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Institut Joz̆ef Stefan (IJS), Slovenia
Orhan Konak,
Institute, University of Potsdam, Germany

*CORRESPONDENCE

Lala Shakti Swarup Ray
lalashaktiswarup.ray@dfki.de

RECEIVED 31 January 2024
ACCEPTED 22 March 2024
PUBLISHED 05 April 2024

CITATION

Ray LSS, Zhou B, Suh S and Lukowicz P (2024)
A comprehensive evaluation of marker-based,
markerless methods for loose garment
scenarios in varying camera configurations.
Front. Comput. Sci. 6:1379925.
doi: 10.3389/fcomp.2024.1379925

COPYRIGHT

© 2024 Ray, Zhou, Suh and Lukowicz. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

A comprehensive evaluation of
marker-based, markerless
methods for loose garment
scenarios in varying camera
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In support of smart wearable researchers striving to select optimal ground
truth methods for motion capture across a spectrum of loose garment types,
we present an extended benchmark named DrapeMoCapBench (DMCB+). This
augmented benchmark incorporates a more intricate limb-wise Motion Capture
(MoCap) accuracy analysis, and enhanced drape calculation, and introduces
a novel benchmarking tool that encompasses multicamera deep learning
MoCap methods. DMCB+ is specifically designed to evaluate the performance
of both optical marker-based and markerless MoCap techniques, taking into
account the challenges posed by various loose garment types. While high-cost
marker-based systems are acknowledged for their precision, they often require
skin-tight markers on bony areas, which can be impractical with loose garments.
On the other hand, markerless MoCap methods driven by computer vision
models have evolved to be more cost-e�ective, utilizing smartphone cameras
and exhibiting promising results. Utilizing real-world MoCap datasets, DMCB+
conducts 3D physics simulationswith a comprehensive set of variables, including
six drape levels, threemotion intensities, and six body-gender combinations. The
extended benchmark provides a nuanced analysis of advanced marker-based
and markerless MoCap techniques, highlighting their strengths and weaknesses
across distinct scenarios. In particular, DMCB+ reveals that when evaluating
casual loose garments, both marker-based and markerless methods exhibit
notable performance degradation (>10 cm). However, in scenarios involving
everyday activities with basic and swift motions, markerless MoCap outperforms
marker-based alternatives. This positions markerless MoCap as an advantageous
and economical choice for wearable studies. The inclusion of a multicamera
deep learning MoCap method in the benchmarking tool further expands
the scope, allowing researchers to assess the capabilities of cutting-edge
technologies in diverse motion capture scenarios.
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1 Introduction

Wearable sensing systems have attracted considerable attention

in recent years, particularly in the realm of motion-tracking

applications. This interest has been notably focused on a variety

of technologies, including Inertial Measurement Unit (IMU)

sensors (Gong et al., 2021; Jiang et al., 2022; Yi X. et al., 2022),

Radio-Frequency Identification (RFID) technology (Jin et al.,

2018), capacitive fabric sensors (Ray et al., 2023a; Zhou et al.,

2023), computational fabrics (Liu et al., 2019), and multi-modal

approaches (Liu, 2020; An et al., 2022). The continuous evolution

and refinement of these motion-tracking technologies have paved

the way for seamless activity recognition in diverse scenarios.

This recognition serves as a critical component for a myriad

of downstream tasks (Jansen et al., 2007; Behera et al., 2020),

extending into the realms of deep learning applications, computer

vision, and the development of large language models (Radford

et al., 2021; Moon et al., 2022).

However, despite the impressive advancements witnessed in

wearable sensing systems, optical marker-based motion capture

(MoCap) systems persist as the gold standard. Industry standards

such as Qualisys (Sweden), Vicon (USA), and OptiTrack (USA)

exemplify these systems, which rely on the precise placement of

optical markers on the body (Jiang et al., 2022; Yi C. et al., 2022).

These markers are typically positioned in skin-tight configurations

over bony areas, utilizing rigid biomechanical models to convert

surface points to internal joints (Groen et al., 2012; OptiTrack,

2019). The markers themselves can be either active (Barca et al.,

2006; Raskar et al., 2007), featuring built-in infrared light sources,

or passive (Lee and Yoo, 2017), possessing unique visual patterns

or retro-reflective properties. Optical MoCap systems deploy

synchronized camera triangulation to capture marker positions on

the body’s surface, subsequently inferring joint motion through

biomechanical models (OptiTrack, 2019). Despite their prevalence

and remarkable accuracy, challenges arise when markers are

placed on loose garments, leading to potential kinematic errors

(McFadden et al., 2020). The demand for loose-fitting garments

in wearable applications (McAdams et al., 2011; Bello et al., 2021;

Zhou et al., 2023), driven by considerations such as user acceptance,

comfort, and mass adoption, underscores the pressing need to

overcome limitations associated with marker-based MoCap.

While optical marker-based MoCap remains dominant, video-

based markerless MoCap systems have gained prominence,

leveraging advanced deep learning algorithms to map semantic

information to pose without the need for explicit markers (Chatzis

et al., 2020; Gamra and Akhloufi, 2021; Sigal, 2021). Despite the

maturity of these markerless approaches, there exists a notable

gap in comprehensive comparisons between marker-based and

markerless MoCap systems, particularly in the challenging context

of loose garments. It is crucial to note that the precision of

superficial markers in marker-based MoCap is not necessarily

equivalent to the accuracy of determining joint positions inside

the human body. Superficial markers may capture the external

movements and postures effectively, but they might lack the

depth and specificity required for precisely tracking the intricate

movements of joints beneath loose garments. This limitation

becomes especially pronounced when dealing with complex

motions or anatomical configurations, highlighting the need for a

nuanced evaluation that goes beyond the surface-level comparison

of marker-based and markerless MoCap systems.

Several studies have established a comparison between marker-

based and markerless MoCap by using various applications,

ranging from controlling endoscopic instruments (Reilink et al.,

2013) and analyzing baseball pitching biomechanics (Fleisig et al.,

2022) to conducting gait analysis (Kanko et al., 2021) and assessing

clinical usability (Ancans, 2021) as the base metric to compare the

accuracy of both methods. While marker-based MoCap generally

exhibits slightly higher accuracy, markerless systems emerge as

viable alternatives, particularly in clinical settings where patient

comfort and ease of use are prioritized (Nakano et al., 2020).

Because of the unattainability nature of the task, existing studies

often focus on factors such as complexity, ease of use, and overall

performance, lacking in-depth quantitative precision comparisons,

particularly in the nuanced realm of loose garments. The reason

behind the lack of quantitative precision comparison is due to

the absence of anatomic motion reference, hence no evaluation is

done considering loose garments to the level of casual apparel. In

practical terms, it is unfeasible to perform an accurate quantitative

comparison of MoCap methods for loose garments due to the

inability to non-invasively capture true anatomical motion beneath

the clothing and replicate precise motion sequences across diverse

body shapes and attires. Because

1. The anatomical true motion underneath the garment and

skin is required to quantitatively compare different MoCap

methods, which is unknown in the real world because even

marker-based MoCap uses biomechanical approximation from

surface markers.

2. The exact motion sequences need to be reproduced precisely in

multiple scenarios with persons of different body shapes wearing

different garments.

Largely due to these challenges, existing quantitative reviews of

markerless methods use marker-based MoCap as reference (Wang

et al., 2021), which itself has substantial error from the anatomic

joints due to the biomechanical approximation.

To solve this problem, we introduce an extended version of

DMCB (Ray et al., 2023d) called DMCB+, featuring a different pose

estimation method, cloth drape calculation, and a MoCap limb-

wise accuracy analysis. This upgraded benchmark builds upon the

foundation of DMCB that leverages 3D physics-based simulation

to benchmark and compare marker-based and markerless MoCap

systems, incorporating advanced capabilities to further refine the

evaluation of motion capture systems. The drape calculation helps

us classify different garments based on looseness while real-

world MoCap datasets are utilized to generate inputs for both

methods, enabling a quantitative comparison against common

anatomical true motion. The benchmarking process encompasses

diverse motion types and garment drape levels, providing

practitioners with valuable insights into choosing optimal MoCap

solutions for specific applications. Through this meticulously

designed approach, we aim to provide a comprehensive evaluation

framework that effectively bridges the existing gap betweenmarker-

based and markerless MoCap systems, particularly in scenarios

involving loose garments.
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As compared to DMCB, This work incorporates several

advancements including (a) a multi-camera deep learning-

based pose estimation technique, (b) improved drape calculation

robustness, and (c) a thorough analysis of limb-wise accuracy.

DMCB+ builds upon the groundwork laid by DMCB, which

utilizes 3D physics-based simulation to assess and comparemarker-

based and markerless motion capture (MoCap) systems. By

integrating sophisticated features, DMCB+ enhances the evaluation

of motion capture systems, offering a more refined understanding

of their performance across various scenarios. The refined drape

calculation and limb-wise accuracy analysis provided by DMCB+

offer nuanced insights into the capabilities of both marker-based

and markerless MoCap techniques. This work also introduces

enhancements such as a comprehensive analysis of MoCap

performance both overall and at the limb level, leveraging the newly

improved drape calculations.

In particular, we make the following contributions:

1. We introduce a benchmark for simulating garment and

soft body physics visualized in Figure 1, designed to assess

the performance of marker-based and markerless MoCap

systems across various camera configurations. This evaluation

is conducted with individuals of different body types executing

identical movements while wearing diverse garments with

varying degrees of drape. By utilizing real-world motion

datasets for input generation in both MoCap methods, we

quantitatively compare their outcomes to the established

anatomical true motion.

2. Our benchmark encompasses a wide range of motion types and

garment drape levels. Through a comprehensive comparison,

this benchmark can aid practitioners in selecting the most

suitable MoCap system for generating ground truth in wearable

experiments tailored to their specific applications. This decision-

making process can consider factors such as garment designs,

types of motion, cost, time overhead, and precision.

2 Related work

The landscape of MoCap research is rich with diverse

methodologies, ranging from traditional marker-based systems

to cutting-edge markerless approaches. This section explores the

evolution ofMoCap technologies, focusing on the distinct realms of

Marker-Based Systems andMarkerless deep learning (DL) Systems,

further sub-categorized into Single-camera systems and Multi-

camera systems.

Optical marker-based MoCap systems, exemplified by industry

leaders such as Qualisys, Vicon, and OptiTrack, have long been

revered for their unparalleled precision and accuracy. These

systems rely on strategically placed optical markers on the

human body, enabling the capture and triangulation of motion

through synchronized cameras. Extensive studies have validated

the effectiveness of marker-based MoCap in diverse applications,

including biomechanical analysis, sports science, and clinical

assessments. Furthermore, the widespread adoption of optical

marker-basedMoCap systems is evident in the realm of data-driven

research, where numerous datasets (Joo et al., 2015; Plappert et al.,

2016; Trumble et al., 2017) rely on these systems for capturing

intricate motion details. Their ability to provide high-precision and

accurate motion data has made them indispensable tools in various

fields, contributing to the robustness and reliability of datasets

utilized in areas such as artificial intelligence, machine learning, and

computer graphics.

In recent years, a paradigm shift toward video-basedmarkerless

MoCap systems (Xu et al., 2020; Gong et al., 2023; Zhao et al.,

2023) has emerged. These systems leverage advanced deep learning

algorithms to infer pose without relying on explicit markers.

While markerless approaches offer advantages in user comfort

and ease of use, a comprehensive comparison with marker-

based systems, especially in scenarios involving loose garments,

remains conspicuously absent from the existing literature. Some

markerless MoCap systems leverage a single camera for capturing

and interpreting motion, employing sophisticated computer vision

techniques and deep learning algorithms. Studies and applications

utilizing single-camera markerless systems have shown promise

in diverse scenarios, including endoscopic instrument control,

biomechanics analysis of baseball pitching, gait analysis, and

clinical usability assessments (Dubey and Dixit, 2023). On the

other hand, multi-camera markerless MoCap systems (Tu et al.,

2020; Dong et al., 2021; Liu et al., 2023) utilize synchronized

camera arrays to capture motion from different perspectives. The

data from multiple cameras are then processed to reconstruct

three-dimensional (3D) motion information. While offering

increased coverage and potential accuracy, challenges related

to calibration and synchronization are paramount in multi-

camera systems. Numerous investigations have contrasted the

efficacy ofmarker-based andmarker-lessMotion Capture (MoCap)

across various domains, including the control of endoscopic

instruments (Reilink et al., 2013), biomechanical analysis of

baseball pitching (Fleisig et al., 2022), gait assessment (Kanko et al.,

2021), and clinical applicability (Ancans, 2021). While marker-

based MoCap typically demonstrates marginally superior accuracy,

markerless systems are increasingly recognized as a feasible

alternative, particularly in clinical environments where patient

comfort and usability are paramount considerations (Nakano

et al., 2020). Conducting a meticulous quantitative comparison of

motion capture methodologies for loose garments poses significant

challenges. The inability to non-invasively capture underlying

anatomical motion beneath clothing and replicate precise motion

sequences across diverse body shapes and clothing types renders

such comparisons impractical. Compounding these challenges,

extant quantitative reviews of marker-less methods typically rely

on marker-based MoCap as the reference standard (Wang et al.,

2021), despite the inherent errors in the approximation of

biomechanical joint movements. Also, literature on quantitative

precision, especially in scenarios involving loose garments,

is scarce. A significant challenge arises when dealing with

loose garments, as the conventional use of skin-tight marker

configurations may introduce kinematic errors. Despite their

undeniable accuracy, the limitations associated with marker-based

systems in accommodating loose-fitting attire underscore the need

for alternative solutions.

Addressing the noticeable gap in existing research, our

proposed work introduces a groundbreaking approach.We employ

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1379925
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ray et al. 10.3389/fcomp.2024.1379925

FIGURE 1

Overall pipeline of DMCB depicting pose estimation and calculation of MPJPE and CRMSE for all MoCap methods for di�erent garment classes using
a single motion data sequence. The pipeline involves motion re-targeting, cloth simulation, parallel keypoint animation, rendering, synthetic pose
estimation, and quantitative evaluation.

a 3D physics-based simulation explicitly for benchmarking and

comparing both marker-based and markerless MoCap systems.

This pioneering method utilizes real-world MoCap datasets to

generate inputs for both approaches, enabling a quantitative

evaluation against common anatomical true motion.

Our benchmark encompasses diverse motion types and

garment drape levels, aiming to provide a comprehensive

framework for practitioners. This framework enables informed

decisions based on holistic considerations such as garment design,

motion types, cost, time overhead, and precision. By undertaking

this endeavor, our goal is not only to address but also to significantly

advance the current state of the literature. We aim to offer nuanced

insights into the suitability of marker-based andmarkerless MoCap

systems, particularly in scenarios involving loose garments.

3 Proposed method

The proposed benchmark methodology introduces a holistic

approach to the evaluation of MoCap methods, addressing the

challenges associated with replicating precise human motion in

real-world scenarios. By leveraging 3D physics simulation, we

solve the reality challenge that the exact motion cannot be

perfectly reproduced to establish quantitative comparisons of

different scenarios.

3.1 Simulation pipeline

The simulation pipeline, a crucial component of the

methodology, ensures fidelity to real-world conditions by

incorporating true-to-specification inputs for all MoCap methods.

For marker-based kinematic methods, the inclusion of 3D

surface marker locations is vital, while markerless vision models

receive high-resolution 1,080 p image sequences. This meticulous

adherence to accurate inputs sets the stage for a reliable and

realistic evaluation of MoCap methodologies.

Within the 3D physics simulation phase, implemented using

Blender3D (Blender Foundation, 2023) and the SMPL-X Blender

addon (Pavlakos et al., 2019), motion sequences from the MoCap

dataset are transformed into volumetric human bodies of varying

builds. The bodies undergo realistic dressing using the Simplycloth

plugin (Simplycloth, 2022). High-resolution simulated garments

exhibit near-realistic properties closely mirroring those of actual

cloth, and have gained widespread adoption for generating data

in the realm of realistic virtual try-ons (Cho et al., 2023).

This process not only accounts for the physical properties

of garments but also considers the interaction between the

garments and the dynamic human body. The incorporation of

soft tissue dynamics using Mosh++ (Loper et al., 2014) further

enhances the fidelity of the simulation, ensuring that realistic

garment deformation occurs during dynamic activities with

minimal artifacts.
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FIGURE 2

Quantifying drape for t-shirt and trousers over T-Pose by first simulating the cloth over the SMPL body for a particular pose then calculating the
di�erence between the volume of the cloth with that of the underlying body of the mesh.

3.2 Motion source dataset

The Motion Source Dataset section emphasizes the utilization

of the AMASS framework (Mahmood et al., 2019) along with the

SMPL body model (Loper et al., 2015) to curate a diverse dataset

encompassing different motion categories. This curated dataset

includes the following sequences:

Basic motions
• 30 samples of a total of 36,210 frames of around 20 minutes.

• Walking sequences sourced from TotalCapture (Trumble

et al., 2017).

• Gesture sequences sourced from HumanEva (Sigal et al.,

2010).

Fast motions
• 33 samples of a total of 70,985 frames of around 40 minutes.

• Rom and Freestyle sequences sourced from TotalCapture.

• Hasaposerviko and Pentozali dancing sequences sourced from

DanceDB (University of Cyprus, 2023).

Extreme joint angle motions
• 36 samples having a total of 66,560 frames of around 37

minutes.

• Extreme joint bending motions sourced from PosePrior

(Akhter and Black, 2015).

• Yoga articulation sequences sourced from PresSim (Ray et al.,

2023c).

By considering these varied motion scenarios, the benchmark

methodology aims to offer a comprehensive evaluation of MoCap

methods that goes beyond basic locomotion and accounts for

the challenges posed by fast, dynamic movements and extreme

joint articulation.

3.3 Quantifying drape of loose garments

In our study, we employed 3D assets encompassing a diverse

range of apparel from commonly available categories for both

genders, utilizing the Simplycloth plugin (Simplycloth, 2022) for

garment simulation. The garments varied in style, ranging from

skin-tight with minimal drape to very loose with maximal drape.

The term “looseness” is highly subjective, and its interpretation

depends on the relative volume of the garment as compared to

the wearer. For instance, a shirt that is normally sized may be

perceived as loose if worn by a slender individual. To account

for this variability, we employed a quantitative measurement of

drape and organized our findings into drape classes. Initially, we

calculated the drape amount by considering only T-Pose of the

body using the formula:

Drape =
Volumegarment − VolumeCoveredBody

VolumeCoveredBody

This calculation was based on the extra volume occupied by the

garment compared to the underlying body of the person wearing

the garment as visualized in Figure 2. The formula is designed to

address the subjective nature of assessing looseness in garments. By

comparing the volume of the garment to the volume of the wearer’s

body it covers, the formula captures the relative excess fabric, which

can vary significantly depending on the wearer’s size. Normalizing

the drape measurement by dividing it by the volume of the covered

body ensures that the assessment is not solely dependent on the

garment size but also accounts for the wearer’s proportions. This
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FIGURE 3

Drape range for eleven di�erent garments over varying genders and builds from minimal to maximal possible drape for that cloth type in di�erent
poses calculated for the improved looseness quantification.

approach provides a standardized and quantitative measure of

how the garment drapes on different individuals, offering a more

objective evaluation of looseness. Additionally, the accompanying

visualization aids in understanding how the calculation accounts

for the relationship between the garment volume and the covered

body volume.

However, acknowledging the limitations of the approach

previously introduced in DMCB (Ray et al., 2023d), particularly for

garments like skirts or dresses that display significant movement

beyond the static standing posture, we refined our methodology

in DMCB+. We introduced a more robust drape measurement

that considers various body postures, including T-pose, walking,

Running, Sitting, Forward-bend, Side-bend, Twisting, Reach-

up, Crouching, Jumping, and Dancing. For each garment, we

captured different postures of the body and calculated the mean

drape value. This enhanced approach in DMCB+ provides a

more comprehensive and accurate representation of the overall

drape of the cloth under varied conditions as given in Figure 3

which changed the initial score by drape percentage from a

range of 0.015 to 0.075 as given in Table 1. Each garment is

reassigned based on the new drape value to fit the appropriate

drape class.

In practice, for all garments except uni-cloths, we selected

separate pieces for the upper and lower body, matching a particular
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build and sharing a combined drape class ranging from 1 to 6, to

dress the SMPL body mesh.

3.4 Marker-based method

The marker-based method (MB) involves a set of 48 markers

strategically placed on the body, with 24 pairs located on both the

front and back. These markers are associated with specific joints

within the SMPL skeleton, including the pelvis, left leg root, right

leg root, lower back, left knee, right knee, upper back, left ankle,

right ankle, thorax, left toes, right toes, lower neck, left clavicle,

right clavicle, upper neck, left arm root, right arm root, left elbow,

right elbow, left wrist, right wrist, left hand, and right hand. Each

marker’s position is carefully considered over garments or skin,

taking into account optimal real-world marker placement.

To replicate real-world conditions, a 5 mm error is introduced

as Gaussian noise. In addition to this, biomechanical constraints

are applied to these specified joints, considering more realistic

angular ranges to better align with human joint capabilities during

everyday movements:

• pelvis: angular range:−30◦ to 30◦

• left leg root, right leg root: angular range:−45◦ to 45◦

• lower back: angular range:−30◦ to 30◦

• left knee, right knee: angular range: 0◦ to 120◦

• upper back: angular range:−30◦ to 30◦

• left ankle, right ankle: angular range:−45◦ to 45◦

• thorax: angular range:−30◦ to 30◦

• left toes, right toes: angular range: 0◦ to 45◦

• lower neck: angular range:−30◦ to 30◦

• left clavicle, right clavicle: angular range:−30◦ to 30◦

• upper neck: angular range:−30◦ to 30◦

• left arm root, right arm root: angular range:−45◦ to 45◦

• left elbow, right elbow: angular range: 0◦ to 180◦

• left wrist, right wrist: angular range:−45◦ to 45◦

• left hand, right hand: angular range: 0◦ to 45◦.

These realistic angular ranges account for natural anatomical

limitations, and the biomechanical constraints expressed using

quaternions to represent angular orientations, play a critical role in

refining captured data. They ensure that estimated joint positions

not only adhere to realistic human movement patterns but also

account for the inherent variability in joint flexibility.

3.5 Monocular 3D pose estimation models

We considered two markerless models:

• a temporal semi-supervised 3d pose estimation model

VideoPose3D (TML) (Pavllo et al., 2019)

• a lightweight real-time 3d pose estimationmodel BlazePose3D

(IML) (Bazarevsky et al., 2020).

We applied SMPL textures to the bodies derived from SMPLitex

(Casas and Comino-Trinidad, 2023). Videos (1,920 × 1,080) were

TABLE 1 Average drape for each cloth type and di�erence from T-pose.

Cloth type Mean drape
using di�erent

poses

Di�erence from
when using only

T-pose

Sleeveless 0.085 +0.015

T-shirt 0.095 +0.015

Shorts 0.15 +0.06

Skirt 0.175 +0.075

Shirt 0.205 +0.04

Dress 0.185 +0.02

Trousers 0.255 +0.015

Jacket 0.31 +0.035

Hoodie 0.305 +0.025

Cardigan 0.305 +0.025

Cargo 0.37 +0.035

Robe 0.47 +0.025

Trench Coat 0.505 +0.025

rendered from the simulation scene in a simple white background,

then fed into Detectron2 (Wu et al., 2019) + VideoPose3D or

BlazePose3D to extract multi-joint poses relative to the video frame.

The 17-joint Human3.6M skeleton and the 31-joint Mediapipe

skeleton are given as input to joint2smpl (Zuo et al., 2021) to give

the 24-joint SMPL skeleton (MML). They are then rescaled to the

original size of the body (170 cm height) and converted to BVH files

usingMotionmatching (Dittadi et al., 2021). Since thesemonocular

pose estimation models calculate camera relative joint positions

to make them absolute the starting pose of each pose sequence is

re-positioned and reoriented to an origin identical to that of the

ground truth.

3.6 Multi-camera 3D pose estimation
models

Unlike DMCB (Ray et al., 2023d), we introduced support for

multicameramarkerlessMoCapmethods in the pipeline along with

evaluation. Our simulation leverages SynthCal (Ray et al., 2023b),

a system that utilizes simulated data and employs a multicamera

calibration pipeline to generate input for our multi-camera

markerless model. To incorporate processed videos rendered from

the simulation scene, without the need for explicit markers, we

created a synthetic charuco board and put it inside the scene along

with the SMPL body mesh that helps in synchronization of the

three cameras strategically placed in front and on both sides of

the person to find the absolute position of the SMPL mesh in the

scene, enhancing the accuracy of our motion capture system with

the integration of BodyPose3D pipeline (Batpurev, 2021) which

employs camera triangulation to find the absolute 3D position of

the skeleton from multiple perspectives. A similar approach like

before is employed to convert the 31-joint mediapipe pose into 24

joint SMPL pose using joint2smpl.
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FIGURE 4

Limb-based classification of SMPL joints for more nuanced
comparison of the accuracy of di�erent pose estimation methods in
di�erent drape classes.

4 Evaluation

4.1 Evaluation metrics

The Evaluation Metrics section underscores the significance of

employing two well-established metrics in the MoCap field: Mean

Per Joint Position Error (MPJPE) and Circular Root Mean Squared

Error (CRMSE) (Equations 1, 2). These metrics offer a quantitative

assessment of MoCap accuracy, considering different aspects of 24

joint positions and pose angles. The comprehensive measurements

obtained from the simulation allow for the straightforward

calculation of these metrics, providing a robust foundation for the

evaluation of MoCap methods.

MPJPE =
1

n

n
∑

i=1

||Pi − P̂i|| (1)

where n is the number of joints, Pi is the ground truth position of

the i-th joint, P̂i is the estimated position of the i-th joint, and || · ||

denotes the Euclidean distance.

CRMSE =

√

√

√

√

1

N

n
∑

i=1

(

1− cos(θi − θ̂i)
)

(2)

Here, N represents the total number of joint angles, θi

represents the ground truth angle for the i-th joint, and

θ̂i represents the corresponding predicted angle. Due to the

availability of comprehensive measurements about human models

and garments obtained from the simulation, it is straightforward

to calculate MPJPE using the 3D estimated joints in Euler space.

On the other hand, the CRMSE involves estimating joint angles by

applying forward kinematics and then computing the error.

4.2 Limb-based classification

In our comprehensive analysis of human body parts, we have

systematically classified them into three distinct sections: torso,

limbs, and legs. The arms section encompasses joints such as arm

roots, elbows, wrists, and hands, a total of eight joints while the

legs section includes leg roots, knees, ankles, and toes total of eight

joints. The torso section comprises joints like the pelvis, lower back,

upper back, thorax, lower neck, upper neck, and clavicles total of

8 joints as visualized in Figure 4. This meticulous categorization

facilitates a nuanced assessment of model accuracy, as we can

focus on specific limb parts to gauge the effectiveness of each

model. By examining the performance of models in isolating and

predicting joints within distinct body regions, we gain valuable

insights into their capabilities and limitations, ultimately enhancing

our understanding of human pose estimation.

4.3 Results

In the results section of our study, we conducted a

comprehensive evaluation of various MoCap methods, specifically

focusing on marker-based (MB) and monocular markerless

(TML, IML) techniques. We also included Multicamera-realtime

markerless (MML) methods in our analysis, employing both

quantitative metrics and a holistic comparison.

In the initial comparison using unclothed bodies on the

TotalCapture and PosePrior datasets, we observed that the Mean

Per Joint Position Error (MPJPE) for marker-based methods was

4.7 cm, whereas for monocular markerless methods, it was 8.2 cm.

These results align with existing literature that comparesmarkerless

models with marker-based MoCap as a reference, as evidenced by

studies such as Kanazawa et al. (2018), Ostrek et al. (2019), Qiu et al.

(2019), andWang et al. (2021). This validation supports the realism

and accuracy of our model in pose estimation over real data for the

same datasets.

In the context of comprehensive full-body joint analysis given

in Figure 5, our investigation revealed that the minimum joint-

position error occurred with drape class 1 garments, as assessed

through marker-based methods, surpassing 10 cm. Previous

attempts at such comparisons were limited to our simulation

pipeline, as obtaining anatomic joint coordinates in real-world

scenarios with non-invasive methods like surface markers or video

analysis proved challenging. Everyday loose garments, falling into

drape class 2 or 3, exhibited MPJPE ranging from 15 to 35 cm

and CRMSE ranging from 6◦ to 11◦ for both marker-based and

markerless methods.

Becuase of complex drape nature of cloths of being loose

at some places and tight in other places and to have a better

understanding of their effect on different MoCap methods

our study delved into various portions of the body, and our

examination of the torso section given in Figure 6, always covered

by garments ranging from drape class 1 to 6, revealed intriguing

findings. Notably, marker-based methods exhibited a slight

advantage in accuracy when focusing solely on the torso compared

to the whole-body analysis. This suggests that the biomechanical

constraints and reference points provided by markers contribute to

enhanced precision, particularly in the context of torsomovements.

However, even with this marginal advantage, multicamera

markerless DL methods demonstrated superior performance,

surpassing marker-based techniques, particularly in the 2–3
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FIGURE 5

MPJPE (in centimeter) and CRMSE (in degree) for the four di�erent MoCap methods marker-based (MB), temporal markerless (TML), instantaneous
markerless (IML), and multi-camera markerless (MML) considering the whole body.

drape class range. This outcome suggests that for experiments

concentrating exclusively on torso movements, multicamera

markerless DL methods may be considered ideal, offering a

more advanced and effective solution for capturing nuanced

motions, even in scenarios involving moderate to substantial

garment draping.

The disparity between marker-based and markerless methods

becomes more pronounced when considering the simultaneous

capture of both arms given in Figure 7 and legs given in Figure 8

which more or less follows a similar trend. As we transition to

garments that entirely cover the arms and legs, typically around

drape class 3, a minor spike in error is observed across all methods

in comparison to drape class 1 or 2. This increase in error

is attributed to the inherent challenges posed by garments that

introduce complexity in limb movements and occlusions.

4.4 Analysis

In optimal conditions with zero drape, marker-based methods

generally yields the highest accuracy, followed by multi-camera

markerless, then temporal monocular markerless, and finally

instantaneous monocular markerless methods. The accuracy of

deep learning models correlates with their complexity: MML,

which considers multiple viewpoints, typically outperforms TML,

which analyzes sequences for 2D poses, and IML, which relies on

single-frame 3D pose generation (Zheng et al., 2023). As drape

increases, the degradation rate of accuracy varies amongmodalities.

MB experiences a higher degradation rate per drape increment

compared to DL-based methods. Additionally, the impact of drape

percentage differs across motion types. In fast motions, the cloth

topology takes longer to register the underlying body’s topology in

each frame, resulting in greater disparity between cloth and body

topology compared to other motion types. Sincemarker-based pose

estimation relies solely on surface markers, the performance suffers

more in fast motions under similar levels of drape compared to

other motion types (Puthenveetil et al., 2013).

Absolute MPJPE was influenced by errors in joint hierarchy

alignment, including shifting and rotation, while CRMSE was

impacted by the relative angle of bones. Despite the overall

marker set being constrained by biomechanical considerations in

marker-based methods, instances such as robes and trench coats

demonstrated limited adherence to the wearer’s motion, resulting in

increased errors. Markerless methods showed gradually increasing

errors with more draped garments, although the degradation

rate was slightly lower for basic and fast motions compared to

marker-basedmethods. It is noteworthy that monocular markerless

methods, especially VideoPose3D, exhibited greater stability as the

drape increased. This enhanced stability could be attributed to
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FIGURE 6

MPJPE (in centimeter) and CRMSE (in degree) for the four di�erent MoCap methods marker-based (MB), temporal markerless (TML), instantaneous
markerless (IML), and multi-camera markerless (MML) considering the torso section.

their ability to detect semantic segments of body parts, showcasing

less variation in MoCap accuracy across different types of motion.

Furthermore, DL-based markerless models performed better on

basic and fast motions, given their primary training on datasets

consisting of such motions. In contrast, marker-based methods did

not exhibit such limitations, benefiting from forward kinematics

and biomechanical constraints derived from markers, irrespective

of the complexity of the motion or extreme joint angles. In

our investigation, the MML method emerged as particularly

noteworthy, demonstrating superior accuracy compared to other

methods, especially as the drape class increased to around 2.

Notably, MML outperformed both marker-based and monocular

markerless methods in capturing motion details under these

conditions. As the level of garment drape advanced to levels 5–6,

we observed a significant decline in the accuracy of marker-based

methods, marking them as less ideal for very loose garments. This

decrease in accuracy suggests that the rigid constraints imposed

by marker-based techniques become more limiting when dealing

with extensive garment draping, highlighting a clear advantage

for multicamera markerless methods in scenarios involving highly

draped or flowing attire. The enhanced precision of multicamera

markerless approaches underlines their potential applicability in

contexts where capturing nuanced and complex motions, even

in the presence of substantial garment drape, is crucial. Our

comprehensive analysis identified a notable exception to the

overall trend. In scenarios involving extreme joint angles and

complex poses, marker-based MoCap methods demonstrated

superior performance across almost all drape levels when compared

to markerless alternatives. The intricate and varied nature of

extreme joint angle motions posed challenges for markerless

models, as the training data may not encompass the full spectrum

of such complex poses. The inherent limitations in capturing

the nuances of extreme joint angles and intricate movements

through markerless approaches highlight a unique strength of

marker-based methods in these specific scenarios. Despite the clear

advantages of markerless methods in capturing motion details

under draped conditions, the complex and extreme joint angle

motions present a domain where the robustness and biomechanical

constraints of marker-based MoCap prove invaluable, showcasing

their effectiveness in situations where markerless models may face

challenges due to the absence of specific training data for such

intricate poses. In difficult scenarios where there is a significant

presence of drapes (drape class 4–5), both marker-based and

markerless methods experience a notable decline in accuracy. The

noise introduced by these drapes severely impacts the performance

of both methods, rendering them ineffective for normal pose

estimation use, as their accuracy becomes highly inaccurate.

However, the degradation of markerless deep learning methods

is lower compared to marker-based methods. This outcome is

expected, as marker-based models excel in scenarios with minimal
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FIGURE 7

MPJPE (in centimeter) and CRMSE (in degree) for the four di�erent MoCap methods marker-based (MB), temporal markerless (TML), instantaneous
markerless (IML), and multi-camera markerless (MML) considering the both arms.

to zero drape, but become inferior to deep learning methods as

drape presence increases. This difference can be attributed to the

nature of the input for each method; marker-based methods rely

solely on surface markers, whereas markerless methods consider

images with pixels which is supported by the fact that other

research works conducted with loose wearable sensors prefer to use

markerless method as compared to marker-based one to generate

their ground truth (Bello et al., 2021; Zhou et al., 2023). These

finding underscores the robustness of our comparative analysis,

indicating that even in scenarios where garments cover both arms

and legs, the markerless methods maintain their competitive edge

over marker-based counterparts.

In addition to conducting quantitative comparisons among

various MoCap methods, our study delved into a comprehensive

and holistic assessment of these techniques, given in Table 2.

Recognizing the multifaceted nature of motion capture, we

sought to go beyond mere numerical metrics and encompass a

qualitative evaluation of the overall performance. By embracing

a more inclusive perspective, we aimed to provide a nuanced

understanding of the strengths and limitations of each MoCap

method, enabling amore well-rounded appreciation of the practical

implications and applications of various MoCap technologies in

diverse contexts.

Cost-benefit analysis plays a pivotal role in selecting motion

capture (MoCap) methods, as different applications have varying

requirements and constraints. For instance, in the context of

marker-based MoCap systems, considering a scenario where a

research team is conducting a biomechanical study to analyze

the gait patterns of athletes. In this case, the high precision

offered by marker-based systems is indispensable, as even slight

inaccuracies can affect the validity of the findings. Despite the

substantial upfront investment required for specialized cameras

and synchronization systems, the accuracy provided by marker-

based MoCap outweighs the cost, making it the preferred choice

for such research endeavors where precision is paramount.

Conversely, the benefits of monocular markerless MoCap

methods in a different context. Imagine a game development studio

working on a virtual reality (VR) game that simulates outdoor

sports activities like hiking or rock climbing. In this scenario, the

studio aims to capture realistic motion data of users engaging in

these activities within various natural environments. Here, the cost-

effectiveness and flexibility of monocular markerless methods shine

through. By utilizing readily available consumer-grade cameras,

the studio can significantly reduce expenses without compromising

the quality of motion capture. Moreover, the ability to capture

motion in diverse outdoor settings aligns perfectly with the studio’s

requirements, making monocular markerless MoCap the ideal

choice for their VR game development project.

Furthermore, considering the case of multi-camera markerless

MoCap systems in the field of wearable technology research.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1379925
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ray et al. 10.3389/fcomp.2024.1379925

FIGURE 8

MPJPE (in centimeter) and CRMSE (in degree) for the four di�erent MoCap methods marker-based (MB), temporal markerless (TML), instantaneous
markerless (IML), and multi-camera markerless (MML) considering the both legs.

Suppose a team of researchers is developing a smart garment

that monitors posture and movement to prevent musculoskeletal

injuries in office workers. In this scenario, the researchers need

a MoCap solution that offers a balance between accuracy and

affordability as well as invariant to garment looseness. Multi-

camera markerless systems provide the necessary precision for

analyzing subtle body movements associated with poor posture

while being more cost-effective than marker-based alternatives.

Additionally, the ability to use these systems in real-world office

environments, without the need for specialized setups, facilitates

the integration of MoCap technology into everyday workplace

wellness initiatives.

4.5 Limitations

A significant limitation in cloth modeling and motion capture

(MoCap) is the inherent variability in garment shape, often

resulting in tightness in specific regions despite overall volumetric

accuracy. This variation presents a challenge in accurately

capturing cloth behavior, particularly in areas where the fit is snug

or restrictive. To address this issue, we propose calculating the

drape while considering different sections of the cloth as well

as the body individually. By doing so, we aim to enhance the

precision and comprehensiveness of cloth modeling and motion

capture techniques, ultimately mitigating the limitations posed by

the inherent variability in garment shape as well as classifying the

garments to more accurate drape classes.

Simulation is extensively utilized in cloth-related research, such

as virtual try-on (Cho et al., 2023) and dataset generation (Bertiche

et al., 2020), where it serves as a surrogate for real cloth physics.

However, currently, there are no notable metrics or benchmarks

that can effectively gauge the accuracy of simulations against real-

world cloth counterparts. In forthcoming endeavors, we intend to

address this gap by employing 3D scanning in tandem with parallel

cloth simulation. This approach will enable us to systematically

evaluate the fidelity of simulations by comparing them directly

with real-world data. By conducting such evaluations, we aim

to establish robust metrics and benchmarks that can accurately

quantify the correctness of cloth simulations, thereby advancing the

reliability and applicability of virtual cloth-related research.

4.6 Future works

Future work in the realm of state-of-the-art markerless pose

estimation models entails enhancing their accuracy through the

integration of synthetic drape accurately clothed body models,
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TABLE 2 Holistic comparisons for MoCap methods.

Marker-based Monocular markerless Multi-camera markerless

(MB) (TML & IML) (MML)

Requirement Dedicated volume space, multiple

(typical 6–12) special cameras and

synchronization systems, high

throughput computer, active camera or

active marker, multiple markers (typical

39–57) of tight placement for full body

pose.

Single common digital camera (e.g.,

smartphone camera), AI-capable

computing hardware for model

inference, Sufficient subject/background

contrast and lighting conditions

Multiple digital cameras (typical 2–6),

Camera calibration pattern, AI capable

computing hardware for interface,

sufficient subject-background contrast

and lightning

Setup time High (marker placement, calibration) Low Medium (calibration)

Accuracy Highly precise for MoCap with

skin-tight clothing, bad for loosely fit

daily use clothing

Mediocre for both skin-tight clothing,

and loosely fit daily use clothing

Comparatively better for both skin-tight

clothing, and loosely fit daily use

clothing

Cost High ( 24–72 disposable markers, 8–12

specialized high-speed motion cameras,

one dedicated system)

Low (one smartphone level camera, a

deep learning supported

system/platform )

Low (Multiple smartphone level

cameras, a manual synchronization and

calibration system, a deep learning

supported system/platform)

Flexibility Restricted to dedicated space Can be used in the wild Can be used in the wild with passive

calibration (presence of calibration

pattern in the videos)

Remarks Preferred if the marker placement

requirements specified by the producer’s

manual can be met (e.g., skin-tight

clothing), for example, medical or sports

evaluations.

Good for in-the-wild captures Sufficient in most daily activities with

loose casual apparel for wearable

technology research. The performance

on extreme angle motions may be

improved in time with ongoing

computer vision research

coupled with precise drape amount and 3D pose from camera

view. This approach aims to generate datasets with meticulously

controlled drape variations, thereby facilitating the training of a

drape-invariant pose estimation model by passing the amount

of drape as a parameter to the model along with input images

through a data-driven approach. By leveraging this methodology,

the objective is to bolster the robustness of pose estimation models,

particularly in scenarios involving loose garments and intricate

movements. Through the amalgamation of synthetic clothed body

models and meticulous dataset generation, strides can be made

toward achieving more accurate and adaptable pose estimation

systems, capable of accommodating the complexities inherent in

diverse human movements and attire.

5 Conclusion

In conclusion, our benchmark methodology offers a

comprehensive framework for evaluating MoCap methods

realistically. The use of 3D physics simulation with true-to-

specification inputs ensures accurate representation of human

motion and garment dynamics, overcoming challenges associated

with real-world scenarios. Implemented through Blender3D and

the SMPL-X Blender addon, the simulation pipeline faithfully

represents human movements, including soft tissue dynamics

and realistic garment deformations. We evaluate marker-based

and markerless approaches, including monocular and multi-

camera markerless setups. The Evaluation Metrics employ MPJPE

and CRMSE for quantitative assessment, ensuring a robust

evaluation. In essence, our benchmark methodology establishes

a foundation for understanding MoCap methods in realistic

scenarios, considering garment dynamics and diverse evaluation

metrics. It provides valuable insights into the strengths and

limitations of various MoCap techniques, guiding advancements

in the field and promoting the development of more accurate

MoCap technologies.

Looking ahead, we plan to leverage the rich dataset that can

be generated by DMCB+ to train a more robust deep learning

model. Thismodel aims to predict more accurate poses, particularly

in scenarios involving loose garments. By utilizing the improved

benchmark data, we anticipate achieving better performance and

advancing state-of-the-art pose prediction within dynamic and

challenging environments.
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