adversarial perturbation Digital Black box Classification

Zhang L. A. et al. (2022) SAR Corner reflector Physical Black box Detection

models designed for remote sensing images. Experimental results

demonstrate the effectiveness of the Adversarial Cloud attack

method, significantly compromising the performance of the salient

target detection model and resulting in a substantial reduction in

the F-measure value, decreasing from 0.8253 to 0.2572.

The work by Lian et al. (2022) outlined a physical attack

framework based on adaptive patches. This framework executes

covert attacks on designated targets by generating adaptive patches

capable of concealing specific targets amidst varying physical

dynamics and scales. Throughout the attack, the patch’s placement,

whether within or surrounding the target, uniformly impacts

all targets belonging to the same category, while maintaining

robustness within the physical domain.

Simultaneously, the study presented by Wang et al. (2023)

provided a comprehensive assessment of success rates associated

with diverse adversarial attacks targeting various semantic

segmentation networks designed for aerial images. The evaluation

metric employed is Pixel Accuracy (PA), reflecting the models’

ability to correctly classify pixels. For example, in the FGSM

attack-generated AE test set, the TCHNet model achieves a PA

of 24.28%, while PA values for C&W, PGD, and UAP attacks

are notably lower at 18.57, 17.82, and 15.16%, respectively. In

stark contrast, the proposedGFANet exhibits exceptional resilience,

consistently achieving PA values exceeding 80% across a spectrum

of adversarial attack methods. This performance surpasses that of

its counterparts in the realm of aerial image semantic segmentation

networks, emphasizing its heightened robustness and efficacy in

adversarial scenarios.

Wang et al. (2024) introduced an innovative adversarial

attack framework called Background Attack via Dual-Adversarial-

Induced Error Identification (BADEI), specifically targeting

optical sensors used in aerial object detection. This framework

leverages adversarial background manipulation to deceive

detection systems, causing them to either misclassify targets as

background or falsely identify background elements as targets.

The methodology includes an Unoccluded Training Strategy

(UTS), which strategically places adversarial backgrounds directly

beneath targets, and a Dual Deceptive Loss Function (D2LF)
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that facilitates both target concealment and misclassification.

While the validation primarily occurred in a digital environment,

the BADEI framework demonstrated exceptional attack efficacy

across various optical detection models. The results underscore

the vulnerability of optical sensors to such sophisticated attacks,

significantly compromising their accuracy in detecting and

identifying aerial targets.

3.1.2 Physical attacks on optical sensors
In the domain of physical attacks, researchers commonly

manifest adversarial information by affixing stickers and patches to

or in proximity of the target under surveillance. Aerial detectors are

then deployed to assess detection and recognition capabilities in the

area. This method offers the advantage of conducting experiments

in real-world aerial detection scenarios. However, a drawback lies in

the susceptibility of optical sensors to external factors like weather

and illumination, rendering it challenging to precisely control

natural conditions in physical attack experiments. This limitation

may slightly diminish the experiment’s reliability.

Du et al. (2022) conducted a comprehensive examination of the

susceptibility of deep neural networks to adversarial perturbations

in the context of aerial imagery. The research also investigates the

influence of atmospheric variables and distances in the context

of physical adversarial attacks. The methodology involves training

adversarial patches placed on the ground, followed by capturing

images from varying altitudes. These images are then processed

using vehicle detectors to assess the efficacy of physical adversarial

attacks. The evaluation relies on two key metrics: the Mean

Objectness Score (MOS) and the Object Detection Success Rate

(ODSR). Experimental findings elucidate that physical adversarial

attacks can lead to a discernible reduction in target detection

scores, spanning a range of 25–85%. The extent of this reduction

is contingent upon specific vehicle and environmental conditions.

Furthermore, the study reveals a notably high success rate

associated with physical adversarial attacks, with values reaching

between 60 and 100%.

Shrestha et al. (2023) introduced a novel approach for

generating adversarial patches. This method consists of two key

stages. Firstly, within the known white box setting of the DNN

UAV target detector, an adversarial patch is created, taking into

account potential variations in image brightness and perspective

caused by the UAV’s shooting angle and height. Subsequently,

the generated patch is transferred to another DNN model and

architecture. Experimental findings illustrate the efficacy of this

proposed adversarial patch generation method in significantly

undermining the reliability of the current UAV target detector, with

attack success rates reaching as high as 75 and 78%.

In the context of addressing the contextual attack challenge

in optical aerial inspection, Lian et al. (2023) presented a novel

framework known as Contextual Background Attack (CBA). CBA

introduces a fresh approach to background attacks in optical

aerial inspection. By concealing the adversarial patch within the

area of interest and optimizing the pixels outside this concealed

region, the resulting adversarial patch effectively encompasses

the critical contextual background area, thereby enhancing the

attack’s robustness and transferability. Specifically, within the CBA

framework, target masking involves obscuring the target area with

black pixels to ensure that target recognition remains unaffected

during adversarial patch optimization. The CBA framework further

enhances attack robustness and transferability by optimizing pixels

outside the masked area, enabling the generated adversarial patch

to encompass the crucial context background area.

The study conducted by Tang et al. (2023) introduced an

innovative technique aimed at generating black-box adversarial

attacks in the style of natural weather patterns for optical aerial

detectors. The method proffers a departure from conventional

adversarial attack strategies by harnessing natural weather-style

perturbations to create adversarial instances that exhibit enhanced

visual similarity to benign images. This approach proves notably

efficacious when juxtaposed with extant methodologies that

introduce adversarial perturbations directly onto unaltered images.

Notably, the method exhibits a remarkable degree of effectiveness

in black-box scenarios, thereby lending practical applicability to

real-world contexts.

Xu and Ghamisi (2022) proposed two novel attack techniques:

Mixup-Attack and Mixcut-Attack. Mixup-Attack involves the

linear interpolation of two distinct samples to produce a new

sample, while Mixcut-Attack is a derivative of Mixup-Attack that

focuses on interpolation at various points within the input sample.

Empirical findings demonstrate that the proposed attack methods

can generate high-quality AE capable of deceiving a majority

of the most advanced deep neural networks engaged in scene

classification and semantic segmentation tasks. Furthermore, the

authors have contributed to the UAE-RS dataset, representing a

pioneering effort in the field of remote sensing by offering black-

box AEs.

In the context of high-angle vehicle detection, Wang et al.

(2021) introduced the Dual Attention Suppression (DAS)

Attack method, which leverages environmental control and

attention mechanisms to create adversarial texture tensors

with robust transferability. When applied to a 3D solid object

under specific environmental conditions, this method causes

misclassification by neural network classifiers. Experimental

evaluations involved multiple neural network classifiers and

object detectors, including Inception-V3, VGG-19, ResNet-152,

and DenseNet. The results demonstrate DAS’s formidable attack

capabilities and transferability in both digital and physical realms,

producing high-quality adversarial texture tensors for diverse

target categories and environmental conditions.

For optical sensors, the angle at which adversarial examples

are imaged has traditionally been a significant factor affecting

the success of attacks. However, recent studies have explored

various methods to ensure that adversarial examples remain robust

across different detection angles. Zhang et al. (2024) proposed an

innovative approach to addressing the challenges posed by physical

adversarial attacks in the context of aerial object detection. This

study introduces feature-aligned expandable textures designed to

deceive detection systems in real-world environments, emphasizing

the decoupling of adversarial textures from specific shapes for

flexible application. These textures are meticulously refined to align

with their surrounding environment, ensuring seamless integration

and increased concealment. Extensive experiments in both digital

simulations and real-world conditions validate the robustness of
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these textures, whichmaintain high efficacy across different viewing

angles and environmental conditions.

Building on these advancements, Zhou et al. (2024) introduced

the Direction-Guided Attack (DGA), a novel adversarial attack

framework specifically designed to reduce the impact of varying

camera angles on attack effectiveness against optical aerial

detection systems. By employing affine transformations, the DGA

framework aligns the orientation of adversarial patches with

the target, ensuring consistent robustness across unpredictable

shooting directions. Through comprehensive testing, including

the development of the SJTU-4K dataset, the DGA framework

demonstrated its ability to deceive a wide range of aerial detectors,

highlighting its practical applicability in real-world scenarios.

Together, these studies represent significant advancements in the

field of adversarial attacks on aerial detection systems, particularly

in their ability to maintain attack efficacy despite dynamic changes

in viewing angles and environmental conditions.

3.2 Adversarial attack on infrared sensors

Infrared sensors systematically capture thermal signatures and

infrared radiation data from targets, employing these distinctive

infrared characteristics for object detection. This mechanism,

however, renders infrared sensors susceptible to attacks wherein

assailants manipulate the thermal signature or infrared radiation

of the target. In practical terms, attackers might subtly alter the

heat distribution surrounding a target or utilize materials with

properties that either absorb or reflect infrared radiation. Such

interventions aim to perturb the information, influencing the

outcome encapsulated in the object detector.

In line with the principles of infrared imaging outlined in

He et al. (2021), attacks on infrared sensors typically manipulate

the recognition algorithm by altering the thermal attributes

of identified targets. In the context of aerial detection, post-

infrared imaging results in a notably reduced target size, posing

challenges to the identification process. Consequently, the body of

research on adversarial attacks targeting infrared sensors remains

relatively limited.

3.2.1 Digital attacks on infrared sensors
In the realm of digital attacks, interference, such as AE, is

primarily introduced into infrared remote-sensing images, leading

to errors in intelligent recognition. However, this approach does

not address the practical challenges that infrared detectors in aerial

detection may confront in real-world scenarios.

In Qi et al. (2022), researchers investigated an antagonistic

algorithm for infrared remote sensing target recognition based

on a multi-channel self-attention mechanism GAN network. The

proposed attack mode, evaluated using various examples from

different infrared video sequences in diverse remote sensing

scenarios, achieved a substantial impact on the targeted detector

while introducing minimal adversarial disturbance. Compared

to established target recognition countermeasure algorithms, this

attack method exhibited clear advantages in terms of physical

feasibility, portability, and generation speed.

3.2.2 Physical attacks on infrared sensors
In current research on physical attacks targeting infrared

sensors, prevalent methods involve placing temperature-regulating

materials on the target to manipulate the thermal radiation

characteristics of the detected object. While this approach offers

a higher degree of realism, its feasibility for aerial detection

remains uncertain.

In the work outlined in Wei X. et al. (2023), researchers

introduce a physically viable method for infrared attacks, termed

“Adversarial Infrared Patches”. This approach manipulates the heat

distribution of a target object by affixing a thermally insulating

material patch with a specific shape and position onto the object,

thus misleading the detection outcomes of the infrared sensor.

Experimental findings demonstrate an impressive Attack Success

Rate (ASR) exceeding 90% when applied to pedestrian detectors.

Wei H. et al. (2023) introduced the HOTCOLD Block

attack method, utilizing temperature control materials, specifically

warming paste and cooling paste, to manipulate thermal infrared

detectors. This method offers distinct advantages, characterized by

its stealthiness, practicality, ease of acquisition and deployment,

and resilience to detection by both human observers and detection

models. The experimental outcomes demonstrate the effectiveness

of HOTCOLD Block in duping thermal infrared detectors,

achieving a success rate of over 90% in successful attacks.

In addition to the utilization of cooling materials or patches,

Zhu et al. (2021) delineated an attack algorithm employing

miniature light bulbs to deceive thermal infrared detectors.

The authors devised a cardboard apparatus adorned with small

light bulbs, combining both pixel-level patches and Gaussian

function patches on the cardboard, along with the incorporation

of additional miniature light bulbs. This approach effectively

deceived the YOLOV3-based thermal infrared pedestrian detector.

Empirical findings underscore the real-world effectiveness of this

attack method, which costs less than $5 to implement.

3.3 Adversarial attack on SAR imaging
sensors

The SAR imaging sensor employs an antenna for the

transmission and reception of radar signals to and from a target. It

discerns the target’s type by analyzing its characteristics, including

reflectivity, shape, and size. However, this mechanism becomes

vulnerable to manipulation by attackers seeking to induce the

SAR system into producing deceptive imaging results. This can be

achieved by strategically introducing reflectors in the target area or

adjusting the characteristics of the radar signal. These interventions

are orchestrated with the intent to modify the information, thereby

influencing the outcome encapsulated in the object detector.

Li et al. (2020) explored the susceptibility of SAR images

to AEs and introduced a novel method known as AE Selective

Analysis (AESD). AESD is employed to assess various non-target

attack algorithms and represents an innovative approach for

analyzing the selectivity of AEs. The method is based on the

distance between a sample and the nearest decision boundary,

offering a rational explanation for why certain adjacent samples

exhibit greater vulnerability than others. Geometrically, AESD
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signifies that a given raw sample, when subjected to adversarial

perturbations, may traverse the nearest decision boundary,

resulting in misclassification by the classifier.

3.3.1 Digital attacks on SAR imaging sensors
Digital attacks targeting SAR imaging sensors involve the

introduction of adversarial noise into SAR imaging photos. While

this approach serves as a foundational concept for physical attacks,

it tends to be highly theoretical and often lacks consideration for the

practical aspects of reconstructing the electromagnetic signal from

the adversarial signal in the physical world.

Zhang F. et al. (2022) provided a comprehensive overview

of current adversarial attacks against SAR target recognition

networks, encompassing methods such as I-FGSM (BIM), ILCM,

and DBA. Additionally, the paper introduces a novel adversarial

attack algorithm against SAR target recognition networks, capable

of generating AEs to induce incorrect classification results.

Experimental findings demonstrate the algorithm’s ability to

produce high-quality AE, characterized by a higher success rate

in deception, enhanced recognition confidence, and a reduced

disturbance coverage area. This approach exhibits superior attack

efficacy compared to existing methods.

Du et al. (2023) introduced a novel counterattack method

named TAN, or Transferable Adversarial Network, specifically

designed for efficient black-box attacks. The TAN method achieves

its objective by introducing a generator G and an attenuator A

to target DNN-based SAR-ATR models. The paper provides a

comprehensive account of the TAN method’s implementation and

training process, detailing the specific procedures for both the

generator G and attenuator A. Through experimental verification,

the effectiveness of the TAN method is demonstrated, showcasing

its ability to efficiently conduct black-box attacks with a remarkable

success rate of 98.5%.

In Peng et al. (2021), an attack method targeting SAR

image segmentation is introduced. Target Segmentation-

based Adversarial Attack (TSAA) is specifically designed to

undermine deep learning models employed in SAR image analysis.

Distinguishing itself from existing counterattack methods, TSAA

places particular emphasis on the practical feasibility of generating

perturbations within the target region, rendering it notably

effective for SAR images. Empirical findings substantiate the

superior performance of TSAA, showcasing its enhanced attack

capabilities compared to existing methods across eight common

deep-learning model attack tasks.

Peng et al. (2022) introduced the Scattering Model Guided AE

(SMGAA) method, aimed at enhancing the adversarial robustness

of SAR Automatic Target Recognition (ATR) models based on

DNN. In the context of SAR imaging, the scattering response of

a target object can be represented as a collection of scattering

centers (SC), each characterized by its unique position, amplitude,

and phase properties. During an attack, SMGAA is employed

to design and generate adversarial scatterers, strategically placing

them on the target object. This optimizes their properties, including

position, amplitude, and phase, to maximize the impact of the

adversarial attack.

3.3.2 Physical attacks on SAR imaging sensors
In contrast to digital attacks, physical attacks inherently entail

addressing the fundamental challenge of altering electromagnetic

signals in the real world. One existing approach involves the design

of a suitable angular reflector strategically positioned near the

target, significantly impacting the recognition capabilities of SAR

imaging sensors.

In accordance with Zhang L. A. et al. (2022), corner reflectors

are trihedral structures composed of highly reflective materials,

manifesting as conspicuous bright features in SAR imaging.

Notably, a single 1-foot-wide angular reflector can yield a radar

cross-section of 500 square meters, sufficiently large to obscure

nearby objects. These reflectors exhibit operational viability, owing

to their cost-effectiveness and portability, and contribute to the

reduction of object visibility in SAR images.

Furthermore, the prospect of training AI systems as “through-

angle” reflectors is explored in this paper. Using the RetinaNet

architecture, the impact of angle reflectors on SAR object detection

is investigated. The model, denoted as the Blue model, is fine-

tuned to accurately detect and identify vehicles in the presence of

central-corner reflectors, achieving a 56% mean Average Precision

(mAP). However, it’s worth noting that the paper does not explore

the potential for complete occlusion with a large angular reflector.

Nevertheless, it is anticipated that a suitably substantial corner

reflector, or a combination of such reflectors, could potentially fully

obstruct the scene.

3.4 Discussion on adversarial attack in
aerial detection

In this chapter, we review the existing research on adversarial

attacks against different types of sensors used in aerial detection,

such as optical, infrared, and SAR imaging sensors. We categorize

the attacks into digital and physical modes and analyze their attack

methods, vectors, potentials, and objectives. At the same time, we

also provide a table that summarizes the main characteristics and

references of the recent adversarial attack research against airborne

detection sensors.

In general, adversarial attacks targeting aerial detection face

several challenges and limitations. These include the difficulties

in conducting realistic and effective physical attacks on aerial

detection sensors due to factors such as environmental conditions,

target size, and attack feasibility. Additionally, there are trade-

offs between attack success rate, stealthiness, and cost, as

well as challenges in measuring and evaluating these factors.

Furthermore, the transferability and generalization of adversarial

attacks across different sensor types, models, and scenarios remain

significant obstacles.

4 Adversarial defense in aerial
detection

Within the realm of aerial detection, we classify potential

adversarial defense methods based on distinct stages of aerial

detection missions: pre-takeoff, on-mission, and post-processing.
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The resulting as shown in Table 2 encapsulates these findings

for reference and analysis. The pre-takeoff phase represents the

preparatory stage, where the aircraft or satellite responsible for

aerial detection or remote sensing photography is in readiness,

allowing for potential modifications and redeployment of onboard

algorithms (Figure 2). Therefore, pre-takeoff defense primarily

revolves around algorithm design and training.

As the mission progresses into the on-mission stage, the aircraft

enters its designated airspace, and the algorithms become fixed.

During this phase, the onboard algorithm must autonomously

address defense challenges. Hence, the mission’s defense strategy

centers on algorithm fusion and the detection of AE edges under

limited resources. The post-processing stage involves the analysis

of images captured by the aircraft. Regardless of whether the

onboard intelligent algorithm provides recognition or classification

results, these image results are either uploaded to the cloud or

returned to the ground. In this context, defense mechanisms

primarily encompass ground-based AE detection, defense based on

demonstrable robustness, or other approaches such as human-in-

the-loop processing.

4.1 Pre-takeo� defense strategies

Pre-takeoff defense methods predominantly involve adversarial

training and the refinement of model structures. Adversarial

training, a pivotal aspect, encompasses two subtypes: AE or

adversarial noise training and randomized training.

4.1.1 Adversarial training
In the context of optical sensors, Lu et al. (2023a) proposed

a proactive defense framework that employs a deeply integrated

model to enhance UAV vision system robustness. The framework

introduces Feature Suppression and Recalibration modules,

reactivating suppressed non-robust features, and suggests methods

for enhancing loss field orthogonality. Additionally, Lu et al.

(2023b) argued that the introduction of AE can enhance model

adaptability to adversarial attacks, thereby improving overall

model robustness.

For infrared sensors, Spasiano et al. (2022) presented an

adversarial training strategy to bolster model robustness. This

method incorporates AE into the training process, enhancing

the model’s resilience against adversarial attacks. Ortiz et al.

(2018) proposed the Adaptive Multiband Selection Framework,

dynamically selecting optimal band combinations based on

evolving adversarial attack scenarios. In multispectral image

classification, this approach aids in selecting pertinent input

features, reducing data dimensionality, and improving model focus

on relevant information.

In the domain of SAR imaging sensors, Peng et al. (2022) delved

into AE generation and inversion using a scattering model. This

process enables the restoration of original images through an AE

reconstruction method, involving AE generation and optimization

steps. Additionally, Li et al. (2022) introduced SAR-AD-BagNet,

a model employing AE in training to enhance its ability to

recognize AE. Leveraging BagNet characteristics and bagging

techniques, SAR-AD-BagNet mitigates model variance, enhancing

generalization capacity.

4.1.2 Design of model structure
Wang et al. (2023) introduced the Global Feature Attention

Network (GFANet) to enhance model robustness in semantic

segmentation for aerial images. GFANet employs a dual-branch

network architecture and an attention mechanism to dynamically

fuse local and global features. This facilitates the effective

utilization of global feature information while preserving local

details, strengthening the model’s robustness and resistance to

adversarial attacks.

Experimental evaluations across diverse attack methods

highlight GFANet’s superior robustness, consistently achieving

performance exceeding 80% on anAE test set. This outperformance

positions GFANet as a robust solution for aerial image semantic

segmentation networks against adversarial challenges.

4.2 On-mission defense strategies

During in-flight detection missions, aircraft heavily rely on

onboard intelligent algorithms for adversarial defense. Feasible

approaches at this stage involve model integration and partial

noise reduction, requiring model compression for reliable

edge deployment.

4.2.1 Ensemble model
Utilizing ensemble methods for defending against adversarial

perturbations involves constructing multiple classifiers that classify

new data points based on weighted or unweighted averages of

predictions. These classifiers can be of the same or different types,

aiming to mitigate vulnerabilities specific to individual models

(Strauss et al., 2017).

Lu et al. (2023a) proposed a deep integration model for

reactive defense, aggregating output confidence from multiple

DNNs to enhance robustness. They introduce Feature Suppression

and Recalibration modules, empirically validating their defense

effectiveness. Similarly, Lu et al. (2023b) employed an integrated

approach as a reactive defense strategy, averaging output from

multiple detectors to improve detection accuracy. Experimental

results indicate its efficacy in various scenarios, showcasing

flexibility and practicality without requiring model retraining.

However, He et al. (2017) raised concerns about the integrated

defense approach, emphasizing the need for further research to

enhance its resistance to AE compared to individual components.

4.2.2 Noise reduction
Addressing cloud-like noise or adversarial cloud attacks, Sun

et al. (2023) introducedDefenseNet. This defensemechanism trains

a model to eliminate clouds by learning features from adversarial

cloud images, showcasing effectiveness in object detection. The

follow-up work by Sun et al. (2024) further validated the robustness

of DefenseNet, expanding its applicability across a broader range

of adversarial scenarios and providing additional experimental

evidence supporting its efficacy in real-world remote sensing

environments. Ortiz et al. (2018) presented the detection network

for defending against material responses within the short-wave

infrared spectrum, offering robustness without the need for

retraining. Detection networks provide the option to refrain from
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TABLE 2 Overview of recent adversarial defense research against airborne detection sensors.

References Mission phase Sensor type Defense type Defense method

Lu et al. (2023a) Pre-takeoff Optical Adversarial training Feature suppression and recalibration

Lu et al. (2023b) Pre-takeoff Optical Adversarial training Adversarial example

Spasiano et al. (2022) Pre-takeoff Infrared Adversarial training Training on faster R-CNN

Ortiz et al. (2018) Pre-takeoff Infrared Adversarial training Adaptive multiband selection

framework

Peng et al. (2022) Pre-takeoff SAR Adversarial training Scattering model guided adversarial

attack

Li et al. (2022) Pre-takeoff SAR Adversarial training SAR-AD-BagNet

Wang et al. (2023) Pre-takeoff Optical New model structure Global feature attention network

Lu et al. (2023a) On-mission Optical Ensemble model Multiple DNNs

Lu et al. (2023b) On-mission Optical Ensemble model Multiple detectors

Sun et al. (2023) On-mission Optical Noise reduction DefenseNet

Sun et al. (2024) On-mission Optical Noise reduction DefenseNet

Ortiz et al. (2018) On-mission Infrared Noise reduction Detection network

Zhang Z. et al. (2022) Post-processing SAR Noise reduction Energy-based AE detection

Madry et al. (2017) Post-processing Optical Robustness certification Linear programming-based

Dong et al. (2020) Post-processing Optical Robustness certification Gradient-based

Chen and Chu (2023) Post-processing Optical Miscellaneous Adaptive defense pipeline

FIGURE 2

Adversarial defenses in aerial detection systems can be categorized based on the operational phase during which they are implemented: Pre-Takeo�,

On-Mission, and Post-Processing. In the Pre-Takeo� phase, defenses typically involve adversarial training or the development of new model

structures. During the On-Mission phase, defenses may include the use of ensemble models or noise reduction techniques. In the Post-processing

phase, robustness certification or further noise reduction methods can be employed to enhance security.
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classification when an input image is identified as an adversarial

attack, enhancing overall model robustness.

4.3 Post-processing defense strategies

In the post-processing stage, resources initially allocated

to onboard intelligent algorithms become available for various

defensive measures, including detection, robustness certification,

and other methods.

4.3.1 Detection for defense
A novel approach for detecting AE, called Energy-Based

AE Detection, is introduced by Zhang Z. et al. (2022). This

method considers SAR AE as low-probability instances that

deviate from clean datasets and leverages an energy model to

capture the intrinsic energy distinctions between SAR AE and

clean samples. Importantly, this energy-based approach remains

robust even in the presence of perturbations. Building upon this

foundation, an energy-based AE detector is proposed without

requiring any modifications to the pre-trained model. To enhance

the discrimination between clean and AE, energy regularization

is applied to fine-tune the pre-trained model. Experimental

results demonstrate the method’s high accuracy and robustness in

detecting AE, outperforming other existing approaches.

4.3.2 Robustness certification
Robustness Certification aims to establish neural network

robustness across a range of inputs. This objective can be achieved

by determining the maximum disturbance range within the input

space. Specifically, techniques for validating robustness fall into two

subcategories: linear programming-based methods and gradient-

based methods.

Linear programming-based approaches calculate themaximum

disturbance range by solving a linear programming problem. This

problem aims to identify the largest perturbation range within

which the neural network remains robust for all inputs. Linear

programming solvers are employed to address this problem. For

instance, Madry et al. (2017) employed linear programming to

calculate the maximum disturbance range, which is subsequently

used for detecting and filtering AE.

Gradient-based methods determine the maximum disturbance

range by computing the gradient of the neural network. The

underlying concept is that if the neural network exhibits a small

gradient for a given input, the input is considered robust. Therefore,

the maximum disturbance range can be estimated by evaluating

the network’s gradient concerning the input. For instance, Dong

et al. (2020) employed gradient descent to compute the maximum

disturbance range, which is then used for detecting and filtering AE.

Proving robustness typically incurs high computational

costs, primarily because it involves determining the maximum

perturbation range in the input space, which can be extensive.

Moreover, robustness certification methods often require the use

of intricate mathematical tools such as linear programming and

convex optimization, further elevating computational costs. In

summary, this method is not well-suited for real-time applications

like aircraft operations due to its resource-intensive nature. Instead,

it is more suitable as a post-processing defense mechanism.

4.3.3 Miscellaneous
Other post-processing methods include techniques like

re-identification or incorporating human-in-the-loop during

classification, as well as data fusion from multiple sensors for

improved recognition.

In Chen and Chu (2023)’s research, an Adaptive Defense

Pipeline (ADP) is introduced to enhance the robustness of AI

algorithms in target detection. ADP adjusts the weight coefficients

of detection results frommultiple sensors to synthesize these results

based on different weather conditions and further incorporates

a secondary confirmation step. This approach effectively fortifies

the defense against adversarial attacks and elevates the accuracy

of target detection. To validate the effectiveness of the proposed

method, a comparison is made between the outcomes of traditional

single-sensor aerial detection and ADP-weighted detection. The

results affirm that this method significantly enhances the efficiency

of aerial detection using artificial intelligence algorithms in

adversarial environments.

The document emphasizes the pivotal role of human-in-the-

loop approaches in counter-defense strategies. By amalgamating

the knowledge and expertise of human experts with machine

learning algorithms, detection and defense against attacks can

be considerably ameliorated. Moreover, human involvement

contributes to enhanced detection accuracy through the secondary

validation of detection results, allowing for manual intervention

when algorithms face challenges.

However, it’s crucial to acknowledge that this method

constitutes a defense strategy that comes at the cost of artificial

intelligence efficiency. While it does provide a certain degree

of protection against the misleading effects of AE attacks on

identification results, it significantly diminishes overall processing

time and efficiency.

4.4 Discussion on adversarial defense in
aerial detection

In this chapter, we classified the potential adversarial defense

methods based on the distinct stages of aerial detection missions:

pre-takeoff, on-mission, and post-processing. We discussed the

advantages and limitations of different defense strategies, such as

adversarial training, model structure design, ensemble model, noise

reduction, robustness certification, and adaptive defense pipeline.

Meanwhile, We have also provided a table that summarizes the

main characteristics and references of the recent adversarial defense

research against airborne detection sensors.

In general, for adversarial defense, we believe the following

challenges remain: First, the robustness and adaptability of

adversarial defense methods to various attack scenarios, and how to

test and verify them. Second is the compatibility and integration of

adversarial defense methods with existing aerial detection systems,

and how to optimize them. In addition to that, the ethical and social
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implications of adversarial defense methods for aerial detection,

and how to ensure their safety and accountability.

5 Outlook and future directions

There’s a lot of work that’s been done to show adversarial

attack and defense methods for aerial detection systems. In the field

of adversarial attack, researchers have explored various methods

to deceive aerial detection sensors, such as optical, infrared,

and SAR imaging sensors, by introducing subtle perturbations

or patches in the digital or physical domain. These attacks aim

to cause misclassification, false detection, or occlusion of the

target objects, affecting the accuracy and reliability of the aerial

detection systems. In the adversarial defense field, researchers

have proposed various strategies to enhance the robustness and

resilience of aerial detection models, such as adversarial training,

model ensemble, noise reduction, robustness certification, and

adaptive defense pipeline. These defenses aim to improve the

performance and generalization of the aerial detection models

under adversarial scenarios.

However, there are still many open problems and directions

that need further exploration and investigation in this field. In

the following, we highlight some of the most important and

promising ones.

1. Lack of physical attack testing in real scenarios

Most of the existing studies focus on simulated or idealized

attacks, which may not reflect the practical challenges and

constraints in real-world scenarios, such as weather conditions,

sensor noise, target dynamics, among others. More studies are

needed to investigate the feasibility and effectiveness of real-

world attacks and their impact on aerial detection applications.

2. Lack of defense evaluation

Most of the existing studies evaluate the defense methods

based on specific attack methods or datasets, which may

not capture the diversity and transferability of adversarial

examples. More studies are needed to develop comprehensive

and standardized evaluation metrics and benchmarks for aerial

detection defense methods and to compare their strengths and

limitations.

3. Lack of high-quality platforms

Most of the existing studies rely on low-quality or limited

platforms, such as low-resolution images, small-scale datasets,

or simple models, which may not reflect the state-of-the-art

or the potential of aerial detection systems. More studies are

needed to leverage high-quality or large-scale platforms, such

as high-resolution images, large-scale datasets, or advanced

models, to explore the challenges and opportunities of aerial

detection adversarial attack, and defense.

To solve these problems, we will carry out corresponding

research in two research directions in the future. On the one hand,

we will use aircraft platforms equipped with different sensors to

conduct real experiments on ground targets and collect real multi-

angle, multi-scale, and multi-modal attack and defense data as a

way to enhance the efficiency of adversarial attack and defense. On

the other hand, due to the importance of physical experiments and

the difficulty of the actual operation of aerial detection experiments,

we are wondering whether there is a digital twin solution. That is,

the natural environmental conditions, detection mechanism, effect

of adversarial attack, and other elements of aerial detection are

restored in the virtual environment, and adversarial experiments

are conducted in a more convenient, low-cost, and efficient form to

accelerate the research on attack and defense methods.

6 Conclusion

This article aimed to review the adversarial attacks and

defenses in the context of aerial detection, which is an important

problem in practical world for the deployment of deep learning.

We presented a systematic and comprehensive investigation of

both digital and physical adversarial attacks based on the most

widely used sensing principles, delivering an in-depth analysis

of the evolution and progress within this research domain. We

also systematically investigated the existing adversarial defenses

from the perspectives of the main operational phases of aerial

detection missions, such as pre-takeoff, on-mission, and post-

processing. Moreover, we engaged in an extensive discussion

regarding the challenges posed by real-world intelligent aerial

detection and their implications on subsequent operational stages

and pinpointed several directions for future studies such as real-

world attacks, defense, high-quality platforms, among others.

This article provides a valuable resource and a reference guide

for researchers and practitioners in the field of aerial detection,

as it highlights the importance and urgency of addressing the

adversarial robustness of aerial detection, which involves safety-

critical applications such as defense, agriculture, mining, and

mapping. We also suggest some potential benefits of adversarial

attacks and defenses, such as enhancing existing algorithms,

improving model adaptability, and exploring new attack and

defense scenarios. However, we also acknowledge the limitations

and challenges of the current research, such as the lack of

standardized datasets and benchmarks, the difficulty of evaluating

the effectiveness and efficiency of adversarial attacks and defenses,

and the ethical and legal issues of adversarial manipulation.

Therefore, we call for more collaboration and communication

among researchers, practitioners, and policymakers to advance

more robust and secure aerial detection systems in the future.
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