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Introduction: Hard disk drive (HDD) failure is a significant cause of downtime 
in enterprise storage systems. Research suggests that data access rates strongly 
influence the survival probability of HDDs.

Methods: This paper proposes a model to estimate the probability of HDD 
failure, using factors such as the total data (TD) read or written and the average 
access rate (AAR) for a specific drive model. The study utilizes a dataset of HDD 
failures to analyze the effects of these variables.

Results: The model was validated using case studies, demonstrating a strong 
correlation between access rate management and reduced HDD failure risk. 
The results indicate that managing data access rates through improved throttle 
commands can significantly enhance drive reliability.

Discussion: Our approach suggests that optimizing throttle commands at the 
storage controller level can help mitigate the risk of HDD failure by controlling 
data access rates, thereby improving system longevity and reducing downtime 
in enterprise storage systems.
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1 Introduction

The fundamental role of any storage system is to efficiently cater to the diverse needs of various 
applications while accommodating their specific workloads. In modern storage systems, data 
reading and writing operations are primarily handled by hard disk drives (HDDs). Any interruption 
of these basic tasks can have significant repercussions, affecting all facets of storage management. 
Such disruptions can lead to performance degradation, an increased need for human intervention, 
a higher risk of service outages, and ultimately, potential data unavailability or loss.

Despite the critical importance of seamless data operations, many storage systems face 
challenges in maintaining uninterrupted performance. Existing solutions often fall short in 
addressing the complexity and variability of workloads, reducing the efficiency of data management. 
Existing research has focused on optimizing the individual components of storage systems, but 
comprehensive strategies that encompass the entire storage infrastructure are still lacking.

This research aims to bridge these gaps by exploring innovative approaches to enhancing 
the reliability and efficiency of storage systems. By investigating the underlying causes of data 
operation interruptions and their impact on overall system performance, this study seeks to 
develop robust solutions that minimize disruptions, reduce human intervention, and ensure 
continuous data availability. Through this work, we aim to contribute to the advancement of 
storage technologies, paving the way for more resilient and efficient data management systems.
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1.1 Motivation

The motivation for this paper stems from the critical issue of HDD 
failure causing significant downtime in enterprise storage systems. 
Despite advancements in storage technology, HDD failures remain a 
persistent challenge, leading to substantial disruptions and operational 
inefficiencies. The existing literature provides valuable insights into 
individual factors that contribute to HDD failures, but there is a lack 
of comprehensive models that combine these factors to predict and 
mitigate such failures effectively.

In this work, empirical analyses are conducted to explore the 
relationship between data access rates and HDD survivability. By 
proposing a predictive model based on the total data (TD) read or 
written and the average access rate (AAR), this work aims to 
preemptively address HDD failures. The predictive model leverages 
real-world data from storage controllers to identify HDDs with high 
failure probabilities.

To validate the findings, the proposed model is tested using data 
from actual storage systems. A novel strategy is introduced: 
reallocating HDDs with high failure probabilities to different 
redundancy groups. This approach aims to optimize resource 
allocation, enhance system resilience, and mitigate the risks associated 
with HDD failures.

By addressing these challenges, this research provides a practical 
solution for storage system administrators and engineers and a 
proactive method to improve the reliability and efficiency of enterprise 
storage systems.

1.2 Previous research

HDDs consist of many complex subcomponents that must work 
in coordination with each other. Depending on the characteristics of 
the subcomponents, failures can occur at different stages in the 
lifetime of a product. The mean time to failure (MTTF) and annualized 
failure rate (AFR) are two of the current metrics of choice for 
quantifying the survivability of HDDs (George, 2013).

Prior research has shown that HDD failure prediction modeling 
can provide reasonable failure predictions for different kinds of hard 
disks with various interfaces, including integrated drive electronics 
(IDE), fiber channels (FC), small computer system interfaces (SCSI), 
and serial advanced technology attachments (SATA). Statistical 
modeling techniques such as logistic regression have been applied 
using the most relevant self-monitoring, analysis, and reporting 
technology (SMART) parameters to predict HDD failures with 
reasonable false alarm rates and accuracy (Shen et al., 2018; Zhang 
et al., 2023; Rincón et al., 2017; Liu and Xing, 2020; Smith and Smith, 
2004; Smith and Smith, 2001; Smith and Smith, 2005; Mohanta and 
Ananthamurthy, 2006).

There have been attempts to increase the survival probability of 
solid-state driFDriveves (SSDs) in storage systems by controlling the 
write amplification factor (WAF) depending on the workload 
(Mohanta et al., 2015). Different machine-learning solutions have also 
been proposed as alternatives, including support vector machines, 
nonparametric rank-sum tests, and unsupervised clustering 
algorithms. These solutions provide improvements over existing 
threshold-based algorithms for predicting HDD failures (Murray 
et al., 2003; Hamerly and Elkan, 2001; Royston and Sauerbrei, 2008).

Improvements and new trends in HDD packaging methods have 
led to the high-density packing of physical materials in the drive cage. 
This has led to less spacing between the head and the media during 
read and write operations, which is one of the probable causes of HDD 
failure with media errors. The MTTF parameter alone is inadequate 
to describe HDD survivability, and according to one study (George, 
2013), the total amount of data transferred is a more appropriate 
parameter of choice.

Many large enterprise storage companies require that drive 
manufacturers to provide detailed information to be queried from 
HDDs for further failure analysis. Along with the standard parameters, 
such as SMART attributes, recoverable errors, and unrecoverable 
errors parameter values are also made available to query from HDDs. 
This research employs these data for predictive modelling and analyses.

1.3 Unique contributions

Different kinds of hard disks form components of the storage 
systems deployed in data centers and cloud environments, including 
private, public, and hybrid clouds, to provide platform-as-a-service 
(PaaS) technology. In storage systems, these hard disks are building 
blocks for offering proper performance and survivability to the hosted 
application. Disk failure is inevitable, and catastrophic errors threaten 
both mission-critical data and the performance and survivability 
of applications.

The novel application of the model proposed in this work is that 
multiple HDDs in the same storage pool with a high failure probability 
threshold are reallocated to different storage pools after ensuring 
proper migration of their data to enhance overall system survivability.

The following are unique contributions of this work that advance 
the understanding of hard drive failures and their prediction:

 • Predictive Modeling: By leveraging the statistical programming 
language R, the proposed predictive model has the capability to 
analyze workload patterns and their correlation with hard drive 
failures. By training models on extensive datasets that incorporate 
workload parameters, these algorithms can forecast potential 
failures more accurately.

 • Dynamic Adjustments: The same model can be pragmatically 
implemented for developing real-time monitoring tools that 
continuously assess workload parameters and dynamically adjust 
hard drive operations. This proactive approach allows systems to 
mitigate potential stressors or redistribute the workload to ensure 
optimal drive health.

 • End-to-End Assessment: This model has the potential to 
perform a comprehensive lifecycle analysis that considers the 
cumulative impact of workload variations over the entire lifespan 
of a hard drive. The appropriately chosen statistical model, 
namely, the Cox Proportional Hazards Model (CPHM) utilizes 
censored data to provide with valid estimates of the survival 
probabilities for potential HHD failures throughout the entire life 
cycle. This holistic approach helps in identifying critical periods 
or thresholds beyond which workload intensities significantly 
affect survivability.

 • Smart Resource Allocation: This model unveils avenues for 
ushering in adaptive throttling mechanisms that optimize 
resource allocation based on workload analysis. By dynamically 
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adjusting read/write operations, applying caching strategies, and 
making use of data placement, systems can reduce wear and tear, 
thereby enhancing hard drive longevity.

 • Unified Metrics: This model facilitates the use of proposing 
standardized metrics that incorporate workload considerations 
based on the AAR and TD. By establishing a common framework 
for evaluating hard drive survivability across diverse workloads, 
researchers and industry practitioners can compare results more 
effectively and drive advancements collaboratively.

1.4 Mathematical formulations and 
equations

Storage Array Downtime (SD) is defined as the percentage of time 
that the storage arrays in the installed base are down and not available 
to service requests. Measuring the storage array downtime is useful 
for clearly visualizing different contributions to the total array 
downtime (such as firmware-related downtime and downtime with 
other causes). However, the proposed research has adopted another 
approach is adopted in this work to investigate the impact of workload 
on HDD failures. As part of this analysis, primary data was collected 
from real production systems. The total amount of data read from or 
written to HDDs is a major parameter of this analysis. It is called the 
total data (TD) and is defined as follows:

 TD TDR TDW= +  (1)

where TDR is the total data read and TDW is the total data written 
in bytes.

Attempts have been made to determine how different kinds of 
workloads affect the survivability of HDDs. However, information 
pertaining to the amount of random data or sequential data 
transferred to the disks is not available in this dataset.

Therefore, another parameter, the AAR, is exploited in this 
investigation. The values of this parameter May vary over time. There 
could be significant activity at certain times and a lack of activity at 
other times, depending on application requirements. Keeping in mind 
the lack of information on the timelines of these cycles in view, a 
parameter called the average access rate (AAR) is introduced, which 
is defined as follows:

 
TDAAR
PT

=
 

(2)

where, PT is the power-on time in minutes. This parameter 
intuitively gives a sense of the data transfer rate of a customer 
application to the HDD. In this analysis, the TD in bytes and the AAR 
in bytes per minute are used as parameters to measure the survivability 
of the HDDs.

2 Brief overview of survival analysis

Survival analytic models, which form a branch of statistics, 
share certain similarities with logistic and linear models. In this 
analysis, survival analytic models are chosen over logistic or linear 

models because they consider parameters such as the event time 
and event probability that are not considered by the alternatives 
(Kalbfleisch and Prentice, 2011; Lambert and Royston, 2009). The 
key parameters and associated functions are outlined in 
this section.

Usually, failed HDDs are returned by different customers at 
different times. This research takes into account HDDs received over 
the past 5 years. A detailed analysis was carried out based on the 
power-on time of the HDDs as well as their workloads. The power-on 
time is the amount of time for which the HDDs are used in any 
system. The start time for the analysis on all HDDs is the same, i.e., 0. 
The end time is the highest value of the power-on time available in the 
data set. A test suite determines whether one or more events have 
occurred on an HDD that belongs to a set of failure events. If such an 
event occurs, the amount of power-on time on that HDD is considered 
its failure event time.

In survival analysis, the event time distribution is quantified using 
the following four functions.

2.1 The cumulative distribution function 
(CDF)

The CDF of hard disk random failure is expressed using a random 
variable 𝑋 as

 ( ) ( )F x P x X= <  (3)

where, ( )F x  is the CDF and the right-hand side represents the 
probability that 𝑋 has a value less than or equal to 𝑥.

2.2 The probability density function (PDF)

The PDF of a random variable 𝑋, denoted 𝑓 (𝑥), is defined by:

 
( ) ( )df x F x

dx
=

 
(4)

The PDF is the derivative or slope of the cumulative distribution 
function (Zhang et al., 2023).

2.3 The survival function

The survival function captures the probability that a component 
or system is alive and functional beyond a defined point on the time 
axis (Rincón et al., 2017). Let 𝑋 be a continuous random variable with 
cumulative distribution function 𝐹(𝑥) in the interval [0, ∞]. Its 
survival function is defined as follows:

 ( ) { }( ) ( )1S x P X x F x−= > =  (5)

The above function helps to define the probability of 𝑋 being alive 
just before exceeding duration 𝑥, or the probability that the failure 
event has not occurred at all in the considered 𝑥 interval. The survival 
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curve describes the relationship between the probability of survival 
and time.

2.4 Hazard function

The hazard function h(𝑥) is given by the following equation:

 
( ) ( )

( )
f x

h x
S x

=
 

(6)

The hazard function is more intuitive in survival analysis than the 
probability distribution function because it quantifies the 
instantaneous risk that an event will take place at time 𝑥 given that the 
subject survived to time 𝑥 [6].

In survival or failure test cases, it is essential to determine whether 
variables are correlated with survival or failure times. However, this 
correlation analysis is not simple (Royston and Sauerbrei, 2008; 
Kalbfleisch and Prentice, 2011; Lambert and Royston, 2009). This is 
because, most likely, the dependent variable of interest does not follow 
an exponential distribution but instead a normal distribution. Another 
contributing factor is incomplete datasets generated from research or 
analytical studies, where the complete output is not as expected or the 
dataset is censored.

2.5 The cox proportional hazards model 
(CPHM)

The CPHM relies on variables that are correlated to survival and 
does not make presumptions about base line hazard rate of each 
variable. Therefore, the Cox regression method is much more useful 
than the Kaplan–Meier estimator (KME) approach, which involves a 
lot of explanatory variables (Kleinbaum and Klein, 1996; Hosmer 
et al., 2008; David, 1972). A brief exposition on KME is given below 
to validate the choice of the CPHM for the proposed research.

In its generic form, the KME can be expressed as below using 
an example.

Consider a sample size of population 𝑁, with 𝑡 being the time axis. 
Assume 𝑡1, 𝑡2, … 𝑡i, … 𝑡𝑁 are the observed lifetimes of the sample size 
𝑁, such that 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ … ≤ 𝑡𝑁, with Ŝ(𝑡) the probability that a 
member has a lifetime exceeding 𝑡. In this scenario, the Kaplan–Meier 
estimator tries to establish a survival function at 𝑡i between members 
who have experienced the event versus members who have not. Let 𝑑𝑖 
be the set of members who have experienced the event and 𝑛𝑖 be the 
members who are yet to experience the event. Then, the KME can 
be expressed as:

 
( ) 1

i

i
t t

i

dS t
n≤

 
= Π − 

  
(7)

Assuming, Ŝ(𝑡) is the probability that a given member from the 
sample size has a lifetime exceeding time 𝑡.

As no assumptions are made about the nature of the survival 
distribution, the CPHM model is considered the most generic 
regression model. Hence, Cox’s regression model May be considered 

to be a “semi-parametric” model (Kalbfleisch and Prentice, 2011). The 
CPHM is represented as follows:

 ( ) ( ) ( )0 1, exp p
i iih t x h t Xβ== Σ

 
(8)

where, 𝑋 = (𝑋1, 𝑋2, …, 𝑋𝑝) are the explanatory/predictor 
variables, h0(𝑡) is the baseline hazard function, and 𝛽i are the 
regression coefficients.

To linearize this model, both sides of the equation are divided by 
h0(𝑡) and then the natural logarithm is then taken on both sides. As a 
result, a fairly “simple” linear model can be readily estimated. The final 
result is:

 

( )
( ) 1

0

,
log p

i ii
h t x

X
h t

β=
 

= Σ  
   

(9)

The CPHM has been endorsed by many researchers as it is quite 
robust for computing the associated survival probabilities through 
balancing potential predominant variables (Royston and Sauerbrei, 
2008; Kalbfleisch and Prentice, 2011; Lambert and Royston, 2009; 
Kleinbaum and Klein, 1996; Hosmer et al., 2008). In essence, the 
CPHM is most suitable for representing and interpreting impact of 
AAR and TD groups on survival probability of HDD. Also statistically 
R programming language R is also commensurate tool implementing 
CPHM for the proposed research (Kleinbaum and Klein, 1996; 
Hosmer et  al., 2008; David, 1972; Kaplan and Meier, 1958; Lane 
et al., 1986).

3 Modeling and discussions

As the HDDs considered here form part of a storage system, 
software drives the operation of these hard disks from insertion into 
the storage system until the drives declare themselves to have failed or 
software identifies them as faulty (Equations 1–9).

3.1 HDD failure

HDD failure occurs when an HDD is no longer capable of 
performing IO operations. However, the word HDD failure is 
somewhat vague, and the threshold for failure is different for 
each subsystem.

SMART data in its intrinsic form seems to be insufficient because 
many HDDs undergo unexpected hardware failures, such as head 
crashes or excessive media errors, without any warning from SMART 
subsystems. Storage controllers May have different thresholds for 
declaring an HDD as having failed, such as if a drive gives a certain 
number of unrecovered errors within a certain period, shows too 
many timeouts during data access, or cannot reassign a logical block 
address (LBA).

Therefore, the basis of the present analysis is the event of HDD 
failure in a storage system. Whenever there is an HDD failure event in 
a customer data center, the failed HDD is sent to a lab for investigation. 
The test suites used by storage system vendors mostly rely on the log 
data available on the HDD, which can be  queried through Small 
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Computer System Interface (SCSI) commands. These test suites have 
defined thresholds, and if a drive exceeds the thresholds in any certain 
area, it is declared a failure. There is a never-ending battle between 
storage controller providers and HDD manufacturers concerning the 
definition of failure because the manufacturer has to bear the cost if 
the HDD is still within a warranty period.

Typically, storage systems support multiple HDD models from 
different manufacturers. Therefore, the gross or initial drive sample 
considered for this analysis includes different drive models. Out of the 
various HDD models present in the gross sample, twenty drive models 
are chosen for this investigation. Historical data collected for these 
twenty drive models is analyzed and plotted to determine the failure 
pattern and its dependence on certain parameters. In-depth results are 
provided for only two drive models, as the other drive models 
are similar.

3.2 Data description

Data from two hard disk drive models (the M1-A1 model and the 
M2-A1 model) were analyzed using R. Table 1 represents a sample raw 
data for model M1-A1(HDD Manufacture’s Model Name  - 
NB1000D4450), as given below.

The graphical representation of the output using the power-on 
time (in minutes) on the x-axis and the failure count on the y-axis 
were useful for assessing efficacy of the proposed prediction model. 
To analyze how the workload affects the survivability of an HDD, two 
attributes are considered: the TD and the AAR. HDDs of the same 
model were grouped by both TD as well as AAR.

These g number of groups were labeled as TDi where i = 1, 2, …,g. 
The HDDs were also grouped by their average access rates (AAR) into 
m number of groups called AARj where j = 1, 2,….,m.

The ranges for these groups were determined automatically in R 
such that each group had an approximately equal number of drives. A 
particular drive could belong to any one of the TD groups and any one 
of the AAR groups, so a drive with low total data could have a high 
access rate and a drive with high total data could have a low access rate.

To create the total data (TD) accessed till the drive was in 
operational state and average access rate (AAR) groups for the same 
period is as in Figure 1.

The flowchart shown above for formation of TD_groups (denoted 
as *** inside Figure 1) utilizes the cut2 function in R to divide the 
variable AAR into groups or intervals. The components of the 
algorithm are as follows:

 • AAR: This is the variable contains the AAR data. It represents the 
ratio of the total data accessed to the power-on time of the hard 
disk drive.

 • cut2(): This is a function in R, contained in Hmisc package, is 
used to divide a continuous variable into intervals or groups. 
Unlike the base R cut() function, cut2() ensures that each group 
has approximately the same number of observations.

 • g = n_groups: This argument specifies the desired number of 
groups into which the variable AAR is to be divided and n_
groups represent the value assigned to the variable indicating the 
number of groups to be created.

 • levels.mean = TRUE: This argument indicates that the labels for 
the intervals or groups should represent the mean value of the 
observations within each group. This helps with interpreting the 
intervals more intuitively.

 • Overall, the cut2() function(denoted as ### inside Figure 1) with 
the provided arguments divides the AAR variable into n_groups 
intervals, ensuring that each interval contains approximately the 
same number of observations, and assigns labels representing the 
mean value of the observations within each interval.

From the data and plotted graphs (Figures 2A,B), it is observed 
that there are initially a large number of failures, but later, the rate of 
failures is constant for some time and then increases again. This 
behavior seems to correspond to a “bathtub” -type curve.

3.3 Procedure for replicating the model 
analysis

i. Setting Up the Environment.
R is installed on the system along with necessary libraries.
ii. Reading and Formatting Raw Data.
The CSV file containing the dataset is read ensuring appropriate 

file path.

TABLE 1 Sample raw data (The highlighted yellow columns represent the data used in the current analysis) of HDD model.

Name HDD Model FW Write 
Rec Err

WriteBytes Read Rec 
Err

ReadBytes Power on 
time

SSUITE 
status

6001r.txt NB1000D4450 XX04 0×0000 0x0f60381db400 0x685eba9c 0x2e739518ec00 640,975 0

6002r.txt NB1000D4450 XX06 0×0000 0x00ced22e8800 0x36257e 0x0061ba630800 10,030 0

6005r.txt NB1000D4450 XX06 0×0000 0x04d085cf5200 0x82bbf6 0x004f4faa9c00 626,385 0

6007r.txt NB1000D4450 XX06 0×0000 0×000032800 0×0035 0x0000203e00 11 1

6007r.txt NB1000D4450 XX06 0×0000 0x01bd86913c00 0×2284569 0x00682858ca00 403,928 0

6009r.txt NB1000D4450 XX06 0×0000 0x02b9bb3ab000 0x171ce42f 0x11ce58d46400 225,990 0

6010r.txt NB1000D4450 XX06 0×0000 0x05415ac38800 0x3e9a2c69 0x0930f8101800 233,520 0

6010r.txt NB1000D4450 XX05 0×0000 0x03b3d4f68e00 0x96ba9570 0x0f8ca67b10 677,146 0

6012r.txt NB1000D4450 XX06 0×0000 0×000029000 0×0007 0x000010bc00 4 1

6013r.txt NB1000D4450 XX04 0×0000 0x12a77d1a0c00 0x95e8008 0x2765ae202e00 359,596 0
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The SSUITEstatus column is formatted in order to convert it 
to numeric.

iii. Grouping Data Based on Total Data and Data Rate.
Total Data (TD) and Average Access Rate (AAR) are calculated. 

TD and AAR are grouped into specified number of groups.
iv. Converting Data frame to Data Table.
The dataframe is converted to a data.table for efficient 

data manipulation:
v. Calculating Cumulative Sum and Percentage Failures.
Cumulative sums and percentage failures by AAR_groups 

are calculated.
vi. Splitting Data into Passed and Failed Subsets.

Subsets of the data for passed and failed tests are created. 
Cumulative sums and percentages for both subsets are calculated.

vii. Creation of a Survival Object.
A survival object using PowerOnTime and SSUITEstatus is created.
viii. Creation of Cox Proportional Hazards Model.
The Cox model is created using AAR_groups and TD_groups.
ix. Checking of Proportional Hazards Assumption.
cox.zph is used to check the proportional hazards assumption.
x. Predictions Based on the created Cox Model.
The output is predicted based given inputs using Cox model.
xi. Display of the Output.
The predicted pass or fail value is printed.

FIGURE 1

The flowchart to form the dynamic cluster of TD groups and ARR groups from the HDD datasets.
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4 Case studies and comparison of 
results

Previous research examined the susceptibility to failure of the new 
generation of hard disks because of a reduction in the spacing between 
the heads and media. The research also examined the effect of the 
amount of data written to or read from the drive. The current research 
attempts to evaluate the effect of the data access rate on the 
survivability of the HDDs using the Cox model.

4.1 SMART data based model for internal 
test suit

SMART is a standard technology embedded in most modern hard 
disk drives (HDDs) to monitor various indicators of drive health. 
These indicators include attributes, like read error rates, spin-up time, 
temperature, and reallocated sectors, count. The primary goal of 
SMART is to predict drive failures before they occur, allowing for 
preventive measures such as data backup or drive replacement. The 
SMART system has been reported in literature (Villalobos, 2020; 

Rajashekarappa and Sunjiv Soyjaudah, 2011) for HDD failure 
prediction. The internal analysis for the SMART based data has 
employed Kaplan-Meir approach. The impact of TD and AAR are 
exhibited in the following Figures 3, 4.

SMART is widely used and supported across the industry, making 
it a reliable standard for monitoring HDD health (Villalobos, 2020; 
Rajashekarappa and Sunjiv Soyjaudah, 2011). It provides early 
warnings based on predefined thresholds for various health indicators, 
enabling proactive maintenance. However, it is limited by the 
predefined thresholds and May not account for all failure modes; 
sometimes produces false positives or misses failures. It is evident 
from the above figures that KME is well suited for incorporating one 
impact of TD on survival probability. The impact of AAR is also 
reflected in survivability in Figure 4. However, the simultaneous two 
impact of both TD and ARR is not possible to capture using 
KME approach.

Figures  5A,B, 6A,B present the data for HDDs with model 
parameters of interest in this analysis, namely, TD and AAR. The color 
code indicates which groups the hard drives belong to and the total 
amount of data read by or written to them. Figures 5, 6 show AAR and 
TD distributions of the drive population. The dispersion of the data 

FIGURE 2

(A) The failure counts vs. power-on time for the M1-A1 hard drive model. (B) The failure counts vs. power-on time for the M2-A1 hard drive model.

FIGURE 3

Impact of TD on Survival Probability on KME approach.
FIGURE 4

Impact of AAR on Survival Probability on KME approach.
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used for the M1-A1 model is given below in Table 2 (for AAR_groups) 
and Table 3 (for TD_groups).

Some interesting inferences can be made from the plots shown in 
Figures 5, 6. Figure 5A shows the data for M1-A1 HDDs that failed in 
the customer environment as soon as a certain rate of access was 
reached but passed the internal test suite run in the lab. The drives 
were declared failed either by the storage controllers that were using 
them or by the test suites run on them later. This shows that each drive 
has an access rate threshold point, after which the probability of failure 
increases drastically.

Figure 5B presents the data for M1-A1 HDDs that failed in the 
customer environment and failed in the internal suite. Figure 6A 
shows the data for M2-A1 HDDs that failed in the customer 
environment as soon as a certain rate of access was reached but 
passed the internal test suite run in the lab. Figure 6B shows the data 
for the M2-A1 HDDs that failed in the customer environment and 
failed in the internal suite. These figures show that the failures are 

similar between groups with different amounts of data. After a certain 
rate of access, the majority of the drives failed regardless of the 
amount of data accessed.

4.2 Survivability analysis using cox 
proportionality model

The proposed model is a predictive model based on Total Data 
(TD) read/written and Average Access Rate (AAR). It introduces a 
novel strategy of reallocating HDDs with high failure probabilities to 
different redundancy groups.

It provides with a proactive approach to HDD management 
by predicting failures based on data access patterns. It enhances 
system resilience by dynamically reallocating resources based on 
failure probabilities. Also, it utilizes real-world data from storage 
controllers for validation, ensuring practical applicability. 

FIGURE 6

(A) The M2-A1 model HDDs declared “passed” by internal test suite. (B) The M2-A1 model HDDs declared “failed” by internal test suite.

FIGURE 5

(A) The M1-A1 model HDDs declared “passed” by internal test suite. (B) The M1-A1 model HDDs declared “failed” by internal test suite.
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However, it May need customization for different storage 
environments and workloads.

The Cox Model uses the parameters of the AAR groups and TD 
groups to generate the survival model. The equation for the Cox model 
using R is (Equation 10):

 

M1A1_cox=coxph(M1A1_surv ~as. factor(AAR_groups) 
+as. factor(TD_groups), data =M1_A1)  (10)

The Cox model equation fits a Cox proportional hazards regression 
model (coxph()) to the survival data (M1A1_surv). It includes the average 
access rate (AAR_groups) and the total data groups (TD_groups) as 
covariates. The model aims to understand how these factors influence the 

hazard rate or survival probability over time. The output, M1A1_cox, is a 
Cox model object containing the results of the regression analysis.

The effect of the AAR on each of these TD groups was analyzed. 
For a given AAR, the survival data were generated for each of the TD 
groups using the above Cox model, whose algorithm is outlined in 
Figure 7.

For each value of AAR, survival data were generated for the 
different data groups, using the algorithm given below in Figure 7.

The algorithm in Figure 7, as demonstrated using ARR1 values for 
different TD groups (TD1-TD5), was applied in a similar way to 
generate the survival graphs for the other AAR groups, AAR2–AAR5. 
It utilizes cut2() for formation of TD_groups (denoted as *** inside 
Figure 7) and also for AAR_groups (denoted as ### inside Figure 7). 
In the algorithms, the HDD model M1-A1 was used as an example. 

TABLE 2 Dispersion of AAR_groups the dataset for M1-A1 used by the internal test suite.

Data Sets Count AAR groups Mean Median Minimum Maximum Standard deviation

Total dataset 7,903 1 3,102,686 469603.1 5.35E-02 1.24E+07 3.92E+06

7,903 2 26,100,943 25884602.9 1.24E+07 4.04E+07 7.99E+06

7,903 3 58,562,114 57,867,575 4.04E+07 7.90E+07 1.12E+07

7,903 4 104,903,206 103477796.4 7.90E+07 1.36E+08 1.67E+07

7,902 5 1.4613E+10 188,703,828 1.36E+08 9.34E+13 1.07E+12

Dataset 

declared as 

Failed by 

internal test 

suite

4,864 1 2,402,446 228,134 5.35E-02 1.24E+07 3.59E+06

3,020 2 25,880,789 25,160,218 1.24E+07 4.04E+07 7.99E+06

2,932 3 58,695,593 58,137,170 4.04E+07 7.90E+07 1.13E+07

2,761 4 104,873,553 103,724,219 7.90E+07 1.36E+08 1.66E+07

2,862 5 3.4415E+10 189,678,100 1.36E+08 9.34E+13 1.75E+12

Dataset 

declared as 

passed by 

Internal test 

suite

3,039 1 4,223,439 2,980,341 5.66E-02 1.24E+07 4,155,452

4,883 2 26,237,101 26,245,474 1.24E+07 4.04E+07 7,985,086

4,971 3 58,483,386 57,727,494 4.04E+07 7.90E+07 11,098,270

5,142 4 104,919,129 103,317,505 7.90E+07 1.36E+08 16,738,192

5,040 5 3,368,262,156 188,156,025 1.36E+08 1.56E+13 2.1924E+11

TABLE 3 Dispersion of TD_groups the dataset for M1-A1 used by the internal test suite.

Data Sets Counts TD groups Mean Median Minimum Maximum Standard Deviation

Total dataset 7,903 1 8.80E+13 4.67E+13 123,392 1.97E+15 1.12E+14

7,903 2 8.80E+13 4.67E+13 123,392 1.97E+15 1.12E+14

7,903 3 8.80E+13 4.67E+13 123,392 1.97E+15 1.12E+14

7,903 4 8.80E+13 4.67E+13 123,392 1.97E+15 1.12E+14

7,902 5 8.80E+13 4.67E+13 123,392 1.97E+15 1.12E+14

Dataset 

declared as 

failed by 

internal test 

suite

5,211 1 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

3,337 2 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

2,927 3 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

2,777 4 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

2,187 5 8.80E+13 4.67E+13 123,392 1.97E+15 1.12E+14

Dataset 

declared as 

passed by 

internal test 

suite

2,692 1 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

4,566 2 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

4,976 3 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

5,126 4 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

5,715 5 8.80E+13 4.67E+13 1.23E+05 1.97E+15 1.12E+14

https://doi.org/10.3389/fcomp.2024.1400943
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Mallik et al. 10.3389/fcomp.2024.1400943

Frontiers in Computer Science 10 frontiersin.org

FIGURE 7

The flowchart for the validation of the survivability-based predictive data model.
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The same algorithms can be used for M2-A2 model drives to generate 
survival data and survival graphs. The unit of the PowerOnTime 
(X-axis) in Figures 8–17 is in minutes. The effect of workload on the 
survivability of a hard disk (M1-A1 model).

In summary, the proposed method stands out by integrating 
workload-specific metrics (TD and AAR) into the predictive model, 
which offers a more targeted approach to identifying potential HDD 

failures compared to traditional SMART models. By focusing on 
empirical data from actual storage systems and introducing dynamic 
reallocation strategies, this method aims to provide a more practical and 
effective solution for mitigating HDD failures in enterprise environments.

This comparison highlights the advantages of the proposed 
method in enhancing system resilience and optimizing resource 
allocation, while also acknowledging the challenges and areas for 
further improvement. The authors emphasize that this 
comprehensive approach can significantly contribute to the 
advancement of storage system reliability and efficiency.

FIGURE 11

The M1-A1 model hard disk survival probability graph (AAR4 and 
TD1:5).

FIGURE 12

The M1-A1 model hard disk survival probability graph (AAR5 and 
TD1:5).

FIGURE 13

The M2-A1 model hard disk survival probability graph (AAR1 and 
TD1:5).

FIGURE 8

The M1-A1 model hard disk survival probability graph (AAR1 and 
TD1:5).

FIGURE 9

The M1-A1 model hard disk survival probability graph (AAR2 and 
TD1:5).

FIGURE 10

The M1-A1 model hard disk survival probability graph (AAR3 and 
TD1:5).
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The graphs shown in Figures 8–12 were plotted using data for the 
HDD model M1-A1. They show that for a given data volume (TD), as 
the access rate is changed from AAR1 to AAR5, the survival 
probabilities are reduced. They also show that the access rate has a 
significant effect on HDD failures.

The graphs shown in Figures 8–12 also confirm that for a fixed 
amount of data, if the data access rate is increased, the survival 

probability of the drives decreases. They also show that the rate of 
access has a significant impact on survivability apart from just the total 
data written or read.

The graphs shown in Figures 13–17 were plotted using data 
from the HDD model M2-A1. They show that for a given amount 
of data (TD), as the access rate changes from AAR1 to AAR5, the 
survival probabilities are reduced. They also show that the access 
rate has a significant effect on HDD failures. The graphs shown 
in Figures 12–16 confirm that, for a fixed amount of data, if the 
data access rate is increased, the survival probability of the drives 
decreases. They also show that the rate of access has a significant 
impact on survivability apart from just the total data written 
or read.

5 Conclusion

In the modern digital world, data is one of the critical assets 
of any business, and data availability and data access are 
important metrics for predicting the failure of HDDs. The 
method for storage system controller firmware proposed in this 
work could be  used to manage failure-predicted disk drives 
efficiently and intelligently, in order to provide greater data 
availability and survivability to customers. This approach allows 
one to apply better throttling mechanisms and the preemptive 
migration of data from HDDs that are predicted to fail. The 
proposed model paves the way for facilitating collaborations 
between storage experts, workload analysts, and system architects 
to merge domain-specific insights. This interdisciplinary 
approach could foster innovation by integrating expertise from 
various fields, leading to more robust and comprehensive 
survivability analyses. Thus, this work should make significant 
contributions toward improving data availability in companies.

Data availability statement
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FIGURE 17

The M2-A1 model hard disk survival probability graph (AAR5 and 
TD1:5).

FIGURE 14

The M2-A1 model hard disk survival probability graph (AAR2 and 
TD1:5).

FIGURE 15

The M2-A1 model hard disk survival probability graph (AAR3 and 
TD1:5).

FIGURE 16

The M2-A1 model hard disk survival probability graph (AAR4 and 
TD1:5).
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