
Frontiers in Computer Science 01 frontiersin.org

Monocular 3D object detection 
for occluded targets based on 
spatial relationships and 
decoupled depth predictions
Yanfei Gao 1*, Xiongwei Miao 2 and Guoye Zhang 3*
1 Shanxi Finance and Taxation College, Taiyuan, China, 2 Shanxi Intelligent Big Data Industry 
Technology Innovation Research Institute, Taiyuan, China, 3 Shanxi Provincial Digital Government 
Service Center, Taiyuan, China

Autonomous driving is the future trend. Accurate 3D object detection is a prerequisite 
for achieving autonomous driving. Currently, 3D object detection relies on three 
main sensors: monocular cameras, stereo cameras, and lidar. In comparison to 
methods based on stereo cameras and lidar, monocular 3D object detection 
offers advantages such as a broad detection field and low deployment costs. 
However, the accuracy of existing monocular 3D object detection methods is 
not ideal, especially for occluded targets. To tackle this challenge, the paper 
introduces a novel approach for monocular 3D object detection, denoted as 
SRDDP-M3D, aiming to improve monocular 3D object detection by considering 
spatial relationships between targets, and by refining depth predictions through 
a decoupled approach. We consider how objects are positioned relative to each 
other in the environment and encode the spatial relationships between neighboring 
objects, the detection performance is enhanced specially for occluded targets. 
Furthermore, a strategy of decoupling the prediction of target depth into two 
components of target visual depth and target attribute depth is introduced. This 
decoupling is designed to improve the accuracy of predicting the overall depth 
of the target. Experimental results using the KITTI dataset demonstrate that this 
approach substantially enhances the detection accuracy of occluded targets.
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1 Introduction

Autonomous driving stands as a pivotal and forward-looking development in the realm 
of future transportation. Its significance extends beyond just technological advancements; it 
encompasses the realms of enhancing traffic safety, optimizing driving efficiency, conserving 
drivers’ time and energy, mitigating environmental pollution, and ultimately ushering in an 
era of intelligent transportation systems. At the heart of this transformative technology lies 3D 
object detection, a fundamental and indispensable component. This technology enables a 
precise perception of the environment, empowering vehicles to recognize, locate obstacles, 
and make informed decisions, thereby facilitating advanced driving strategies and 
path planning.

With the integration of multisensory data fusion and the ability to perform real-time, 
stable processing, 3D object detection establishes the essential groundwork for the realization 
of safer and more efficient autonomous driving systems. It is dedicated to the task of accurately 
pinpointing and identifying objects from images or point cloud data, extracting critical details 
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such as their 3D position, orientation, and size. Unlike conventional 
2D object detection, 3D object detection goes beyond mere object 
existence detection; it incorporates a nuanced modeling and 
estimation of an object’s physical properties within the real-world 
context. This calls for a fusion of depth perception and geometric 
computation technologies.

In the context of the various forms of sensor input data, the 3D 
object detection challenge can be broadly categorized into three types: 
LiDAR-based, stereo camera-based, and monocular camera-based 3D 
object detection. Each type leverages distinct sensor technologies and 
methods to address the intricacies of the autonomous driving 
environment (Qian et al., 2022).

LiDAR-based 3D object detection is a method that leverages point 
cloud data from LiDAR sensors to detect and classify objects in the 
surrounding environment. LiDAR technology excels at delivering 
precise, albeit somewhat sparse, scene point cloud data. Nonetheless, 
contemporary LiDAR instruments are constrained in their ability to 
accurately measure distances within a range typically spanning 
1–200 m. This inherent limitation renders exclusive reliance on 
LiDAR for autonomous driving control precarious, especially in 
scenarios like high-speed highways.

Consequently, many autonomous driving enterprises, such as Tesla 
and Baidu Apollo, adopt a hybrid approach that combines LiDAR data 
with information from cameras to construct robust autonomous 
driving systems. This amalgamation addresses the shortcomings of 
LiDAR, including its cost-intensive nature and the range constraints. 
Overcoming these challenges is pivotal for the widespread adoption 
and acceptance of autonomous driving technologies.

Stereo camera-based 3D object detection (Chen et al., 2020; Chen 
et al., 2017; Li et al., 2019) is a sophisticated technique that harnesses 
the power of multiple precisely calibrated cameras mounted on a 
vehicle, each with known baselines, to achieve object detection. By 
concurrently capturing image data from diverse vantage points, this 
approach allows for the reconstruction of a scene’s 3D structure and 
object positions. The underlying principle of this algorithm is rooted 
in the stereo matching concept applied to images, using the baseline 
distance and corresponding pixel coordinates between the left and 
right cameras to compute the depth information of objects within the 
camera’s coordinate system. Through the meticulous matching and 
alignment of images from these different perspectives, precise depth 
estimation results are achieved, enabling accurate object detection.

For instance, Tesla’s autonomous driving system utilizes an 
entirely visual approach, employing eight cameras in total. While 
research on stereo camera-based algorithms has evolved into a more 
established and conventional field, the widespread adoption of this 
technology is impeded by the persistently high cost of stereo camera 
equipment. This economic barrier remains a challenge to its 
broader proliferation.

Monocular 3D object detection (Ding et al., 2020; Liu et al., 2021; 
Mousavian et al., 2017; Li et al., 2019; Shi et al., 2021; Simonelli et al., 
2019) is a technique that leverages single-camera images, alongside 
camera calibration, to extrapolate 3D information from 2D data, 
ultimately culminating in the precise detection of a 3D object’s 
bounding box. Monocular 3D object detection methods offer a 
multitude of advantages, including an expansive measurement range, 
exceedingly economical equipment costs, making them ideal for 
broad-scale implementation, in stark contrast to LiDAR or stereo 
camera-based alternatives. However, it is essential to note that the 

current accuracy of monocular 3D object detection methods falls 
short of practical requirements, particularly when confronted with the 
task of detecting occluded targets.

Monocular 3D object detection using machine learning models 
for 2D image segmentation with depth predictions enables cost-
effective and efficient autonomous driving systems. Models like 
Monodepth and DepthNet predict depth from 2D images, enhancing 
object recognition and navigation. However, challenges remain, 
particularly with occlusion and depth accuracy in dynamic 
environments. Research (Wijesekara, 2022) has improved depth 
estimation, but these models often struggle with generalizing across 
diverse real-world scenarios. The research gap lies in enhancing model 
robustness for real-time applications, improving accuracy under 
occlusions, and addressing computational efficiency for 
scalable deployment.

To address this inherent challenge, this paper proposes a monocular 
3D object detection method based on the Spatial Relationships and 
Decoupled Depth Predictions (SRDDP-M3D). By encoding the spatial 
relationships between adjacent targets, the detection performance of 
occluded targets is improved. Additionally, the depth prediction for 
targets is decoupled into target visual depth and target attribute depth, 
enhancing the accuracy of target depth prediction.

2 Related work

Presently, existing monocular 3D object detection methods can 
be broadly categorized into three distinct groups: geometric projection 
model-based 3D object detection, pseudo-LiDAR-based 3D object 
detection, and 2D-to-3D feature-based object detection.

Geometric projection model-based 3D object detection methods 
rely on the application of geometric projection models to estimate 
depth from 2D object bounding boxes, subsequently allowing for the 
prediction of the 3D object bounding box (Lu et al., 2021). These 
models are constructed based on the geometric congruence between 
the object’s depth, camera focal length, actual object height, and the 
height as projected onto the image plane. Consequently, the prediction 
of object depth becomes synonymous with predicting the actual 
height of the object and its projected height in the image. Notably, 
Chen et al. (2020) introduced the MonoPair technique, an innovative 
monocular 3D object detection method that particularly excels in 
detecting partially obscured objects, thanks to its consideration of 
paired sample relationships and the application of spatial encoding 
constraints. Their experiments underscore the substantial 
enhancements in detecting occluded objects. Similarly, Liu et  al. 
(2021) put forth MonoFlex, a versatile monocular 3D object detection 
method that effectively decouples truncated objects and merges 
various approaches for object depth estimation, thereby elevating 
detection performance while preserving real-time efficiency. 
Additionally, Zhou et  al. (2019) identified an issue during the 
projection process, wherein the error in estimating height became 
magnified when inferring depth. This error escalation hindered the 
control over depth inference and disrupted the training efficiency. In 
response, they introduced the geometric uncertainty projection 
network, GUPNet, to rectify this magnification problem during 
inference and training phases. Furthermore, Shi et al. (2021) presented 
a method for geometric distance decomposition, which dissects the 
object’s distance into the physical height on the image plane and the 
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visual height projected. This decomposition process enhances the 
interpretability, accuracy, and robustness of distance predictions. 
Motivated by these advancements, this paper embraces geometric 
projection models to offer a swift and precise preliminary depth 
estimation for object detection.

Pseudo-LiDAR-based 3D object detection methods leverage well-
established monocular depth estimation techniques to generate dense 
depth maps corresponding to images (Fu et al., 2018). These dense 
depth maps are then transformed into 3D space to create a pseudo-
LiDAR representation. Subsequently, 3D detection methods, reliant on 
point cloud data, are employed to detect objects. Notably, studies such 
as Weng and Kitani (2019), Wang et al. (2019), You et al. (2020), Guo 
et al. (2021), and Reading et al. (2021) have successfully implemented 
pseudo-LiDAR-based monocular 3D object detection, achieving 
commendable accuracy. However, it is important to note that these 
approaches necessitate the computation of point cloud data, which 
demands substantial memory resources, leading to slower processing 
speeds. Additionally, pseudo-LiDAR data often suffers from persistent 
noise interference, making its elimination a challenging task.

Hence, this paper adopts a different strategy by bypassing the 
direct calculation of intermediate point cloud data. Instead, it 
integrates the 3D geometric structure into the image-based network, 
allowing for the implicit learning of depth distribution within images 
in an end-to-end fashion.

2D-to-3D feature-based object detection methods aim to establish 
a mapping between 2D image features and their corresponding 3D 
spatial representations (Kumar et al., 2021, Yu et al., 2018, Liu et al., 
2019, Woo et al., 2018, Hu et al., 2018). Unlike methods that directly 
generate pseudo-LiDAR point cloud data, these approaches rely on 
the utilization of features within 3D space for object detection.

For instance, Reading et  al. (2021)) introduced the CaDDN 
method, a fully differentiable end-to-end monocular 3D object 
detection technique. CaDDN effectively projects abundant contextual 
feature information into the appropriate depth interval within 3D 
space, guided by the predicted class depth distribution for each pixel. 
Subsequently, a computationally efficient bird’s-eye view projection 
and a single-stage detector are employed to yield the ultimate 3D 
object detection results.

Furthermore, Zhang et  al. (2021) proposed the DID-M3D 
network, which introduces the concept of instance depth as a 
combination of instance visual surface depth (visual depth) and 
instance attribute depth (attribute depth). This innovation enhances 
depth estimation accuracy. It is noteworthy that these methods avoid 
the direct computation of point cloud data for object detection. 
Instead, they enrich features with estimated depth information, 
subsequently facilitating the detection process. This approach not only 
enhances model efficiency and user-friendliness but also supports 
end-to-end training. In alignment with this methodology, our paper 
also follows suit.

Ma et  al. (2021) conducted an extensive array of diagnostic 
experiments to assess the influence of various subtasks within 
monocular 3D object detection on the ultimate detection outcomes. 
Their findings underscored the pivotal role of “localization error” in 
constraining monocular 3D detection accuracy. Building upon this 
insight, we  further discovered that distant objects exhibit notably 
larger localization errors in comparison to their close-range 
counterparts, leading to a considerable performance disparity between 
the two. Distant objects occupy fewer pixels in the image and offer 

limited informational cues, which naturally translates to more 
significant localization errors. Conversely, close-range objects 
encompass a richer pixel representation, contributing to heightened 
detection accuracy.

It is essential to acknowledge that distant and close-range objects 
manifest distinct characteristics. Utilizing a uniform detection 
methodology tends to inadequately extract features from distant 
objects, detrimentally impacting detection accuracy. As a solution, 
we  advocate the implementation of differentiated processing 
techniques for distant and close-range objects, thereby effecting a 
substantial enhancement in the detection performance of distant 
objects while preserving the efficacy of close-range object detection. 
This strategic approach serves to ameliorate the overall performance 
of monocular 3D object detection.

The paper offers the following notable contributions:

 1) We propose an innovative monocular 3D object detection 
method based on the Spatial Relationships and Decoupled 
Depth Predictions (SRDDP-M3D).

 2) We propose to detect obscured targets by encoding the spatial 
relationships between adjacent targets. By considering how 
objects relate to each other in space, it enhances the detection 
of targets that might be hidden or obstructed in the scene by 
fully understanding and utilizing the spatial context between 
nearby targets for more effective 3D object detection.

 3) We propose to separate the prediction of target depth into two 
components: visual depth and attribute depth. Visual depth is 
related to how the object appears in the image, considering its 
size and position. Attribute depth, on the other hand, 
represents the depth offset from the visible surface to the 3D 
center of the object, capturing intrinsic attributes. By 
decoupling these aspects, the method aims to improve the 
accuracy of predicting the overall target depth.

3 Proposed methods

We present an innovative monocular 3D object detection network 
tailored to the detection of occluded targets. This network takes an 
image as input to the backbone network, obtaining feature maps. 
Subsequently, based on these feature maps, 2D detection, 3D 
detection, and spatial constraint detection between adjacent targets 
are performed. The 2D detection head predicts the target’s 2D center 
and the dimensions of the 2D bounding box, yielding the target’s 2D 
bounding box. The 3D detection head predicts the target’s 3D center, 
yaw angle, 3D dimensions (length, width, height), target visual depth, 
and target attribute depth, resulting in the target’s 3D predicted 
bounding box. The spatial constraint detection between adjacent 
targets calculates the 3D distance between the target’s 3D center and 
the 3D center of adjacent targets. Finally, combining the spatial 
relationships between adjacent targets refines the results of the 3D 
predicted bounding box, making them more accurate (Figure 1).

The network flowchart is as follows:
This proposed method mainly consists of the five modules: 

Module 1: Backbone Network, Module 2: 2D Detection Head, 
Module 3: 3D Detection Head, Module 4: Spatial Constraints 
Between Adjacent Targets, Module 5: Spatial Optimization of 3D 
Predictive Boxes.
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3.1 Module 1: Backbone network

We employ an improved DLA-34 network from CenterNet as the 
backbone network for feature extraction, as it can aggregate 
information across different levels. The network architecture is 
illustrated below:

Within Figure 2, the numerical values enclosed within the boxes 
denote the image stride. Figure 2a showcases the original DLA-34 
network model, whereas Figure 2b illustrates the enhanced DLA-34 
network model sourced from CenterNet. Notably, this improved 
DLA-34 network incorporates additional skip connections and 
elevates each convolution layer within the upsampling stage to 
deformable convolution layers, thereby enhancing its feature 
extraction capabilities.

The improved DLA-34 backbone network significantly 
enhances feature extraction by incorporating deformable 
convolution layers in the upsampling stage. These deformable layers 
allow the network to adaptively focus on relevant spatial regions, 
improving its ability to extract features even when parts of objects 
are occluded.

3.2 Module 2: 2D detection head

In the proposed network, we adopt the 2D detection head from 
CenterNet (Zhou et al., 2019), which comprises the HeatMap branch, 
2D offset branch, and length-width branch. The HeatMap branch 
serves the purpose of identifying the approximate object position and 
its associated confidence in the image. Simultaneously, the 2D offset 
branch fine-tunes the approximate position by predicting the offset 
between the approximate position and the center of the 2D detection 
box. This results in a more precise localization of the 2D detection 
box’s center. Additionally, the length-width branch is responsible for 
predicting the dimensions of each object’s 2D detection box.

In the proposed network workflow, we input a monocular image 
into the improved DLA-34 network to generate a feature map. The 2D 
detection head then conducts 2D information detection on this 
feature map, extracting the object’s approximate position, 2D center 
offset, and dimensions. Subsequently, the object’s precise 2D detection 
box center is computed from the approximate position and 2D center 
offset, while the object’s 2D detection box dimensions are determined 
by the lengths and widths.

The 2D detection head has three output branches. Among them, 
a heat map of size (W × H × c) is used for the localization and 
classification of targets. In 3D object detection on the KITTI dataset, 
there are three target types, i.e., c = 3. Target positions, cg = (ug, vg), are 
extracted from the output feature map. The other two branches 
contain two channels, outputting the sizes of the bounding box (wb, 
hb) and the offset vector (δu, δv) from the located keypoint cg to the 
center of the bounding box cb = (ub, vb). This is illustrated in Figure 3.

3.3 Module 3: 3D detection head

The center point of the target in world space is represented as 
cw = (x, y, z). Its projection in the feature map is denoted as co = (u, v), 
as shown in Figure 3. We predict the offset (∆u, ∆v) of the target’s 
center point cw in world space relative to the keypoint position cg.

We decouple the target depth into visual depth and attribute 
depth. For monocular systems, visual depth highly depends on the 
object’s 2D bounding box size (objects far away appear small in the 
image, and vice versa) and its position on the image. Attribute depth 
is the depth offset from the visible surface to the 3D center of the 
object, as it is more likely related to the object’s inherent attributes. For 
example, when a car is oriented parallel to the z-axis (depth direction) 
in 3D space, the attribute depth at the car’s tail is half of the car’s 
length. Conversely, if the orientation is parallel to the x-axis, the 
attribute depth is half of the car’s width. Attribute depth depends on 
the target’s orientation and its intrinsic properties.

We use two separate detection heads to independently estimate 
target visual depth and attribute depth. The target depth is obtained 
by summing the visual depth and attribute depth. Decoupling the 
target depth has several advantages: (1) it is a rational and intuitive 
approach, allowing for a more comprehensive and accurate 
representation of objects; (2) it enables the network to extract different 
types of features for different depth types, facilitating learning.

Assuming the target depth is Z and the intrinsic matrix K of the 
camera is given by Equation (1):

 

0
0
0 0 1

x x

y y

f a
K f a

 
 =  
   

(1)

FIGURE 1

The proposed network architecture, in which “Backbone” signifies the primary network. “Feature map” denotes the feature map extracted by the 
backbone network. “2D head” represents the 2D detection head. “2D Box” is used to illustrate the predicted 2D bounding box. “3D head” is employed 
to label the 3D detection head. “3D Box” symbolizes the final predicted 3D bounding box.”3D head” signifies the 3D detection head.
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then the target’s center in world space is given as Equation (2):

 

g vg u
yx

x y

v au a z, z,z
f f

 + ∆ −+ ∆ − =
 
 

wc

 
(2)

The three-dimensional size is represented as (w, h, l), indicating 
width, height, and length. As shown in Figure 3, to predict the yaw 
angle α of the target, we can first regress the global orientation β in 
the camera coordinate system. Then, calculate the relative rotation 
angle γ between the target and the camera’s perspective as γ = arctan 
(x/z). Finally, the yaw angle α of the target can be  computed as 
α = β + γ.

The decoupling of target depth into visual and attribute depth 
enables a more precise estimation of the 3D center of occluded objects. 
Visual depth depends on observable cues, while attribute depth 

incorporates object-specific intrinsic properties, compensating for 
missing visual data caused by occlusion.

3.4 Module 4: Spatial constraints between 
adjacent targets

To further improve the detection accuracy of occluded targets, 
we  propose a novel regression target prediction method, namely 
predicting spatial constraints between adjacent targets. The spatial 
constraint strategy between adjacent targets is illustrated in Figure 4a. 
For any pair of targets, we define a bounding circle by setting the 
distance between their 2D bounding box centers as the diameter. If 
the bounding circle contains the center of another target within it, 
we ignore that pair. Figure 4b displays an example image containing 
all valid pairs of targets.
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FIGURE 2

Schematic of the DLA-34 network model. (a) The original DLA-34 network model. (b) The enhanced DLA-34 network model.

FIGURE 3

Diagram of coordinates.
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Given a selected pair of targets, with their three-dimensional centers 
in world space denoted as ( ), ,w

i i i iC x y z=  and ( ), ,w
j j j jC x y z= , 

and their 2D bounding box centers on the feature map as 
( ),b b b

i i iC u v=  and ( ),b b b
j j jC u v= , the regression target for the spatial 

constraint between adjacent targets is the three-dimensional distance 
between these two targets. Firstly, locate the midpoint 

( ) ( )/ 2 , ,w w w w w w
ij i j x y z

ij
p c c p p p= + =  in three-dimensional space. Then, 

considering the viewpoint direction as the Z-axis, with w
ijp as the 

origin, establish a local coordinate system using the left-hand 
coordinate system. The three-dimensional absolute distance 

( ), ,v v v v
ij x y z

ij
k k k k=  between the adjacent targets 

w
iC  and 

w
jC , as shown 

in Figure 5, serves as the regression target.
During the training process, it is straightforward to obtain v

ijk  from 
the training data through the actual 3D target centers, as described in 
Equation (3).

 ( )γ
= →

w
ij ij

v
ij

R k
k

 
(3)

The w
ijk  can be  obtained by taking the difference between the 

three-dimensional centers of two targets in the camera coordinate 
system, as described in Equation (4).

 
w w w
ij i jk c c= −  (4)

The ( )ijR γ  is the rotation matrix from the camera coordinate 
system to the local coordinate system. In this work, we define the local 
coordinate system as a reference frame anchored to the object being 
analyzed. This coordinate system is used to express the position and 
orientation of object features in both 2D and 3D spaces. Unlike a 
global or world coordinate system, which relies on external references, 
the local coordinate system is intrinsic to the object itself. This 
approach ensures that the spatial properties of the object are described 
with precision, regardless of its placement or orientation within a 
larger environment.

The local coordinate system serves as the foundation for the feature 
map generated by the backbone network and the subsequent modules 
that estimate 2D and 3D object coordinates. By operating within this 
localized framework, our model improves its robustness to variations in 
global positioning and eliminates the need for complex transformations 
typically required in global coordinate systems. This design choice 
enhances both computational efficiency and prediction accuracy.

As shown in Figure 6, the three-dimensional distance kw between 
adjacent targets in the camera coordinate system remains invariant 
under different perspectives. However, the three-dimensional distance 
kv between adjacent targets in the local coordinate system varies with 
changes in the viewing angle. Therefore, the three-dimensional 
distance kv between adjacent targets in the local coordinate system is 
more meaningful.

During the inference process, we first predict the two-dimensional 
position of the target, then find the nearest adjacent target to the 
center of the target’s 2D bounding box. Subsequently, we predict the 
three-dimensional distance kv between the two adjacent targets in the 
local coordinate system.

A key innovation lies in the spatial constraint detection between 
adjacent targets. By calculating the 3D distance between neighboring 
targets, the network captures spatial relationships, which are 
particularly valuable for inferring the location of partially occluded 
objects. This mechanism ensures that occluded targets are accurately 
localized by leveraging their contextual relationships with 
visible objects.

3.5 Module 5: Spatial optimization of 3D 
predictive boxes

In this module, we propose a three-dimensional bounding box 
spatial optimization method from a graph perspective to further 
improve the detection accuracy of occluded targets. Assuming that in 
a given image, the network outputs N targets, among which there are 
M pairs of spatial constraints between adjacent targets, we consider it 
as a graph with N vertices and M edges. Each vertex can be connected 
to multiple adjacent vertices. Targets that are not connected to other 
vertices do not require optimization.

3.5.1 Graph representation of targets
The detected targets are represented as a graph:

 • Vertices (NNN) represent the detected targets in three-
dimensional space.

 • Edges (MMM) represent spatial constraints between adjacent 
targets, capturing the expected distance between their centers as 
estimated by the network.

Targets without shared edges (isolated vertices) are considered 
independent and do not undergo optimization, as no spatial 
constraints are applied.

3.5.2 Nonlinear least squares optimization
To refine the positions of the bounding box centers, we employ a 

nonlinear least squares optimization technique that minimizes spatial 
inconsistencies between the estimated three-dimensional distances 
and those predicted by the network.

FIGURE 4

The spatial constraint strategy between adjacent targets. (a) The 
spatial constraint strategy between adjacent targets. (b) An example 
image containing all valid pairs of targets.
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1. Error Terms ( , yx
ij ije e , z

ije ).
For each pair of adjacent targets connected by vertices Ci and Cj, the 

error terms quantify inconsistencies along the x, y, and z axes. These 
are defined as the absolute difference between:

 • The predicted three-dimensional distance (v
ijk ).

 • The actual distance ( v
ijk ) derived from the estimated positions of 

the connected vertices Ci and Cj.

The mathematical expressions are presented in Equations (5, 6) 
as follows:

 ( )( )w w
ij i j

v
ij

R c c
k

γ −
= →

 
(5)

 
( ), ,

v v
ij ij

Tyx z
ij ijij

k k
e e e

−
= →
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(6)

2. Rotation Matrix ( ( )ijR γ )
To ensure consistency across different orientations, a rotation 

matrix is applied, aligning spatial constraints for adjacent targets in 
the local coordinate system.

3. Optimization Process
For each target, error terms are calculated for all its  

adjacent targets. The optimization process adjusts the three-dimensional 
positions of bounding box centers to minimize the average error across 
all edges connected to a vertex, ensuring spatial consistency.

4. Output
The refined bounding box centers are obtained by minimizing 

the average error, replacing initial estimates for more accurate three-
dimensional predictions.

3.5.3 Advantages of spatial optimization
1. Improved accuracy
The spatial consistency enforced by this method enhances the 

accuracy of bounding box predictions, particularly for occluded or 
overlapping targets.

2. Robustness to occlusions

w
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w
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FIGURE 5

Regression targets for the spatial constraint between adjacent targets.

FIGURE 6

Spatial constraints between adjacent targets in the camera coordinate system and local coordinate system.
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The graph-based approach handles occluded objects effectively by 
leveraging spatial relationships between adjacent targets.

3. Scalability
The optimization process is computationally efficient and can 

handle dense scenes with a large number of targets.
The proposed graph-based spatial optimization further refines the 

3D bounding boxes by minimizing inconsistencies in predicted spatial 
relationships. This approach is especially effective for occluded objects, 
as the optimization integrates global spatial information, ensuring that 
predictions remain consistent even when direct visual information 
is limited.

4 Experiments

4.1 Experimental setup

The experiments were carried out on the Ubuntu 16.04 
operating system, utilizing 8 NVIDIA RTX 2080Ti GPUs, each 
equipped with 16GB of memory. The PyTorch deep learning 
framework was employed, and a Hierarchical Task Learning 
(HTL) training strategy (Kingma and Ba, 2014) was utilized. For 
optimizing model parameters, this paper employed the Adam 
optimizer with a Batch Size of 16. An initial learning rate of 
1 × 10^(−5) was used, alongside a linear warm-up strategy, which 
gradually increased the learning rate to 0.001 over the course of 
the first 5 epochs. Subsequently, the learning rate was decayed at 
a rate of 0.1 at the 90th and 120th epochs.

In line with the approach inspired by CaDDN (Reading et al., 
2021), we projected the LiDAR point cloud onto the image to generate 
a sparse depth map. We then executed depth completion to derive 
depth values for every pixel in the image. During the training process, 
the depth map served as the basis for supervision.

4.2 Datasets and metrics

We conducted our experiments using the KITTI dataset 
(Geiger et al., 2012), a comprehensive evaluation dataset jointly 
established by the Karlsruhe Institute of Technology in Germany 
and the Toyota Technological Institute of America. The KITTI 
dataset is currently the largest evaluation dataset for computer 
vision algorithms within the context of autonomous driving. It 
serves as the benchmark for evaluating a variety of tasks, 
including stereo images, optical flow, visual odometry, 3D object 
detection, and 3D tracking in automotive scenarios. The dataset 
comprises real image data captured in urban, rural, and highway 
scenes. Each image features up to 15 cars and 30 pedestrians, 
often with various degrees of occlusion and truncation. The 
dataset is divided into 7,481 training samples and 7,518 testing 
samples for 3D object detection. While labels for training samples 
are publicly available, those for testing samples are kept 
confidential on the KITTI website and are solely used for online 
evaluation and ranking. To facilitate our experiments, we further 
divided the training set and conducted ablation studies. The 
initial 7,481 training samples were segmented into a new training 
set (consisting of 3,712 samples) and a validation set (comprising 
3,769 samples).

The KITTI dataset categorizes objects into three evaluation levels: 
easy, moderate, and hard. This classification is based on factors such 
as the height of the object’s 2D bounding box (related to depth), 
occlusion, and truncation levels.

For evaluation purposes, we employed two main metrics: AP3D 
and APBEV. AP3D assesses the accuracy of 3D bounding boxes by 
calculating the Intersection over Union (IoU) between each 3D 
predicted box and the corresponding ground truth 3D box. If the IoU 
is greater than 0.7, the predicted box is deemed a positive sample; 
otherwise, it is considered a negative sample. Subsequently, predicted 
bounding boxes are sorted in descending order based on their 
confidence scores, and precision and recall rates are sequentially 
calculated, forming a precision-recall (PR) curve. The area under this 
curve is determined using interpolation at 40 interpolation points 
along the horizontal axis, yielding the AP3D value for the detection 
results within that category.

AP3D calculation: The area under the PR curve is computed using 
interpolation at 40 interpolation points along the horizontal axis 
(recall). The AP3D is the mean average precision (mAP) at these 40 
points, as described in Equation (7):

 
AP3D=

 
( )
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1

1
40 i

i
P R

=
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Where Ri represents the recall at the i-th interpolation point, and 
P (Ri) is the corresponding precision at that recall.

APBEV, on the other hand, evaluates the accuracy of yaw 
angles. It also relies on IoU calculations between each 3D 
predicted box and the ground truth 3D box in the bird’s-eye view. 
Similar to AP3D, an IoU greater than 0.7 categorizes the 
predicted box as a positive sample, while anything below this 
threshold is regarded as a negative sample. The same 
methodology is applied to construct a precision-recall (PR) 
curve, and the area under this curve is computed through 
interpolation at 40 interpolation points along the horizontal axis, 
resulting in the APBEV value for the detection results within 
that category.

APBEV calculation: The area under the PR curve for APBEV is 
computed similarly to AP3D using interpolation at 40 points along the 
recall axis, as described in Equation (8):
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Where PBEV (Ri) is the precision at the i-th recall point Ri .

4.3 Performance on the KITTI benchmark

In our experiment, we conducted a comparative analysis of our 
method against five existing monocular 3D object detection 
approaches, namely M3D-RPN (Brazil and Liu, 2019), Kinematic3D 
(Brazil et al., 2020), MonoDLE (Ma et al., 2021), MonoCon (Liu et al., 
2021), and DID-M3D (Peng et al., 2022), using the KITTI dataset. 
We also compare its results with existing state-of-the-art methods 
published in 2024, MonoCD by Yan et al. (2024) and Liu’s scalable 

https://doi.org/10.3389/fcomp.2024.1382080
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gao et al. 10.3389/fcomp.2024.1382080

Frontiers in Computer Science 09 frontiersin.org

vision-based approach (Liu, 2024) on the KITTI 3D object 
detection benchmark.

The results of this comparison are summarized in Table 1, which 
showcases the performance of our method alongside that of the other 
methods on the KITTI database.

As depicted in Table  1, our SRDDP-M3D method has 
exhibited noticeable enhancements across various performance 
metrics when evaluated on the KITTI dataset. Compared to the 
most recent DID-M3D, our method shows a slight improvement 
in the detection performance for easy-class objects, with an 
increase of 0.04% in APBEV and 0.52% in AP3D for the easy-
class category. However, the most significant improvements are 
observed in the detection accuracy for moderate and hard-class 
objects. Specifically, the APBEV for moderate-class objects saw 
an improvement of 0.61%, while AP3D increased by 0.84%. For 
hard-class objects, the improvements were even more 
pronounced, with APBEV increasing by 0.89% and AP3D rising 
by 1.1%.

In comparison with MonoCD (Yan et al., 2024; Liu, 2024), 
our SRDDP-M3D method shows competitive performance. 
MonoCD achieves a slight increase in performance for 
moderate-class and hard-class objects, with APBEV and AP3D 
results slightly behind ours in these categories. Liu (2024), while 
also competitive, exhibits similar performance trends but does 
not surpass our method, especially in the hard-class object 
detection, where SRDDP-M3D outperforms both in APBEV 
and AP3D.

This enhanced performance can be  attributed to the more 
effective modeling of the three-dimensional distance between 
adjacent targets in the local coordinate system, which varies with 
changes in viewing angles. In contrast, the three-dimensional 
distance between adjacent targets in the camera coordinate system 
remains invariant under different perspectives, which makes the 
local coordinate system a more meaningful reference in 
our approach.

4.4 Ablation study

To assess the effectiveness of the SRDDP-M3D method, 
we conducted two sets of ablation experiments, each with a specific 
focus. These experiments are as follows:

The module of Spatial Constraints Between Adjacent Targets: This 
experiment seeks to evaluate the role of Spatial Constraints Between 
Adjacent Targets by excluding it from the pipeline. In this setup, no 
Spatial Constraints Between Adjacent Targets is performed, and all 
objects are trained using the modules of backbone network, 2D 
detection head, 3D detection head, and Spatial Optimization of 3D 
Predictive Boxes.

The module of Spatial Optimization of 3D Predictive Boxes: To 
assess the effectiveness of the module of Spatial Optimization of 3D 
Predictive Boxes, this experiment omits Spatial Optimization of 3D 
Predictive Boxes. All objects are trained using the modules of 
backbone network, 2D detection head, 3D detection head, and Spatial 
Constraints Between Adjacent Targets.

The results of these two experiments are presented in Table 2 for 
analysis and comparison.

The results presented in Table 2 offer valuable insights into the 
impact of various ablation experiments. The experiment omitting 
the module of Spatial Constraints Between Adjacent Targets 
revealed a notable decline in performance, with APBEV values for 
easy-class, moderate-class, and hard-class objects dropping by 
6.23, 3.42, and 6.20%, respectively. The corresponding AP3D 
values also showed significant decreases of 5.52, 4.85, and 3.59% 
for easy-class, moderate-class, and hard-class objects, respectively. 
These findings underline the essential role of the module of Spatial 
Constraints Between Adjacent Targets and the significance of 
processing occluded targets separately.

In the case of the module of Spatial Optimization of 3D 
Predictive Boxes, the ablation experiment demonstrated a decrease 
in performance, with APBEV values for easy-class, moderate-
class, and hard-class objects declining by 4.14, 2.64, and 3.09%, 
respectively. The corresponding AP3D values exhibited decreases 
of 2.52, 3.36, and 2.71% for easy-class, moderate-class, and hard-
class objects, respectively. These results underscore the 
effectiveness of the module of Spatial Optimization of 3D 
Predictive Boxes improving the detection accuracy of 
occluded targets.

As illustrated in Figure  7, the results of the ablation 
experiments for the module of Spatial Constraints Between 
Adjacent Targets and the module of Spatial Optimization of 3D 
Predictive Boxes both exhibit lower performance compared to the 
SRDDP-M3D experiment results. This underscores the 
effectiveness of the SRDDP-M3D method, which entails Spatial 

TABLE 1 Comparison results with other monocular 3D object detection methods.

Approaches Venue APBEV(IoU = 0.7)|R40

Easy moderate hard
AP3D(IoU = 0.7)|R40

Easy moderate hard

M3D-RPN (Brazil and Liu, 2019) ICCV19 21.02 13.67 10.23 14.76 9.71 7.42

Kinematic3D (Brazil et al., 2020) ECCV20 26.69 17.52 13.10 19.07 12.72 9.17

MonoDLE (Ma et al., 2021) CVPR21 24.79 18.89 16.00 17.23 12.26 10.29

MonoCon (Liu et al., 2021) AAAI22 31.12 22.10 19.00 22.50 16.46 13.95

DID-M3D (Peng et al., 2022) ECCV22 32.95 22.76 19.83 24.40 16.29 13.75

MonoCD (Yan et al., 2024) CVPR24 32.94 22.78 20.12 24.66 16.85 13.98

Liu (2024) TBD 32.95 23.12 20.09 24.78 16.98 14.61

SRDDP-M3D ours 32.99 23.37 20.72 24.92 17.13 14.85
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FIGURE 7

Comparison of ablation study results.

Constraints Between Adjacent Targets and Spatial Optimization 
of 3D Predictive Boxes. In summary, the effectiveness of the 
SRDDP-M3D method is attributed to the integration of spatial 
constraints between adjacent targets and the spatial optimization 
of 3D predictive boxes. These elements contribute to the method’s 
ability to produce more accurate and reliable results in three-
dimensional object detection.

Furthermore, the ablation experiment results for the module 
of Spatial Optimization of 3D Predictive Boxes outperform those 
of the module of Spatial Constraints Between Adjacent Targets, 
signifying that relying solely on the module of Spatial 
Optimization of 3D Predictive Boxes is more effective than 
relying solely on the module of Spatial Optimization of 3D 
Predictive Boxes. In addition, the ablation experiment results for 
both the feature enhancement and feature refinement modules 
fall short of the SRDDP-M3D experiment results, emphasizing 
the effectiveness of combining both modules for 
superior performance.

5 Conclusion

This paper proposes a novel monocular 3D object detection 
method based on Spatial Relationships and Decoupled Depth 
Predictions (SRDDP-M3D) for occluded targets, aiming to enhance 
their detection performance. The method improves the ability to 
detect targets that are partially or fully obscured by encoding the 
spatial relationships between adjacent targets. By considering how 
objects relate to each other in space, it enhances the detection of 
targets that might be hidden or obstructed in the scene. Furthermore, 
the proposed method introduces a Decoupled Depth Predictions 
Refining approach to improve the process of predicting the depth of 
targets. The conducted experiments have validated the effectiveness of 
our method.
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TABLE 2 Ablation study results.

APBEV(IoU = 0.7)|R40

Easy moderate hard
AP3D(IoU = 0.7)|R40

Easy moderate hard

Spatial constraints between adjacent targets 26.89 19.56 15.12 18.45 13.23 11.53

Spatial optimization of 3D predictive boxes 28.98 20.34 18.23 21.45 14.72 12.41

SRDDP-M3D(Ours) 33.12 22.98 21.32 23.97 18.08 15.12
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