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On time-memory trade-o�s for
password hashing schemes

Ayse Nurdan Saran*

Department of Computer Engineering, Çankaya University, Ankara, Türkiye

A password hashing algorithm is a cryptographic method that transforms

passwords into a secure and irreversible format. It is used not only for

authentication purposes but also for key derivation mechanisms. The primary

purpose of password hashing is to enhance the security of user credentials by

preventing the exposure of plaintext passwords in the event of a data breach.

As a key derivation function, password hashing aims to derive secret keys

from a master key, password, or passphrase using a pseudorandom function.

This review focuses on the design and analysis of time-memory trade-o�

(TMTO) attacks on recent password hashing algorithms. This review presents

a comprehensive survey of TMTO attacks and recent studies on password

hashing for authentication by examining the literature. The study provides

valuable insights and strategies for safely navigating transitions, emphasizing the

importance of a systematic approach and thorough testing to mitigate risk. The

purpose of this paper is to provide guidance to developers and administrators on

how to update cryptographic practices in response to evolving security standards

and threats.
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1 Introduction

In the field of information security, password hashing plays a central role and serves

two main purposes: to obfuscate passwords in databases and to act as a password-based

key derivation function (KDF). Unfortunately, passwords chosen by users are usually short

and lack sufficient entropy (Shannon, 1951; Burr et al., 2013). As a result, these systems

are often compromised by adversaries who then use generic attacks due to the relatively

low entropy of passwords. Generic attacks treat the password hash function as a black box

entity and are not interested in the inner workings of the method. Examples of such attacks

include exhaustive search, dictionary tables, and time-memory trade-off techniques. Since

the effectiveness of these attacks depends on both time andmemory requirements, security

experts strive to make such attacks infeasible by increasing the resource overhead. In

password hashing, there are also important attacks such as side-channels; especially when

password hashing is used for authentication, we may not be concerned about such attacks.

One way to protect against common types of attacks is to hash passwords with salt. This

approach achieves a dual purpose: first, it prevents the identification of identical passwords

across different users and services, and second, it increases the memory requirements,

thereby extending the time required for an attacker’s efforts (Ghoshal and Tessaro, 2023).

However, in order to increase the cost of password checking for potential attackers,

there’s been a trend to use faster hash functions in multiple iterations of calculations.
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Since the simple use of secure hash functions is not sufficient either,

specialized password hashing schemes (PHS) are proposed, such as

PBKDF2 (Kaliski, 2000), Bcrypt (Provos and Mazieres, 1999), and

Scrypt (Percival, 2009).

Advances in specialized hardware devices and parallel

computing have made password cracking computationally

practical. Attacks using ASICs, FPGAs, and GPUs now have a

significant advantage in revealing user information by testing

large numbers of potential passwords simultaneously (Dürmuth

et al., 2012; Abbas et al., 2014; Malvoni et al., 2014). For example,

PBKDF2 is vulnerable to GPU attacks because it uses a relatively

small amount of RAM, allowing efficient implementation on GPUs

(Ruddick and Yan, 2016a).

Then Bcrypt was introduced in 1999 to provide protection

against GPU/ASIC/FPGA attacks, but the memory usage is

still fixed. In 2009, Scrypt was introduced, which requires a

significant amount of memory (RAM), making it unsuitable

for fast parallel processing on GPU or ASIC hardware. The

computational process relies on memory, with memory access

being the limiting factor in the computations; it allows tuning of

both time-based and memory-based security parameters. However,

it has been criticized for allowing a time-memory trade-off, as

faster access to RAM can speed up the computation.1 Another

problem with the scrypt is its complicated nature; it calls a number

of subroutines, and the reasoning behind its design has not been

fully justified. As of August 2016, it is officially standardized in

RFC 7914.

The Password Hashing Competition was launched in 2013 with

the aim of discovering new password hashing methods to improve

the current state-of-the-art (Peslyak, 2014). Argon2 (Biryukov et al.,

2015) was the winner of the competition in July 2015, with special

recognition given to Catena (Forler et al., 2013), Lyra2 (Simplicio

et al., 2015), yescrypt (Peslyak, 2014), and Makwa (Pornin, 2015).

The Balloon is also a memory-hard password-hashing function

(Boneh et al., 2016). The authors also show that scrypt and Argon2i

are memory-hard password-hashing functions in the random-

oracle model, and prove that they are secure against dictionary

attacks.

The focus of this review is to analyze the structure and

evaluation of generic attacks targeted at modern password hashing

algorithms. This review provides a comprehensive survey of Time-

Memory Trade-Off (TMTO) attacks and recent advancements

in password hashing for authentication by examining existing

literature. The study offers valuable insights and methodologies for

securely managing transitions in hashing schemes. It emphasizes

the importance of a systematic approach and extensive testing to

minimize risks associated with these transitions. The following

sections are organized as follows: Section 2 provides essential

background knowledge and reviews relevant existing work. Section

3 analyzes recent password hashing schemes, and Section 4 assesses

default hashing schemes through a memory-time analysis. Section

5 analyzes the issue from a practical standpoint, and presents the

conclusions.

1 https://www.drupal.org/node/1201444#comment-4675994

2 TMTO attacks

Generic attacks treat the encryption function as a black box

without going into details of its structure. Their focus is not on

unraveling the complexities of the encryption function. Common

examples of attacks include methods such as exhaustive search,

lookup table methods, and time-memory trade-offs.

2.1 Exhaustive search attacks

Exhaustive search attacks represent an approach to uncover

a pre-image of a one-way function (Knudsen et al., 2011). This

attack strategy involves systematically testing all potential keys to

identify the correct one. In the context of a PHS, a malicious

actor who gains unauthorized access to a server and acquires a

file containing hashed passwords can employ an exhaustive search

attack to uncover certain user passwords by trying all possible

password combinations based on two parameters: the password

length and the character set. Although a brute-force attempt across

the entire password space is certain to retrieve the password, it is

often impractical due to limitations in time and memory.

2.2 Lookup table attacks

A lookup table replaces the real-time calculation process by

creating a simple table that includes all possible results and their

corresponding inputs. This approach offers an alternative way

to reverse a one-way function, but it requires extensive memory

resources. An attacker can directly look up the hash in the table

to find a match.

Dictionary attacks systematically test all possible character

combinations on a specific set of frequently used passwords, words,

or phrases.2 Unlike lookup table attacks, which only target specific

passwords, dictionary attacks are more comprehensive and can be

more effective. It is important to use strong, unique passwords

to protect against these types of attacks since the attacker uses a

predefined dictionary of words and their variations to guess the

correct password. Pre-defined mangling rules using probabilistic

context-free grammars (Weir et al., 2009) may be recommended

as a precaution. However, Kelley et al. (2012) have shown that one

billion guesses are enough to crack 40.3% of passwords with at least

eight characters. Bošnjak et al. (2018) demonstrate the ability to

crack most user-created passwords using simple and predictable

patterns in a Slovenian university’s online grading system.

2.3 Hellman’s attack

Time Memory Trade-Off (TMTO) attack is a strategy that

combines exhaustive search and lookup table methods, proposed

by Hellman (1980). The objective of this approach is to execute

an attack with lower memory complexity compared to a lookup

2 https://cryptokait.com/2020/09/02/taking-password-cracking-to-the-

next-level/
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table and lower online time complexity compared to exhaustive

searching. In essence, the attack can be summarized as follows:

Consider a one-way function f : {0, 1}n → {0, 1}n. For the sake
of simplicity, this function is considered as a hash function, we

assume that both x and f (x) are chosen from the same set:

• The attacker creates a table of size M and can generate tables

within a given (offline) time, P .

• Given a target point c0 ∈ X, using the prepared table, the

attacker searches for x ∈ X such that f (x) = c0 within a

specified time, T, among the values stored in the table.

There are primarily two phases involved in TMTO: the

offline (precomputation) phase and the online phase. In the first

phase, referred to as the Precomputation/Offline Phase, a table is

generated similar to the lookup table method, but only a subset of

the table data is retained. In the second phase, the Online Phase,

when presented with a specific point, the preimage is sought within

the previously calculated table. The pre-computation time, denoted

as P, remains comparable to exhaustive searching. The compromise

lies between M and T, where M signifies memory complexity, and

T represents online time complexity.

The construction of a Hellman table typically follows two main

phases (precomputation and online phases). The precomputation

phase has two steps; precomputation and storage. The Online phase

has one step; retrieval.

Precomputation steps: Starting from a set of plaintext, pi,0,

1 ≤ i ≤ m, the cryptanalyst recursively computes (t times)

the corresponding value using the relevant cryptographic hash

function

pi,j = f (pi,j−1)

where 1 ≤ j ≤ t . The cryptanalyst chooses parameters m and t

to find an equilibrium between time and memory considerations

in the analysis. In each entry of a table, Hellman recognizes to use

a reduction function that maps hash values back to the potential

plaintext space.

Storage steps: a sorted table is constructed based on available

memory constraints and sorted; the pairs of plaintext, pi,0 and

resulting hash values, pi,t as the result of this phase.

Retrieval step: during the online phase, the attacker can use the

precomputed table to look up hash values and find corresponding

plaintexts. If a hash value of the attacker’s plaintext is in the table,

either the searched value or it has more than one inverse; it is

referred to as a false alarm.

When utilizing the Hellman tables method, the relevant

parameters include the chain length (t), the number of chains (m),

and the number of tables (r). As in Figure 1, there are r tables

with different reduction functions. Memory complexity represents

the memory needed for storing pre-computed data, expressed as

M = 2 ∗m ∗ r ∗m0, whereM is the memory amount, andm0 is the

memory required for storing start and end points (usually omitted).

Time complexity, crucial for successful attacks, is compared to

exhaustive key searches and is divided into precomputation and

online time complexities in time-memory trade-offs. The worst-

case time required in the online phase is T = t ∗ r ∗ t0, where

T is the time complexity, and t0 is the time needed to evaluate

FIGURE 1

Hellman table.

the function (generally omitted). False alarms are not taken into

account. The time complexity in the precomputation phase is given

by P = m ∗ t ∗ r, but it is typically excluded from the overall

attack complexity. For a N bit cryptosystem, TMTO recovers each

key T = N2/3 operational with M = N2/3 words of memory

(average values) after a precomputation which requires P = N

operations. Hellman recommends employing various tables (l ≈
t) with distinct masking functions to reduce the occurrence of

repetitions. Different masking functions will exhibit diverse cycle

structures for random mapping (Sönmez Turan et al., 2008; Saran,

2009).

Cryptanalytic Time Memory Data Tradeoffs (TMDTO) is a

variant that accepts D inversion problems and has to be successful

in at least one of them. The presence of multiple data enhances

the efficiency of the attack (Babbage, 1995). Golić (1997) examines

this scenario and refers to it as “one out of many keys.” Multiple

data TMTO has also been studied in several papers (Biryukov and

Shamir, 2000; Hong and Sarkar, 2005a; Dunkelman and Keller,

2008). This situation typically occurs in stream ciphers, where it

is adequate to reverse the function that links an internal state

to the produced output. Biryukov (2005) also considers a chosen

plaintext scenario where a single message is encrypted with many

keys, and the resulting ciphertexts are accessible to the attacker.

It is shown that most of block cipher modes of operations are

vulnerable to TMDTO (Hong and Sarkar, 2005b). There are two

main improvements of TMTOmethod; Distinguished Method and

Rainbow Method.

2.4 Distinguished method

In 1982, Rivest suggested using distinguished points as

endpoints to minimize the frequency of memory accesses,

particularly when dealing with large tables that incur high memory

access costs (accessing data on disk can be significantly slower

compared to the evaluation of the function f ). Instead of generating

a fixed chain length, the iteration of the chain continues until an

endpoint meeting specific criteria is identified. He suggested using

distinguished points to reduce the number of disk accesses to about√
T. This concept has been extensively investigated in Quisquater

and Delescaille (1990), Borst (2001), Standaert et al. (2003), and

Mentens et al. (2006).

Distinguished points (DP) refer to specific range points that

meet defined criteria, like having all last d bits set to zero. These

points reduce memory access during the online phase, as a search is
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FIGURE 2

Distinguished point table.

conducted only when the end point (or its iterations) constitutes a

distinguished point.

Notably, a chain may enter an infinite loop without

distinguished points, and may not produce a DPi as in Figure 2.

Only endpoints that encounter a DP in fewer than t iterations

are preserved, while others are discarded. Chains are created

until a distinguished point is encountered. The chain is discarded

if a DP is not reached within tmax iterations. Additionally, if

the chain length is below a threshold, for instance, tmin, it is

also discarded. In cases where the same DP appears in different

chains, the tuple with the maximum chain length is retained

(since merged chains share the same endpoint) (Borst et al., 1998;

Borst, 2001). Storing the length of each precomputation chain

in the DP table can address this issue; however, this enlarges

the size of the precomputation table. During the online phase,

when presented with an initial message digest, keys will be

generated iteratively until a distinguished point is encountered.

Only at that point will a memory lookup be performed. This

significantly decreases the overall number of memory lookups.

The Perfect Table, as described in Borst et al. (1998), represents

a modification of the distinguished points (DP) table. In this

variant, certain redundancies in the precomputed tables are

eliminated and substituted with nonoverlapping data obtained

through supplementary precomputation. In the precomputation

stage, chain collisions are resolved by retaining only the longest

chain among those that merge. Additional chains are created until

a total of m non-merging DP chains are gathered. The resultant

perfect DP matrix ensures there are no overlapping points. The

online phase of the perfect DP tradeoff remains unchanged

compared to the non-perfect version.

The advantages of distinguished points are outlined in Oechslin

(2003) as follows:

• Reduced table lookups: the tables are searched during the

online phase when only a distinguished point (DP) is

encountered. This results in a reduction of table lookups by

a factor of 2d.

• Loop freeness: if no distinguished point is encountered within

tmax iterations, the chain is considered to contain a cycle

potentially and is subsequently discarded. This ensures that

the tables are free from loops.

• Merge freeness: in perfect DP tables, chains with identical

endpoints are discarded. As a result, merges are avoided

without incurring additional costs, especially since the tables

are sorted.

FIGURE 3

Hellman vs. rainbow table.

2.5 Rainbow tables

A variant time/memory tradeoff scheme was suggested by

Oechslin (2003). Instead of creating r tables with distinct reduction

functions, Oechslin suggests the creation of new tables known

as rainbow tables. These tables employ a consecutive reduction

function for each column in the chain, with a total of t reduction

functions as Figure 3. It claims to save a factor 2 in the worst-

case time complexity compared to Hellman’s original scheme. The

overall number of computations is expressed as t(t−1)
2 , compared to

rt in the conventional method.

The advantages of rainbow tables are outlined in Oechslin

(2003) as follows:

• Collision handling: if two chains collide, they only merge if the

collision occurs in the same column. If the collision happens

at different columns, they continue with varying reduction

functions and do not merge. Merges, which would lead to

identical endpoints, are discarded in Perfect Rainbow Tables.

It’s important to note that discarding identical endpoints

in Rainbow tables could increase precomputation compared

to distinguished points. This is because, in DP tables,

there are t tables, but in rainbow tables, identical points

accumulate within one table, potentially resulting in extensive

precomputation.

• Loop freeness: rainbow tables inherently avoid loops since

each column employs different reduction functions.

• Constant chain length: rainbow chains maintain a constant

length, contributing to a reduction in false alarms.

Creating tables without merges reduces table coverage.

However, opting for merge-free tables presents a trade-off, as

it raises precomputation time (Avoine et al., 2005). Ideally,

perfect tables are those where merges are infrequent. Rainbow

and DP tables share the characteristic of having identical

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1368362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Saran 10.3389/fcomp.2024.1368362

TABLE 1 Comparison of trade-o� methods.

Feature Hellman’s
method

DP Rainbow
tables

Multiple tables X X –

Fixed chain length X – X

Collision handling – X X

endpoints in merging chains. The process involves generating more

chains initially and subsequently discarding chains with matching

endpoints. This disposal of chains contributes to an increase in

precomputation time. Avoine et al. proposed using checkpoints

to rule out false alarms using little additional memory (on some

intermediate points of a chain) without regenerating the pre-

computed chain for rainbow tables. In the online phase, the attacker

recreates the pre-computed chain only if there is a match in both

the ending point and the checkpoints.

In recent years, Avoine et al. have proposed two new methods:

distributed filtration-computation and stepped rainbows. In the

first, Avoine et al. (2021) introduce a distributed method and filter

the results to optimize the precomputation phase of generating

rainbow tables. Distribution process spreads the precomputation

workload across multiple computing units and filtration process

involves identifying and eliminating unnecessary or redundant

computations where they demonstrate a significant reduction in

precomputation time, reportedly up to six times faster in tested

scenarios. In the following, Avoine et al. (2023) use a process

of recycling discarded values where they utilize values that are

typically discarded in traditional rainbow table construction in

order to reduce substantial workload in both precomputation and

attack phases.

The comparison of these types of trade off algorithms may be

listed as in Table 1.

Note that the DP table doesn’t have fixed chain length, on the

other hand, the Perfect DP table is designed with the objective

of achieving chain lengths that are either fixed or exhibit a more

consistent distribution.

3 Password hashing algorithms

Password hashing is a crucial aspect of authentication systems

designed to generate a cryptographic key from a password.

These algorithms find widespread use in various security and

authentication applications, enhancing user credentials’ security. In

this section, the password is considered as the input of a one-way

function (password hashing function), and the password hash is

identified as the image (output) of the function.

User registration: When a user creates an account or updates

their password, the authentication system generates (a random)

value called a salt. Using a unique salt for each user and

combining it with the user’s password is recommended. Employing

deterministic or easily predictable salts can subject the system to

undermine the security advantages associated with the randomness

of salts.

Hashing process and storing: The system combines the user’s

password and the salt and then utilizes a cryptographic hash

function (such as SHA, PBKDF2, bcrypt) on the resulting string.

The outcome of this procedure is the hashed password—a string

of characters with a fixed length that seems random. The system

stores the fixed-length hashed password and its associated salt in its

database without keeping the original password. In a data breach,

hashed passwords provide a greater resistance to attacks compared

to the storage of plaintext passwords.

Authentication: When a user attempts to log in, the system

retrieves the stored salt associated with that user and combines

it with the entered password, then hashes this combination and

compares it to the stored hashed password. The user is granted

access if the generated hash matches the stored hash.

Recent schemes incorporate techniques like multiple iterations

of the hash function to enhance security further, making it

computationally expensive and time-consuming for attackers to use

TMTO attacks.

3.1 PBKDF2

Password-based key derivation function (PBKDF) is a

cryptographic algorithm designed to derive a cryptographic key

from a password. PBKDF2 employs a pseudorandom function,

like a hash-based message authentication code (HMAC), on the

provided password or passphrase along with a salt value. This

process is iterated numerous times to generate a derived key,

serving as a cryptographic key for subsequent operations as seen in

Figure 4. The number of iterations, N, used in PBKDF is typically

a parameter that can be adjusted based on the desired level of

security and the computational resources available.

It is also used to derive cryptographic keys from passwords

for secure communication in protocols like SRP (Secure Remote

Password) or SSL/TLS handshake. It also has a wide range of

usability in file /disk encryption systems TrueCrypt3/VeraCrypt4

where a user’s password needs to be transformed into an encryption

key. PBKDF2 is still widely used in many security-related systems

such as WPA/WPA2 encryption process (IEEE Std 802.11-2007,

2007), Linux Unified Key Setup (LUKS1),5 OpenOffice, and many

others.

PBKDF2 (Moriarty et al., 2017) can be implemented with a

very small amount of RAM for temporary intermediate values,

making it preferable in small devices to memory-hard password

hashing options (Weatherley, 2023). In some applications such

as Bitwarden,6 a popular password manager, email addresses are

proposed to be used as salt since each user has a unique email

address, even if they use the same password. The attacker would

need to attack each hash individually, significantly increasing the

3 TrueCrypt—Free Open-Source On-the-fly Encryption: http://www.

truecrypt.org.

4 VeraCrypt—Free Open-Source On-the-fly Encryption based on

TrueCrypt https://www.veracrypt.fr/.

5 https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup

6 https://www.ghacks.net/2023/02/02/bitwarden-to-increase-its-

server-side-iterations-to-600000-heres-how-to-set-it-manually/
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FIGURE 4

Simplified diagram of the PBKDF2 iteration process generated by

OpenAI’s DALL-E.

time and resources required where precomputed tables of hashed

passwords are used to crack passwords.

PBKDF2 is designed to resist TMTO attacks due to iterative

hashing, salt usage, tunable work factor, and some memory

requirements. In Ruddick and Yan (2016b), the authors focus

on accelerating attacks on PBKDF2 using GPUs. The efficiency

of attack is not only due to parallel hardware architectures

but also through effective algorithmic optimizations. The paper’s

implications are crucial for understanding PBKDF2’s vulnerability

in security systems like Microsoft .NET framework and WiFi

Protected Access (WPA2). The choice of the hash function in

PBKDF2 impacts its security (Li et al., 2015; Visconti et al., 2015;

Kodwani et al., 2021). Visconti et al. (2019) investigate the expenses

related to breaching PBKDF2’s defenses, considering elements

like the complexity of passwords, the cost of electricity, and the

efficiency of different hardware setups. It further examines how

system configurations, such as 32-bit versus 64-bit systems and

the choice of cryptographic backends, can influence the number

of iterations required in PBKDF2, affecting its overall security

efficiency. Using multiple FPGAs, they managed to process 250,000

passwords per second at 2,000 iterations (Abbas et al., 2014), and

another study achieved a rate of 356,352 passwords per second with

1,000 iterations (Dürmuth et al., 2012).

When the standard7 was written in the 2000s, the

recommended minimum iteration count was 1,000. However, the

parameter is intended to be increased over time as CPU speeds

increase. National Institute of Standards and Technology (NIST)

(2010) suggests that it is a good practice to select the iteration count

7 PKCS #5 v2.0, also published as Internet Engineering Task Force’s RFC

2898.

as large as possible. As of 2023, OWASP8 recommends 600,000

iterations for PBKDF2-HMAC-SHA256 and 210,000 iterations for

PBKDF2-HMAC-SHA512, 1,300,000 iterations for PBKDF2 with

SHA-1.

3.2 bcrypt and scrypt

bcrypt9 is a password hashing function developed by Provos

and Mazieres (1999), based on the Blowfish cipher. It incorporates

a salt to defend against rainbow table attacks. It is adaptive,

meaning its iteration count can be increased over time to maintain

resistance against TMTO attacks, even as computational power

increases. bcrypt is notable for its “expensive key setup” phase,

whichmakes it slower and thus more secure against generic attacks.

The bcrypt algorithm serves as the standard password hashing

method for OpenBSD and default as of PHP 5.5.0,10 and it was

previously the primary choice for several Linux distributions,

including SUSE Linux. Its vulnerability to Time-Memory Trade-Off

attacks is partly due to its lower memory requirements in contrast

to its computational demands. Attackers might leverage increased

processing power to offset this lower memory usage, which can

heighten bcrypt’s susceptibility to these attacks. This contrasts with

algorithms that need substantial memory resources, where simply

boosting computational power is a less effective strategy.

scrypt, created by Colin Percival in 2009, is a password-based

key derivation function that requires large amounts of memory

to thwart large-scale custom hardware attacks. It is published

by IETF as RFC 7914 (Percival and Josefsson, 2016). Its high

memory requirement makes hardware implementations costly,

limiting the parallelism an attacker can use. Scrypt’s algorithm

generates a significant vector of pseudorandom bit strings, accessed

pseudo-randomly, and combined to produce the derived key. This

process demands significant memory if all elements are stored

simultaneously, creating a trade-off between time and memory

usage. However, scrypt is also criticized for its ability to adjust

the trade-off between time and memory since its flexibility allows

for constant memory consumption while varying the computation

required.11 Scrypt has been adopted in several cryptocurrencies as

a proof-of-work algorithm.

3.3 Argon2

Argon2, developed by Alex Biryukov, Daniel Dinu, and Dmitry

Khovratovich, crowned as the winner of the Password Hashing

Competition in 2015 (Biryukov et al., 2016). It is a key derivation

function with three versions: Argon2d, Argon2i, and Argon2id.

Argon2d is resistant to GPU cracking attacks, Argon2i is optimized

against side-channel attacks, and Argon2id is a hybrid of both,

recommended for general use. It’s notable for its customizable

8 OWASP- Password Storage Cheat Sheet https://cheatsheetseries.owasp.

org/cheatsheets/Password_Storage_Cheat_Sheet.html.

9 https://en.wikipedia.org/wiki/Bcrypt

10 https://php.net/manual/en/function.password-hash.php

11 https://mail.tarsnap.com/scrypt/msg00029.html
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parameters controlling execution time, memory requirements, and

parallelism, which makes it adaptable and secure against various

attack methods, including time-memory trade-off attacks.

3.4 Balloon

Balloon is a memory-hard key derivation function that was

developed by Boneh et al. (2016). It is intended to use a substantial

amount of memory in addition to CPU resources. In other words, it

is resistant to attacks that leverage hardware-based optimizations,

such as those that use GPUs or customized hardware, which

generally have lower memory and bandwidth capacities than

general-purpose CPUs. The hashing algorithm is known for its

established memory-hardness characteristics that protect it from

time-memory trade-off (TMTO) attacks. A password-independent

access pattern is used to achieve this security feature, meaning

that the order in which memory accesses (reads and writes) occur

throughout the hashing process is independent of the password.

Rather, it is dependent upon the results of previous hashing steps.

After initializing a buffer with a mix of the password, salt, and other

inputs, the algorithm repeatedly mixes the contents of this buffer in

a complex way. This aspect of the algorithm is designed to enhance

its resistance to side-channel attacks.

4 Analysis of rainbow tables e�cacy
in password hashing schemes

A typical password hash is usually a sequence of at least

128 bits. PBKDF2 depends on the underlying hash function

being used, for bcrypt it typically produces 184 bits (23 bytes),

for scrypt it is configurable, usually 256 bits, for Argon2 it is

configurable, usually 256 bits, for Balloon configurable may vary

depending on implementation. Note that the total number of

10-character alphanumeric passwords is about 6210. That’s about

259.54. A hash function H(x) derived from a password x will, in

most cases, uniquely identify x on its own. However, human-

generated passwords are not evenly distributed over the entire

possible password space. Attackers typically focus on a smaller,

more manageable subset of passwords, called |P|, which is part

of the total set of possible passwords. The size of this subset

is determined by the attacker’s available computational resources

for precomputation and is generally targeted to include the most

commonly used passwords since the set of password hashes |H| is
much larger than the considered password set |P|. Since TMTOs

use reduction functions R :H → P, and the online phase algorithm

works with the colored iteration functionsHk = Rk ◦H : P → P for

k− th table (Hong andMoon, 2013). Rainbow table with k different

reduction functions to compute the chains is only applicable to

password hashing schemes that do not consider salt as an input with

a password.

Chang et al. examine Argon2i, Catena, and Rig, which

participated in the Password Hashing Competition. The authors

give a generic algorithm for traversing the directed acyclic

graph (DAG) that allows for variation in memory, and compute

the increased algorithmic runtime (recomputation penalties)

for various trade-off options (varying memory and time).

They highlight the shortcomings of Argon2i in achieving its

stated memory hardness goals. The research provides valuable

perspectives on the resilience and efficiency of password hashing

schemes considering different time and memory resource

allocation scenarios (Chang et al., 2019).

The prevailing belief is that adding salt can counteract

preprocessing attacks. Indeed, recent research has examined

the security of random oracles when additional information is

available, and to some extent confirmed the benefits of using

salts (Unruh, 2007; Coretti et al., 2018). However, these studies

have limitations, especially in the context of password hashing,

since they tend to focus on securing only one password. On the

other hand, Bellare et al. (2012) emphasize that multi-instance

security metrics should be considered when analyzing the security

of password hashing. This is crucial to ensure that the complexity

of cracking passwords escalates with the number of passwords

targeted (Farshim and Tessaro, 2021).

Some systems store passwords in the database using

honeywords or fake passwords associated with each user’s

account to prevent attacks12 using graphical-processing unit

(GPU). Their approach involves a specialized secure server called

a “honeychecker,” which identifies the legitimate password from

a set of honeywords. This system triggers an immediate alert

if a honeyword is used, enhancing security measures against

unauthorized access. However, there are two problems with

these systems: the typo safety problem and the storage overhead

problem. In Genç et al. (2018), the authors introduce an enhanced

honeywords system that is generating typo-safe honeywords and

managing old passwords which may be a solution to the active

attacks problem.

5 Discussion

Password Hashes Schemes (PHS) are used in a variety of

areas, including but not limited to web applications and database

applications. PHS are also used in network access protocols,

cloud services, and any system where user authentication is

critical. This section examines the complexities and inherent risks

associated with switching from one password-hashing algorithm to

another. Compatibility issues, security/performance implications,

and potential vulnerabilities introduced during the migration

process are among the many challenges facing developers.

Migrating to a new password hashing scheme can introduce several

potential vulnerabilities, especially if not managed properly. Special

attention should be paid to the impact of these challenges on user

data integrity and application security during system maintenance.

Poor password management practices are exploited by attackers

who expose user credentials, harming both users and vendors.

Here’s a list of some key issues to consider:

5.1 Security/performance implications

Selecting appropriate algorithms and regularly updating them

is crucial, but it can also present challenges. Developers must

12 https://people.csail.mit.edu/rivest/pubs/JR13.pdf
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choose a hash function that is currently considered secure, such

as SHA-3 or Argon2, instead of weaker ones like MD5 or

SHA-1, which have known vulnerabilities. It is important to

stay informed about the latest developments in cryptographic

practices and update algorithms. However, in resource-constrained

environments, such as those with limited computing power,

memory, or energy efficiency, there may be a trade-off between

security and performance. For instance, PBKDF2 is less memory-

intensive compared to bcrypt or Argon2. However, Argon2 is

designed to be resistant to a wide range of attacks, although

it can be more demanding in terms of resources compared to

PBKDF2 and bcrypt. Furthermore, algorithms have parameters

that require optimization. For example, optimizing parameters

in Argon2 is essential to achieve a balance between resource

utilization and overall performance. This process involves selecting

the optimal variant of Argon2, determining the appropriate

lengths of salt and tag, and adjusting the parameters of

time, memory, and parallelism. This optimization aims to

use resources efficiently while maintaining performance within

acceptable limits.

5.2 Compatibility issues

In the realm of information technology and cybersecurity,

compatibility refers to the ability of different systems, software,

or components to operate smoothly with each other without

problems. This includes the smooth integration and operation

of both software and hardware components, compliance with

common protocols or standards, and the effective exchange

and accurate interpretation of data. When migrating to a new

standard in PHS, many compatibility issues can arise. For

example, to use the Argon2id hashing algorithm in PHP, the

PHP installation must include Argon2 support. If the current

PHP setup lacks this integration, this requirement may pose a

challenge. To address this issue, one may need to recompile

PHP with Argon2 support or seek out a hosting solution that

offers a PHP build with Argon2 support. Such adjustments can

require additional configuration effort, especially in scenarios

where developers have limited control over the PHP environment

(see text footnote10). Moreover, Argon2 may produce longer

hashes, necessitating changes in database schema to accommodate

larger hash values.

5.3 Migration process

Transitioning from a less secure and less demanding algorithm

such as MD5 to a more secure yet more resource-intensive one

like bcrypt can greatly affect the system’s performance, particularly

in environments with a high frequency of authentication requests.

Handling an excessive number of passwords simultaneously

on the server could lead to performance issues similar to

those experienced during a Distributed Denial of Service

(DDoS) attack. As direct access to plaintext passwords is not

possible, a common strategy is to re-hash passwords when

users log in next. However, this approach requires all users

to log in again, which may not be practical or user-friendly.

Furthermore, extensive testing is necessary to ensure that the

new hashing system functions properly with all components of

the system.

The ongoing research in this domain continues to balance

the computational and memory resources, optimizing the

success rate of these cryptographic attacks. Comparative analyses

have shown the resilience of popular hashing algorithms such

as PBKDF2, bcrypt, Argon2, and Balloon against TMTO

attacks. The results suggest that Argon2 and Balloon are

more resilient due to their memory-intensive properties.

PBKDF2 is inefficient; it requires high iteration counts to be

secure. In other words, it’s slow for the defender and fast for

the attacker.13
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