
TYPE Original Research

PUBLISHED 25 July 2024

DOI 10.3389/fcomp.2024.1371052

OPEN ACCESS

EDITED BY

Ixent Galpin,

Universidad de Bogotá Jorge Tadeo Lozano,

Colombia

REVIEWED BY

Tomasz Górski,

University of Gdansk, Poland

Maria F. Pollo-Cattaneo,

Universidad Tecnologica Nacional Facultad

Regional Buenos Aires, Argentina

*CORRESPONDENCE

Tarik Chakkour

tarik.chakkour@centralesupelec.fr

RECEIVED 15 January 2024

ACCEPTED 05 July 2024

PUBLISHED 25 July 2024

CITATION

Chakkour T (2024) High-quality

implementation for a continuous-in-time

financial API in C#.

Front. Comput. Sci. 6:1371052.

doi: 10.3389/fcomp.2024.1371052

COPYRIGHT

© 2024 Chakkour. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

High-quality implementation for
a continuous-in-time financial
API in C#

Tarik Chakkour*

LGPM, CentraleSupélec, Université Paris-Saclay, Centre Européen de Biotechnologie et de

Bioéconomie (CEBB), Pomacle, France

In recent years, there has been a rising interest in potentially complex software

and financial industries with applications inmany engineering fields. With this rise

comes a host of developing a usable and consistent Application Programming

Interface (API). Prioritize designing and building the software ensures to enrich

the platform and emphasize inventorying APIs. In this paper, we proposed a

high-quality API to implement the continuous-in-time financial model. The

existing discrete framework cannot be evaluated at any time period, involving

drawbacks in operating the data structures. Then, the continuous framework

is implemented based on the measure theory paradigm. Our proposal uses

mathematical modeling, which consists of some objects as measures and fields.

It is suitable to develop this API in C# to provide the requirement quality in

programming language professionally. This also integrates demands, codes, and

verification in the system development life cycle. The advantages are aimed

at increasing the structuring and readability. The presented work provides an

overview of the design, implementation, testing, and delivery aspects of the API,

highlighting the importance of architecture, testing, and numerical choices. The

article gives an overview of the API by describing the implementation concerning

the data structures and algorithms. These algorithms are based on using the Task

Parallel Library (TPL) that makes the API easier and more fruitful for data parallel

to benefit from the advantages provided by the .NET Framework.

KEYWORDS

API, mathematical computation, algorithms, object-oriented programming, design

pattern, software and its engineering, UML

1 Introduction

Currently, MGDIS has marketed a discrete model of financial multiyear planning. This

model, modeled by the software tool SOFI (Sofi, n.d.), allows for the setting out ofmultiyear

financial budgets for public organizations. The mathematical tool based on this model

consists of the sequels and series. It is designed to forecast the financial strategy needs.

The variables in this discrete modeling cannot be evaluated at any time period. This model

uses Excel tables and results outcomes in the form of tables. Each value in the tables is an

artificial quantity value over a given period. The model has various disadvantages. The first

relates to the fact that the definition of the targeted periods is chosen at the beginning of

the process. The second is related to the use of tables. It enforces the calculation of the

quantities over the first period of time before calculating them on the second one, etc. The

implementation of the model is established by the process that goes on to compute the

values of all quantities in the period related to the next one. This means that forecasting

in terms of financial strategy is not practical. Hence, this makes the model hard to be

used within the strategy elaboration tool depending on the period of time. This modeling

allows a less good approximation over a time period. Consequently, this modeling provides

less financial information coming from the variables. Therefore, the discrete model is

not flexible and is restricted to a finite set of values. It was needed to design an efficient

model to be able to respond to a market and strategy needs. We call this model “the

continuous-in-time model.”

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1371052
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1371052&domain=pdf&date_stamp=2024-07-25
mailto:tarik.chakkour@centralesupelec.fr
https://doi.org/10.3389/fcomp.2024.1371052
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1371052/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

For instance, coupling two models defined at different periods

is not impossible but becomes hard. It is necessary to develop

temporal aggregation-redistribution techniques to be able to

exchange data between these two models (Kang et al., 2023; Liu

et al., 2023;White et al., 2023). Away to surpass those disadvantages

is expressed by designingmodels of a new kind that are continuous-

in-time, which contain mathematical objects such as densities

and measures and use mathematical tools such as derivation,

integration, and convolution. These tools are operators acting on

measures over R, named the Radon Measures. Some of these

models exist in the literature (Chen et al., 2022; Mondal et al.,

2023). With the continuous-in-time approach, the calculations are

led without question concerning the period at which financial

phenomena will be observed. In particular, the model’s results can

be reported on any set of periods without reimplementing the

model. The key idea consists of using a numerical analysis method,

which allows us to choose almost any time period. This modeling

shows us how the new framework will be flexible.

Our choice is motivated by the accuracy and the simplicity

of the continuous-in-time framework. The mathematical approach

to various financial problems has traditionally been through

modeling with stochastic process theory (Kao, 2019) and other

analytical approaches. These problems concern the combination

of modern mathematical and computational finance (Gilli et al.,

2019), and solving them has become necessary in the industry.

These approaches aim to study market making strategies to profit

by earning a good price movement with fewer sources of risk.

One of these approaches is solved by the Hamilton-Jacobi-Bellman

equation (Obrosova et al., 2022; Dolgov et al., 2023) to achieve

objectives and trading strategies (Fang et al., 2022; Wellman,

2022). On the other hand, frameworks that capture realistic

features of the financial public could be different from those

in financial markets. These frameworks simplify mathematically

the computational mechanisms based on classical tools such as

derivative, integral, and convolution operators. Another problem

arising from the financial sector is to compute these operators

efficiently on our modern computers. For instance, the Cuba

library is used for multidimensional numerical integration in Hahn

(2005). The SOSlib Library, which is a programming package for

symbolic and numerical integration of chemical reaction network

models, is described in Machné et al. (2006). Finally, authors in

Chung and Lee (1994) propose a new family of explicit single-

step time integration methods for linear and non-linear structural

dynamic analyses. We have tackled computational challenges

in previous studies (Chakkour and Frénod, 2016; Chakkour,

2017b, 2019) to build one of these frameworks. These challenges

include constructing and improving continuous modeling using

the measure theory paradigm (Vernimmen et al., 2022). This

framework permits modeling to be carried out closer to reality

by lifting periodicity constraints as illustrated in Figure 1. Then,

variables can be evaluated at any time period. It also allows a

passage from an annual variable to a monthly one, offering natural

flexibility with smaller periods such as day and hour.

The layout of this study is structured as follows. Section 2

focuses on the contributions of this study. Section 3 recapitulates

the existing discrete mathematical model and how we predict

developing the continuous objects. In Section 4, we present

various studies related to the continuous framework based on

previous theoretical study. Section 5 provides an overview of

designing the API with specific goals and constraints. This

Section highlights the advanced API mechanisms for building

the framework, including time steps and software architecture

representing the basis organization of software artifacts. Section

6 covers the implemented methods and objects to demonstrate

the computational concept adopted by these mechanisms These

implemented algorithms are expressed formally to show the

illustrative API purposes. We conclude by summarizing the major

points of this study in Section 7.

2 Contexts and contributions

Scientific computing softwares are always implemented using

low-level languages, such as C or Fortran, losing the high-level

structure, but some of the well-known softwares for computational

finance are developed in C++ and C# in the .NET platform.What is

challenging in this study is to implement the framework in form of

Application Programming Interface (API). Paticularly, one of the

central design philosophies of this API is to allow information to be

quickly interchanged without great modifications in coding. The

implementation is realized in C#, is considered one of the most

widely used programming languages, and leads to integrate this

API inside SOFI to produce the continuous software tool (Hickey

and Harrigan, 2022; Golmohammadi et al., 2023; Hung et al.,

2024). The proposed API applies to partial differential equations

arising applications in mathematical finance. This API focuses

on using parallelism adopted by Microsoft and provided by Task

Parallel Library (TPL). This choice is motivated by parallelism

with creating benchmarks for parallel programming (Chakkour,

2022, 2024a,b). The covenient using the API is to facilitate the

continuous integration (CI) and connection from this interface

with external systems. The modern systems involving continuous

integration on different platforms and technologies are described

in the literature (Gaston et al., 2009; Lima and Vergilio, 2020). The

study of Jackson et al. has adoted this CI environment in Lima

and Vergilio (2020) to make the software evolution more rapid and

cost-effective. The MOOSE (Gaston et al., 2009) project uses the

direct continuous integration between one developed framework

and all computational applications to make rapid development of

high-quality scientific software.

The main contributions in this study classify the API

implementation into two libraries, Lemf (Library Embedded

Finance) and LemfAN (Library Embedded Finance And Numerical

Analysis). Note that LemfAN is an open-source library; however,

Lemf remains confidential, particularly its integration in SOFI.

Our own philosophy is to allow these libraries to be quickly

interchanged without much code change. Each library contains

the collection classes and the interfaces which are partially

characterized by their properties. The present study aims to give

an overview of this API in detail and its design rationale, including

the time complexity of all operations (Bossen et al., 2021; Liu

et al., 2021). Finally, we will explain some techniques used in the

implementation. The purpose of these libraries is to compute loan,

reimbursement, and interest payment schemes.

3 Mathematical objects

This short section aims to describe the mathematical objects

used in the discrete modeling. These objects involved in the models

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 1

Illustration of the discretization possibilities provided by the continuous-in-time framework.

are sequels and series (Eling and Loperfido, 2020; Marin and Vona,

2023). It means that at an instant n, the state of the modeled system

is presented by a large vector Un, of dimension p. Formally, the

financial state at time n + 1 is expressed by a recurrence relation

which can be written in the following form,

Un+1 = F(Un),

Un+1 = F(Un,Un−1, . . . ,U0).

The financial analyses used in this model on contingency tables

are within Excel tool. Figure 2 exhibits the data entry in Excel tables

and financial trends illustrated in SOFI software. The disadvantages

of the discrete models (as described at the beginning of the study)

consist in using typical mathematical objects such as sequences

and series. Utilizing this approach involves limitations in time and

operating redundant objects. Furthermore, there is a restriction to

reimplementing the time period at each modeling process. This

constraint does not correlate well with the financial reality. In

other words, the modeling needs to offer more flexibility with

smaller periods. Note that all these objects are exactly of the same

nature. Therefore, some objects can be calculated by formulas in the

following type,

Wn =

n
∑

m=0

amUm. (1)

The first reflection in building the continuous framework to

be carried out is establishing the list of new objects that must be

manipulated according to their intrinsic nature. Then, choose the

appropriate objects having the best representation. For instance, the

summation mentioned in relation (Equation 1) can be replaced by

integral, and so on. The concept follows this idea even though it

is more complicated than that. The complexity is to determine the

suitable space in which the model should be built, and these objects

can be consistently operated. This complexity will be detailed

mathematically in the next section. Then, the financial variables

TABLE 1 Mathematical objects expected to be developed for continuous

modeling.

Continuous objects Measure defined on R

Field defined on R

Accumulation of measure given as field

Measure convoluted defined on R

Discrete objects Discrete measure

Discrete field

Discrete convolution

Accumulation of measure given as discrete field

defined in the framework should be represented by measures and

fields as depicted in Figure 2. The reason is that generally the notion

of measure is an extension of natural concepts of length, surface,

and volume. The purpose is to evaluate the amounts given in

monetary units corresponding to sums over time period.

There will be considerable potential financial motivation

toward creating and implementing the concept of continuous

operators. The Excel-based financial module that executes discreet

observationmodeling is removed to design a computermodule that

works efficiently without exchanging Excel data. Consequently, the

drawbacks of controlling the time period are solved. Through this

research study, we will show how implementing integral operators

continuously in the targeted space leads to observing the financial

risks with tiny periods. However, a direct comparative performance

between the discrete modeling and the developed framework will

not occur and is outside the scope of this study. The difficulty is

accessing SOFI (Excel data). Moreover, an analogy cannot be made

simply by comparing them within the same data. In addition, the

discrete-parallelization framework appears complicated due to the

data structures, programming features, and invoked drawbacks.

Fortunately, the computation mechanism is improved within new

sophisticated mathematical objects as illustrated in Table 1, and

the limitations of the existing models are provided with various

explanations. Both frameworks have different modeling paradigms.

The expected performances will be naturally expected without

direct comparison.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 2

Data entry and financial trends in discrete SOFI software.

4 Related works

The model building is based on the Radon Measure space

M([tI,2max]) which is a Banach space over R, supported in

[tI,2max], when provided with norm:

‖ψ‖L∞([tI ,2max]) = sup
t∈[tI ,2max]

{

|ψ(t)|
}

,

The Measure space M([tI,2max]) is the space dual

Coc ([tI,2max]) of continuous functions defined over [tI,2max].

Among M([tI,2max]), some measures are absolutely continuous

with respect to the Lebesgue measure, and some of them are not.

When a given measure m̃ is absolutely continuous, this means

that it reads m(t)dt, where t is the variable in R, and m(t) is its

density, that is, m̃ = m(t)dt. We have defined in Frénod and

Chakkour (2016) the variable measures in which their densities are

the amounts expressed in monetary unit. Some of these financial

variables built in the model can be described as follows. The first

one is the Loan Measure κ̃E. This variable is defined such that the

amount borrowed between times t1 and t2 is the following amount:

∫ t2

t1

κ̃E. (2)

The second one is the Capital Repayment Measure ρ̃K. It is

defined such that the amount of capital which is repaid between

t1 and t2 is the following value:

∫ t2

t1

ρ̃K. (3)

The Repayment Pattern γ̃ manifests in the model the way an

amount 1 borrowed at t = 0 is repaid. It means that this Pattern γ̃

is a measure with total mass which equals 1, that is:

∫ +∞

−∞

γ̃ = 1. (4)

Loan Measure κ̃E and Capital Repayment Measure ρ̃K are

connected by a convolution operator:

ρ̃K = κ̃E ⋆ γ̃ , (5)

Linear operator L is introduced in Chakkour (2017a), and

acting on Loan Density κE ∈ L
1([tI,2max−2γ])∩Cc([tI,2max−

2γ]), and is defined as follows:

L[κE](t) = κE(t)− (κE ⋆ γ)(t)− α

∫ t

tI

(κE − κE ⋆ γ)(s); ds. (6)

The operator D : L
1([tI,2max]) ∩ Cc([tI,2max]) →

L
1([tI,2max]) is acting on the Initial Debt Repayment Density ρI

K
,

defined as:

D[ρIK](t) = −α

∫ 2max

t
ρIK(s); ds− ρIK(t). (7)

We have discussed the inverting of the operators L and

L + D on the space of square-integrable functions defined

on a compact (respectively, L̃ and L̃ + D̃ when they are

extended to radon measure space) in previous studies (Chakkour

and Frénod, 2016; Chakkour, 2017b, 2019, 2023). The ill-

posedness arising in this framework is examined in these

spaces in order to obtain interesting and useful financial

solutions and to forecast the budget for future financial

plans well.

To emphasize the mathematical aspects of duality and to

simplify the notations, the duality bracket will be used to represent

the integration of a continuous function with respect to the

radon measure over R. In practice, all the building measures

are defined on R. In reality, implementing this theory seems

to be easy, but the difficulty consists of having continuous

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 3

The physical view illustrating the API design. (A) Decomposition of each application layer into three parts. (B) Partial application diagram expressed by

container-based exposition.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 4

Partial application diagram expressing classes and objetcs including their properties for showing the inheritance paradigm of LeafMeasureAN.

piecewise functions that are continuous with superior values

in place of continuous functions. For instance, the amounts

presented in relations (Equations 2, 3) via integral operator

can be presented, respectively, as < κ̃E,1[t1 ,t2] > and <

ρ̃K,1[t1 ,t2] >.

5 Design and concept of computation
in API

This section introduces the architectural designs and

styles. This also illustrates the development process for

describing the API layers. The programming paradigms

govern these layers. The application diagram below will show

some assembled and configured instances of abstractions

that are used to inter-communicate between them. These

concrete layers are viewed in terms of the code base to manage

and control the instantiation of domain abstractions. Next,

abstractions are displayed by compatible ports according to the

class diagrams.

5.1 Physical view

The design of the API is shared into tow layers which are a

low level and high level. Figure 3A illustrates these two levels. The

high level is created for business reasons. The financial variables

are computed in high level, and next remain accessible for the SOFI

users. Note that low level does not use the high one. We say that

high level implements its low. The low and high levels contain non-

discrete measures and fields, and discrete measures and fields on

R. Depending on the targeted computations, some of them in high

level need discretization. For instance, if the aim is to discretize a

measure in the high level, its copy is built in low level. Next, it is

discretized to rise up its values to high level.

Class diagrams are powerful tools that boost relationships

between classes, averting them from being good abstractions. Since

many objects are presented in the application, it is not easy to

use this tool to show them. Figure 3 identifies the architectural

elements of financial processing solutions of the framework API by

exposing their functionality, which is divided into two figures. The

content of the application layer can be summarized in Figure 3A.

Each library has three folders. This decomposition gives specific

characteristics and facilities for physically viewing the API. The

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 5

Partial application diagram expressing classes and objetcs including their properties for showing the inheritance paradigm of ComposedMeasureAN.

logical view (Spray et al., 2021; Górski, 2022) is then separated

by differentiating interfaces and implementations. In brief, what

objects can be exposed, and what can be implemented? Figure 3B

shows the programming paradigms of the Exposition folder. This

folder contains simple interfaces for each measure and field. The

folder associated with Exposition is named Implementation. It

defines explicitly the measure and field objects that implement

the interfaces. To define each class, a programming paradigm is

used and implemented as an interface. We build in Chakkour

and Frénod (2016) a numerical approach to concentrate a given

measure as a sum of Dirac masses. This new approach is

named Concentrate as illustrated in Figure 3A and aims to enrich

the model.

For leveraging the commonly applied utility computing

paradigm, the intended architecture has to be laid out robust

resources. The API contains a set of connected classes and

objetcs involving sophisticated computed mechanisms (as a

service factory). A part of reflective information from these

objetcs is presented in Figure 4 to facilitate its visual perception.

The objective here is to give the concrete implementation

details for the API by describing its architecture. The internal

architecture of librairies can be visualized as layers, as shown

in this figure, that are connected for forming the API. The

computation in the library Lemf is defined as a graph where

the terminal nodes are measures or fields, and where the non-

terminal nodes are operations. Then, Lemf allows us to build its

dynamically. These graphs are realized by the abstract factory

class named AbstractFactor. This class contains an interface

that is responsible to create a factory of related objects without

explicitly specifying their classes. Each generated factory can give

the objects as per the Factory pattern. This is aimed at creating

measures, fields, and operations, which are used by interfaces.

Recall that abstract classes are classes whose implementations

are not complete and that are not instantiable. These classes

as illustrated in Figure 5 are created in the library LemfAN to

characterize simple measures (AbstractLeafMeasureAN) and

composed measures (AbstractComposedMeasureAN).

Abstract classes AbstractLeafMeasureAN and

AbstractComposedMeasureAN inherit from the class

AbstractMeasureAN since simple and composed measures

are generally measures.

One of the great challenges that includes developing the API

components is interacting effectively with the financial feeds and

handling the different types of data formats in SOFI modules.

Some important interfaces used in the API are described below.

For instance, the interface IMeasureAN (see Listing 1) implements

all measures in low level and provides a method EvaluateDiscrete.

This method allows discretization of a non-discrete that returns

a task containing N b
a discrete values. Task<> is a generic class

where the associated action returns a result to encapsulate the

abstraction of a computation. The idea of creating the interface

IMeasureAN is to spawn one task stored in an array of values.

The parallel discrete measures and fields in this level are based on

the concept of a task. Using TPL permites to entail execution and

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

development speed, as shown in Leijen et al. (2009). In addition,

the interface IMeasure implements all high-level measures. It

provides a method Evaluate returning to a value. The code

contracts, such asMesureContract, are applied to these interfaces

for checking the constraints and signaling violations. The aim is to

respect constraints imposed in modeling and then prevent users

from using convenient special postconditions. The code snippets

in Listings 2, 3 illustrate the representatives of this design Interface

pattern and its contract.

1 i n t e r f a c e IMeasureAN

2 {

3 Task < IEnumerable <double >> E v a l u a t eD i s c r e t e (de c ima l a

, d e c ima l b , d e c ima l Tobs ,

4 dec ima l Tmin) { }

5 }

Listing 1 The interface IMeasureAN.

1 i n t e r f a c e IMeasure

2 {

3 doub le E v a l u a t e (de c ima l a , d e c ima l b , d e c ima l Tobs) { }

4 }

Listing 2 The interface IMeasure.

1 [Con t r a c tC l a s s F o r (t y p e o f (IMeasure))]

2 i n t e r n a l a b s t r a c t c l a s s MesureCont rac t : IMeasure

3 {

4 pu b l i c doub l e E v a l u a t e (de c ima l a , d e c ima l b)

5 {

6 Con t r a c t . Requ i r e s <ArgumentExcept ion >(b > a , The end

must be s t r i c t l y g r e a t e r

7 than th e b eg inn ing) ;

8

9 r e t u r n Con t r a c t . R e su l t <double > () ;

10 }

11

12 pu b l i c doub l e E v a l u a t e (de c ima l a , d e c ima l b , d e c ima l

Tobs)

13 {

14 Con t r a c t . Requ i r e s <ArgumentExcept ion >(b > a , The end

must be s t r i c t l y

15 g r e a t e r than th e b eg inn ing) ;

16

17 Con t r a c t . Requ i r e s <ArgumentExcept ion >(Tobs > 0 , The

s t e p dec ima l v a l u e

18 must be s t r i c t l y g r e a t e r than z e ro) ;

19

20 r e t u r n Con t r a c t . R e su l t <double > () ;

21 }

Listing 3 The code contracts.

As illustrated in Figure 6, the convolution operator is based

on the Fast Fourier Transform (FFT). The FFT has been applied

using the inbuilt Math.NET Numerics (Math.net package, n.d.)

that is an excellent scientific library written entirely in C#. This

library supports two linear integral transforms: The discrete Fourier

and Hartley transforms. Both of them are strongly localized in

the frequency spectrum. The .NET platform contains the Iridium

and Neodym packages, including the Math.NET, which handles

complex values. In reality, the concept of data parallelism through

the TPL represents an asynchronous operation resembling a

thread item with a higher level of abstraction. The partial code

(Listing 4) shows a part complex pattern of data parallelism

from a convolution operator and demonstrates the mathematical

implementation illustrated in equalities (Equations 4–52). The

first step to detecting the pattern is to use Factory.StartNew,

which yields the task creation and task starting operations. The

leftTask and rightTask correspond to the computation tasks

defined, respectively, by the discretization of the left-hand Left

and right-hand Right measures on the convex hull of their

supports. These convex hulls are presented by leftAxeSegment

and rightAxeSegment respecting the definition (Equation 10).

The method IsCompactSupported is implemented to determine

the convex hulls for each measure, particularly for the convolution

with two extreme points. The method Parallel.Invoke is a succinct

method to create and start leftTask and rightTask and waiting

for them. Then, the process is divided into two sub processes

(threads) using this method. These tasks are created separately and

executed potentially in parallel. These actions are accompanied by

completing these discrete measures by zero elements and applying

the Fourier Transform operator. Note that theNumericalRecipes

flag is used to keep the need for Numerical Recipes compatibility.

When a work item has been completed, a targeted vector is

computed by element-wise multiplication.

The class ConstantMeasureAN defines the constant

measure in low level and inherited from two interfaces

AbstractLeafMeasureAN and IConstantMeasure. Another

class of inheritances follows the same way of the interface behavior.

For example, this definition states that the class based on the Dirac

measure is a common visible interface AbstractLeafMeasureAN

and also a part of the interface information IDiracMeasure. The

following code fragments (Listing 5) show the implementation that

an instance of theses classes are created.

5.2 Numerical simulation using the
financial API

This part is devoted to interpreting the continuous-in-time

framework financially via the API (Uddin et al., 2020; Naqvi et al.,

2023). We will adopt the financial point of view according to what

developed as a mathematical operator introduced in Section 4. The

API consistency is analyzed financially to interpret it with more

explanations using a simplified problem. Now, we turn to richer

API simulations. The simulation presented in Figure 7 via Listing 6

(shared into three diagrams) shows the action of Repayment

Pattern γ̃ , which is a combination of seven Dirac measures on

LoanMeasure κ̃E, which is a combination of five Dirac masses. This

pattern is an aggregate of three Dirac masses having the same mass
5
19 , located at various instants 0.3, 0.4, and 0.5; the other four Dirac

masses have the same mass 5
19 at instants 0.25, 0.35, 0.45, and 0.55.

The measure γ̃ can be written in the following form,

γ̃ =
5

19
× (δt=0.3 + δt=0.4 + δt=0.5)

+
1

19
× (δt=0.25 + δt=0.35 + δt=0.45 + δt=0.55). (8)

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 6

UML profile diagram showing the pattern design of the convolution operator.

Note that the defined γ̃ satisfies the following variant

of relation (Equation 4), since it expresses the way an

amount 1 borrowed at the initial instant is repaid. The

middle diagram illustrates the loan measure, which is shared

into two pieces. The first is expressed by borrowing the

amount 20 at instants 0.1 and 0.17. The second consists of

borrowing the amount 10 at instants 0.07, 0.13, and 0.2.

Formally,

κ̃E=20× (δt=0.1+δt=0.17)+10× (δt=0.07 + δt=0.13 + δt=0.2). (9)

This convolution result is computed using the formula

(Equation 5) and is presented in the bottom diagram. It is

also the combination of various concentrated measures that

can be approached by a density measure. The Repayment Plan

associated with Loan Measure κ̃E and Repayment Pattern Measure

γ̃ is constituted by four parts of repayments described as

follows:

• The first consists of the reimbursement of amount 100
19 located

at instants 0.4, 0.47, 0.5, 0.57, 0.6, and 0.67;

• The second consists of the reimbursement of amount 20
19

located at instants 0.35, 0.42, 0.45, 0.52, 0.55, 0.62, 0.65, and

0.72;

• The third is associated with the repayment of amount 50
19

located at instants 0.37, 0.43, 0.47, 0.5, 0.53, 0.57, 0.6, 0.63, and

0.7;

• The last is made of amount 10
19 at instants 0.32, 0.38, 0.42, 0.45,

0.48, 0.52, 0.55, 0.58, 0.62, 0.65, 0.68, and 0.75.

The presented example written below in API code illustrates

well the capability of our model to be used without using the

Excel tables to compute the Repayment Plan. This computation

is realized without any restriction concerning the time period

at which the model is going to be observed. This simulation,

named upon “model observation,” can justify that density measures

can be used in place of concentrated measures in the form of a

combination of Dirac measures. This means that if Loan Measure

κ̃E and Repayment Pattern Measure γ̃ can be approached by

density measures κEdt and γ dt, then Repayment Density ρKdt

is an idealization of Repayment Measure ρ̃K given by equality

(Equation 5) over the time interval.

5.3 Time step mechanism

We generate the unidimensional mesh named DAS

(Discretized Axe Segment) for two purposes. The first is to

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

1 pu b l i c o v e r r i d e boo l I sCompac tSuppor ted (out I n t e r v a l

i n t e r v a l) { }

2

3 Task < IEnumerable <double >> l e f t T a s k = L e f t .

E v a l u a t eD i s c r e t e (l e f tAx eS e gmen t) ;

4 Task < IEnumerable <double >> r i g h t T a s k = R i gh t .

E v a l u a t eD i s c r e t e (r i gh tAxeSegment) ;

5

6 r e s u l t = Task < I In te rna lMeasureAN > . F a c t o r y . S ta r tNew

7 (

8 () =>

9 {

10 P a r a l l e l . Invoke

11 (

12 () =>

13 {

14 doub le [] l e f t R e a l s = l e f t T a s k . R e s u l t . ToArray () ;

15 f o r (i n t i = 0 ; i < l e f t C o un t ; i ++)

16 { l e f t V a l u e s [i] = new Complex (l e f t R e a l s [i] ,

0 . 0) ; }

17

18 f o r (i n t i = l e f t C o un t ; i < count ; i ++)

19 { l e f t V a l u e s [i] = Complex . Zero ; }

20 Transform . Four i e rFo rward (l e f t V a l u e s ,

F ou r i e rOp t i on s . Numer i c a lRe c i p e s) ;

21 } ,

22 () =>

23 {

24 doub le [] r i g h t R e a l s = r i g h t T a s k . R e s u l t . ToArray

() ;

25 f o r (i n t i = 0 ; i < r i gh tCoun t ; i ++)

26 { r i g h tV a l u e s [i] = new Complex (r i g h t R e a l s [i] ,

0 . 0) ; }

27 f o r (i n t i = r i gh tCoun t ; i < count ; i ++)

28 { r i g h tV a l u e s [i] = Complex . Zero ; }

29 Transform . Four i e rFo rward (r i g h tV a l u e s ,

F ou r i e rOp t i on s . Numer i c a lRe c i p e s) ;

30 }

31) ;

32 f o r (i n t i = 0 ; i < count ; i ++)

33 { p roduc tVa lu e s [i] = l e f t V a l u e s [i] ∗ r i g h tV a l u e s [i

] ; }

34 Transform . F o u r i e r I n v e r s e (p roduc tVa lue s ,

F ou r i e rOp t i on s . Numer i c a lRe c i p e s) ;

35 r e t u r n new TabulatedMeasureAN (Produc t (

p roduc tVa lu e s) . ToArray ()) ;

36 }

37) ;

Listing 4 The convolution operator.

better structure the low level, providing an efficient way to interact

with the next level along simple protocols. The second is to calculate

the discrete convolution because of inability to compute it with

variable discrete step by the Fast Fourier Transform operator. The

Mesh DAS associated with the discrete step TdM is defined by a set

of points (xk)k∈Z that are its multiple,

DASTdM = {xk = k× TdM, k ∈ Z}. (10)

This part is devoted to define time steps that are involved in

the models and the relations between them. Figure 8 depicts the

different time steps used in the software mechanism within scale

modeling. Setting out a financial framework in time is the central

element influencing financial economic behavior. This framework

should be implemented to answer a question that first sets the whole

time period of interest. It consists of considering various parameter

times needed. Then, this strategy goes on to compute the values

1 c l a s s ConstantMeasureAN : Abst rac tLea fMeasureAN ,

ICons t an tMeasure

2 {

3 pu b l i c o v e r r i d e Task < IEnumerable <double >>

4 E v a l u a t eD i s c r e t e (D i s c r e t i z edAxeS egmen t

d i s c r e t i z e dAx e S e gmen t) { }

5

6 pu b l i c o v e r r i d e boo l I sCompac tSuppor ted (out I n t e r v a l

i n t e r v a l) { }

7 }

8

9 c l a s s DiracMeasureAN : Abst rac tLea fMeasureAN ,

ID i r a cMeasure

10 {

11 pu b l i c o v e r r i d e Task < IEnumerable <double >>

12 E v a l u a t eD i s c r e t e (D i s c r e t i z edAxeS egmen t

d i s c r e t i z e dAx e S e gmen t) { }

13

14 pu b l i c o v e r r i d e boo l I sCompac tSuppor ted (out I n t e r v a l

i n t e r v a l) { }

15 }

Listing 5 The constant and Dirac measures.

1 I In t e rna lMeasureAN Pa t t e r n 1 = new SumMeasureAN (new

DiracMeasureAN (0 . 3m, 1 . 0) ,

2 new DiracMeasureAN (0 . 4m, 1 . 0) ,

new DiracMeasureAN (0 . 5m, 1 . 0)) ;

3 I In t e rna lMeasureAN _Pa t t e r n 1 = new RescaledMeasureAN

(Pa t t e rn1 , 5 . / 1 9 .)

4 I In t e rna lMeasureAN Pa t t e r n 2 = new SumMeasureAN (new

DiracMeasureAN (0 . 2 5m, 1 . 0) ,

5 new DiracMeasureAN (0 . 3 5m, 1 . 0) ,

new DiracMeasureAN (0 . 4 5m, 1 . 0) ,

6 new DiracMeasureAN (0 . 5 5m, 1 . 0)) ;

7 I In t e rna lMeasureAN _Pa t t e r n 2 = new RescaledMeasureAN

(Pa t t e rn1 , 1 . / 1 9 .)

8 I In t e rna lMeasureAN Pa t t e r n = new SumMeasureAN (

_Pa t t e rn1 , _P a t t e r n 2)

9 I In t e rna lMeasureAN Loan1 = new SumMeasureAN (new

DiracMeasureAN (0 . 1m, 1 . 0) ,

10 new DiracMeasureAN (0 . 1 7m, 1 . 0)) ;

11 I In t e rna lMeasureAN _Loan1 = new RescaledMeasureAN (

Loan1 , 2 0 .)

12 I In t e rna lMeasureAN Loan2 = new SumMeasureAN (new

DiracMeasureAN (0 . 0 7m, 1 . 0) ,

13 new DiracMeasureAN (0 . 1 3m, 1 . 0) ,

new DiracMeasureAN (0 . 2m, 1 . 0)) ;

14 I In t e rna lMeasureAN _Loan2 = new RescaledMeasureAN (

Loan2 , 1 0 .)

15 I In t e rna lMeasureAN Loan = new SumMeasureAN (_Loan1 ,

_Loan2) ;

16 I In t e rna lMeasureAN Repayment = new

ConvolutionMeasureAN (Pa t t e rn , Loan)

Listing 6 The convolution operator modeling the financial

simulation shown in Figure 7.

of all financial quantities following the time process. The authors

describe in Guseinov (2003) the time scales to integrate density

over interval. The variable Tmin is introduced to mean the time

scale belowwhich nothing coming from themodel will be observed.

Specifically, we say that a measure m̃ is observed over time interval

[t1, t2] if,

∫ t2

t1

m̃, (11)

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 7

Financial simulation via API convolution operator. The variables are the concentrated measures, where γ̃ is represented at the top, κ̃E in the middle,

and ρ̃K = κ̃E ⋆ γ̃ at the bottom.

is calculated. We will always choose times t1 and t2 such that

t2− t1 > Tmin. In order to observe models, we need an observation

step Tobs which is strictly superior than Tmin

Tobs > Tmin. (12)

The discretization step TdM in the low level is defined as

a smaller step than minimal observation step Tmin to discretize

measures.

TdM ≤ Tmin. (13)

In practice, the discrete step TdM is fixed as,

TdM =
Tmin

20
. (14)

The quantity nD is defined as the observation step Tobs in term

of the step TdM,

nD =

⌊

Tobs

TdM

⌋

. (15)

The field is defined as continuous function by superior value.

It is evaluated between inferior value a and superior value b with

discrete step TdF satisfying:

0 < TdF < b− a. (16)

Integrating a given measure md in low level between inferior

bound a and superior bound b with minimal observation step Tmin

consists of integrating it between new inferior bound xa and new

superior bound xb with discrete step TdM that verify,

xa = na × TdM, xb = nb × TdM. (17)

In which the integers na and nb are defined as,

na =

⌊

a

TdM

⌋

, nb =



















b
TdM

if TdM is divisible by b,

⌊

b
TdM

⌋

+ 1 else.

(18)

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 8

Various time steps defined in the continuous-in-time financial modeling.

Denoting byN b
a the number of subintervals of interval [xa, xb]

defined as,

N
b
a = nb − na. (19)

For any integer j from 1 toN b
a , we define (na+ j−1)nd discrete

value of measure md, its integration between inferior bound (na +

j− 1)× TdM and superior bound (na + j)× TdM,

∀j ∈ [[1;N b
a]],md(na + j− 1) =

∫ (na+j)×TdM

(na+j−1)×TdM

md. (20)

The quantity mobs
d

(i) is defined as observed discrete measure

over interval with time length Tobs, the integration of measure md

between inferior bound na × TdM + (i − 1) × Tobs and superior

bound na × TdM + i× Tobs.

∀i ∈
[[

1; ⌊
N b

a

nD
⌋
]]

,mobs
d (i) =

∫ na×TdM+i×Tobs

na×TdM+(i−1)×Tobs

md. (21)

This integral can be decomposed with Chasles relation,

∀i ∈
[[

1; ⌊
N b

a

nD
⌋
]]

,mobs
d (i) =

k=nD
∑

k=1

∫ (na+k−nD)×TdM+i×Tobs

(na+k−1)×TdM+(i−1)×Tobs

md. (22)

Next, this integral can be simplified as,

∀i ∈
[[

1; ⌊
N b

a

nD
⌋
]]

,mobs
d (i) ≃

l=i×nD
∑

l=1+(i−1)×nD

∫ (na+l)×TdM

(na+l−1)×TdM

md. (23)

Equalities (Equations 20, 23) yield that the observed value

mobs
d

(i) is a sum of all discrete valuesmd(na + l− 1) for an integer l

from 1+ (i− 1)× nD to i× nD,

∀i ∈
[[

1; ⌊
N b

a

nD
⌋
]]

,mobs
d (i) ≃

l=i×nD
∑

l=1+(i−1)×nD

md(na + l− 1). (24)

According to equality (Equation 24), there are two cases of

calculating the observed values mobs
d

. The first case consists in

computing them when N b
a is divisible by nD. The second case

consists in computing them, when N b
a is not divisible by nD using

the simplified form,

mobs
d

(⌊

N b
a

nD

⌋

+ 1

)

≃

k=N b
a

∑

k=nD×⌊
Nb

a
nD
⌋+1

md(na + k− 1). (25)

5.4 Testing and performing the API

Unit tests are an essential part of software development. One

goal in test data generation is to maximize coverage on all public,

protected, and package-private methods. In our API, a special

strategy has been proposed to generate tests. This strategy consists

of reducing the number of tests and rising the code coverage.

It is based on a technique named search-based software testing

(SBST) (Perera et al., 2022; Ren et al., 2023), which is famous in

the optimized test generation. This technique is similar to Genetic

Algorithms (GAs) (Sivanandam et al., 2008). The implementation

is improved by attempting the higher coverage result in more

detected errors as illustrated in Figure 9A. This result presented

in form of table demonstrates that our technique significantly

outperforms testing tools in terms of code coverage achieved by

96.4% successful tests. This test generation technique has been

successfully employed in Gao et al. (2020) and Golmohammadi

et al. (2023). This proportion of covering significant parts from

library allows for providing effective protection against bugs.

The system tests associated with Lemf/LemfAN are created

to enhance test generation without any coverage criteria. Then,

each test is structured according to the name of the measure/field

and theme as depicted in Figure 9B. This figure highlights

a tangible positive correlation from the coverage measure in

Figure 9A regarded as an adequate indicator of test sufficiency.

For instance, a test named FixedCoeffecientsUnitTest aims to test

the constructor firstly, next to check when the affine measure

will be constant or linear or reduced to a point with respect to

the Lebesgue measure. We have designed suitable unit tests for

the test generation to evaluate more existing test cases. Consider

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 9

Schematic designs show the creation of unit test (B) suites for object-oriented classes with the anticipated improvements in terms of code

coverage (A).

testing the Dirac measure that consists of evaluating the mass

in term of integration bounds and localization. The effective sets

of unit tests are implemented to manage different properties and

avoid easily being captured by any individual structural coverage

criterion. A reasonable test suite indeed covers all statements

of a class, even private methods, indirectly. In addition, the

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

1

2 Random Genera t eurHasa rd = new Random(DateTime .

Now . M i l l i s e c o n d) ;

3 I n t e r po l a t i onAN i n t e r p o l a t i o n =

In t e r po l a t i onAN . Cons t an t ;

4

5 [TestMethod]

6 pu b l i c vo id TestKRDWithLoanAndRepaymentAreZero

()

7 {

8 I In t e rna lMeasureAN loan = NullMeasureAN .

I n s t a n c e ;

9 I In t e rna lMeasureAN repayment =

NullMeasureAN . I n s t a n c e ;

10

11 E v a l u a t i o nA s s e r t . AreEqua l

12 (

13 Nul lF ie ldAN . I n s t a n c e . E v a l u a t e F i e l d (0 . 0m,

1 . 0m, 0 . 0 1m, i n t e r p o l a t i o n) .

14 Va lue s . ToArray () ,

15 new Equa t ion (new Subs t rac t ionMeasureAN (

loan , repayment) , 0m) . G e t F i e l d () .

16 E v a l u a t e F i e l d (0 . 0m, 1 . 0m, 0 . 0 1m,

i n t e r p o l a t i o n) . Va lue s . ToArray ()

17) ;

18 }

19

20 [TestMethod]

21 pu b l i c vo id TestKRDWithLoanAndRepayment ()

22 {

23 I In t e rna lMeasureAN loan = new

DiracMeasureAN (2 0 1 5 . 2m, 1 . 0) ;

24 I In t e rna lMeasureAN repaymen tPa t t e rn = new

TruncatedMeasureAN

25 (2m, new ConstantMeasureAN (0 . 2 5) , 6m) ;

26

27 As s e r t . AreEqua l

28 (

29 1 1 . 0 ,

30 new Equa t ion (new Subs t rac t ionMeasureAN (

loan , new ConvolutionMeasureAN

31 (r epaymen tPa t t e rn , l o an)) , 0m) . G e t F i e l d () .

E v a l u a t e F i e l d (2014m, 2024m,

32 0 . 1m, i n t e r p o l a t i o n) . Va lue s . ToArray ()

33) ;

34 }

35

36 [TestMethod]

37 pu b l i c vo id TestKRDWithLoanAndRepayment2 ()

38 {

39 I In t e rna lMeasureAN loan = new SumMeasureAN

(new DiracMeasureAN

40 (2 0 1 5 . 2m, 1 . 0) , new DiracMeasureAN (2 0 1 6 . 3m

, 2 . 0)) ;

41 I In t e rna lMeasureAN repaymen tPa t t e rn = new

TruncatedMeasureAN

42 (2m, new ConstantMeasureAN (0 . 2 5) , 6m) ;

43

44 As s e r t . AreEqua l

45 (

46 1 1 . 0 ,

47 new Equa t ion (new Subs t rac t ionMeasureAN (

loan , new ConvolutionMeasureAN

48 (r epaymen tPa t t e rn , l o an)) , 0m) . G e t F i e l d () .

E v a l u a t e F i e l d (2014m, 2024m,

49 0 . 1m, i n t e r p o l a t i o n) . Va lue s . ToArray ()

50) ;

51 }

Listing 7 The equation modeling Current Debt Field in low level.

unit tests concerning the Quadratic field are structured into

three tests, TestFieldQuadraticIsZero(), TestFieldQuadratic(), and

TestFieldQuadraticRandom(). The first aims to evaluate the field

when the three coefficients are null. However, the second consists

of testing the field when the coefficients are not null. The last leads

to selecting these values randomly and independently. The rest of

the tests follow the same issues. The performances are guided by a

fitness validation that estimates how the coverage results converge

for each configuration to its optimality. This optimization concerns

the size of the resulting test suite in terms of the number of lines of

code and unit tests. Note that without increasing the test suite size,

our experiments state that the function coverage suite may grow up

to 97% tested code.

We will describe hereafter in the end how to solve the ordinary

differential equation, see Equations 61–63. This equation relates the

Current Debt Field KRD to others measures as κ̃E and ρ̃K. Various

rapid implementations of interpolation operators applied at field,

constant, linear, and quadratic are presented. The code snippets in

Listing 7 test the solved equation in unit testing by comparison.

Note that the constant interpolation is set to interpolate the field

KRD. We can check the method output numerically for three

testing purposes and then call the routine subjected to satisfy the

computation case. The first test is designed when all involved

measures are null, which leads to a comparison with the resulting

null field. The second in the middle shows the action of Loan

Measure κ̃E which is Dirac mass having the total mass located in

2015.2 on truncated measure pattern ρ̃K. This pattern is one piece

consisting of a borrowing amount of 0.25 on the period time [2, 6].

When these measures are provided and evaluated between 2014

and 2024, our API computes the field KRD. The last is tested Loan

Measure κ̃E which is a sum of two Dirac masses. The first Dirac

mass is of mass one at a time 2015.2, and the second one is of

mass 2 at time 2016.3. Over the same time period, the field KRD

is expressed in a monetary amount within 11.

5.5 Computing the convex hull of
measures

In this part, we study a practical algorithm for computing an

approximate convex hull of some measures. The convex hull of a

point set is defined to be the smallest convex set containing these

points. Because all ourmeasures are compacted support, the convex

hull is used to compute the interval that convolution operator

should be discretized.Many aspects of computing convex hulls have

been discussed in the literature (Seidel, 2017; Alshamrani et al.,

2020; Knueven et al., 2022). A novel pruning-based approach is

presented in Masnadi and LaViola (2020) and Keith et al. (2022)

for finding the convex hull using parallel algorithms. Our proposal

approach is simply based on calculating the final convex hull using

the loading extreme points. These points are determined by the

maximum and minimum approach. Assuming that the support of

measure f̃ can be written as a finite union of two-by-two disjoint

closed interval ([ai, bi])0≤i≤n. In which n is an integer, and each

interval [ai, bi] should not be reduced to an empty singleton.

Formally,

Supp(f̃) =

n
⋃

i=0

{x ∈ [ai, bi], ai ≤ bi, f (x) 6= 0}. (26)

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

Then, the convex hull of this support is given by,

CV(Supp(f̃)) = [min
0≤i≤n

ai, max
0≤i≤n

bi]. (27)

Wewould like to illustrate formula (Equation 27) in case of sum

measure described in the next section. This measure is the sum

of two Dirac measures. The first Dirac is of mass m1 localized at

time p1, and the second Dirac is of mass m2 localized at time p2.

Assuming that masses m1 and m2 are not null, such that locations

p1 and p2 satisfy the condition (Equation 33). This approach

is implemented using the method IsCompactSupported for

various measures in the API and yields in this situation,

Supp(f̃) = {p1} ∪ {p2}, CV(Supp(f̃)) = [p1, p2]. (28)

The purpose now is to maintain some actions and dualities

concerning the implementation to provide much resilience in the

API. The theory of integration of a piecewise continuous function

with respect to the Dirac measure is very complex and undefined.

Denoting by δp the Dirac measure is localized at point p, which

can be interpreted in the framework as the concentrated action

or payment. For instance, integrating the continuous piecewise

function 1]−∞,p] or 1[p,+∞[, which are fields with respect to the

Dirac measure δp,

∫ +∞

−∞

1]−∞,p] dδp(x) or

∫ +∞

−∞

1[p,+∞[dδp(x), (29)

yields to an undetermined value. Nevertheless,
∫ +∞
−∞

dδp(x) could

be computed and equal to 1. This is due to the difficulty for

reporting the dual of vector space of continuous piecewise function

with a finite number of pieces, continuous with superior values.

Furthermore, the action of Dirac measure δp on fields] − ∞, p]

and [p,+∞[, the product of the same measure δp by these fields, is

also undefined. The Interest Payment Measure ρ̃I is related to the

Current Debt FieldKRD which is a function that, at any time t, gives

the capital amount still to be repaid by a proportionality relation,

that is, ρ̃I = α̃KRD(t), in which α̃ is the loan rate measure. Given

a regular function φ, and according to these invoked numerical

problems, the value of these actions should be defined consistently

with making a choice about Dirac measure δp given as,

< δp,φ >= lim
x→p+

φ(x). (30)

Relation (Equation 30) makes consistently acting Dirac

measure δp on a set of fields.

The method IsCompactSupported defined in each class of

low layer has been briefly introduced before. It is aimed in

computing the convex hull for each measure according to equality

(Equation 27). The code fragments (Listings 8, 9) indicate the

extracted source programs from class definitions Dirac-Piecewise

measures to implement this method. The Dirac measure presents a

particular case to follow this definition. When the Dirac mass is not

null, the support is reduced to its location. Then, the convex hull

of the location point is enlarged to define an interval containing

this location.

1 pu b l i c o v e r r i d e boo l I sCompac tSuppor ted (out I n t e r v a l

i n t e r v a l)

2 {

3 i f (Mass == 0)

4 {

5 i n t e r v a l = new I n t e r v a l () ;

6 }

7 e l s e

8 {

9 i n t e r v a l = new I n t e r v a l (Loca t i on , Lo c a t i on) ;

10 }

11 r e t u r n t r u e ;

12 }

Listing 8 The convex hull of Dirac measure in low level.

1 pu b l i c o v e r r i d e boo l I sCompac tSuppor ted (out I n t e r v a l

i n t e r v a l)

2 {

3 boo l i sCompac tSuppor ted ;

4 i f (f r o n t i e r s . Any ())

5 {

6 I n t e r v a l l e f t I n t e r v a l ;

7 I n t e r v a l r i g h t I n t e r v a l ;

8 boo l f i r s t I s S u p p o r t e d = measures . F i r s t () .

I sCompac tSuppor ted (out l e f t I n t e r v a l) ;

9 boo l l a s t I s S u p p o r t e d = measures . L a s t () .

I sCompac tSuppor ted (out r i g h t I n t e r v a l) ;

10

11 i sCompac tSuppor ted = f i r s t I s S u p p o r t e d &&

l a s t I s S u p p o r t e d ;

12 i f (i sCompac tSuppor ted)

13 {

14 i n t e r v a l = new I n t e r v a l (f r o n t i e r s . F i r s t () ,

f r o n t i e r s . L a s t ()) .

15 Union (l e f t I n t e r v a l) . Union (r i g h t I n t e r v a l) ;

16 }

17 e l s e

18 {

19 i n t e r v a l = n u l l ;

20 }

21 }

22 e l s e

23 {

24 i sCompac tSuppor ted = measures . F i r s t () .

I sCompac tSuppor ted (out i n t e r v a l) ;

25 }

26 r e t u r n i sCompac tSuppor ted ;

27 }

Listing 9 The convex hull of piecewise measure in low level.

5.6 Performances

After describing the design and implementation of our API

library, we will provide an example of its use and evaluate

its performance. Note that depending on the adequate number

of threads, however, the library can be currently executed

only on some tasks in parallel and the rest sequentially. The

convenience of choosing this structured parallelism consists of

that implementation has many freedom parameters in selecting

the most efficient scheduling that processes all tasks in the

most brilliant way possible. Given the continuous improvements,

the API is executed on threads using the TPL library. This

makes it easy to take advantage of potential parallelism. Let us

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 10

Relative speedup of standard benchmarks from the convolution operator via Math.NET Numerics, given as a function of the number of processors.

The tests were run on a 8-socket dual-core Intel Xeon machine with 4Gb memory Windows.

compare the performance of the convolution operator in which

the code fragments (Listing 4) show shortly a fairly sophisticated

implementation. Figure 10 exhibits the relative speedup obtained

on a sixty-four-core machine relative to running in parallel with

the convolution block. In this experiment, we vary the number of

processors from 1, 4, 8, 16, 32, to 64 to investigate the method’s

speed (Guo et al., 2023; Prichard and Strasser, 2024; Schryen, 2024).

Then, we will compare how each method with and without TPL

is performed in terms of speed with varying processor sizes. The

presented benchmarks illustrate significant speedup, presenting

the performance benefit, including runtime. The data structures

explicitly take the convoluted properties need more resources for

memory models. This was able to achieve great speedup when

a number of feature maps are of considerable size. When this

number is large, the modern convolutional networks using FFT

are accelerated by significant factor of speedup (Cheng et al., 2023;

Wang et al., 2023), as expected in Figure 10. In TPL, the particular

pattern is captured by Invoke to launch the computed convolution

using several parallel operations. We see that parallelism parts

are dominant, and the speedups are important until they are

four times faster on eight processors. The Fourier Transform

via the Math.NET Numerics library demonstrates that TPL can

offer performance advantages relative to our environment and

application (Lin et al., 2020; Huang et al., 2021).

In addition using the Math.NET Numerics library in task

parallelism, it contains various distribution properties to evaluate

functions. A probability distribution can be parametrized as a

normal distribution in terms of mean and standard deviation. The

library has its own implementation of the normal distribution that

we have used in the API to evaluate it. It is known that it is more

stable and faster to compute. We need to implement the normal

distribution to define another scenario of continuous data as loan

or reimbursement as it is involved in the convolution operator

shown in Figure 20.

1 impor t sympy a s sp

2 impor t t ime

3 sp . i n i t _ p r i n t i n g (t r u e)

4 x = sp . Symbol (" x ")

5 Dirac = sp . D i r a cDe l t a (x)

6 s t a r t _ t i m e = t ime . t ime ()

7 v a l u e = Di r a c . i n t e g r a t e ((x , −1000000 , 1000000))

8 t ime_ t ak en = (t ime . t ime () − s t a r t _ t i m e)

Listing 10 Dirac measure via Sympy.

Continuing in correlating the performance of the API with

several other commonly used integration function libraries, and

find that it achieves competitive performance across a range of

tasks. Computational efficiency is a primary objective for the

API. There are various libraries available for evaluating numerical

integrals (Shaw and Hill, 2021; Kundu and Makri, 2023; Schmitt

et al., 2023). This evaluation also concerns discontinuous integral

functions via Quad, Trapz, and Simps packages (Weiss and

Klose, 2021; Dumka et al., 2022; Tehrani et al., 2024). Note that the

Python programming language remains an excellent environment

for providing the integration routine to maintain an appropriate

level of performance. These packages contain techniques that allow

the estimation of definite and indefinite integrals. There are also

fairly sophisticated modules as Sympy that helps solve complex

mathematical expressions such as differentiation and integration

to estimate the values of such empirical functions (Cywiak and

Cywiak, 2021; Steele and Grimm, 2024). Again, this package

permits for mathematical manipulations of symbols specified by

the user The Dirac function is one of them. The code snippets

in Listing 10 illustrate the integration process using the package

Sympy. The first step implies importing the package.

The Dirac function can be defined mathematically as the

limit of a sequence of functions, within Lambda instruction, or

function definition, that is, rectangular or density functions with

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 11

Representation of Dirac measure via Python.

the width ǫ and height 1
ǫ
such that the area is unity as depicted in

Figure 11. This figure is run using Python programming language

and shared in two diagrams. The left exhibits the approximation

representation of the Dirac measure in a rectangle form. The

right illustrates this approximation via the Gaussian distribution

function with a slightly large peak value. These diagrams are

generated using the Python interface. For instance, the Dirac

measure can be numerically integrated by calling the module Quad

through Scipy.integrate. This predefined function is based

on using a technique from the Fortran library QUADPACK. The

code snippets in Listing 11 show the integration approach to use

this accessible package.

1 impor t numpy a s np

2 impor t m a t p l o t l i b . p y p l o t a s p l t

3 from s c i p y . i n t e g r a t e impor t quad

4 de f d e l t a (x , eps) :

5 r e t u r n 1 . 0 / (2 . 0 ∗ eps ∗np . cosh (x / eps) ∗∗2)

6 d e l t a =np . v e c t o r i z e (d e l t a)

7 v a l u e =quad (d e l t a (xp , eps) , xp)

Listing 11 Dirac measure via Quad.

An integration test is run to demonstrate the effectiveness of

performance and productivity as depicted in Table 2. It shows the

execution time performed to obtain the discrete values from the

Dirac measure. The purpose is to compare the performance gains

in time by evaluating the discrete Dirac measure mapping from

inferior bound to superior bound using our API against the invoked

libraries. In this test, the API is executed rapidly in 0.134 s with

a large number of iterations in time. The output is stored as the

task object containing these discrete values. This is an efficient

strategy using the proposed approach, which is justified as follows:

The reason consists of using patches of conditional statements such

as the implemented method IsCompactSupported, presented in

the code Listing 11. The aim is to keep the mass or zero without

approximation as some core libraries use it.

This test is extended to using other functionalities in Python

to compare with the improving API method. There is a Heaviside

function in Python (see the code Listing 12), which is similarly

defined as a piecewise measure with one frontier in our API. Here,

the Heaviside function is defined explicitly in the code before the

numerical calculation and can be built into Sympy and Numpy.

The approximation to the Heaviside function is used enormously

in biochemistry and neuroscience (Andreev et al., 2021; Zhou

et al., 2023). The Scipy module also provides convolve2d

function, which computes the convolution operator of two NumPy

arrays. The convolution via this package is considered one of

the mathematical operations widely used in signal processing to

model two signals to produce a resulting signal. The benchmarking

processing time is described in the half-right of Table 2 in which the

time usage is recorded. This benchmark is the suite of preliminary

tests involving analyzing the standard routines. It compares two

commonly used programming languages under two different

operating systems. There is evidence of a faster operating system

implemented in C# for large discrete-time numbers. It proves that

the implementations in C# with respect to Python are the fastest

and use the least memory.

Consequently, the API offers good capabilities and powerful

tools for analyzing and simulating real-world phenomena in

financial engineering (Farimani et al., 2022; Li et al., 2022). It allows

for providing numerical solutions to the continuous framework to

gain valuable insights, time, and forecasting decisions.

6 Implementation of measures and
fields

This section is devoted to implementing two categories of

measures: simple and composed. The explicit integration of

some simple measures is provided. The integration of composed

measures can be expressed explicitly in terms of the integration

of simple ones. The simple measure is a collection of measures

such as the constant, affine, quadratic, polynomial, exponential, and

Dirac. It can be absolutely continuous with respect to Lebesgue

measure λLebesgue or cannot be absolutely continuous with respect

to the Lebesgue measure λLebesgue as Dirac measure. For instance,

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

Table 2 Evaluation of Dirac, piecewise, and convolution measures with comparison between various libraries in execution time.

Iteration number Sympy(s) Simps(s) API(s) Heaviside(s) API(s) convolve2d(s) API(s)

1 0.02667 0.00048 0.00009 0.00035 0.00034 0.0167 0.0163

1.000.000 2.236 0.356 0.134 0.21 0.18 1.224 1.003

the constant measure is created to borrow uniformly over a time

interval. The constant densitymConstant is defined which is equal to

a real C independently of variable time t

∀t ∈ R,mConstant(t) = C. (31)

Since the constant measure m̃Constant is absolutely continuous

with respect to Lebesgue measure λLebesgue, it can be written in the

following form:

1 from s c i p y . i n t e g r a t e impor t quad

2 impor t numpy a s np

3 Heav i s i d e 1 = lambda x : 1 . i f x == 0 e l s e 0 i f x < 0

e l s e 1

4 Heav i s i d e 2 = np . h e a v i s i d e (0 . , 1 .)

5 v a l u e = quad (h e a v i s i d e 1 , 1 , 10)

Listing 12 Heaviside function via Quad.

m̃Constant = mConstant(t)× λLebesgue. (32)

The integration of the constant measure m̃Constant (defined by

relation Equation 32) between inferior bound a and superior bound

b returns C×(b−a). The table in Appendix A shows the integration

of some simple measures. There are other cathegory of measures,

named composed measures that contituting with simple or another

composed measure such as sum, product, piecewise, truncated,

and convolution. Concerning the sum measure, we would like to

compute the sum m of two Dirac measures m1 and m2. The sum

measure is created to compute the borrowed or paid amount of a

sum of two measures over a time interval. They can be interpreted

as localized actions at respective positions p1 and p2 with amounts

M1 and M2, that is, m1 = M1δp1 ,m2 = M2δp2 . These locations p1
et p2 should satisfy,

a ≤ p1 < p2 < b. (33)

There are two approaches to compute the integration sum m

between a and b. The first one focuses on the fact that points

p1 and p2 belongs to interval [a, b[. The second one consists of

using Chasles relation at point c. Finally, the computation result

is the same quantity that is equal to M1 + M2. The integration

of sum m of two measures m1 et m2 between inferior bound a

and superior bound b returns a sum of two values. The first value

is the integration of measure m1 between inferior bound a and

superior bound b. The second value is the integration of measure

m2 between inferior bound a and superior bound b. Algorithm 1

is proposed and implemented to discretize the sum m of two non-

discrete measures m1 and m2 in low level between inferior bound

a and superior bound b is described as follows. It leads to compute

input: Measures m1 and m2, inferior bound a and

superior bound b

output: Discrete measure (m(na + j− 1))1≤j≤N b
a

• Discretize measure m1 between points xa and xb of

universal mesh DASTdM to get discrete measure

(m1(na + j− 1))1≤j≤N b
a
;

• Discretize measure m2 between points xa and xb of

universal mesh DASTdM to get discrete measure

(m2(na + j− 1))1≤j≤N b
a
;

• Using equality (Equation 34) to get discrete

measure (m(na + j− 1))1≤j≤N b
a
;

return (m(na + j− 1))1≤j≤N b
a
;

Algorithm 1. Computation discrete measure sum.

the combination of two discrete measures (m1(na + j− 1))1≤j≤N b
a

and (m2(na + j − 1))1≤j≤N b
a
defined on the same universal mesh

DASTdM as a discrete measuresm(na+ j− 1) ofN b
a values given by

following equality:

∀j ∈ [[1;N b
a]],m(na + j− 1) = m1(na + j− 1)+m2(na + j− 1).

(34)

In what follows, the product measure is built for reasons of

nature software production and to enrich the collection measure in

the software tool. Figure 12 shows the resulting class diagram from

the product measure. The tool is useful to display its data structure

as methods and relationships and highlight process from this class.

This measure is not used at the moment. In addition, some product

operations are prohibited, as the product of two Dirac measures

that have no sense in measure theory. The aim here is to express

the product of two discrete measures and its integration. Thus,

the product of two discrete measures (m1(na + j − 1))1≤j≤N b
a
and

(m2(na + j − 1))1≤j≤N b
a
defined on the same universal mesh is

discrete measurem(na + j− 1) ofN b
a values given by,

∀j ∈ [[1;N b
a]],m(na + j− 1) =

m1(na + j− 1)×m2(na + j− 1)

TdM
.

(35)

The integration of discrete measure (m(na + j − 1))1≤j≤N b
a

defined in relation (Equation 35) between inferior bound a and

superior bound b is the sum of all values (m(na + j− 1))1≤j≤N b
a

j=N b
a

∑

j=1

m(na + j− 1). (36)

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

A B

FIGURE 12

(A, B) Design, respectively, the class diagram of the product measure m̃ in low and high layers.

The consistency of relation (Equation 35) is illustrated by giving

an example. This example consists in computing the discrete

product of two discrete measures defined on the same universal

mesh DASTdM . The first discrete measure (m1(na+ j−1))1≤j≤N b
a
is

defined by the discretization of constant measure with the constant

C1, between inferior bound xa and superior bound xb with discrete

step TdM,

∀j ∈ [[1;N b
a]],m1(na + j− 1) = C1 × TdM, (37)

and the second discrete measure (m2(na + j− 1))1≤j≤N b
a
is defined

by the discretization of constant measure with the constant C2,

between inferior bound xa and superior bound xb with discrete step

TdM

∀j ∈ [[1;N b
a]],m2(na + j− 1) = C2 × TdM. (38)

Next, relation (Equation 35) is used for computing discrete

product (m(na + j− 1))1≤j≤N b
a
to obtain:

∀j ∈ [[1;N b
a]],m(na + j− 1) = C1 × C2 × TdM. (39)

On the other hand, if the constant measure equals to C1 ×

C2 is discretized between two points xa and xb of universal

mesh DASTdM , then the same discrete value defined in relation

(Equation 39) is obtained. Thus, the consistenty of the expression

(Equation 35) is achieved. The integration of product measure at

the high level is summarized in Algorithm 2.

To reinforce the financial framework, a piecewise measure is

defined by multiple sub-measuress, where each one applies to a

different interval. The piecewise measure m̃Piecewise that its class

diagram shown in Figure 13 is one of the two constructionmethods

defined from,

• a real Fr0 allowing to generate measures m0 and m1,

respectively, on intervals] − ∞, Fr0] and [Fr0,+∞[. Formally,

measure m̃Piecewise presented in Figure 14 is a piecewise measure

on R, if and only if,

∃Fr0 ∈ R, such that: m̃Piecewise |]−∞,Fr0]= m0,

input: Measures m1 and m2, inferior bound a and

superior bound b

output: Integration value v

• Compute discrete step TdM from minimal

observation step Tmin with relation (Equation 14);

• Descretize measure m1 between two points xa and xb

of universel mesh DASTdM to get discrete measure

(m1(na + j− 1))1≤j≤N b
a
;

• Descretize measure m2 between two points xa and xb

of universel mesh DASTdM to get discrete measure

(m2(na + j− 1))1≤j≤N b
a
;

• Compute with equality (Equation 35) discrete

product measure (m(na + j− 1))1≤j≤N b
a
;

• Integrate discrete measure (m(na + j− 1))1≤j≤N b
a
using

relation (Equation 36) to obtain v;

return v;

Algorithm 2. Integration algorithm of product m of two measures

m1 andm2 in high level.

m̃Piecewise |[Fr0 ,+∞[= m1,

where m0 and m1 are any measures. (40)

• a subdivision (Fr0, Fr1, . . . , Frn) of n + 2 intervals allow

to generate the measure mi on each closed interval [Fri−1, Fri]

for i from 1 to n and to generate both measures m0 and mn+1,

respectively, on the two intervals] − ∞, Fr0] and [Frn,+∞[.

Formally, measure m̃Piecewise presented in Figure 15 is a piecewise

measure on R, if and only if,

∃(Fr0, Fr1, . . . , Frn), Fr0 < Fr1 < · · · < Frn such that:

∀i ∈ {1, 2, . . . , n}

m̃Piecewise |]−∞,Fr0]= m0, m̃Piecewise |[Fri−1 ,Fri]= mi,

m̃Piecewise |[Frn ,+∞[= mn+1,

where m0, mi and mn+1 are any measures. (41)

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 13

Class diagram of the piecewise measure m̃Piecewise in two levels.

FIGURE 14

Piecewise measure m̃Piecewise is composed of measures m0, m1, and

frontier Fr0.

Algorithm 3 depicts the integration of piecewise measure

m̃Piecewise defined in relation (Equation 40).

In order to integrate the piecewise measure m̃Piecewise defined

in relation (Equation 41) between inferior bound a and superior

bound b, the index p and q are defined, respectively, by the

indicators for first and last measures of (mi)0≤i≤n+1 to be

integrated. These index p et q are determined by dichotomy search.

By considering l ∈ [[1; n]], index p, q ∈ [[0; n+1]] are defined using

a list of frontiers (Fri)0≤i≤n as:

p =











0 if a < Fr0,

l if Frl−1 ≤ a < Frl,

n+ 1 if Frn ≤ a.

(42)

q =











0 if b ≤ Fr0,

l if Frl−1 < b ≤ Frl,

n+ 1 if Frn < b.

(43)

It is necessary to define variables a⋆ and b⋆ in order to integrate

generally the piecewise measure m̃Piecewise. The variable a⋆ means

the superior integration bound of measure mp. If a < Frn, then a⋆
is equal to the inferior value of Frp and b, and if Frn ≤ a, then a⋆ is

equal to b. Formally, variable a⋆ is defined as:

a⋆ =

{

inf{Frp, b} if a < Frn,

b if Frn ≤ a.
(44)

The variable b⋆ signifies the inferior integration bound of

measure mq. Similary, if Fr0 < b, then b⋆ is equal to the superior

value of Frq−1 and of a, and if b ≤ Fr0, then b⋆ is equal to a.

Formally, variable b⋆ is defined as:

b⋆ =

{

sup{Frq−1, a} if Fr0 < b,

a if b ≤ Fr0.
(45)

Moreover, the quantities q1, q2, and q3 are defined as follows.

The quantity q1 is the integration of measure mp between inferior

bound a and superior bound a⋆,

q1 =

∫ a⋆

a
mp. (46)

The quantity q2 is the sum of integration of measure mi+1

between inferior bound Fri and superior bound Fri+1 for i from

p to q− 2:

q2 =

i=q−2
∑

i=p

∫ Fri+1

Fri

mi+1. (47)

The quantity q3 is the integration of measure mq between

inferior bound b⋆ and superior bound b:

q3 =

∫ b

b⋆

mq. (48)

Algorithm 4 incorporates the integration method of piecewise

measure m̃Piecewise defined in relation (Equation 41).

Another mathematical measure appended to the API is the

truncated measure m̃Truncated. Figure 16 illustrates the ability to

examine the entities and their relationships in the API from the

truncated measure, which is one of the three construction methods

defined from,

• a subdivision (Fr0, Fr1) of three intervals allowing to generate

the measure m1 and null measures m0 and m2, respectively, on

intervals [Fr0, Fr1] and] −∞, Fr0], [Fr1,+∞[. Formally, measure

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 15

Piecewise measure m̃Piecewise is composed with a list of measures (mi)0≤i≤n+1 and of a list of frontiers (Fri)0≤i≤n.

input: Measures m0 and m1, frontier Fr0, inferior

bound a and superior bound b

output: Integration value v

if b ≤ Fr0 then
v is the integration of measure m0 between

inferior bound a and superior bound b;

else if Fr0 ≤ a then
v is the integration of measure m1 between

inferior bound a and superior bound b;

else
v is the sum of two quantities, where the

first quantity is the integration of measure

m0 between inferior bound a and superior

bound Fr0, and the second quantity is the

integration of measure m1 between inferior

bound Fr0 and superior bound b;
return v;

Algorithm 3. Integration algorithm of piecewise measure m̃Piecewise

defined in relation (Equation 40).

input: List of measures (mi)0≤i≤n+1, list of

frontiers (Fri)0≤i≤n, inferior bound a and

superior bound b

output: Integration value v

if p = q then
v← q1;

else if p = q− 1 then
v← q1 + q3;

else
v← q1 + q2 + q3;

return v;

Algorithm 4. Integration algorithm of piecewise measure m̃Piecewise

defined in relation (Equation 41).

m̃Truncated shown in Figure 17 is a truncated measure on R, if and

only if,

∃(Fr0, Fr1), Fr0 < Fr1

such that: m̃Truncated |]−∞,Fr0]= m0,

m̃Truncated |[Fr0 ,Fr1]= m1,

m̃Truncated |[Fr1 ,+∞[= m2, where

m0, and m2

are null measures and m1 is any measure. (49)

• a real Fr0 allowing to generate the null measure m0 and the

measure m1 on intervals] − ∞, Fr0] and [Fr0,+∞[, respectively.

In other words, measure m̃Truncated illustrated in Figure 18 is a

truncated measure on R, if and only if,

∃Fr0 ∈ R, such that: m̃Truncated |]−∞,Fr0]= m0,

m̃Truncated |[Fr0 ,+∞[= m1,

where m0 is null measure andm1 is any measure. (50)

• a real Fr1 allowing to generate the measures m1 and m2 on

intervals] −∞, Fr1] and [Fr1,+∞[, respectively. In other words,

measure m̃Truncated presented in Figure 19 is a truncated measure

on R, if and only if,

∃Fr1 ∈ R such that: m̃Truncated |]−∞,Fr1]= m1,

m̃Truncated |[Fr1 ,+∞[= m2,

where m1 is any measure and m2 is null measure. (51)

Note that the truncated measure m̃Truncated is created for

instance to calculate the amount borrowed over a time interval

from a truncated and restricted loan over time intervals.

Algorithms 5–7 illustrate the integration of this measure defined,

respectively, in relations (Equations 48, 49) between inferior bound

a and superior bound b.

The tabulatedmeasure is created for three reasons. The first one

is to translate an array of values into a discrete measure. The second

one is to compute the convolution measure. Finally, the last one is

to generate a discrete measure in low level to transfer it to the high

level. The aim is to build a tabulated measure m̃Tabulated between

inferior value VI and superior bound VS strictly superior than VI

with a set of n values (li)0≤i≤n−1. A tabulation step Ttab is used to

share values (li)0≤i≤n−1 between VI and VS, defined by:

Ttab =
VS − VI

n
. (52)

The tabulated measure m̃Tabulated is a construction method

defined from a subdivision (Fr0, Fr1, . . . , Frn) given by following

frontiers:

∀i ∈ [[0; n]], Fri = VI + i× Ttab,

permitting to generate the constant densitymj+1 on each closed

interval [Frj, Frj+1] for j from 0 to n − 1, and to generate both null

densities m0 and mn+1, respectively, on intervals] − ∞, Fr0] and

[Frn,+∞[.

To integrate the tabulated measure m̃Tabulated explicitly between

inferior bound a and superior bound b, index p and q given,

respectively, in relations (Equations 41, 42) are used. Indeed, the

measure m̃Tabulated is constituted with null densities m0 and mn+1.

Algorithm 8 summarizes its implementation.

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

FIGURE 16

Class diagram of the truncated measure m̃Truncated.

FIGURE 17

Truncated measure m̃Truncated is composed of measure m1, null

measures m0 and m2, and frontiers Fr0 and Fr1.

FIGURE 18

Truncated measure m̃Truncated is composed of null measure m0,

measure m1, and frontier Fr0.

FIGURE 19

Truncated measure m̃Truncated is composed of measure m1, null

measure m2, and frontier Fr1.

The discrete convolution is a fundamental operation in the

financial model. It is imperative to implement it in order to

compute repayment amount with the aid of the Fast Fourier

Transform (FFT) method. We refer to articles (Liang et al., 2019;

Zlateski et al., 2019) which deal with how FFT can efficiently

compute convolution. An algorithm based on convolution theorem

stated in Zlateski et al. (2019) was performed using Fourier

transforms with much fewer operations. Article Liang et al.

(2019) designs its efficient computation with highly optimized

FFT implementation.

We have investigated two approaches to compute the discrete

convolution. Assuming certain regularity on the proposal measures

κ̃E and ρ̃K. The first approach consists of applying directly

the Fourier convolution operator F and its inverse to equality

(Equation 5) without change of coordinates, which becomes,

ρ̃K = F
−1(F(κ̃E) • F(γ̃)).

The objective of the second approach is to express the

convolution product defined in Equation 5 in term of convolution

product of two functions defined on the interval [0, 1]. Assuming

that the convex hull of the supported measures κ̃E and γ̃ are,

respectively, intervals [a, b] and [c, d], as presented in Figure 20.

Then, the predicted convex hull generated by the class convolution

κ̃E ⋆ γ̃ is a closed interval contained in [a+ c, b+d]. This is read as,

CV(κ̃E) = [a, b], CV(γ̃) = [c, d] H⇒ CV(κ̃E ⋆ γ̃) ⊂ [a+ c, b+ d].

Defining the function κTE by the translated function of κE, that

is, κTE (y) = κE(y− c+ a), then, the convex hull of the density κTE is

the interval [c, e], where e = c + (b − a). By making the following

change of variable Y = y+ c− a, we will obtain,

κE ⋆ γ (x) = κ
T
E ⋆ γ (x+ c− a).

Defining the functions κ
0,1
E and γ 0,1 by the respective

contracted functions of κTE and γ on the interval [0, 1],

κ
0,1
E (x) = κTE ((max(e, d)− c)x+ c), γ 0,1(x) = γ ((max(e, d)− c)x+ c).

(53)

Next, making the following change of variable z =
y−c

max(e,d)−c
in

the integral operator, we can prove that,

κE ⋆ γ (x) = (max(e, d)− c)× κ0,1E ⋆ γ 0,1

(

x− c− a

max(e, d)− c

)

.

The first approach does not require a change of coordinates.

Exploring the second approach remains interesting. A study

investigating the comparison of the time computation between

Frontiers inComputer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

input: Measures m0, m1 and m2, frontiers Fr0 and

Fr1, inferior bound a and superior bound b

output: Integration value v

if a < Fr0 < Fr1 < b then
v is the integration of measure m1 between

inferior bound Fr0 and superior bound Fr1;

else if Fr0 ≤ a < b ≤ Fr1 then
v is the integration of measure m1 between

inferior bound a and superior bound b;

else if Fr0 ≤ a < Fr1 < b then
v is the integration of measure m1 between

inferior bound a and superior bound Fr1;

else if a < Fr0 < b ≤ Fr1 then
v is the integration of measure m1 between

inferior bound Fr0 and superior bound b;

else
v is zero;

return v;

Algorithm 5. Integration algorithm of truncated measure m̃Truncated

defined in relation (Equation 49).

input: Measures m0 and m1, frontier Fr0, inferior

bound a and superior bound b

output: Integration value v

if a < Fr0 < b then
v is the integration of measure m1 between

inferior bound Fr0 and superior bound b;

else if Fr0 ≤ a then
v is the integration of measure m1 between

inferior bound a and superior bound b;

else
v is zero;

return v;

Algorithm 6. Integration algorithm of truncated measure m̃Truncated

defined in relation (Equation 50).

these two approaches demonstrated that the first approach is more

efficient than the second one. Determining the convex hull of the

support from discrete measures is a necessary step in the computed

convolution. The next step is to complete these discrete measures

by zero such that they have N smallest values, where N is a

power of two. Then, the computed vector defined by element-wise

multiplication is also requested. Finally, constructing the tabulated

measure from this vector and discretizing it is crucial in evaluating

the repayment amount.

The field is defined as a continuous function by superior value.

Fields are shared in two categories which are simple and composed.

The purpose is to provide them definitions and how they are

evaluated in high level at point. The discretization of non-discrete

fields in low level is based on the evaluation. A simple field can

be constant, affine, quadratic, polynomial, exponential, etc. For

instance, the constant field is created in order to compute the

borrowed amount at a given instant where the loan is a constant

function. The constant field FConstant is defined as the function that

is equal to C independently of variable time t,

input: Measures m1 and m2, frontier Fr1, inferior

bound a and superior bound b

output: Integration value v

if a < Fr1 < b then
v is the integration of measure m1 between

inferior bound a and superior bound Fr1;

else if b ≤ Fr1 then
v is the integration of measure m1 between

inferior bound a and superior bound b;

else
v is zero;

return v;

Algorithm 7. Integration algorithm of truncated measure m̃Truncated

defined in relation (Equation 51).

∀t ∈ R, FConstant(t) = C. (54)

The evaluation of the constant field FConstant given by

Equation 53 returns constant C. The table in Appendix B

summarizes the evaluation of some simple fields. A composed field

can be sum, product, piecewise, truncated, or other. The sum field

is built to compute the sum of two fields at the instant t. The

evaluation of the sum F of two fields F1 and F2 in high level at

instant t returns a value which is the sum of two values. The first

value is the evaluation of field F1 at time t, and the second value is

the evaluation of field F2 at time t. By the same way the product F

of two fields is implemented. They are defined as,

∀t ∈ R, F(t) = F1(t)+ F2(t), F(t) = F1(t)× F2(t). (55)

Algorithm 9 is designed for evaluating piecewise field FPiecewise,

defined from a real Fr0 allowing to generate fields F0 and F1,

respectively, on intervals] − ∞, Fr0] and [Fr0,+∞[. The field

FPiecewise is a piecewise field on R, if and only if,

∃Fr0 ∈ R, such that:

FPiecewise |]−∞,Fr0]= F0,

FPiecewise |[Fr0 ,+∞[= F1,

where F0 and

F1 are any fields. (56)

Algorithm 10 illustrates the evaluation of piecewise field

FPiecewise, determined from a subdivision (Fr0, Fr1, . . . , Frn) of n+2

intervals allowing to generate the field Fi on each closed interval

[Fri−1, Fri] for i from 1 to n and to generate both fields F0 and Fn+1,

respectively, on two intervals]−∞, Fr0] and [Frn,+∞[. The field

FPiecewise is a piecewise field on R, if and only if,

∃(Fr0, Fr1, . . . , Frn), , Fr0 < Fr1 < · · · < Frn

such that: ∀i ∈ {1, 2, . . . , n}

FPiecewise |[Fri−1 ,Fri]= Fi, FPiecewise

Frontiers inComputer Science 23 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

input: Values (li)0≤i≤n−1, inferior value VI,

superior value VS, inferior bound a and

superior bound b

output: Integration value v

if a < VI < VS < b then

v←

i=n−1
∑

i=0

li;

else if VI ≤ a < VS < b then

if Frn−1 ≤ a < VS then

v← (VS − a)×
ln−1

Ttab
;

else

v← (Frp − a)×
lp−1

Ttab
+

i=n−1
∑

i=p

li;

else if a < VI < b ≤ VS then

if VI < b ≤ Fr1 then

v← (b− VI)×
l0

Ttab
;

else

v←

i=q−2
∑

i=0

li + (b− Frq−1)×
lq−1

Ttab
;

else if VI ≤ a < b ≤ VS then

if p = q then

v← (b− a)×
lp−1

Ttab
;

else if p = q− 1 then

v← (Frp − a)×
lp−1

Ttab
+ (b− Frp)×

lp

Ttab
;

else

v← (Frp − a)×
lp−1

Ttab
+

i=q−2
∑

i=p

li + (b− Frq−1)×
lq−1

Ttab
;

else
v← 0;

return v;

Algorithm 8. Integration algorithm of tabulated measure m̃Tabulated.

|]−∞,Fr0]= F0, FPiecewise |[Frn ,+∞[= Fn+1,

where Fi, F0, Fn+1 are any fields.

Assuming that truncated field FTruncated is a construction

method defined from a subdivision (Fr0, Fr1) of 3 intervals allowing

to generate the field F1 on interval [Fr0, Fr1] and to generate both

null fields F0 and F2, respectively, on intervals] − ∞, Fr0] and

[Fr1,+∞[. Formally, field FTruncated is a truncated field onR, if and

only if,

∃(Fr0, Fr1), Fr0 < Fr1

such that: FTruncated |]−∞,Fr0]= F0,

FTruncated |[Fr0 ,Fr1]= F1,

FTruncated |[Fr1 ,+∞[= F2, where

F0 and F2 are null fields and F1 is any field. (57)

Then, Algorithm 11 depicts the evaluation of truncated field

FTruncated given by Equation 54 at instant t.

FIGURE 20

Convolution of two Gaussian distributions with variable shift to

interval [0, 1].

input: Fields F0 and F1, frontier Fr0, inferior

bound a and superior bound b

output: Evaluation value v

if t < Fr0 then
v is the evaluation of field F0 at instant t;

else
v is the evaluation of field F1 at instant t;

return v;

Algorithm 9. Evaluation algorithm of piecewise field FPiecewise

defined in relation (Equation 54).

The purpose here is to present the fast implementation of

quadtratic interpolation operator for field Fd that is improved

than the linear one. Piecewise-linear functions (Zhang et al., 2021;

Goujon et al., 2023) have been used to estimate one-dimensional

functions for generations. Then, the restriction of the field Fd is

determined at each period interval [yk, yk+2[with three key-value

pairs. The field interpolates the values FD
d
(na + k− 1), FD

d
(na + k),

and FD
d
(na + k + 1) in, respectively, points yk, yk+1, and yk+2 for

each integer k ∈ [[1;N b
a]]. The set of points yk follows the definition

Equation 10 even for fields. The discrete step TdF defined for fields

plays the same rule of discrete step TdM for measures. Formally, the

field Fd can be written in the following quadratic formula,

∀k ∈ [[1;N b
a]], ∀t ∈ [yk, yk+2[, Fd(t) = ζ t

2 + αt + β .

In which unknown variables ζ , α, and β are necessary to be

determined in terms of discrete step TdF and values (FD
d
(na + k −

1))1≤k≤N b
a+1

. This involves establishing the following system,

∀k ∈ [[1;N b
a]],











ζy2
k
+ αyk + β = FD

d
(na + k− 1),

ζy2
k+1
+ αyk+1 + β = FD

d
(na + k),

ζy2
k+2
+ αyk+2 + β = FD

d
(na + k+ 1).

(58)

Frontiers inComputer Science 24 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

input: List of fields (Fi)0≤i≤n+1, list of frontiers

(Fri)0≤i≤n, inferior bound a and superior

bound b

output: Integration value v

if t < Fr0 then
v is the evaluation of field F0 at instant t;

else if Fri ≤ t < Fri+1 then
v is the evaluation of field Fi+1 at instant t;

else if t ≥ Frn then
v is the evaluation of field Fn+1 at instant t;

return v;

Algorithm 10. Evaluation algorithm of piecewise field FPiecewise

defined in relation (Equation 54).

input: Fields F0, F1 and F2, frontiers Fr0 and Fr1,

inferior bound a and superior bound b

output: Evaluation value v

if Fr0 ≤ t < Fr1 then
v is the evaluation of field F1 at instant t;

else
v is zero;

return v;

Algorithm 11. Evaluation algorithm of truncated field FTruncated

defined in relation (Equation 57).

The equation system given by Equation 55 is reduced to double

equations to allow expressing the growth rates FD
d
(na + k + 1) −

FD
d
(na+k) and FD

d
(na+k)−FD

d
(na+k−1) in terms of coefficients

ζ and α. Formally, the coefficient ζ is determined as,

ζ =
FD
d
(na + k+ 1)− 2FD

d
(na + k)+ FD

d
(na + k− 1)

2T2
dF

. (59)

Since ζ is determined by equality (Equation 56), the growth rate

FD
d
(na + k) − FD

d
(na + k − 1) permits to find out the coefficient α

with the following expression,

α =
FD
d
(na + k)− FD

d
(na + k− 1)

TdF
− (2yk + TdF)

×

(

FD
d
(na + k+ 1)− 2FD

d
(na + k)+ FD

d
(na + k− 1)

2T2
dF

)

. (60)

Finally, to achieve the definition of the field Fd, the estimated

coefficient β is obtained by,

β = FD
d
(na + k− 1)−

FD
d
(na+k)−F

D
d
(na+k−1)

TdF

+(y2
k
+ ykTdF)

×

(

FD
d
(na+k+1)−2F

D
d
(na+k)+F

D
d
(na+k−1)

2T2
dF

)

.

After giving a brief detail about evaluating a field, we recall that

the Current Debt Field KRD is related to Loan Measure κ̃E and

Repayment Measure ρ̃K by the following partial equation:

dKRD

dt
= κE(t)− ρK(t)− ρIK(t). (61)

In which Repayment Measure ρ̃K is defined by

Equation 5, and measure ρ̃I
K

associated with density ρI
K

is the Initial Debt Repayment Plan and expresses how

current debt amount at the initial time will be repaid. The

solution of this ODE (Ordinary Differential Equation) is

expressed as,

KRD(t) = KRD(tI)+

∫ t

tI

κ̃E −

∫ t

tI

ρ̃K −

∫ t

tI

ρ̃IK. (62)

To evaluate the field KRD given by Equation 59 at an instant

t, a new method intends to compute the primitive of a measure

is implemented. This method is based on numerical approach

contained in accumulating a discrete measure to approximate it by

a piecewise function. Note that a primitive of measure md in low

level, null at point xc is a field Fd. The classical discretization of this

object field Fd is defined by discrete field (F
D
d
(na+k−1))1≤k≤N b

a+1

given by,

∀k ∈ [[1;N b
a + 1]], FDd (na + k− 1) =

∫ yk

xc

md. (63)

Three situations can be distinguished (xc < xa, xb < xc, xa ≤

xc ≤ xb) to compute the discrete field (FD
d
(na + k − 1))1≤k≤N b

a+1
.

In all these cases, the discrete field given by equality (Equation 60)

can be written as a summation of discrete measure using

Chasles relation.

7 Conclusion and future work

This study presents a comprehensive survey in which measure

theory is applied to financial modeling. This theory is needed, in

an essential way, to transform the discrete-time framework into

the continuous one. In practice, to use the standard tools of this

theory, some technical developments based on modern software

architecture are imposed. In passing, it is not easy to integrate some

fields with respect to some measures to evaluate a variety of capital,

investment, and trade received by the organizations. Another

aspect of this problem is that conceiving and implementing

algorithms in the dual vector space of continuous piecewise

function is not suitable. Within the continuous-in-time financial

framework, there was a unique API for interacting with the

SOFI solver. Making some numerical choices in this space

makes sure that the operations between measures and fields will

be ensured.

Our purpose was to produce a financial library enabling

us to test our ideas and some actions to be maintained.

The library should then be simply extendible with respect to

frameworks with variable rates set at instants of borrowing or

with varying Repayment Patterns. Particularly, high-level interfaces

modeling the layers are designed to manage the complex data

structures requested by the library components. Further to

the implementation, we have created test projects to review

implementation results and cover a significant proportion of the

code. The layered architecture design allows the implementation

of the new functional requirement sets needed for the measure

Frontiers inComputer Science 25 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

theory paradigm. Another important criterion in the design of

the API is consistency. This consistency has proven that at

least 96% of errors are not violated of constraints on classes

and objects. This performance penalty is taken into account for

production computations. Developing a commercial C# that fits

the quality requirements achieves a high maintainability API.

The implemented framework considers the defined time period

of interest only once before setting out the budget project.

However, the discrete model has drawbacks in managing it during

this period.

We have investigated one preferred way to write multithreaded

and parallel API using modern asynchronous methods built

on Task. The foundation for our parallelism is based on

the TPL library. The future work of this research includes

making the parallel API faster and more scalable. It is

essential to use parallel abstractions well when distributing

the tasks between the available threads. Treating Tasks at a

low level and migrating values to a high level is done by a

performed mechanism tool, but it requires much analysis

and optimization procedures. The data parallelism should be

controlled by performing various operations between tasks.

For instance, logical task patterns should also be separated

from physical threads into hierarch data structures. Another

challenge is facilitating locality and parallelism of tasks during

intensive computations.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

TC: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was jointly funded by MGDIS Company (http://www.mgdis.fr/)

and the LMBA (http://www.lmba-math.fr/). The funders were not

involved in the study design, collection, analysis, interpretation

of data.

Acknowledgments

The author address many thanks to the reviewers for their

helpful and valuable comments that have greatly improved

the study.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2024.1371052/full#supplementary-material

References

Alshamrani, R., Alshehri, F., and Kurdi, H. (2020). A preprocessing
technique for fast convex hull computation. Procedia Comput. Sci. 170, 317–324.
doi: 10.1016/j.procs.2020.03.046

Andreev, A. V., Maksimenko, V. A., Pisarchik, A. N., and Hramov, A. E. (2021).
Synchronization of interacted spiking neuronal networks with inhibitory coupling.
Chaos, Solitons Fract. 146:110812. doi: 10.1016/j.chaos.2021.110812

Bossen, F., Sühring, K., Wieckowski, A., and Liu, S. (2021). VVC complexity
and software implementation analysis. IEEE Trans. Circ. Syst. Video Technol. 31,
3765–3778. doi: 10.1109/TCSVT.2021.3072204

Chakkour, T. (2017a). Implementing some mathematical operators for a
continuous-in-time financial model. Eng. Math. Lett. 2017:2.

Chakkour, T. (2017b). Some notes about the continuous-in-time financial model.
Abstr. Appl. Anal. 2017:6985820. doi: 10.1155/2017/6985820

Chakkour, T. (2019). Inverse problem stability of a continuous-in-time
financial model. Acta Mathem. Scient. 39, 1423–1439. doi: 10.1007/s10473-019-0
519-5

Chakkour, T. (2022). “Numerical simulation of pipes with an abrupt contraction
using openfoam,” in Fluid Mechanics at Interfaces 2: Case Studies and Instabilities,
45–75. doi: 10.1002/9781119903000.ch3

Chakkour, T. (2023). Some inverse problem remarks of a continuous-in-time
financial model in l 1 ([ti, θ max]). Mathem. Model. Comput. 10, 864–874.
doi: 10.23939/mmc2023.03.864

Chakkour, T. (2024a). Finite element modelling of complex 3d image
data with quantification and analysis. Oxford Open Materials Sci. 4:itae003.
doi: 10.1093/oxfmat/itae003

Chakkour, T. (2024b). Parallel computation to bidimensional heat equation using
MPI/cuda and fftw package. Front. Comput. Sci. 5:1305800. doi: 10.3389/fcomp.2023.13
05800

Chakkour, T., and Frénod, E. (2016). Inverse problem
and concentration method of a continuous-in-time financial
model. Int. J. Finan. Eng. 3:1650016. doi: 10.1142/S24247863165
0016X

Chen, X., Huang, F., and Li, X. (2022). Robust asset-liability management under
CRRA utility criterion with regime switching: a continuous-time model. Stochastic
Models 38, 167–189. doi: 10.1080/15326349.2021.1985520

Cheng, J., Chen, Q., and Huang, X. (2023). An algorithm for crack detection,
segmentation, and fractal dimension estimation in low-light environments
by fusing FFT and convolutional neural network. Fractal Fract. 7:820.
doi: 10.3390/fractalfract7110820

Frontiers inComputer Science 26 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
http://www.mgdis.fr/
http://www.lmba-math.fr/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1371052/full#supplementary-material
https://doi.org/10.1016/j.procs.2020.03.046
https://doi.org/10.1016/j.chaos.2021.110812
https://doi.org/10.1109/TCSVT.2021.3072204
https://doi.org/10.1155/2017/6985820
https://doi.org/10.1007/s10473-019-0519-5
https://doi.org/10.1002/9781119903000.ch3
https://doi.org/10.23939/mmc2023.03.864
https://doi.org/10.1093/oxfmat/itae003
https://doi.org/10.3389/fcomp.2023.1305800
https://doi.org/10.1142/S242478631650016X
https://doi.org/10.1080/15326349.2021.1985520
https://doi.org/10.3390/fractalfract7110820
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

Chung, J., and Lee, J. M. (1994). A new family of explicit time integration
methods for linear and non-linear structural dynamics. Int. J. Numer. Methods Eng.
37, 3961–3976. doi: 10.1002/nme.1620372303

Cywiak, M., and Cywiak, D. (2021). “Sympy,” in Multi-Platform Graphics
Programming with Kivy: Basic Analytical Programming for 2D, 3D, and Stereoscopic
Design (Springer), 173–190. doi: 10.1007/978-1-4842-7113-1_11

Dolgov, S., Kalise, D., and Saluzzi, L. (2023). Data-driven tensor train gradient
cross approximation for hamilton-jacobi-bellman equations. SIAM J. Sci. Comput. 45,
A2153–A2184. doi: 10.1137/22M1498401

Dumka, P., Dumka, R., and Mishra, D. R. (2022). Numerical Methods using Python
(For scientists and Engineers). London: Blue Rose Publishers.

Eling, M., and Loperfido, N. (2020). New mathematical and statistical
methods for actuarial science and finance. Eur. J. Finance 26, 96–99.
doi: 10.1080/1351847X.2019.1707251

Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F., et al.
(2022). Cryptocurrency trading: a comprehensive survey. Finan. Innov. 8, 1–59.
doi: 10.1186/s40854-021-00321-6

Farimani, S. A., Jahan,M. V., Fard, A.M., and Tabbakh, S. R. K. (2022). Investigating
the informativeness of technical indicators and news sentiment in financial market
price prediction. Knowl. Based Syst. 247:108742. doi: 10.1016/j.knosys.2022.108742

Frénod, E., and Chakkour, T. (2016). A continuous-in-time financial model.
Mathem. Finance Lett. 2016, 1–36.

Gao, X., Saha, R. K., Prasad, M. R., and Roychoudhury, A. (2020). “Fuzz
testing based data augmentation to improve robustness of deep neural networks,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering,
1147–1158. doi: 10.1145/3377811.3380415

Gaston, D., Newman, C., Hansen, G., and Lebrun-Grandie, D. (2009). Moose: a
parallel computational framework for coupled systems of nonlinear equations.Nuclear
Eng. Des. 239, 1768–1778. doi: 10.1016/j.nucengdes.2009.05.021

Gilli, M., Maringer, D., and Schumann, E. (2019). Numerical
Methods and Optimization in Finance. New York: Academic Press.
doi: 10.1016/B978-0-12-815065-8.00022-4

Golmohammadi, A., Zhang, M., and Arcuri, A. (2023). .net/c# instrumentation
for search-based software testing. Softw. Quality J. 31, 1439–1465.
doi: 10.1007/s11219-023-09645-1

Górski, T. (2022). Reconfigurable smart contracts for renewable energy exchange
with re-use of verification rules. Appl. Sci. 12:5339. doi: 10.3390/app12115339

Goujon, A., Campos, J., and Unser, M. (2023). Stable parameterization of
continuous and piecewise-linear functions. Appl. Comput. Harmon. Anal. 67:101581.
doi: 10.1016/j.acha.2023.101581

Guo, Z., Huang, T.-W., and Lin, Y. (2023). “Accelerating static timing
analysis using CPU-GPU heterogeneous parallelism,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 4973–4984.
doi: 10.1109/TCAD.2023.3286261

Guseinov, G. S. (2003). Integration on time scales. J. Math. Anal. Appl. 285, 107–127.
doi: 10.1016/S0022-247X(03)00361-5

Hahn, T. (2005). Cuba-a library for multidimensional numerical integration.
Comput. Phys. Commun. 168, 78–95. doi: 10.1016/j.cpc.2005.01.010

Hickey, L., and Harrigan, M. (2022). The BISQ decentralised exchange: on the
privacy cost of participation. Blockchain 3:100029. doi: 10.1016/j.bcra.2021.100029

Huang, T.-W., Lin, D.-L., Lin, C.-X., and Lin, Y. (2021). “Taskflow: a lightweight
parallel and heterogeneous task graph computing system,” in IEEE Transactions on
Parallel and Distributed Systems, 1303–1320. doi: 10.1109/TPDS.2021.3104255

Hung, M.-C., Chen, A.-P., and Yu, W.-T. (2024). AI-driven intraday trading:
applying machine learning and market activity for enhanced decision support
in financial markets. IEEE Access. 12, 12953–12962. doi: 10.1109/ACCESS.2024.33
55446

Kang, M., Lee, E. T., Um, S., and Kwak, D.-H. (2023). Development of a
method framework to predict network structure dynamics in digital platforms:
empirical experiments based on API networks. Knowl.-Based Syst. 280:110936.
doi: 10.1016/j.knosys.2023.110936

Kao, E. P. (2019). An Introduction to Stochastic Processes. New York: Courier Dover
Publications.

Keith, A., Ferrada, H., and Navarro, C. A. (2022). “Accelerating the convex
hull computation with a parallel GPU algorithm,” in 2022 41st International
Conference of the Chilean Computer Science Society (SCCC) (IEEE), 1–7.
doi: 10.1109/SCCC57464.2022.10000307

Knueven, B., Ostrowski, J., Castillo, A., andWatson, J.-P. (2022). A computationally
efficient algorithm for computing convex hull prices. Comput. Ind. Eng. 163:107806.
doi: 10.1016/j.cie.2021.107806

Kundu, S., and Makri, N. (2023). Pathsum: a c++ and fortran suite of fully quantum
mechanical real-time path integral methods for (multi-) system+ bath dynamics. J.
Chem. Phys. 158:481. doi: 10.1063/5.0151748

Leijen, D., Schulte, W., and Burckhardt, S. (2009). The design of a task parallel
library. ACM Sigplan Notices 44, 227–242. doi: 10.1145/1639949.1640106

Li, C., Cheng, Z., Zhu, H., Wang, L., Lv, Q., Wang, Y., et al. (2022). Dmalnet:
dynamic malware analysis based on API feature engineering and graph learning.
Comput. Secur. 122:102872. doi: 10.1016/j.cose.2022.102872

Liang, Y., Lu, L., Xiao, Q., and Yan, S. (2019). Evaluating fast algorithms for
convolutional neural networks on FPGAs. IEEE Trans. Comput.-AidedDes. Integr. Circ.
Syst. 39, 857–870. doi: 10.1109/TCAD.2019.2897701

Lima, J. A. P., and Vergilio, S. R. (2020). Test case prioritization in continuous
integration environments: a systematic mapping study. Inf. Softw. Technol. 121:106268.
doi: 10.1016/j.infsof.2020.106268

Lin, C.-X., Huang, T.-W., and Wong, M. D. (2020). “An efficient work-
stealing scheduler for task dependency graph,” in 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS) (IEEE), 64–71.
doi: 10.1109/ICPADS51040.2020.00018

Liu, C., Li, B., Zhao, J., Zhen, Z., Feng, W., and Liu, X. (2023). TI-MVD: a
temporal interaction-enhanced model for malware variants detection. Knowl. Based
Syst. 278:110850. doi: 10.1016/j.knosys.2023.110850

Liu, Z., Hu, X., Xu, L., Wang, W., and Ghannouchi, F. M. (2021). Low
computational complexity digital predistortion based on convolutional neural network
for wideband power amplifiers. IEEE Trans. Circ. Syst. Expr. Briefs 69, 1702–1706.
doi: 10.1109/TCSII.2021.3109973

Machné, R., Finney, A., Müller, S., Lu, J., Widder, S., and Flamm, C. (2006).
The SBML ode solver library: a native API for symbolic and fast numerical analysis
of reaction networks. Bioinformatics 22, 1406–1407. doi: 10.1093/bioinformatics/b
tl086

Marin, G., and Vona, F. (2023). Finance and the reallocation of
scientific, engineering and mathematical talent. Res. Policy 52:104757.
doi: 10.1016/j.respol.2023.104757

Masnadi, S., and LaViola, J. J. (2020). “Concurrenthull: a fast parallel computing
approach to the convex hull problem,” in Advances in Visual Computing: 15th
International Symposium, ISVC 2020, San Diego, CA, USA, October 5-7, 2020,
Proceedings, Part I 15 (Springer), 593–605. doi: 10.1007/978-3-030-64556-4_46

Math.net package. (n.d.). Available online at: https://numerics.mathdotnet.com/
(accessed January 01, 2024).

Mondal, P., Das, A. K., and Roy, T. K. (2023). An EOQ model for deteriorating
item with continuous linear time dependent demand with trade of credit and
replenishment time being demand dependent. Int. J. Mathem. Operat. Res. 24, 104–127.
doi: 10.1504/IJMOR.2023.128628

Naqvi, B., Rizvi, S. K. A., Mirza, N., and Umar, M. (2023). Financial market
development: a potentiating policy choice for the green transition in G7 economies.
Int. Rev. Finan. Anal. 87:102577. doi: 10.1016/j.irfa.2023.102577

Obrosova, N., Shananin, A., and Spiridonov, A. (2022). A model of investment
behavior of enterprise owner in an imperfect capital market. Lobachevskii J. Mathem.
43, 1018–1031. doi: 10.1134/S1995080222070198

Perera, A., Aleti, A., Turhan, B., and Böhme,M. (2022). An experimental assessment
of using theoretical defect predictors to guide search-based software testing. IEEE
Trans. Softw. Eng. 49, 131–146. doi: 10.1109/TSE.2022.3147008

Prichard, R., and Strasser,W. (2024). “When fewer cores is faster: a parametric study
of undersubscription in high-performance computing,” in Cluster Computing, 1–14.
doi: 10.1007/s10586-024-04353-2

Ren, X., Ye, X., Lin, Y., Xing, Z., Li, S., and Lyu,M. R. (2023). “API-knowledge aware
search-based software testing: where, what, and how,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 1320–1332. doi: 10.1145/3611643.3616269

Schmitt, U., Moser, B., Lorenz, C. S., and Refregier, A. (2023). SYMPY2C: from
symbolic expressions to fast c/c++ functions and ode solvers in python. Astron.
Comput. 42:100666. doi: 10.1016/j.ascom.2022.100666

Schryen, G. (2024). Speedup and efficiency of computational parallelization: a
unifying approach and asymptotic analysis. J. Parallel Distrib. Comput. 187:104835.
doi: 10.1016/j.jpdc.2023.104835

Seidel, R. (2017). “Convex hull computations,” in Handbook of Discrete and
Computational Geometry (Chapman and Hall/CRC), 687–703.

Shaw, R., and Hill, J. (2021). libecpint: a c++ library for the efficient
evaluation of integrals over effective core potentials. J. Open Source Softw. 6:3039.
doi: 10.21105/joss.03039

Sivanandam, S., Deepa, S., Sivanandam, S., andDeepa, S. (2008).Genetic Algorithms.
Cham: Springer.

Sofi. (n.d.). Available online at: https://www.mgdis.fr/index.php?page=display_
domaandclass=articleandobject=sol_sofi_programmation_financiereandmethod=
display_fullandrefo=001009 (accessed August 16, 2016).

Spray, J., Sinha, R., Sen, A., and Cheng, X. (2021). Building maintainable
software using abstraction layering. IEEE Trans. Softw. Eng. 48, 4397–4410.
doi: 10.1109/TSE.2021.3119012

Frontiers inComputer Science 27 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://doi.org/10.1002/nme.1620372303
https://doi.org/10.1007/978-1-4842-7113-1_11
https://doi.org/10.1137/22M1498401
https://doi.org/10.1080/1351847X.2019.1707251
https://doi.org/10.1186/s40854-021-00321-6
https://doi.org/10.1016/j.knosys.2022.108742
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1016/j.nucengdes.2009.05.021
https://doi.org/10.1016/B978-0-12-815065-8.00022-4
https://doi.org/10.1007/s11219-023-09645-1
https://doi.org/10.3390/app12115339
https://doi.org/10.1016/j.acha.2023.101581
https://doi.org/10.1109/TCAD.2023.3286261
https://doi.org/10.1016/S0022-247X(03)00361-5
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.bcra.2021.100029
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1109/ACCESS.2024.3355446
https://doi.org/10.1016/j.knosys.2023.110936
https://doi.org/10.1109/SCCC57464.2022.10000307
https://doi.org/10.1016/j.cie.2021.107806
https://doi.org/10.1063/5.0151748
https://doi.org/10.1145/1639949.1640106
https://doi.org/10.1016/j.cose.2022.102872
https://doi.org/10.1109/TCAD.2019.2897701
https://doi.org/10.1016/j.infsof.2020.106268
https://doi.org/10.1109/ICPADS51040.2020.00018
https://doi.org/10.1016/j.knosys.2023.110850
https://doi.org/10.1109/TCSII.2021.3109973
https://doi.org/10.1093/bioinformatics/btl086
https://doi.org/10.1016/j.respol.2023.104757
https://doi.org/10.1007/978-3-030-64556-4_46
https://numerics.mathdotnet.com/
https://doi.org/10.1504/IJMOR.2023.128628
https://doi.org/10.1016/j.irfa.2023.102577
https://doi.org/10.1134/S1995080222070198
https://doi.org/10.1109/TSE.2022.3147008
https://doi.org/10.1007/s10586-024-04353-2
https://doi.org/10.1145/3611643.3616269
https://doi.org/10.1016/j.ascom.2022.100666
https://doi.org/10.1016/j.jpdc.2023.104835
https://doi.org/10.21105/joss.03039
https://www.mgdis.fr/index.php?page=display_domaandclass=articleandobject=sol_sofi_programmation_financiereandmethod=display_fullandrefo=001009
https://www.mgdis.fr/index.php?page=display_domaandclass=articleandobject=sol_sofi_programmation_financiereandmethod=display_fullandrefo=001009
https://www.mgdis.fr/index.php?page=display_domaandclass=articleandobject=sol_sofi_programmation_financiereandmethod=display_fullandrefo=001009
https://doi.org/10.1109/TSE.2021.3119012
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

Steele, J. S., and Grimm, K. J. (2024). Using sympy (symbolic python) for
understanding structural equation modeling. Struct. Equat. Model. 2024, 1–12.
doi: 10.1080/10705511.2024.2325122

Tehrani, A., Yang, X. D., Martínez-González, M., Pujal, L., Hernández-Esparza, R.,
Chan, M., et al. (2024). Grid: a python library for molecular integration, interpolation,
differentiation, and more. J. Chem. Phys. 160:9166. doi: 10.1063/5.0202240

Uddin, G., Khomh, F., and Roy, C. K. (2020). Mining api usage scenarios from stack
overflow. Inform. Softw. Technol. 122:106277. doi: 10.1016/j.infsof.2020.106277

Vernimmen, P., Quiry, P., and Le Fur, Y. (2022). Corporate Finance: Theory and
Practice. New York: John Wiley & Sons.

Wang, Z., Zhao, Y., and Chen, J. (2023). Multi-scale fast fourier transform based
attention network for remote-sensing image super-resolution. IEEE J. Select. Topics
Appl. Earth Observ. Rem. Sens. 16, 2728–2740. doi: 10.1109/JSTARS.2023.3246564

Weiss, C. J., and Klose, A. (2021). “Introducing students to scientific
computing in the laboratory through python and jupyter notebooks,” in Teaching

Programming across the Chemistry Curriculum (ACS Publications), 57–67.
doi: 10.1021/bk-2021-1387.ch005

Wellman, M. (2022). Trading Agents. New York: Springer Nature.

White, C. T., Petrasova, A., Petras, V., Tateosian, L. G., Vukomanovic, J., Mitasova,
H., et al. (2023). An open-source platform for geospatial participatory modeling in the
cloud. Environ. Model. Softw. 167:105767. doi: 10.1016/j.envsoft.2023.105767

Zhang, N., Canini, K., Silva, S., andGupta,M. (2021). Fast linear interpolation.ACM
J. Emerg. Technol. Comput. Syst. 17, 1–15. doi: 10.1145/3423184

Zhou, Q., Xu, J., and Fang, H. (2023). A CPG-based versatile control
framework for metameric earthworm-like robotic locomotion. Adv. Sci. 10:2206336.
doi: 10.1002/advs.202206336

Zlateski, A., Jia, Z., Li, K., and Durand, F. (2019). “The anatomy of efficient
fft and winograd convolutions on modern cpus,” in Proceedings of the ACM
International Conference on Supercomputing, 414–424. doi: 10.1145/3330345.33
30382

Frontiers inComputer Science 28 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://doi.org/10.1080/10705511.2024.2325122
https://doi.org/10.1063/5.0202240
https://doi.org/10.1016/j.infsof.2020.106277
https://doi.org/10.1109/JSTARS.2023.3246564
https://doi.org/10.1021/bk-2021-1387.ch005
https://doi.org/10.1016/j.envsoft.2023.105767
https://doi.org/10.1145/3423184
https://doi.org/10.1002/advs.202206336
https://doi.org/10.1145/3330345.3330382
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chakkour 10.3389/fcomp.2024.1371052

Appendix

A Simple measures

TABLE A1 Integration of some simple measures.

Simple measures Definition Value of integration

Null measure m̃Null = 0 0

Affine measure ∀t ∈ R, m̃Affine = (C1 × t + C)× λLebesgue
C1
2
× (b2 − a2)+ C× (b− a)

Quadratic measure ∀t ∈ R, m̃Quadratic = (C2 × t2 + C1 × t + C) C2
3
× (b3 − a3)+ C1

2
× (b2 − a2)

×λLebesgue + C× (b− a)

Polynomial measure ∀t ∈ R, m̃Polynom =

(

i=n
∑

i=0

Ci × ti

)

× λLebesgue

i=n
∑

i=0

Ci

i+ 1
×

(

bi+1 − ai+1

)

Sinus measure ∀t ∈ R, m̃Sinus = sin(C1 × t + C)× λLebesgue (b− a)× sin(C), if C1 = 0

cos(C1 × a+ C)− cos(C1 × b+ C)

C1
,

if C1 6= 0

Cosinus measure ∀t ∈ R, m̃Cosinus = cos(C1 × t + C)× λLebesgue (b− a)× cos(C), if C1 = 0

sin(C1 × b+ C)− sin(C1 × a+ C)

C1
,

if C1 6= 0

Exponential measure ∀t ∈ R, m̃Exponential = eC×t × λLebesgue b-a, if C = 0

eC×b−eC×a

C
, if C 6= 0

Dirac measure m̃Dirac in point L, and massM M, if a ≤ L < b

0, if L < a or b ≤ L

B Simple fields

TABLE B1 Evaluation of some simple fields.

Simple fields Definition Value of evaluation at instant d

Null field ∀t ∈ R, FNull(t) = 0 0

Affine field ∀t ∈ R, FAffine(t) = C1 × t + C C1 × d + C

Quadratic field ∀t ∈ R, FQuadratic(t) = C2 × t2 + C1 × t + C C2 × d2 + C1 × d + C

Polynomial field ∀t ∈ R, FPolynom(t) =

i=n
∑

i=0

Ci × ti
i=n
∑

i=0

Ci × di

Sinus field ∀t ∈ R, FSinus(t) = sin(C1t + C) sin(C1d + C)

Cosinus field ∀t ∈ R, FCosinus(t) = cos(C1t + C) cos(C1d + C)

Exponential field ∀t ∈ R, FExponential(t) = eC×t eC×d

Frontiers inComputer Science 29 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1371052
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	High-quality implementation for a continuous-in-time financial API in C#
	1 Introduction
	2 Contexts and contributions
	3 Mathematical objects
	4 Related works
	5 Design and concept of computation in API
	5.1 Physical view
	5.2 Numerical simulation using the financial API
	5.3 Time step mechanism
	5.4 Testing and performing the API
	5.5 Computing the convex hull of measures
	5.6 Performances

	6 Implementation of measures and fields
	7 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References
	Appendix
	A Simple measures
	B Simple fields

