
Frontiers in Computer Science 01 frontiersin.org

Towards an effective approach
for composition of model
transformations
Hamza Abdelmalek 1*, Ismaïl Khriss 2 and Abdeslam Jakimi 1

1 GLISI Team, Faculty of Sciences and Technics, Moulay Ismail University, Errachidia, Morocco,
2 Département de Mathématiques, d’Informatique et de Génie, Université du Québec à Rimouski,
Rimouski, QC, Canada

Model Driven Engineering (MDE) adoption in the industry suffers from many
technical and non-technical problems. One of the significant technical problems
lies in the difficulty of building complex transformations from the composition
of small and reusable transformations. Another problem resides in developing
transformations from scratch in case they are missing. In this paper, we present
an approach to how to handle these issues. The approach allows composing
reusable transformations to build more complex ones by providing a catalog
of prebuilt transformations targeting common architectures, frameworks,
and design patterns. To give guidance and simplify the task of developing
new transformations, we describe a platform description model of an entire
system or a part of it in two views: a UML profile and a set of transformations.
We also present three transformation types, each of which handles different
abstraction design concerns. Generic transformations are small and reusable
to build complex transformations, system-independent transformations are
reusable and implement high-level design decisions, and system-specific
transformations are not reusable and implement all design decisions needed for
a given system. The approach is implemented as a plugin for a UML modeling
tool and validated by developing a system that simulates the behavior of a gas
station through model transformations built from the composition of reusable
transformations.

KEYWORDS

model driven engineering, model transformation, transformations composition,
reusable transformations, code generation

1 Introduction

Software development processes have evolved in response to business changes and
customer needs. The goal of these processes is to deliver software on time and reduce resources,
which is beneficial to individuals and organizations. Over the years, several software
development processes have been used, such as Rapid Application Development (RAD) and
Agile development, which focus on delivering software products as fast as possible. One such
approach is Model-Driven Engineering (MDE), which supports minimum interaction with
the code by abstracting the software development process using models. Low-code and
no-code platforms are other software development environments with some commonalities
with MDE (Di Ruscio et al., 2022). These platforms allow users with limited programming
knowledge to develop their software products.

OPEN ACCESS

EDITED BY

Kyriakos Kritikos,
University of the Aegean, Greece

REVIEWED BY

Kevin Lano,
King's College London, United Kingdom
Leandro Buss Becker,
Federal University of Santa Catarina, Brazil

*CORRESPONDENCE

Hamza Abdelmalek
 h.abdelmalek@edu.umi.ac.ma

RECEIVED 18 December 2023
ACCEPTED 28 May 2024
PUBLISHED 20 June 2024

CITATION

Abdelmalek H, Khriss I and Jakimi A (2024)
Towards an effective approach for
composition of model transformations.
Front. Comput. Sci. 6:1357845.
doi: 10.3389/fcomp.2024.1357845

COPYRIGHT

© 2024 Abdelmalek, Khriss and Jakimi. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 20 June 2024
DOI 10.3389/fcomp.2024.1357845

https://www.frontiersin.org/computer-science
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1357845&domain=pdf&date_stamp=2024-06-20
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1357845/full
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1357845/full
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1357845/full
mailto:h.abdelmalek@edu.umi.ac.ma
https://doi.org/10.3389/fcomp.2024.1357845
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/computer-science#editorial-board
https://www.frontiersin.org/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1357845

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 02 frontiersin.org

Model-driven architecture (MDA), proposed by the Object
Management Group (OMG), is an implementation of MDE that
provides a set of standards guiding the software development process
using a set of models (Miller and Mukerji, 2003). Its two main models
are platform-independent (PIM) and platform-specific (PSM). The
PIM presents the system from the problem domain, while the PSM
presents the system from the solution domain. OMG proposes
another model called the Platform Description Model (PDM) used to
describe a given architecture or platform. The software development
process in MDA suggests applying a platform described in a PDM to
the PIM to generate the PSM for a given system. The latter model is
used to generate the system’s source code.

Our MDE approach describes the PDM in two views: a UML
profile and a set of transformations (Chénard et al., 2010). The UML
profile is used to parameterize the PIM with the design decisions of a
platform or architecture. Then, the transformations are applied to the
parameterized PIM to generate the system’s PSM or source code.
We can use several PDMs to create the system in complex software
products. Each PDM targets specific design decisions. We can
simultaneously parametrize a PIM with multiple UML profiles using
UML modeling software. However, it is challenging to develop and
apply a set of transformations in the same parametrized PIM and
generate a system that implements the design decisions of the applied
PDMs. Hence, a technique is needed to ease the development and
composition of model transformations.

For MDE to be applicable on a large scale, its evolution must
follow the same trajectory as that of programming since it encounters
the same challenges, such as tooling support, handling complexity,
and developing quality products. High-level programming languages
like C++ and Java emerged to replace low-level ones, simplifying
programming. As software size increased, the necessity to organize
and structure complex software became apparent, employing several
reuse techniques like routines, class libraries, and frameworks.
Throughout this evolution, the emphasis on software quality remained
essential, which drove the development of comprehensive
environments such as Visual Studio and NetBeans, which facilitate
software development, debugging, testing, and deployment.

MDE also witnessed some attempts to propose solutions to these
same challenges. Initially, practitioners relied on manual and ad hoc
approaches for model transformation. However, with OMG’s
introduction of the MDA, the standardization of model transformation
development became crucial. The OMG initiated an effort to develop
the Query/View/Transformation (QVT) standard (OMG, 2009a).
Subsequently, advanced model transformation languages like the Atlas
Transformation Language (ATL) (Jouault et al., 2008) emerged to
address the complexity of developing transformations. Some domains’
complexity and their metamodels lead to complex transformations,
which raises new challenges related to model transformations’
portability, reusability, and maintainability. To overcome these
challenges, practitioners and researchers proposed various techniques
to facilitate the development of transformations and their reusability.
We find the proposition of model transformation design patterns
(Lano et al., 2018) to solve the most recurring problems in the field.
One pattern that deals with transformation reusability is the
transformation chain pattern (Lano et al., 2018), which addresses how
to compose multiple transformations to build complex systems.
Regarding tooling support, some proposals propose environments
providing essential tools for debugging, testing, and integrating

transformations. Moreover, some environments enable the generation
of sophisticated and high-quality systems by leveraging the
composition of model transformations (Alvarez and Casallas, 2013;
Basciani et al., 2018).

This paper presents our contribution to the adoption of MDE by
simplifying the development of transformations and their reusability.
Our approach allows the creation of complex systems by composing
transformations implementing multiple PDMs, each targeting specific
design decisions. In this sense, we introduce two types of
transformations: generic and design transformations. Generic
transformations are reusable and simple, reused to build more
complex ones. Design transformations are divided into two types of
transformations: system-independent and system-specific
transformations. System-independent transformations (SIT) are
constructed by composing generic transformations. They are reusable
and can be complex, such as implementing a clean architecture, or
simple transformations, such as those implementing an Observer
pattern (Gamma et al., 1995). Recall that clean architecture (Martin,
2017) is a layered architecture for modern software development
based on domain-driven design (DDD) (Evans, 2004) and best design
principles. It allows the creation of systems that are independent of
implementation technology. This independence is achieved by
decoupling the business logic from the infrastructure implementation.
System-specific transformations (SST) are always complex and
support several design decisions. They can be developed from scratch
or preferably be composed of SITs. The rationale behind these two
design transformations is that two systems rarely make the same
design decisions. The approach is implemented as a plugin for a UML
modeling tool and validated by developing a system that simulates the
behavior of a gas station through model transformations built from
the composition of reusable transformations.

This paper is organized as follows. Section 2 explores the evolution
of transformation languages and discusses related work in model
transformation composition and its supporting tools. Section 3
describes our approach through a running example. Section 4 presents
the tool supporting our approach. Section 5 concludes the paper and
presents future work.

2 Related work

This section first explores the evolution of transformation
languages and their applications. Next, we investigate the crucial
aspect of reusability in transformation development and how it
addresses the challenge of managing complexity. Finally, we investigate
tools’ role in enabling high-quality systems’ development through
model transformations.

Popular transformation languages are part of the Eclipse Modeling
Framework (EMF) ecosystem.1 For example, we find QVT (OMG,
2009a), ATL (Jouault et al., 2008), Henshin (Arendt et al., 2010), and
Viatra (Balogh and Varró, 2006). QVT and ATL support declarative
and imperative constructs for transformation development. Henshin
and Viatra are graph-based transformation languages. According to
Burgueno et al. it was found that practitioners in the industry tend to

1 https://www.eclipse.org/modeling/emf/

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://www.eclipse.org/modeling/emf/

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 03 frontiersin.org

favor the use of general-purpose programming languages such as Java
for writing transformations (Burgueño et al., 2019). This preference
stems from their familiarity with these languages and their desire to
avoid the necessity of learning specialized model transformation
languages. These dedicated languages often present a learning curve
due to their functional nature, specifically tailored to address complex
programming challenges (Höppner et al., 2022). Another good
alternative for developing transformations is XSLT, which has a
mature ecosystem with extensive tooling and community support.
Another important aspect of XSLT is its portability, making it highly
adaptable and easily integrated into various tools and environments.
As it aligns with our specific needs, XSLT became our first choice as
we sought a language that can be widely used in other aspects than
model transformations.

Although not widely used, adopting model-based approaches and
transformation languages has quickly seen the problem of managing
complex transformations. Consequently, effectively managing the
complexity of these transformations becomes crucial. In this regard,
reuse is considered an important factor that addresses the challenges
associated with the complexity of developing model transformations
and their composition. Lano et al. classified the transformation chain
as one of the important model transformation design patterns that
address the issue (Lano et al., 2018). A transformation chain is also
referred to as external transformation composition, where the output
model of a transformation is used as input for the next transformation
in the chain (Kleppe, 2006). Another technique is internal
composition, where the definitions of multiple transformations are
combined and then executed. In internal composition, transformations
must be developed in the same transformation language, which is not
a prerequisite in external composition.

Kusel et al. identified multiple reuse techniques in the field of
model transformation (Kusel et al., 2013) that range in terms of reuse
granularity from reusing parts of a transformation (Wagelaar et al.,
2010) to reusing the whole transformation (Sen et al., 2012) and even
composing multiple small model transformation chains (Yie
et al., 2012).

Parts of transformations can be reused and composed with other
parts using internal composition techniques to create transformations.
The literature contains techniques such as rule inheritance (Wimmer
et al., 2012a) and modularization (Kurtev et al., 2007).

Rule inheritance is similar to inheritance in object-oriented
programming and allows specializing transformation rules from a
base rule to avoid code duplication. This concept is supported by
several model transformation languages (Wimmer et al., 2012a). Some
support multiple inheritance, such as QVT, while others support
single inheritance, such as ATL.

In modularization techniques, model transformation definitions
are grouped into modules and reused in transformations.
Modularization allows the execution of transformation definitions
from multiple modules as a single transformation. We find techniques
such as variability-based rule (Strüber et al., 2018), module
superimposition (Wagelaar et al., 2010), factorization (Sánchez
Cuadrado and García Molina, 2008), phases (Cuadrado and Molina,
2009), and many objective transformation modularization (Fleck
et al., 2017). Strüber et al. introduced the variability-based rule, a
representation that groups similar model transformation rules to
avoid maintenance problems. Module superimposition, proposed by
Wagelaar et al., is another technique that allows reusing transformation

definitions from different modules. Cuadrado and Molina proposed a
factorization approach to extract common transformation definitions
and compose them using phases, where phasing is a mechanism to
organize model transformation definitions into modules or phases,
thereby increasing their reusability and maintainability. Fleck et al.
proposed an automatic approach to divide large ATL model
transformations into reusable and smaller transformations.

In our approach, we have defined generic transformations (GTs),
which are small, parameterized, and reusable transformations used to
build more complex transformations using internal composition. The
concept is similar to the concept of phases (Cuadrado and Molina,
2009) with differences such as their execution order. Phases are
executed explicitly where the user specifies the execution order or
implicitly where the transformation engine executes the phases
according to their order in the transformation definition. Our
approach differentiates between two types of GTs: containers and
building blocks, where the container GT specifies the execution order
of the building block GTs.

Concerning reuse techniques with large granularity, we find in the
literature approaches inspired by generic programming that introduce
generic transformations (Sánchez Cuadrado et al., 2011; Sen et al.,
2012; Wimmer et al., 2012b). They allow the creation of reusable
transformations across similar source or target metamodels. These
transformations map source to target concepts instead of concrete
metamodel elements. Cuadrado et al. introduce generic
transformations (Sánchez Cuadrado et al., 2011) and their binding to
concrete metamodels, in addition to their composition, using a
component model (Cuadrado et al., 2014) that allows the building of
complex transformations. Wimmer et al. improved the work of
Sánchez Cuadrado et al. (2011) by automatically adding adapters to
transformations to address the problem of structural heterogeneity
between metamodels (Wimmer et al., 2012b). Sen et al. take another
approach to reuse model transformations by transforming the target
metamodel to become a subset of the transformation’s input
metamodel (Sen et al., 2012).

In our approach, we have introduced system-independent
transformations (SITs), reusable transformations used in constructing
complex systems through their composition with other SITs. Each SIT
implements partial or all design decisions of a PDM.

The effectiveness of model-driven approaches in delivering high-
quality transformations and generating reliable systems depends
significantly on the availability of robust tooling support (Bucchiarone
et al., 2020). We find the propositions of environments and tools that
leverage external composition to create complex systems in the
literature. These environments facilitate the development process by
suggesting, validating, or executing transformation chains. However,
many of these environments are immature and lack appropriate
testing and debugging tools to ensure the reliability and correctness of
the transformations and generated systems.

Aranega et al. used feature models to guide transformation
chains, where they validated their approach in an environment
dedicated to embedded systems called Gaspard2 (Aranega et al.,
2012). In this case study, they assisted end users by organizing a set
of transformations as a feature model and proposing the appropriate
chain of transformations based on the preferences of the end users.
Alvarez and Casallas propose a tool called MTC flow that allows the
design, development, and deployment of model transformation
chains (Alvarez and Casallas, 2013). They evaluated the tool through

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 04 frontiersin.org

two final projects of a model-driven development (MDD) course,
where students used the tool to implement their projects and
conducted a survey about their experience with the tool. They
reported that the tool is easy to use but can be enhanced by
extending the documentation and improving the view of the
graphical editor. FTG + PM is a framework proposed by Lucio et al.
that provides a set of artifacts used in model transformation chains
and their executions (Lúcio et al., 2013). The formalism
transformation graph (FTG) defines the transformations, and the
process model (PM) describes the chaining of those transformations.
They presented the power window control software in automotive
applications as a case study. ChainTracker is a tool that focuses more
on traceability and presents the composition of rule-based model-
to-model (M2M) transformation and template-based model-to-text
(M2T) transformation (Guana and Stroulia, 2014). CITRIC is a tool
that recommends to developers whether there is a multiple
transformation chain to link a source model to a target metamodel
using the shortest path algorithms (Basciani et al., 2018). If multiple
chains are discovered, the optimal one is selected and executed
based on two criteria: metamodel coverage and information loss.
They validated their approach by transforming a sample-KM model
into an XML specification. Wires (Rivera et al., 2009) is a domain-
specific language (DSL) (Fowler, 2010) for orchestrating
transformation models developed in ATL. UniTI is a tool proposed
by Vandhoof et al. that facilitates the composition and execution of
model transformations without knowing implementation details
(Vanhooff et al., 2007). To illustrate their approach, they transformed
a storage model into the corresponding Java code by producing a
transformation chain from the following model transformations: a
transformation that converts a storage model to a UML model, a
transformation that modifies the associations within the UML
model, and a transformation that transforms UML into equivalent
Java models. Etien et al. presented localized transformations
restricted to a specific transformation task (Etien et al., 2015).
Combining those localized transformations using the “extend”
operator in the case of incompatible metamodels allows the
construction of large transformations. As a case study, they chained
localized transformations to transform the UML profile of MARTE
(OMG, 2009b) into implementation platform languages such as
SystemC2 and OpenMP.3

These approaches employ the composition at the transformation
level, while we have adopted another approach by composing the
results at the model level. In this sense, we have proposed a third type
of transformation called system-specific transformation (SST). An
SST is composed of multiple SITs depending on the system
requirements. The execution of an SST leads to the execution of its
containing SITs, where each SIT results in a partial PSM. Later, all the
partial PSMs of the SST are combined using a merge tool. Our
approach favors the separation of concerns, as each SIT transformation
deals only with a specific design concern, and their composition does
not require the definition and use of intermediate metamodels as in a
transformation chain. Another important factor when developing
transformations and their composition is the adoption of standards

2 https://systemc.org

3 https://www.openmp.org

and best practices; that’s why we provide a process for developing and
reusing transformations according to the MDA approach.

Some approaches provide model transformation libraries or
catalogs to avoid developing transformations from scratch. Wimmer
et al. provided a library of mapping operators, which are
transformations that map concepts from input to output metamodels
(Wimmer et al., 2010). Wang et al. offer a library of object-oriented
design patterns in XSLT (Wang et al., 2007). Aranega et al. suggest
model transformation chains based on a library of transformations
(Aranega et al., 2012). Etien et al. provided a library of localized
transformations for developing embedded systems applications
(Etien et al., 2015). Our approach presents a catalog of PDMs
supporting design patterns or architectural patterns.

3 Description of approach

3.1 The Metamodel

The OMG introduced the Platform Model or the Platform
Description Model (PDM) to describe an implementation platform.
According to the OMG, a PDM “provides a set of technical concepts,
representing the different kinds of parts that make up a platform and
the services provided by that platform. It also provides, for use in a
platform-specific model, concepts representing the different kinds
of elements to be used in specifying the use of the platform by an
application (Miller and Mukerji, 2003).” In another work, we defined
the PDM in two views (see Figure 1a): the UML profile and a set of
transformations (Chénard et al., 2010).

The UML profile allows the extension of the UML metamodel to
support a given domain or platform using stereotypes and tagged
values. A UML profile is expressed using concepts and constraints
between them. Concepts are the main building blocks of an
implementation platform. A concept is defined by its name, type
(classifier (class or interface), attribute, operation, parameter, or
artifact),4 description, and design concerns. A design concern is used
to formulate a well-known design issue. It is defined by its name, a
type (stereotype or tagged value), concerned UML elements (package,
classifier, attribute, operation, parameter, generalization, association,
association end, and dependency), and description. A constraint is
used to maintain the integrity of the implementation platform by
restricting the use of concepts. We define a constraint by its name, the
concerned concepts, its type (dependency, compatibility,
incompatibility, refinement), and a description.

A transformation applies to a specific model element type
representing its context (see Figure 1b). The model element type is
related to the elements of the UML metamodel. It can be a package,
classifier, attribute, operation, parameter, generalization, association,
association end, or dependency. The context represents the condition
of applying a transformation based on the properties of a model
element type. For example, the context may be the existence of a
stereotype property named Repository in a class model element.

4 Note that our approach is currently limited to the types of class diagram

elements. However, it is easily extendable to support other types of elements

in a model.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://systemc.org
https://www.openmp.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 05 frontiersin.org

Performing a transformation results in a model element that
implements an architecture or platform concept. The resulting model
element can be a classifier (class or interface), operation, attribute,
parameter, or artifact.

A transformation is identified by its name and can have
parameters. The existence of parameters depends on the type of
transformation. As mentioned before, a transformation can be a
generic or design transformation. Design transformations can, in
turn, be system-independent or system-specific.

Generic transformations are parameterized transformations
reused as building blocks to construct system-independent
transformations using internal composition. A generic transformation
(GT) can be a container, a building block, or both. An example of a
container GT is the class transformation, which reuses other generic
transformations such as the operation and constructor GTs. The latter
two GTs can play both roles because they are considered containers
for the parameter-building block GT.

System-independent transformation (SIT) is constructed by
defining its context and reusing generic transformations as building
blocks. An SIT can be applied directly to a model or reused with
other SITs to build more complex systems. We can distinguish two
types of SITs: complex SITs that implement design decisions of a
main architecture, such as MVC or clean architecture, and simple

SITs that implement small design designs, such as design patterns.
The latter SITs must contain a parameter that specifies their container
architecture or project.

System-specific transformation (SST) is another type of design
transformation. It is constructed by reusing SITs to implement design
decisions of a system. Unlike other transformations, SSTs are not
reusable and are built for a specific system with a particular
combination of design decisions.

In this sense, A PDM can be either be system-independent or
system-specific. A system-specific PDM may be developed from
scratch or composed by reusing system-independent PDMs.

3.2 Overview of approach

Figure 2 presents an overview of our approach to generating the
source code of a system from its model. It consists of five steps:

 1 Modeling the problem domain of the software system (PIM).
 2 Specifying the software system’s implementation platform

(system-specific PDM). This specification should result from
reusing existing system-independent PDMs instead of creating
the specification from scratch.

FIGURE 1

The metamodel of our approach.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 06 frontiersin.org

 3 Parametrizing the PIM using the UML profile of the system-
independent PDMs.

 4 Applying the transformations of the system-independent PDMs
on the parameterized PIM. This application results in partial PSMs.

 5 Merging the partial PSMs using a merge tool.

To illustrate our approach, we use a system that simulates the
behavior of a gas station as a running example. The PIM of the system
contains 16 classes and two enumerations (see Figure 3). The pump
class manages its components: tank, gun, display, meter, and motor.
Employees can supervise the pump’s status and the tank’s level and
change the gas price. The diagram also shows classes supporting
accounts, transactions, and payments of customers. The station contains
three pumps that a customer can use when authorized by an employee.

The development of the gas station system requires several major
design decisions, including the choice of the reference architecture
and the technologies to be used. It will also require several small,
localized design decisions on certain system parts. We chose clean
architecture as the system’s main architecture.

The architecture is organized into four packages (see Figure 4)5:
the SharedKernel package defines common classes and interfaces

5 Our implementation of the clean architecture in DotNET was inspired from

the Ardalis Github repository (https://github.com/ardalis/cleanarchitecture).

shared between systems; the Core package represents the business
logic of the system; the Infrastructure package includes the
implementation of the repositories and the interactions with the
data sources and third-party libraries; and the Presentation package
represents the user interface of the system.

The system needs to track the pump’s status and notify other
components, such as its display. We, therefore, decided to use the
Observer design pattern for this task. We used the following
technologies: DotNET 6, C# programming languages, SQL Server
database, and Entity Framework for object-relational mapping
(ORM). Hence, the system will reuse at least the transformations of
the clean architecture and the Observer pattern.

The first step in constructing a PDM is to define its UML profile.
The clean architecture UML profile contains, for instance, Entity,
Repository, and Service concerns. The UML profile of the observer
design pattern includes concerns such as Observer, Subject, and
Notify. The next step is to define the transformations of each
PDM. These transformations are system-independent and built
using generic transformations. For example, the clean architecture
PDM contains the Entity SIT, which implements the Entity concern.
Figure 5 shows an excerpt of the building blocks of this SIT using
the generic transformations: Import, Extend, and Class. The figure
also shows the context of the SIT, which is UML elements of type
Class with the stereotype Entity.

The SITs from the clean architecture and design pattern PDMs are
reused to construct an SST that generates the PSM of the system.

FIGURE 2

The process of our model-driven approach.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://github.com/ardalis/cleanarchitecture

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 07 frontiersin.org

After the specification of the PDMs, we parameterize the PIM
with different design decisions using the UML profile of the PDMs.
The parameterization of the pump, motor, and meter classes is
presented in Figure 6. For example, the pump class is parameterized
with the following stereotypes Entity, AggregateRoot, Repository,
and Service of the clean architecture PDM and Subject of the
observer PDM. Next, we apply the SST to the parameterized PIM,
which executes the SITs of the PDMs. The partial PSMs created by
applying SITs are merged into a single PSM representing the
complete system.

The final step is to apply an M2T transformation to the PSM to
generate the system’s source code. An excerpt of the PSM of the
system is presented in Figure 7, showing only the Core layer of the
clean architecture. It is organized into five sub-packages: the
subpackage Entities contains domain entities; the subpackage
DesignPatterns includes the implementation of the design patterns;
the subpackage Interfaces contains the definition of services and
repositories of the system; the subpackage Services includes the
implementation of the services; and the subpackage Specifications

contains the implementation of the Specification design pattern in
DDD (Evans, 2004). A specification contains the criteria necessary
for validation or retrieving an entity. An example of a specification
is searching for a pump by its category.

4 Tool support

4.1 Approach implementation

To implement our MDE approach, we have developed a plugin for
Visual Paradigm6 (VP) using its open API and the Java programming
language. By extending VP’s functionalities, the plugin allows the
specification of PDMs, PIM parameterization, and code generation.
The PDM specification step is simplified by providing a set of user

6 https://www.visual-paradigm.com/

FIGURE 3

The PIM of the gas station system.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://www.visual-paradigm.com/

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 08 frontiersin.org

interfaces where a user can create the UML profile and specify
the transformations.

With the VP modeling editor, PIM parameterization becomes
easier, where the user can select the concerned UML elements and the
necessary PDMs, and then apply various design decisions. Finally, it
allows code generation using the parameterized PIM and the defined
transformations. Moreover, the tool employs XML format for
importing and exporting the specified PDMs and the parameterized
PIM. The plugin’s architecture is illustrated in Figure 8 and is
organized into four packages: Controllers, UserInterface, Structures,
and Utilities, in addition to the XML file plugin.xml and the
class MainMDE.

The XML file plugin.xml is crucial in defining the plugin by
providing essential information such as an identifier, a description,
the provider, the main class, action sets, and context-sensitive
action sets. The main class (MainMDE in Figure 8) implements the
interface com.vp.plugin.VPPlugin, and serves as the first executed
class when the plugin is loaded. Action sets and context-sensitive
action sets allow the customization of toolbars and menus in
VP. We can differentiate between two types of actions: those
defined on the main or diagram toolbars using action sets and
those defined in the popup menu within the diagram editor using
context-sensitive action sets. In the plugin, we have defined two
actions on the main toolbar for the PDM definition and code
generation and one in the popup menu for the PIM
parameterization step, which involves selecting the concerned
UML elements from the class diagram. Each action is associated
with a class presenting the action controller that implements either

FIGURE 4

The structure of the clean architecture.

FIGURE 5

An excerpt of the Entity system-independent transformation.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 09 frontiersin.org

FIGURE 6

An excerpt of the PIM parameterization.

FIGURE 7

An excerpt of the PSM of the system.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 10 frontiersin.org

the interface VPActionController for toolbar actions or the
interface VPContextActionController for popup menu actions.
These action controllers are implemented in the package
Controllers, which contains the classes PDMController,
CodeGenerationController, and PIMParameterizationController.

The package UserInterface consists of dialogs designed to facilitate
interactions with the tool. Each dialog within the package is required
to implement the interface com.vp.plugin.view.IDialogHandler from
the open API. In the plugin, we differentiate the dialogs into two types:
main dialogs and sub-dialogs. Main dialogs are triggered by executing
an action controller, whereas sub-dialogs are invoked through other
dialogs. The package includes two main dialogs: PDMsDialog and
PIMParameterizationDialog. PDMsDialog is triggered by the
execution of the action controller PDMController, while the action
controller PIMParameterizationController triggers
PIMParameterizationDialog. PDMsDialog is responsible for adding,
editing, removing, and saving PDMs. When adding or editing a PDM,
the sub-dialog PDMDetailsDialog is invoked (see Figure 9), allowing
the user to add, edit, or remove concepts along with their
corresponding design concerns, constraints, or transformations.
These tasks are performed using a set of sub-dialogs, namely
UmlProfileConceptDialog, DesignConcernDialog,
UmlProfileConstraintDialog, and TransformationDialog.
PIMParameterizationDialog simplifies the process of PIM
parameterization. It allows users to select the required PDMs using
the sub-dialog PDMChooserDialog and listing the chosen UML
elements as a tree. Users have the flexibility to select multiple PDMs
for parameterizing the PIM, resulting in the creation of individual
trees within the dialog. Each tree has the PDM name as its root and
the selected UML elements as its children. In Figure 10, the dialog
PIMParameterizationDialog displays two trees corresponding to the
PDMs of the clean architecture and the observer design pattern. Once
the trees are displayed, users can proceed to parameterize each UML
element. This parameterization is achieved by applying the necessary

stereotypes and tagged values with the assistance
of DesignConcernParameterizerDialog.

The package Structures contains the classes presented in the
metamodel, such as PDM, UMLProfile, Concept, DesignConcern,
Constraint, and Transformation. In addition, it includes the classes
ParameterizedDesignConcern, ParameterizedUmlElement, and
VPProject related to the parameterization process. The class
ParameterizedDesignConcern captures the design concern with the
value given during the parameterization. The class
ParameterizedUmlElement encapsulates the UML element with its
parameterized design concerns. The class VPProject captures the
parameterized UML elements in a given class diagram.

The package Utilities contains helper classes like XML,
UserInterfaceUtil, and Enums. The class XML contains methods to
import and export the PDM and parametrized PIM in an XML format.
The class UserInterfaceUtil includes utilities that simplify controls’
disposition and files and folders management. The Enums class has a list
of enumerations used in the plugin; we find the following enumerations:
TransformationType, DesignConcernType, UMLElementType,
UMLProfileConceptType, and UMLProfileConstraintType.

The choice of a transformation language is an important factor
when developing transformations. In our MDE approach, we have
chosen XSLT due to its portability, as various development
environments support it. Those environments provide features for
debugging and testing XSLT transformations.

Figure 11 gives an excerpt of an SIT using XSLT. It describes the
Entity SIT within the clean architecture PDM. This transformation
is executed when a class is parameterized with stereotype Entity, as
indicated in the match attribute. As a result, it creates a set of classes
that extend the BaseEntity class. To achieve this, the SIT reuses two
generic transformations: Class and Extend GTs. To this end, this SIT
imports and calls the extend GT (see Figure 12), specifying
BaseEntity as the value for the class_name parameter. The result of
this transformation is stored in a variable, which is reused in the

FIGURE 8

The architecture of the plugin.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 11 frontiersin.org

Class GT alongside other parameters like the class name and
visibility. By utilizing this approach, the Entity SIT effectively ensures
that the classes parameterized with the Entity stereotype extend the
required BaseEntity class, enabling conformance to the clean
architecture principles. For simplicity, this example only shows an
excerpt from the Entity SIT. In reality, this SIT consists of additional
blocks created by attribute, operation, parameter, constructor, and
import GTs. The attribute GT is responsible for generating the
required attributes of a given class, by providing their properties such
as name, type, default value, and visibility. The parameter GT is a
building block transformation reused in the operation and
constructor GT. The Import GT is also reused to import the package
of the extended class BaseEntity.

The source code of the VP plugin and the model transformation
composition technique are available on the GitHub repositories
(Abdelmalek et al., 2023a,b), respectively.

4.2 Comparison with alternative
transformation language

In this subsection, we discuss implementing our approach using
the QVT transformation language. The OMG introduced QVT as the

standard language for defining model transformations within the
MDA framework (OMG, 2009a). QVT supports both declarative and
imperative styles of transformation definitions through its QVT
Relations (QVTr) and QVT Operational (QVTo) sublanguages,
respectively. We opted for QVTo to implement our approach due to
its comprehensive capabilities for specifying transformations, which
include using the Object Constraint Language (OCL) and imperative
constructs such as conditions and loops. By choosing QVTo, we aim
to provide a detailed evaluation of its effectiveness relative to our
proposed MDA methodology and to illustrate how our approach can
be applied using other model transformation languages beyond XSLT.

4.2.1 QVT implementation
As previously outlined, our approach facilitates model

transformation reusability by defining and composing three types of
transformations: GTs, SITs, and SSTs. In the subsequent paragraphs,
we assess the effectiveness of the QVTo language in implementing
these distinct transformation categories.

GTs are parameterized transformations that are essential for
constructing more complex transformations. In QVTo, these
parameterized transformations can be created through mappings
or helpers within a specific library, enabling the explicit declaration
of parameter names and their types. When a complex

FIGURE 9

The user interface for specifying a PDM specification.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 12 frontiersin.org

transformation employs a GT, it is required to specify the values for
its parameters. For example, in defining a GT intended for creating
attributes of classes, parameters such as the attribute’s name (of type
String) and its visibility (of type VisibilityKind) must be explicitly
defined. An excerpt of this attribute GT is illustrated in Figure 13,
represented as a mapping transformation within the generic_
transformations library. In contrast to XSLT, QVTo offers the
distinct advantage of allowing for the explicit specification of
parameter types.

SITs reuse GTs to implement specific concepts within a
PDM. QVTo facilitates the reuse of transformations by allowing the
import of mappings and helpers from other libraries and modules.
The condition for applying a SIT can be specified using a when clause
preceding a mapping, enabling targeted selection of UML elements.
Moreover, QVTo includes queries that extract data from models,
similar to XPath in XSLT. These queries assist in retrieving data for
SITs and supplying it to the parameters of the GTs when they are
reused. An excerpt of the singleton SIT implemented in QVTo is

FIGURE 10

The user interface for parameterizing a PIM.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 13 frontiersin.org

illustrated in Figure 14, targeting UML classes parameterized with the
Singleton stereotype. This SIT reuses the attribute GT by importing
the library containing generic transformations.

SSTs compose multiple SITs to implement various design
decisions tailored to a particular system. SSTs function as the primary
entry point for executing these transformations, containing the main
function that triggers the entire process. Furthermore, SSTs import
multiple libraries to efficiently reuse the SITs that align with the
system’s specific requirements. Consequently, each PDM is
encapsulated within its own library, which includes mappings
pertinent to its unique concepts. Figure 15 illustrates an SST that
combines an SIT of the clean architecture with an SIT designed to
implement the Singleton design pattern.

In summary, we have demonstrated how our approach can
be implemented using the standard QVTo language. QVTo’s
imperative nature enhances reusability and composition in model
transformations. It incorporates key features such as parameterized
rules, modularization, and conditional execution. These features are
crucial for facilitating the creation of GTs, SITs, and SSTs, thereby
optimizing the efficiency of the transformation process and improving
its maintainability.

4.2.2 Comparative analysis
In this subsection, we conduct a comparative analysis of our

methodology implemented using both XSLT and QVTo, focusing on
four key criteria: transformation definition, transformation

FIGURE 11

An excerpt of the Entity system-independent transformation.

FIGURE 12

The extend generic transformation.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 14 frontiersin.org

FIGURE 13

An excerpt of the attribute GT using QVTo.

FIGURE 14

An excerpt of the singleton SIT using QVTo.

FIGURE 15

An SST that composes clean architecture entity and singleton.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 15 frontiersin.org

reusability, code generation efficiency, and development setup
and integration.

In terms of transformation definition, XSLT employs a template-
based approach where the transformation logic is defined through
templates that match specific elements or patterns in the input model.
This method provides considerable flexibility and expressiveness in
defining transformations. However, managing and organizing the
transformation logic for complex transformations can be challenging.
To overcome these difficulties, we have developed three distinct types
of transformations. Each type addresses specific concerns and is
further integrated using an internal composition technique. In
contrast, QVTo adopts an imperative approach, where transformation
logic is explicitly defined through mappings between the input and
output models. This method facilitates a more structured and
straightforward definition of transformations. Furthermore, while
XSLT is primarily optimized for M2T transformations, QVTo is
specifically designed for M2M transformations (Willink, 2018).

Transformation reusability is a critical aspect of model
transformation. Our methodology underscores the importance of
reusing transformations from libraries and composing them to
construct complex software systems. We employ XSLT to segment
transformation logic into reusable templates, enabling developers to
efficiently reuse transformation components across multiple scenarios.
The familiarity and widespread adoption of XSLT within the software
engineering community enhance its value in our methodology.
Consequently, developers can leverage existing knowledge and
resources to expedite software development by reusing transformations
created by others. In contrast, QVT offers a more structured approach
to transformation reusability and composition. Its modular
architecture, support for parameterized rules, and library definitions
significantly aid in the composition of transformations. This
structured approach allows developers with a background in MDE to
assemble complex transformations from reusable building blocks,
providing a robust framework for systematic model transformation.

In terms of code generation efficiency, XSLT excels particularly
in simpler transformations. Our methodology enhances XSLT’s
capabilities, enabling the creation of more complex transformations
by composing smaller, reusable elements to generate advanced
software systems. Additionally, the familiarity and user-friendliness
of XSLT make it accessible to a broad spectrum of developers. This
accessibility promotes collaborative development and facilitates
knowledge sharing within the community, further leveraging the
collective expertise. On the other hand, while QVT is primarily
tailored for M2M transformations, rather than M2T transformations,
it can still be effectively utilized for code generation. This is achieved
through its integration with other M2T tools such as Acceleo.7

Development setup and integration assess the ease with which the
transformation development environment can be established and how
seamlessly transformations can be integrated with other tools. XSLT
demonstrates high portability and ease of integration, requiring
minimal dependencies. Its compatibility across various platforms and
environments ensures better interoperability with different tools,
simplifying the setup process. XSLT typically only requires a software
engine to execute transformations, making it a straightforward choice

7 https://eclipse.dev/acceleo/

for many developers. Additionally, its widespread adoption and
extensive documentation support facilitate easy configuration. On the
other hand, setting up QVT might involve more complexities due to
its lower usage and more specialized requirements. Although QVT is
supported by some Integrated Development Environments (IDEs)
and modeling tools, such as the Eclipse IDE, additional configurations
and plugins may be necessary. This can add layers of complexity to the
initial setup process, requiring a deeper understanding and more time
to achieve optimal integration and functionality.

In conclusion, while QVT provides robust support for
transformation composition and boasts advantages in terms of
expressiveness and performance, XSLT remains a vital element of our
methodology. Its flexibility, expressiveness, and widespread familiarity
render it indispensable for implementing our approach. By
strategically leveraging the capabilities of XSLT alongside QVT,
developers are equipped to create robust and scalable transformation
solutions that meet the requirements of complex software projects.
Recognizing the unique benefits of each, some approaches, such as
those proposed by Li et al. (2011), have attempted to synergistically
combine the strengths of both XSLT and QVT.

4.2.3 Benefits of our approach
Implementing our methodology using XSLT offers significant

flexibility and expressiveness, granting precise control over
transformation processes. This adaptability is crucial for handling
complex scenarios through the composition of reusable
transformations. For example, our approach introduces the definition
of SITs by composing GTs, which is then followed by the construction
of SSTs through the further composition of SITs. By structuring
transformation logic into reusable templates and libraries, developers
can accelerate the development process and ensure consistency across
various transformation scenarios. This strategy is enhanced by
developing a VP plugin, which further supports the reuse of
transformations and complete PDMs from a library, amplifying the
efficiency and scalability of the development workflow.

While our approach yields significant benefits when implemented
using XSLT, there are numerous opportunities for enhancements that
could further augment its effectiveness. Developing additional
tooling support tailored for XSLT-based transformations, including
IDEs with syntax highlighting, code completion, and advanced
debugging functionalities, could considerably streamline the
development process and enhance developer productivity. Moreover,
integrating XSLT-based transformations with modern technologies
and frameworks, such as cloud computing platforms, could broaden
their applicability across various domains. Such integration would
not only ensure the continued relevance of XSLT in meeting the
dynamic needs of MDE but could also extend its utility to
sophisticated applications like model transformation composition
within low-code platforms, as discussed by Sahay et al. (2020).

As demonstrated in subsection 3.3.1, our methodology for model
transformation reusability is designed to be language-independent, a
fact validated by its implementation in QVT. However, despite its
strengths, QVT faces challenges that may limit its broader appeal. The
limited tooling support and steep learning curve associated with QVT
make it less accessible for developers outside the MDE community.
These factors can restrict its adoption compared to XSLT, which is
generally more familiar and supported within the broader software
engineering field.

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://eclipse.dev/acceleo/

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 16 frontiersin.org

5 Conclusion and future work

This paper presented an approach that allows composing
reusable transformations to build more complex ones by providing
a catalog of prebuilt transformations targeting common
architectures, frameworks, and design patterns. To give guidance
and simplify the task of developing new transformations,
we described a platform description model in two views: a UML
profile and a set of transformations. We also introduced three
transformation types, each handling different abstraction design
concerns. Generic transformations are small and reusable to build
complex transformations, system-independent transformations
are reusable and implement high-level design decisions, and
system-specific transformations are not reusable and implement
all design decisions needed for a given system. The approach is
implemented as a plugin for a UML modeling tool and validated
by developing a system that simulates the behavior of a gas station
through model transformations built from the composition of
reusable transformations.

In future work, we plan to enrich our catalog of prebuilt
transformations and better integrate the results of one of our
previous works into our plugin, allowing an interactive discovery of
the platform description models of legacy systems.

Data availability statement

Publicly available source code of the tools can be found at:
https://github.com/AHamza14/MDE-tool and https://github.com/
AHamza14/Model-transformation-composition.

Author contributions

HA: Writing – original draft, Writing – review & editing,
Conceptualization, Data curation, Formal analysis, Investigation,
Resources, Software, Validation, Visualization. IK: Conceptualization,
Formal analysis, Investigation, Methodology, Project administration,
Supervision, Writing – review & editing, Resources, Validation. AJ:
Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Abdelmalek, H., Khriss, I., and Jakimi, A. (2023a). MDE tool [Online]. Available at:

https://github.com/AHamza14/MDE-tool (Accessed 2023).

Abdelmalek, H., Khriss, I., and Jakimi, A. (2023b). Model transformation composition
technique [Online]. Available at: https://github.com/AHamza14/Model-transformation-
composition (Accessed 2023).

Alvarez, C., and Casallas, R. (2013). "MTC flow: a tool to design, develop and deploy
model transformation chains". In Proceedings of the workshop on ACadeMics Tooling
with Eclipse).

Aranega, V., Etien, A., and Mosser, S. (2012). "Using feature model to build model
transformation chains". In Model Driven Engineering Languages and Systems:
Proceedings of the 15th International Conference, MODELS 2012 Innsbruck, Austria,
Springer, September 30–October 5, 2012.

Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G. (2010). "Henshin:
advanced concepts and tools for in-place EMF model transformations". In Model Driven
Engineering Languages and Systems: Proceedings, Part I 13th International Conference,
MODELS 2010 Oslo, Norway, Springer, October 3–8, 2010.

Balogh, A., and Varró, D. (2006). "Advanced model transformation language
constructs in the VIATRA2 framework". In Proceedings of the 2006 ACM symposium
on Applied computing.

Basciani, F., Di Ruscio, D., D'Emidio, M., Frigioni, D., Pierantonio, A., and Iovino, L.
(2018). "A tool for automatically selecting optimal model transformation chains". In
Proceedings of the 21st ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, 2–6.

Bucchiarone, A., Cabot, J., Paige, R. F., and Pierantonio, A. (2020). Grand challenges
in model-driven engineering: an analysis of the state of the research. Softw. Syst. Model.
19, 5–13. doi: 10.1007/s10270-019-00773-6

Burgueño, L., Cabot, J., and Gérard, S. (2019). The future of model transformation
languages: an open community. J. Object Technol. 18, 1–11. doi: 10.5381/jot.2019.18.3.a7

Chénard, G., Khriss, I., and Salah, A. (2010). "Towards the discovery of implementation
platform description models of legacy object-oriented systems". In Workshop on Processes
for Software Evolution and Maintenance (WoPSEM 2010) IEEE).

Cuadrado, J. S., Guerra, E., and de Lara, J. (2014). A component model for model
transformations. IEEE Trans. Softw. Eng. 40, 1042–1060. doi: 10.1109/
TSE.2014.2339852

Cuadrado, J. S., and Molina, J. G. (2009). Modularization of model transformations
through a phasing mechanism. Softw. Syst. Model. 8, 325–345. doi: 10.1007/
s10270-008-0093-0

Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., and Wimmer, M.
(2022). Low-code development and model-driven engineering: two sides of the same
coin? Softw. Syst. Model. 21, 437–446. doi: 10.1007/s10270-021-00970-2

Etien, A., Muller, A., Legrand, T., and Paige, R. F. (2015). Localized model
transformations for building large-scale transformations. Softw. Syst. Model. 14,
1189–1213. doi: 10.1007/s10270-013-0379-8

Evans, E. (2004). Domain-driven design: Tackling complexity in the heart of software.
Boston, MA, USA: Addison-Wesley Professional.

Fleck, M., Troya, J., Kessentini, M., Wimmer, M., and Alkhazi, B. (2017). Model
transformation modularization as a many-objective optimization problem. IEEE Trans.
Softw. Eng. 43, 1009–1032. doi: 10.1109/TSE.2017.2654255

Fowler, M. (2010). Domain-specific languages. Boston, MA, USA: Pearson Education.

Gamma, E., Johnson, R., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design
patterns: Elements of reusable object-oriented software. Munchen, Germany: Pearson
Deutschland GmbH.

Guana, V., and Stroulia, E. (2014). "Chaintracker, a model-transformation trace
analysis tool for code-generation environments". In Theory and Practice of Model
Transformations: Proceedings of the 7th International Conference, ICMT 2014, Held as
Part of STAF 2014, York, UK, Springer, July 21–22, 2014.

Höppner, S., Haas, Y., Tichy, M., and Juhnke, K. (2022). Advantages and disadvantages
of (dedicated) model transformation languages: a qualitative interview study. Empir.
Softw. Eng. 27:159. doi: 10.1007/s10664-022-10194-7

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: a model transformation
tool. Sci. Comput. Program. 72, 31–39. doi: 10.1016/j.scico.2007.08.002

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://github.com/AHamza14/MDE-tool
https://github.com/AHamza14/Model-transformation-composition
https://github.com/AHamza14/Model-transformation-composition
https://github.com/AHamza14/MDE-tool
https://github.com/AHamza14/Model-transformation-composition
https://github.com/AHamza14/Model-transformation-composition
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.1109/TSE.2014.2339852
https://doi.org/10.1109/TSE.2014.2339852
https://doi.org/10.1007/s10270-008-0093-0
https://doi.org/10.1007/s10270-008-0093-0
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-013-0379-8
https://doi.org/10.1109/TSE.2017.2654255
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1016/j.scico.2007.08.002

Abdelmalek et al. 10.3389/fcomp.2024.1357845

Frontiers in Computer Science 17 frontiersin.org

Kleppe, A. (2006). First European Workshop on Composition of Model
Transformations-CMT 2006.

Kurtev, I., van den Berg, K., and Jouault, F. (2007). Rule-based modularization in
model transformation languages illustrated with ATL. Sci. Comput. Program. 68,
138–154. doi: 10.1016/j.scico.2007.05.006

Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., and
Schwinger, W. (2013). Reuse in model-to-model transformation languages: are we there
yet? Softw. Syst. Model. 14, 537–572. doi: 10.1007/s10270-013-0343-7

Lano, K., Kolahdouz-Rahimi, S., Yassipour-Tehrani, S., and Sharbaf, M. (2018). A
survey of model transformation design patterns in practice. J. Syst. Softw. 140, 48–73.
doi: 10.1016/j.jss.2018.03.001

Li, D., Li, X., and Stolz, V. (2011). QVT-based model transformation using XSLT. ACM
SIGSOFT Softw. Eng. Notes 36, 1–8. doi: 10.1145/1921532.1921563

Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., and Jukss, M. (2013). "FTG+ PM: an
integrated framework for investigating model transformation chains". In SDL 2013:
Model-Driven Dependability Engineering: Proceedings of the 16th International SDL
Forum 16: Montreal, Canada, Springer, June 26–28, 2013, 182–202.

Martin, R. (2017). Clean architecture: A craftsman's guide to software structure and
design. Hoboken, NJ, USA: Prentice Hall.

Miller, J., and Mukerji, J. (2003). MDA guide version 1.0. 1: Object management
group Inc.

OMG, Q.. (2009a). Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

OMG, U.. (2009b). Profile for MARTE: Modeling and analysis of real-time embedded
systems specification, version 1.0.

Rivera, J. E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., and Vallecillo, A.
(2009). Orchestrating ATL model transformations. Proc. MtATL 9, 34–46.

Sahay, A., Indamutsa, A., Di Ruscio, D., and Pierantonio, A. (2020). "Supporting
the understanding and comparison of low-code development platforms". In 2020
46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA).

Sánchez Cuadrado, J., and García Molina, J. (2008). "Approaches for model
transformation reuse: factorization and composition". In Theory and Practice of Model
Transformations: Proceedings of the First International Conference, ICMT 2008, Zürich,
Switzerland, Springer, July 1–2, 2008.

Sánchez Cuadrado, J., Guerra, E., and De Lara, J. (2011). "Generic model
transformations: write once, reuse everywhere". In Theory and Practice of Model
Transformations: Proceedings of the 4th International Conference, ICMT 2011, Zurich,
Switzerland, June 27–28, 2011.

Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., and Jézéquel, J.-M. (2012). Reusable
model transformations. Softw. Syst. Model. 11, 111–125. doi: 10.1007/s10270-010-0181-9

Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., and Plöger, J. (2018).
Variability-based model transformation: formal foundation and application. Form. Asp.
Comput. 30, 133–162. doi: 10.1007/s00165-017-0441-3

Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., and Berbers, Y. (2007). Uniti: a
unified transformation infrastructure. In Model Driven Engineering Languages and
Systems: Proceedings of the 10th International Conference, MoDELS 2007,
Nashville, USA, Springer, September 30–October 5, 2007.

Wagelaar, D., Van Der Straeten, R., and Deridder, D. (2010). Module superimposition:
a composition technique for rule-based model transformation languages. Softw. Syst.
Model. 9, 285–309. doi: 10.1007/s10270-009-0134-3

Wang, X.-B., Wu, Q.-Y., Wang, H.-M., and Shi, D.-X. (2007). "Research and
implementation of design pattern-oriented model transformation". In 2007 International
Multi-Conference on Computing in the Global Information Technology (ICCGI'07):
IEEE).

Willink, E.D. (2018). "A text model-use your favourite M2M for M2T". In MoDELS
(Workshops), 89–102.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., and
Schwinger, W. (2010). "Surviving the heterogeneity jungle with composite mapping
operators". In Theory and Practice of Model Transformations: Proceedings of the Third
International Conference, ICMT 2010, Malaga, Spain, Springer, June 28–July 2, 2010.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.,
et al. (2012a). Surveying rule inheritance in model-to-model transformation languages.
J. Obj. Technol. 11, 31–46. doi: 10.5381/jot.2012.11.2.a3

Wimmer, M., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.,
Cuadrado, J. S., et al. (2012b). Reusing model transformations across heterogeneous
metamodels. Electr. Commun. EASST. 50, 1–13. doi: 10.14279/tuj.eceasst.50.722.795

Yie, A., Casallas, R., Deridder, D., and Wagelaar, D. (2012). Realizing model
transformation chain interoperability. Softw. Syst. Model. 11, 55–75. doi: 10.1007/
s10270-010-0179-3

https://doi.org/10.3389/fcomp.2024.1357845
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://doi.org/10.1016/j.scico.2007.05.006
https://doi.org/10.1007/s10270-013-0343-7
https://doi.org/10.1016/j.jss.2018.03.001
https://doi.org/10.1145/1921532.1921563
https://doi.org/10.1007/s10270-010-0181-9
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/s10270-009-0134-3
https://doi.org/10.5381/jot.2012.11.2.a3
https://doi.org/10.14279/tuj.eceasst.50.722.795
https://doi.org/10.1007/s10270-010-0179-3
https://doi.org/10.1007/s10270-010-0179-3

	Towards an effective approach for composition of model transformations
	1 Introduction
	2 Related work
	3 Description of approach
	3.1 The Metamodel
	3.2 Overview of approach

	4 Tool support
	4.1 Approach implementation
	4.2 Comparison with alternative transformation language
	4.2.1 QVT implementation
	4.2.2 Comparative analysis
	4.2.3 Benefits of our approach

	5 Conclusion and future work
	Data availability statement
	Author contributions

	References

