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Alzheimer’s disease (AD) is a type of brain disease that makes it hard for someone

to perform daily tasks. Early diagnosis and classification of the condition are

thought to be essential study areas due to the speedy progression of the disease

in people living with dementia and the absence of precise diagnostic procedures.

One of the main aims of the researchers is to correctly identify the early stages

of AD so that the disease can be prevented or significantly reduced. The main

objective of the current review is to thoroughly examine the most recent work

on early AD detection and classification using the deep learning (DL) approach.

This paper examined the purpose of an early diagnosis of AD, the various

neuroimaging modalities, the pre-processing methods that were employed, the

maintenance of data, the deep learning used in classifying AD from magnetic

resonance imaging (MRI) images, the publicly available datasets, and the data that

were fed into the deep models. A comparative analysis of di�erent classification

methods using DL techniques is performed. Further, the paper discussed the

challenges involved in AD detection.

KEYWORDS

Alzheimer’s disease, challenges, MRI, deep learning, pre-processing, feature extraction

and classification

1 Introduction

Alzheimer’s disease is a neurodegenerative condition that impairs brain function

and destroys brain cells, altering memory and causing instability in human existence

(Shankar andWalsh, 2009). Overproduction of amyloid-ß (Aß) and hyperphosphorylation

of abnormal proteins are believed to be the two main contributors to AD pathogenesis.

As a result, A-plaques and tau neurofibrillary entanglements accumulate and alter nucleo-

cellular cytoplasmic transfer between neurons, leading to cell death and impaired memory

and learning (Ramzan et al., 2020). The urgency of swift and precise disease identification

and detection cannot be overstated. This is necessary because of economic expansion,

the growth of information technology, and the advent of clinical information processing

technologies. Early detection is not just a medical necessity but a societal responsibility,

and role in this process is crucial.

Although genetic, environmental, and behavioral variables are thought to cause AD

(Akkus et al., 2017; Albawi et al., 2017), the exact causes of this dementia are uncertain

(Aldweesh et al., 2020). Conventional wisdom suggests starting an effective care plan as

soon as cognitive impairment is noticed and basing it on an early diagnosis to prevent

AD (Al-Naami et al., 2013; Alom et al., 2019). The current diagnosis relies on diagnostic
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methods that are positive when the sickness is practically

irreversible (Al-Qatf et al., 2018). Most methods for diagnosing AD

are arduous and involve a physician (Chen et al., 2018), making

travel to clinical sites difficult for the elderly. Additionally, disease

progression monitoring is costly (Chen et al., 2020). There is

hope, though. Non-invasive, quick, inexpensive, and accurate AD

diagnostic techniques are being developed (Forouzannezhad et al.,

2019), promising early identification and effective treatment.

Alzheimer’s disease is a gradual, degenerative condition that

affects the brain’s neurons, as shown in Figure 1. Cognitive and

verbal skills change, and memory lapses follow (Amen, 2016).

Age increases the occurrence of anomalies and loss in this

neurodevelopmental condition, which disproportionately affects

those over 65 (An et al., 2020). Clinical assessment, cognitive

testing, and excluding other potential causes have traditionally been

the three main components of the clinical diagnosis of dementia

(Panza et al., 2010). To rule out other neurological illnesses,

imaging investigations, clinical evaluations, and psychological

testing must all be used to support the clinical diagnosis of AD

(Atri, 2019).

Numerous non-invasive neuroimaging techniques, including

diffusion tensor imaging (DTI), positron emission tomography

(PET), and magnetic resonance imaging (MRI), have been studied

in order to identify AD (Douaud et al., 2011), shown in Figure 2.

The DTI examines water diffusion at the brain’s microstructure

to find the AD’s abnormal diffusion pattern. By displaying data

and images, PET allows us to statistically examine abnormal

alterations in the human body and its normal metabolism. MRI

can show the brain’s structure and structural composition, which

helps researchers examine AD brain shrinkage. MRI, one of many

neuroimaging technologies (Lerch et al., 2008), is used to image

brain tissue and classify illnesses. Before a diagnosis is made,

patients go through multiple steps, although due to the diagnostic

phases, this can happen later, and patients go into a late stage (Pierce

et al., 2017). The different stages and phases of AD are discussed in

the following subsection.

Abbreviations: AD, Alzheimer’s disease; DL, deep learning; ML, machine

learning; MRI, magnetic resonance imaging; DTI, di�usion tensor imaging;

CT, computed tomography; PET, positron emission tomography; CSF,

cerebrospinal fluid; MCI, mild cognitive impairment; EMCI, early mild

cognitive impairment; LMCI, late mild cognitive impairment; CN, cognitive

normal; fMRI, functional MRI; sMRI, structural MRI; AI, artificial intelligence;

ANN, artificial neural network; AE, Autoencoder; DBN, Deep belief network;

DNN, deep neural network; CNN, convolutional neural network; RNN,

recurrent neural network; DICOM, Digital Imaging and Communication

in Medicine; AC, anterior commissure; PC, posterior commissure; MNI,

Montreal Neurological Institute; GRU, gated recurrent units; LSTM, long

short-term memory; ADNI, Alzheimer’s disease neuroimaging initiative;

OASIS, open access series of imaging studies; AIBL, Australian imaging

biomarkers and lifestyle study of aging; IBSR, Internet Brain Segmentation

Repository; MICCAI, medical image computing and computer-assisted

intervention; IDA, image and data archive; MCC, Matthews Correlation

Coe�cient; FMI, fine motor impairment; ROC, receiver operating

characteristics.

1.1 Various stages of AD

Most studies now focus on early AD diagnosis to find

treatments and enhance patients’ quality of life by studying the

pathogenic mechanisms of different phases of AD (Basaia et al.,

2019), shown in Figure 3. Preclinical AD is the first stage, where

blood, brain, and CSF abnormalities occur without symptoms.

Thus, contemporary life’s beginning is no longer clear. The typical

test struggles to detect AD early on, when the changes are too

minor. Early AD detection is hindered by stigma, a lack of

dementia care training, and the importance of early diagnosis

(Dubois et al., 2009). Confusing dementia-like disorders with

cognitive impairment (delirium, melancholy, vitamin deficiencies).

This stage may begin 20 years before symptoms appear. An earlier

AD experience study found significantly stronger connections

between early linguistic skills and AD later in life (Bhandare

et al., 2016). Stage two is modest cognitive impairment. Memory

loss or other mental disability in those who can do most of

their daily chores alone is called MCI (Sarraf et al., 2016). The

patient’s family and close friends may detect cognitive ability

issues at this time, but they don’t influence their everyday

lives (Dubois et al., 2009). Only 10%−15% of MCI patients

develop AD (Baskar et al., 2019; Bi et al., 2020), and it’s unclear

why certain people get dementia. After an MCI diagnosis, a

particular diagnostic process must begin to identify the disease or

condition that causes the impairment (Borghesani et al., 2008).

The former describes memory-impaired patients. However, the

latter identifies patients with cognitive problems in areas other

than memory, such as attention or language processing. MCI

increases AD risk, according to theory (Brown, 2015). Other

stages of AD include late moderate cognitive impairment (LMCI),

early mild cognitive impairment (EMCI), and cognitive normal

(CN). AD’s last stage, dementia, impairs daily life due to memory,

cognitive, and behavioral issues. Table 1 lists AD phase symptoms.

Early AD diagnosis helps patients take preventive measures,

helps physicians identify AD progression risk, informs patients

about the severity of the condition, and motivates them to use

medications and lifestyle changes (Liu et al., 2014b). Therefore,

the importance of an early AD diagnosis is as follows in the

next subsection.

1.2 Purpose of an early diagnosis

The issue is that AD symptoms are frequently misdiagnosed as

an effect of aging, delaying medical consultation until it is too late

and leading to a delayed diagnosis (Brown et al., 2020). In the 2008

study (Busche et al., 2008), 64% of carriers admitted that before

diagnosis, they believed changes in patients’ behaviors were signs of

aging. Sixty-seven percent of respondents agree that the diagnosis

has been delayed. Moreover, once in the hands of experts, a precise

diagnosis of AD is still tricky. Even the most skilled practitioners

cannot correctly diagnose AD in 10%−15% of cases (Çayir et al.,

2018). The only way to accurately diagnose the illness is through

a postmortem examination of the brain. A clinical diagnosis of

AD may currently be made with an accuracy of ∼90% using a

patient’s medical history, neurological and physical examinations,
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FIGURE 1

Normal vs. AD brain MRI (Huang et al., 2020).

FIGURE 2

Non-invasive neuroimaging technique for AD.

laboratory tests, brain imaging, and neuropsychological assessment

(Chakraborty et al., 2017).

Early diagnosis allows patients to access programs and support

services and medications that can postpone some symptoms and

work better in the early stages (Hennig et al., 2003). To diagnose

AD early, even small symptoms must be recognized. Given the

multimodal character of AD symptomatology, the best early AD

detection method cannot simply rely on measurements of a single

domain (Chitradevi and Prabha, 2020), such as physiological or

behavioral symptoms, but rather on the combination of many

modalities, which may allow to identify all subtle alterations of all

domains from the start and contrast them with other symptoms for

an appropriate diagnosis (Choi et al., 2020). Several research groups

use neuroimaging techniques like MRI, fMRI, and PET to classify

AD and MCI.

Numerous researchers are studying early AD diagnosis using

machine learning (ML) and DL methods to discover a treatment.

Even though ML models are more effective than ever in many
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FIGURE 3

Stages of Alzheimer’s disease.

TABLE 1 Various symptoms of corresponding stages of AD.

Stages Meaning Symptoms

CN Normal cognitive

impairment in the

brain

Years before an individual displays

any symptoms of the disease, changes

in the brain start

EMCI Early mild cognitive

impairment in the

brain

- Keeping a name in mind;

- Considering recent occasions;

- Remembering where he or she

placed a priceless item; - creating a

plan; - maintaining order; and -

managing finances

MCI Mild cognitive

impairment in the

brain

Things are more frequently forgotten

skip social gatherings or appointments

struggle to keep up with the discourse

It is difficult to decide, complete a

task, or adhere to directions

LMCI Late mild cognitive

impairment in the

brain

Having trouble recalling their own

name, but not personal information

like their address and phone number

issues with writing, reading, and using

numbers

If an illness worsens, a person might:

recognize some familiar faces but not

their names; or forget the names of a

spouse or child

- Losing track of place and time

requires assistance dressing, -selecting

appropriate attire, and performing

daily tasks like brushing your teeth

Mood swings, withdrawal, or

personality changes such delusions,

paranoia, or hallucinations Be

irritated, worried, or emotional,

particularly in the late afternoon

or evening

AD Alzheimer’s disease,

also called dementia

Basic physical capacities, such as

sitting, eating, and walking, are lost

They can lose control of the bowel and

bladder

- Possibly able to communicate with a

few words or phrases but not in

conversation; always in need of

assistance with all activities

domains, they still need human specialists to solve some problems.

A flexible DL model algorithm learns from automatic feature

extraction approaches regardless of prediction accuracy (Mahrishi

et al., 2020). The DLmodel learns and predicts features. ML cannot

automatically extract features. The following section discusses ML

and DL AD diagnoses.

1.3 Machine learning vs. deep learning
approaches

Over the past 20 years, AI and ML have gained popularity and

relevance. ML is semi-automated data knowledge retrieval (Bardis

et al., 2020). ML feeds an algorithm that understands input-output

relationships. After training, the computer can estimate a new

data point’s value or class (Islam and Manivannan, 2017). Figure 4

shows ML vs. DL, a framework that can be learned without design.

AI can run machines and act like people. The ANN is utilized

in DL learning (Ayodele, 2010). ANN architecture is layered. DL

types include RNNs, auto-encoders, and CNNs (Hosseini et al.,

2020). DL frameworks let programmers build and test DL apps.

PyTorch, TensorFlow, Keras, Caffe, Theano, andmore open-source

DL frameworks are available online. Many notable open-source

frameworks are ranked by developer’s group, supported languages,

and useful programs. It compares ML with DL based on data,

training time, and interpretability. The fundamental difference

between ML and DL is in Table 2. A suitable function is manually

extracted from the data by ML. The extracted function is used to

update model parameters for accurate prediction (Wei et al., 2019).

This is irrelevant since DL automatically retrieves data functions.

DL also uses end-to-end learning, where the network delivers data

and tasks (Chen et al., 2018).

High-performing DL models require 1,000 records (Guo et al.,

2019). Recent years have seen DL’s speech recognition (Deng and

Platt, 2014; Noda et al., 2015), image recognition (Pak and Kim,

2017; Wu and Chen, 2015), and speech analysis applications assist

healthcare (Li et al., 2017), pharmacy (Wang F. et al., 2019), natural

language processing (Otter et al., 2020), and other sectors (Young

et al., 2018). Recently, many DL recommendations (Alom et al.,

2019) have emerged, which may be categorized into algorithms,

which will be explored in Section 3. To retrieve the original image

and meet feature extraction, selection, and classification criteria,

several pre-processing steps are needed. Most machine learning

studies involve preprocessing before data manipulations, whereas

deep learning surveys may not. Most research preprocesses raw
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FIGURE 4

Machine learning vs. deep learning.

TABLE 2 Comparison of ML and DL approaches for AD.

S. No Modules Machine
learning about
AD

Deep
learning
about AD

1 Size of data Able to manage

moderate- to

medium-sized datasets

Able to manage a

lot of data

2 Time for

training

Depending on the size of

the data set, it may take

less time

Due to the size of

the dataset, it may

take a long time

3 Debugging The models or

algorithms are simpler to

comprehend

The models or

algorithms are

more challenging to

interpret

data with intensity normalization, recording, skull dissection, and

motion correction (Zheng et al., 2017).

The structure of this survey is as follows: Section 2 discusses

the materials and method of this review, and Section 3 discusses

the detailed investigation of AD detection. Section 4 mentions

the various datasets for diagnosing AD. Performance measures

for detecting AD are discussed in Section 5. In Section 6, the

different challenges of the AD diagnosis are presented, and Section

7 concludes with the substantive work of the survey.

2 Materials and methods

This review aims to systematically assess studies investigating

the association between AD biomarkers and affective symptoms in

MCI and AD dementia, adhering to the recent research framework

(Jack et al., 2018). The search query was composed of several

combinations of the following keywords: Alzheimer’s disease,

challenges, MRI, deep learning, pre-processing, feature extraction,

and classification.

Based on the following criteria, titles and abstracts were

independently evaluated for broad appropriateness in the review. In

addition to this electronic search, a lateral search was undertaken:

reference lists of retrieved publications and secondary literature

(review articles, editorials, etc.) were screened to identify possible

additional studies, as recommended (Greenhalgh and Peacock,

2005). Research protocols and conference abstracts or posters

were excluded. After this first screen, a full-text review was

conducted to assess eligibility. The selection process followed

the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines (Liberati et al., 2009) as shown in

Figure 5.

3 Literature review on the detection of
AD

According to recent literature, numerous studies (Esmaeilzadeh

et al., 2018; Yanase and Triantaphyllou, 2019) emphasize the

importance of diagnosis and classification as key areas of

computational research in Alzheimer’s disease. The several stages

of the process are illustrated in Figure 6, which includes data

acquisition, preprocessing, data splitting, classification and learning

evaluation. Each of these stages is considered crucial in developing

accurate and reliable models. The following subsections provide

more insight on each of these stages.

3.1 Data acquisition for Alzheimer’s disease
detection

The first and foremost step in the diagnostic pipeline is data

acquisition, which involves collecting necessary datasets, including

imaging data or other biomarkers for diagnosis. The quality and

diversity of the data have a direct impact on the model’s overall

performance. Errors created here can spread across the system

and disturb clinical operations. Generally, the following factors

can help a digital imaging department integrate image acquisition

equipment (Andriole, 2006).

• The simplicity of integrating the gadget into the clinical

environment’s established daily workflow routine.

• High device fault tolerance and dependability.

• User interface simplicity and intuitiveness.

• Device performance.

When it comes to acquiring images from intrinsically digital

modalities like computed tomography (CT) and MRI, the industry

standard for digital imaging and communication in medicine is

called DICOM capture (Paul et al., 2024). The DICOM method

ensures the acquisition and transfer of images from the modality

at its full bit depth and spatial resolution. However, the DICOM

method only allows for 8 bits of image quality or 256 gray levels,

but the direct recording of digital data from essentially digital

modalities is the preferred acquisition method, providing the

highest quality images for clinical needs.

Images contain information that can be gained through a

variety of modalities or procedures and describe the internal

characteristics of the body. This process can produce neurological

data and combine multiple physical principles (Theodore et al.,

1986). The task determines the choice of these modalities, the

model being employed, and the researcher’s preference. Numerous
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FIGURE 5

PRISMA guideline for AD.

FIGURE 6

The processing stages of Alzheimer’s disease diagnosis.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1404494
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Nagarajan and Lakshmi Priya 10.3389/fcomp.2024.1404494

FIGURE 7

Pre-processing techniques of AD detection using DL.

organizations, such as clinics, hospitals, X-ray facilities, and online

platforms, provide datasets (Wu et al., 2019).

An early diagnosis of AD is more likely if representative causes,

such as blood, urine, saliva, and nasal mucosa, are thoroughly

analyzed (Sakatani et al., 2020). However, this method cannot be

utilized as a routine detection tool because of the difficulties in

gathering samples. Furthermore, the subject’s body will inevitably

move slightly because of the extended acquisition period. Building

DL models cannot directly use real-world data since it contains

noise and missing values in an unprocessed state.

Pre-processing procedures for data are required to transform

such noisy data into a format that a machine can read. The

original image must undergo several preprocessing steps to meet

feature extraction, classification, and selection requirements. Most

studies require preprocessing before data operations, particularly

in ML. Some investigations might need something other than

preprocessing with the aid of DL. However, most research

continues preprocessing raw data using motion correction,

registration, skull dissection, and intensity normalization (Tong

et al., 2014).

3.2 Pre-processing

This section focuses solely on the preprocessing of MRI for AD

identification. Nonetheless, if essential for an improved result, this

procedure is vital for all imaging data. Building DL models cannot

directly use real-world data since it contains noise and missing

values in an unprocessed state. Pre-processing procedures for data

are required to transform such noisy data into a format that a

machine can read. Figure 7 shows various preprocessing techniques

for AD detection using DL approaches.

• Correction: one method of aligning image geometry is through

AC-PC correction, which places the anterior commissure

(AC) and posterior commissure (PC) in the same axial plane

(Jiao et al., 2016). These two critical anatomical landmarks

in the brain are the centers of alignment for the AC and PC.

Gradwarp is another preprocessing step that uses gradient

non-linearity to rectify geometric distortions (Weavers et al.,

2017).

• Tissue segmentation: it is sometimes necessary to consider

the state of particular discrete portions while examining

MRI images. The brain’s anatomical structure removes the

tissue from the target area (Lazli and Boukadoum, 2018).

Measuring the tissue volume in each region is the aim of

tissue segmentation. MRI was divided into three parts, and

depending on the pre-treatment architecture of the CSF, white

matter, and gray matter, each segment was examined alone

or in combination. These three brain structures have different

roles and undergo different morphological changes due to AD

or MCI. All of them require the extraction of features. Hence,

it has to employ an image segmentation technique.

• Heterologous registration: this pre-processing method

completes the registration of T1 and T2 echo time images

from PET andMRI and the registration of differential imaging

data (Gao and Lima, 2022). Significant variances exist since

the images that must be stored originate from various data

formats. As a result, the least squares approach is no longer

suitable, and this operation is finished using a more precise

and reliable registration method based on shared information.

• Normalization: direct analysis is impossible due to

the significant variations among individual images.

Normalization is registering the images from the earlier

pre-processing step in the standard brain template space

established by the Montreal Neurological Institute (MNI) to

standardize the imaging coordinate system. MRI images of

numerous healthy individuals were analyzed for a new brain

reference, MNI space (Tufail et al., 2022). It offers a standard

model for brain image normalization.

• Smoothing: smoothing reduces functional differences between

images, suppresses noise in functional images, and increases

the signal-to-noise ratio. For straightening, the gaussian core

function is typically used. Based upon practical efforts and

experience (Zhang et al., 2019), gray matter density images

and PET images are commonly used in 64×64×64 pixel cube-

down samples; this can cut down on operating and memory

requirements without sacrificing categorization precision.

Format conversion, head motion correction, heterologous

registration, normalizing, smoothing, and other preprocessing

techniques are applied to PET images (Hamdi et al., 2022).

Different preprocessing methods for MRI images also have

differences. For MRI images, skull removal, time slice

correction, head movement, format conversion, heterologous

registration, standardization, brain region segmentation, and

smoothing are examples of pre-processing steps (Aderghal,

2021).

Preprocessing is essential when the quantity of high-quality

labeled data is constrained and acquiring additional examples is

costly and labor-intensive. Consequently, it should be regarded as

a significant concern in medical analysis, especially in the early

diagnosis of Alzheimer’s disease.

3.3 Data extraction and maintenance

Maintenance of data can be used for tasks like testing and

training data. Extraction of data is needed for the two steps above.

Taking away the attributes is an easy way to make the data less

multidimensional. Direct classification is complicated due to the
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TABLE 3 A list of techniques for extracting the features.

S. No Type of
feature
extraction

Advantages Disadvantages

1 Slice-based Reduce the frequency

with which the training

parameters are counted

Network truncation

Slices that are

similar stop being

dependent on space

2 Voxel-based Simple and

comprehensible

It is possible to obtain

3D brain scan data. Its

distinctive dimension

and computational load

are both considerable

Selecting features is

more difficult due

to the feature

vector’s enormous

dimension. The

retrieved features

ignore the

geographic

information

3 RoI-based It is quite small and

covers the entire region

of the brain. Simple to

use in clinical practice

and comprehend

A good deal of slack

exists in the

extracted characteristics

Minor exceptions

may not be taken

into account

4 Patch-based Properly manages big

feature dimensions. Able

to function with minor

adjustments RoI

validation is not

necessary

Selecting the image

patch with the most

details is difficult

enormous size and noise of the raw image. Depending on the types

of extracted features, input data management solutions may be

categorized into four groups: slice-based, voxel-based, regions of

interest (ROI)-based, and patch-based (Ahmed et al., 2020; Nguyen

and Chu, 2020; Healy and McMahon, 2018). The four primary

categories into which it can be separated are shown in Table 3.

(a) Slice-based: the slice is a section of a complex 3-D image that

has been simplified to a 2-D image. However, the information

from brain scans cannot be fully represented in 2D image

slices, and the spatial link between adjacent slices is lost. Slice-

based techniques typically focus on the brain center while

ignoring other regions. Some searches extract sections of 2D

images using exclusive techniques. The axial or horizontal,

frontal, medial, and coronal planes are some examples of

standard projections used in neuroimaging studies. A slice-

based iron buildup model (Ren et al., 2019) is used to develop

novel therapies for long-term diseases like AD. Simple broad

plain CNNs with a specific slice, multi-slice CNNs, and

simple assembled CNNs with combinations of three classifier

slices are suggested.

Additionally, they recommended monitoring the model

using fewer slice regions, which improved AD and CN task

performance by over 90%. In 2021, a DL architecture based

on MRI brain carving was proposed (Zhang et al., 2022). By

fusing the attention mechanism with the slicing region, this

framework has successfully increased intelligence, increasing

precision from 1% to 8% compared to more sophisticated

techniques. The slices were then adjusted using wavelet

entropy, multi-layer perceptron, and biogeography after being

selected as single slices using 3D volume data using a cutting-

edge AD detection technique (Wang et al., 2018b). Reduced

computing costs by employing fewer fluorodeoxyglucose

PET and CT images, the posterior single cortex, and the

hippocampus are two regions with selective learning affected

by neuropathological AD deficits (Kim et al., 2020).

(b) Voxel-based: Using statistical analysis, the extraction of

voxel-based features approach removes the active value

of a voxel as a feature from the preprocessed image.

For evaluating the volume or density of the three tissue

components, CSF, white matter, and gray matter. It is the

most precise voxel-based analysis technique. To use this

technology, registration is usually necessary, which involves

normalizing each spatial image of the midbrain into a three-

dimensional space. Small changes in individual brain areas

in brain tissue can be quantitatively analyzed using the

voxel-based feature extraction method. To assess the validity

of long-term variations in the volume of gray matter, a

voxel-based longitudinal morphological measure was used

(Takao et al., 2021). The authors proposed a voxel-based

morphometry technique (Zhang F. et al., 2019) to identify

AD sufferers from the healthcare control group (HCG).

Although texture parameter modeling was the best method for

the model, voxel-based longitudinal morphological parameter

modeling was faster. However, each brain MRI scan has

hundreds of thousands of voxel units. They will lead to

excessive complexity if they are used directly as characteristics,

resulting in the need for adequate solutions to lessen the

number of characteristics. Choosing an example voxel will

reduce the number of fields that need to be filled in. The

authors (Ortiz et al., 2016) employed the t-algorithm to select

the optimal voxel for the study in order to increase and

decrease the amount of calculations and the efficacy of the

experimental setup.

(c) RoI-based: forming voxels into the distortion-specified atlas

yields the ROI, and part of image classification entails figuring

out the region’s measurement value. The RoI technique

focuses on particular brain areas, which are known to be

affected early in AD, rather than the whole brain. DL

networks are also used to classify advertisements and extract

the prospective characteristics of RoI measurements from

various imaging modes. To identify hierarchical nonlinear

interactions between areas (Karwath et al., 2017), for each

RoI, a DL model was trained and a deep auto-encoder

was created. Based on the RoI of the MRI, principal

component analysis (PCA) was applied to PET scans to

segregate 93 volumetric features (Suk et al., 2016). In Zheng

et al. (2017), the authors coupled the strain amplitude of

MRI scans with patch-based specifications to extract the

RoI. DL models were used by Li et al. (2015) to extract

the informational RoI from PET scans. To prevent the

subdivision of RoIs from being influenced by researchers

and other factors, RoIs must be established in RoI-based

approaches using the long-term empirical accumulation of

pertinent researchers (Spreng et al., 2020; Verfaillie et al.,

2018). Consequently, the application of this method does not

produce steady performance.
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(d) Patch-based: early on in AD, structural changes are localized

rather than affecting the whole brain or particular brain

areas. The patch-based method looks for patterns associated

with brain illness by extracting a feature from small picture

patches. The main problem with the patch-based strategy

is choosing the best image patch to capture both local and

global information. This method has been applied in research

on AD detection. In order to gather patterns associated

to disease in the brain, patch-based techniques (Platero

and Tobar, 2017) may obtain features from tiny portions

of images that may identify alterations in specific regions

carried on by disease. Its main goal is to select patches of

information and filter out areas with less information to

gather both local and global characteristics. A multimodal-

like deep belief model (DBM) is used to represent common

features from paired MRI and PET patches (Suk et al., 2014).

Complex underlying models can be found in MRI and PET by

incorporating graders for hierarchically merging information

at the patch level. A multi-instance learning model (Paul

et al., 2024) was developed using local fixes as attributes

to predict MCI transition and classify AD. Patch-level sub-

networks were created to boost training efficiency (Lian et al.,

2018).

(e) Summary based: the objective method of analysis is based

on voxels. It treats the brain consistently without modifying

its anatomical structure (Takao et al., 2021). Due to its

large number of voxels and disregard for local information,

using voxel preselection is crucial. By employing 2D slices

as input, the network can be made simpler with fewer

formation parameters; however, the relationship between

neighboring slices will fail. Slice approaches are more easily

recognized in coronal and sagittal views; however, axial

views are the most typical. The sound while scanning will

more or less impact the original brain (Vinutha et al.,

2021). This noise is typically brought on by the patient’s

mental activity, the environment around the equipment, the

operators, etc. The ROI-based method is easy to teach and

use in clinical practice, and it can represent the complete

brain with fewer functions (Suk et al., 2014). Due to this,

the functionality dimension is lower compared to approaches

using slices and voxels. According to the study, RoI can

exploit the hippocampus, cortical thickness, and other brain

parts effectively. There are a lot of unexplained regions in

the brain’s distribution of outlier areas, which might cause

information to be lost and make it difficult to extrapolate

traits. Despite the functionality extraction approach being

more precise, the extraction per patch does not require

RoI detection.

The above Section 3 points out that the literature discussing

the benefits of diagnosing AD early is based on the opinions of

experts rather than research evidence. Not many studies have been

published that look at the pros and cons of diagnosing early AD.

This may be because AD is only recently defined as a condition

that includes both the pre-dementia and dementia stages and the

way they were conducted. It’s possible that some studies were

missed because of the search terms that were used, even though

the literature review was thorough and the terms should have been

broad enough to include most publications important to a timely

diagnosis of AD. Also, some of the studies looked at the possible

benefits of noticing cognitive loss early without saying what caused

the dementia syndromes. These studies could have included people

with other types of dementia or mixed pathology. A different

problemwith this review is that it didn’t rate the scientific quality of

the studies. This means that some of themmay have had a high risk

of bias. Also, because the studies were so different, a full systematic

review with meta-analysis could not be done, as required by the

PRISMA recommendations.

Several studies looked at the possible economic benefits

of diagnosing and treating Alzheimer’s disease early. Early

identification and treatment are likely to cost more up front, but

economic modeling shows that these costs may be balanced out by

savings in the long run, mostly from fewer patients having to stay in

hospitals and better quality of life for both patients and caregivers.

But longitudinal studies are still needed to find out how much it

really costs to stop the disease from progressing from predementia

to mild to serious AD and to keep people living in their own homes

for longer. Because of this, more research needs to be done on the

health and social care costs that come with diagnosing AD early,

during the prodromal stage.

3.4 Classification methods using deep
learning

As previously stated, DL is a branch ofML. Due to its automatic

feature extraction, DL is more efficient than previous ML methods.

Additionally, DL carries out “end-to-end learning,” in which the

network is given tasks and raw data. The important classifiers of DL

methods are shown in Figure 8. Compared to other DL techniques,

including recurrent neural network (RNN), deep neural network

(DNN) autoencoder (AE), and deep belief network (DBN), most

studies relied on convolutional neural network (CNN) methods for

diagnosing AD using MRI scans. Table 4 lists the advantages and

disadvantages of learning and classifying AD diagnostics. The given

section discusses AD classification using deep learning methods

in detail.

3.4.1 Autoencoder
Feature-encoded data can be produced by compressing

unlabeled datasets using unsupervised learning techniques such as

AE. It reduces dimensionality and consists of two primary parts:

an encoder and a decoder. The encoder converts the input data

into code, or compressed data, which the decoder then rebuilds to

create an output corresponding to the input. Convolution layers,

or dense layers, are present in the encoder section. The encoding

and decoding phases ought to be at comparable stages. The encoder

increases the size of the data, but it also reduces it. The intermediary

layer that reduces the representation of the incoming data is known

as the bottleneck layer.

In Liu et al. (2014a), the author has implemented a Softmax

regression layer and sparse auto-encoders used in CNN’s deep

learning architecture to classify AD detection. Payan and Montana

(2015) suggests a pre-formed 3D CNN for classification-based
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FIGURE 8

Classifiers of DL approaches.

TABLE 4 Merits and demerits of classification models.

S. No Classification
models

Merits Demerits

1 AE Strong expressive

abilities.

Dimensionality

reduction is

user-friendly and

simple to use

A lack of flexibility

2 RBM Powerful expression

and logic

Costly

computations go

into the training

process

3 DNN Capable of handling

many datasets. For

feature engineering,

there are not many

requirements

The training phase

is more difficult.

The weights are

really challenging to

understand

4 DBN Has the ability to

successfully learn a

feature

representation of a

function from small

samples

Restricted

performance,

stackable to achieve

deeper setups

5 RNN Capable of

sustaining 2D

images

The gradient

explodes and then

vanishes

6 CNN 2D Performance of

image feature

extraction is good,

and training is

simple

3D image spatial

information cannot

be encoded. The

requirement for

large data sets

7 CNN 3D Able to access 3D

data on brain scans

Costly

computations go

into the training

process

AD detection that uses sparse auto-encoders. Chen et al. (2017)

suggested an auto-encoder (DSAE) that classifies data using

support vector machines (SVM). SVM was outperformed by

applying a DBN, a layered RBM model, and structural AD

detection. An expert illustration of low-latitude information

(Faturrahman et al., 2017) is obtained using DL techniques as an

auto-encoder of changes in hippocampal morphology.

3.4.2 DBN
The unsupervised features taken out of the stacked layer can

be connected using DBN, a supervised learning method. This

generative graphical framework comes from an array of restricted

Boltzmann machines (RBM) that can extract information and

replicate the input. The top two levels of DBN are connected in an

undirected manner. DBN uses RBM to lower weight initialization,

aiding the model’s overfitting mitigation.

Ortiz et al. (2016) put out four distinct voting methods and

two deep learning-based structures. They are put into practice

and contrasted, yielding a robust classification architecture that

computes discriminative features in an unsupervised manner.

Generally speaking, a combination of weak classifiers is more

accurate than a single classifier. The suggested approach exhibits

strong performance in testing for more complex cases of MCI

subject classification due to the integration of two techniques. It is

valid for distinguishing between NC and AD images. In Ortiz et al.

(2017), the authors proposed automated anatomy labeling based on

brain regions’ Deep Belief Network (DBN) architecture to develop

classification techniques. This approach is effective at categorizing

HC and AD as well as MCI. In Hon and Khan (2017), the author

developed classification-basedADdetection using the InceptionV4

deep model.

3.4.3 DNN
A DNN consists of an input, an output, and several hidden

layers. It is notable for its capacity to manage complex problems,

understand the connection between input and output data, and

simulate complex non-linear interactions (Ebrahimighahnavieh

et al., 2020). It considers supervised learning techniques and is used

in many academic disciplines to look for input patterns that haven’t

been found before (JayaLakshmi and Kishore, 2022). The features

of the tagged images must be extracted using a substantial amount

of data for training (Noor et al., 2020).

Qiu et al. (2020) predicted the subjects’ cognitive function

using a deep neural network (DNN) based on the subjects’ age

and blood test items. To train the DNN model, they recruited

202 individuals with a range of systemic metabolic diseases. The

Mini-Mental State Examination (MMSE) was administered to the

participants. The authors also proposed that using the DNNmodel

for younger patients may predict future cognitive impairment

after the development of atherosclerosis and that the discrepancy

between the predicted and ground truth MMSE scores was due to

changes in atherosclerosis with aging.

In Park et al. (2020), the authors have suggested a DL-based

approach that uses extensive gene expression andDNAmethylation

data to predict AD. The most difficult problem when developing

a framework for diagnosing AD based on the multi-omics

dataset is combining different omics data and dealing with highly

dimensional and low-sample-size data. Furthermore, the author

developed a prediction model based on neural networks with deep

layers that perform better than conventional machine learning

methods. The prediction model and feature selection approach

presented in this study (Park et al., 2020) perform better than

traditional algorithms for machine learning that use conventional

dimension reduction methods. The author also demonstrated how
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integrating gene expression and DNA methylation data could

improve prediction accuracy.

In Basher et al. (2021), the authors have developed a technique

to detect AD using structural magnetic resonance imaging (MRI)

data that has been slice-wise volumetrically extracted from the

left and right hippocampi. The suggested approach combines a

convolutional neural network (CNN) model and a deep neural

network (DNN) model. A two-stage ensemble, Hough-CNN, has

been used to automatically locate the left and right hippocampi.

Three-dimensional patches with 80 × 80 × 80 voxels are extracted

using the localized hippocampus positions. Then, the 2-D slices

are divided from the 3-D patches using axial, sagittal, and

coronal perspectives. Volumetric information is extracted from

each slice using the preprocessed 2-D patches and a discrete volume

estimation convolutional neural network (DVE-CNN) model. The

classification network has been trained and tested using the derived

volumetric features. Based on the derived volumetric features

ascribed to the left and right hippocampi, the suggested method has

obtained average weighted classification accuracies of 94:82% and

94:02%, respectively. Furthermore, the area under the curve (AUC)

values of 92:54% and 90:62%, respectively, were obtained for the left

and right hippocampi.

In Wang et al. (2023), the author examines three popular

heatmap techniques: guided gradient CAM (GGC), integrated

gradients (IG), and layer-wise relevance propagation (LRP). By

computing overlap with a ground-truth map from a sizable

meta-analysis that merged 77 voxel-based morphometry (VBM)

investigations conducted independently from ADNI, the authors

could derive exact quantitative measurements. By creating

heatmaps using convolutional neural networks (CNNs) trained on

T1 MRI scans from the ADNI data set and contrasting them with

brain maps that matched support vector machine (SVM) activation

patterns, the authors investigated this work (Wang et al., 2023).

3.4.4 RNN
RNN addresses time-series or sequence-based challenges.

Utilized storage and hidden states are the two main advantages. An

example of an RNN design comprising an input, a hidden layer,

and a layer for output is displayed. Recalling reliable knowledge

regarding the problem sequence is facilitated by the secret state.

Unlike feedforward networks, RNNs share identical parameters

throughout all network layers, another trait that sets them apart.

There are many parameters in the later networks, such as the

feedforward networks, because each network node has a different

set of parameters (DiPietro and Hager, 2020).

Common RNN architectures include gated recurrent units

(GRUs) and long short-term memory (LSTM). Maintaining any

inaccuracy that arises throughout the many layers and timeframes

is the primary goal of the LSTM (Nicholson and Gibson, 2018).

The hidden layer has cells with three gates: an input, an output,

and a forget gate. These gates store data and control information

flow to predict the network’s production (Chen et al., 2018). This

one cell helps the model decide what to store and when to change

information through the gates. GRUs have two gates: an update gate

and a reset gate. They operate in a concealed state. They decide what

data is kept and for how long (Ruiz et al., 2020). In numerous jobs,

its performance surpasses LSTM’s (Alom et al., 2019; Akkus et al.,

2017).

In Hong et al. (2019), the author suggests a prediction model

based on LSTM. Consequently, an LSTM network with fully

connected layers and activated layers is built in order to encode

the temporal association between attributes and the ensuing stage

of Alzheimer’s disease. The model considers the temporal data

gathered from the instances. The authors (Liu et al., 2020) have

described a technique that combines an LSTM network with

a multi-time sparse smooth network to identify early and late

MCIs using multi-time points of resting-state fMRI. Specifically,

resting-state fMRI data obtained across various time points is used

to construct a sparse, smooth brain network. Features are then

extracted and longitudinally analyzed using an attention-based

stacking bidirectional LSTM.

The authors (Rajasree and Brintha Rajakumari, 2024)

developed a four-phase method for early diagnosis of Alzheimer’s

disease: pre-processing, feature extraction, feature selection,

and classification. Preprocessing involves data normalization

and cleansing. The preprocessed data is then used to recover

characteristics such as “Weighted Geometric Mean Principal

Component Analysis (WGM-PCA), statistical features, higher-

order statistical features, and weighted modified correlation-based

features.” The most pertinent attributes are selected using the

Improved Attribute Ranker (IAR). Additionally, a deep learning

model based on an ensemble of classifiers that includes optimized

“Bi-GRU, Multi-Layer Perceptron (MLP), and Quantum Neural

Network (QDNN)” represents the disease categorization phase.

3.4.5 CNN
A convolutional neural network is one of the most effective

methods for classifying and recognizing images in neural networks.

It comprises a classifier layer, layers for pooling, activation layers,

convolution layers, and fully linked layers. An essential layer that

retrieves the feature maps for a given input image size without

requiring a learned filter (or kernel) is the convolution layer. The

activation function, which decides whether or not to stimulate the

cell, is then followed. It transforms the input nonlinearly to learn

and carry out increasingly tricky tasks. Activation functions come

in many varieties to construct feature maps, including sigmoid,

Tanh, and ReLU. Layers of pooling retain the most significant

features while reducing dimensionality. They fit the definition of

downscalers. Every neuron in the current layer is connected to

every other neuron in the preceding layer via a fully connected

layer. The classifier layer then chooses the label or class with the

highest probability. A few papers for AD detection using CNN are

discussed below.

In Andersen et al. (2021), the authors presented an interpretable

deep learning technique that uses multimodal inputs such as age,

gender, MRI, and Mini-Mental State Examination score to identify

distinct Alzheimer’s disease signs. The framework connected a

fully convolutional network, which creates precise, understandable

visualizations of individual Alzheimer’s disease risk en route to

accurate diagnosis, to a multilayer perceptron. This network

develops high-resolution maps of illness likelihood from local

brain anatomy.
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To recognize AD (Aderghal et al., 2016), the author has applied

an eight-layered 2D CNN to MRI data in the sagittal view. The

activation mechanisms sigmoid, leaky ReLU, and ReLU were tested

along with three distinct pooling functions (average, max, and

stochastic). The most significant outcomes for image classification

came from the leaky activation function of ReLUwithmax-pooling.

In 2D CNNs, convolutions are only used to analyze features from

the spatial dimensions of the 2D feature maps. A longstanding issue

in the medical industry is the scanning of image samples.

In Wang et al. (2018a), the author, with the help of the ReLU

leak and experiment, constructs an 8-layer CNN with 97.65%

accuracy. The pre-formed VGG-16 was used as a functionality

extractor by Janghel and Rathore (2021) to categorize AD, CN, and

MCI. The VGG-inspired network was introduced as a backbone in

the paper to increase the dataset (Jain et al., 2019). Additionally,

the VGG-inspired network has the convolution block attention

module. The accuracy of the migration technique employed in

the research (Wang S. H. et al., 2021) to locate AD within the

ResNet network was 98.37%. Thanks to neuroimaging’s ability to

offer spatial correlations between the pictures, 3D CNN technology

is also frequently used in AD diagnosis.

In Ding et al. (2019), the author employed an Inception v3

network tested at 10% and formed on 90% of the ADNI data.

Processing 18 forms of non-fluoro PET images is done using the

grid method, which is extracted from the ADNI dataset. To locate

brain voxels, researchers employed Otsu’s threshold approach.

Using an 8-batch size and a 0.0001 learning rate, the Adam

Optimizer trained the training model. It comprises three classes:

AD, MCI, and CN. The suggested idea achieves 82.5% specificity

and 100% sensitivity. The paper (Liu et al., 2018) discusses CNN 3D

architecture for deep, multi-instance learning based on landmarks

for diagnosing brain diseases. Performance is significantly better

than the conventional Alex Net system.

An ensemble of 3D densely connected convolutional networks

(3D-DenseNets) for diagnosing AD and MCI has been proposed

by the authors in the paper (Wang H. et al., 2019). The authors

have arbitrarily altered hyperparameters around the ideal value

to create base networks with various topologies. To optimize

the flow of information, dense connections—where each layer

is closely coupled with every other layer—were first introduced.

Then, 3D-DenseNets with various designs were combined using a

weighted-based fusion technique. By altering the hyperparameter

initializations and architecture, a base 3D-DenseNet was built.

A weighted-based fusion technique was employed to integrate

the basis classifiers. Accuracy was gradually increased using

the ensemble model instead of merely taking the network’s

forecast average.

In Chitradevi and Prabha (2020), the authors divided the brain

into smaller sections, including the gray matter, white matter,

and hippocampus, using various optimization methods, including

the Cuckoo Search, Gray Wolf Optimization, Particle Swarm

Optimization, and Genetic Algorithm. Two-hundred images were

received from the hospital and processed using various methods,

including head stripping, quality improvement, and contrast

amplification. After segmentation, an area is validated against

a field truth image to determine segmentation performance.

The Jaccard Index, Tanimoto, similarity of volumes, structure

similarity index metrics, and feature similarity index metrics are

all assessed as part of the validation process. CNN has specifically

used feature extraction and classification tasks using the AlexNet

model. Compared to other optimization techniques, Gray Wolf

Optimization offers the best performance, reaching a high precision

of 95%.

In Nawaz et al. (2021), the authors have implemented

three models to determine their accuracy. The first model

involved retrieving handmade features from the images during

pre-processing, then classification using the closest k-neighbor

and Random Forest. The second model was constructed using

CNN deep learning based on the preprocessed data set.

Classifiers such as random forest, nearest k-neighbors, and

vector support machines were evaluated. The third model,

AlexNet, was used to derive profound characteristics. Upon

examination, the model with deep features demonstrated the

highest classification accuracy using a carrier vector machine.

Notably, vector support machines showed the highest accuracy,

at 99.21%, followed by k-nearest neighbors with 57.32% accuracy

and random forests with 93.97%. Liu et al. (2018) used a real-

time method based on deep features to identify the phases of

Alzheimer’s disease.

In Kundaram and Pathak (2021), data from the ADNI

were obtained, and then the images were pre-processed and

scaled. Disease classification and formation take place using

CNN models. The template used 9,540 photos from the three

image categorization classes (AD, MCI, and CN). The CNN

model produced three maximum pooling layers, three layers

of convolution, four ReLU activation layers, and numerous

optimizers, such as Adam, Adagrad, Nadam, Adadelta, and

Rmsprop. Adagrad achieves the best precision with the slightest loss

by contrasting several optimizers with the suggested framework.

On the ADNI dataset, the proposed model is 98.57% accurate.

Lee et al. (2019) employed AlexNet to increase the overall

accuracy of categorizing AD with success. Despite outperforming

the bulk of conventional characteristic extraction techniques,

CNN’s extended training period necessitates substantial visual data.

In Huang et al. (2020), the authors used fast and dense connections

to accurately classify medical images, feeding the densenet’s input

the feature map generated by the improved PCANet.

In Marzban et al. (2020), the author used convoluted neuron

networks and diffusion tensor images to diagnose AD detection.

To expand the dataset, the authors presented the VGG-inspired

network as a backbone (Wang J. J. et al., 2021). They also

incorporated the convolution block attention module into a VGG-

inspired network.

In ResNet-50, the spatial transformer networks (STN) and the

nonlocal attention mechanism were added to address the issue

of CNN losing local information (Sun et al., 2021). The most

relevant attention modules may be quickly implemented into the

current network architecture. Liang and Gu (2020) proposed a

method that yielded excellent results in classifying and recognizing

AD through a few annotations using a core network with a

focus strategy. In Katabathula et al. (2021), the author used

the hippocampus MRI data, a 3D light array model with visual

and overall form representations that can be used to predict

AD detection.
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A model is proposed (Pei et al., 2022) to use long-range

addiction mechanisms based on a network of convolutional

neurons to diagnose Alzheimer’s disease. Ajagbe et al. (2021)

proposes deep CNN (DCNN) methods for multiple AD

classifications using MRI. Many developed CNN models are

capable of accurate AD detection, including VGG Net, Alex

Net (Zhang Y. D. et al., 2019; Lu et al., 2019; Wang S. H. et al.,

2019), ResNet (Alotaibi and Alotaibi, 2020; Firdaus et al., 2018),

DenseNet, and Inception (Satapathy, 2020). Co-investigators can

establish a proprietary architecture based on Puttagunta and Ravi

(2021); Yang and Mohammed (2020). Recently, several authors

have developed different techniques for detecting AD. Faisal and

Kwon (2022) used automated mild cognitive problems and whole-

brain MRI to identify AD based on numerous investigations; CNN

is the most efficient deep learning model.

Meng and Zhang (2023) suggested the Dual Fusion Cluster

Graph Convolution Network (DFCGCN) model, which integrates

the Cluster GCN in series with one adjacency matrix, two

feature extraction channels, and one. The decomposition-fusion

framework (Zuo et al., 2023) decomposes the feature space into

the union of uniform and unique spaces for each modality,

then adaptively fuses the decomposed features to learn MCI

representation. The flattened, sparse vectors can retrieve advanced

information from brain imaging by downsampling them via graph

pooling. Specifically, two feature extraction channels, one adjacency

matrix, and one cluster GCN in series are combined in the Dual

Fusion Cluster Graph Convolution Network (DFCGCN) model

(Prasath and Sumathi, 2024). The flattened sparse vectors can

retrieve sophisticated features by sampling brain imaging data with

graph pooling. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI2) sMRI image collection was utilized by the authors of this

work (Ravi et al., 2024) to quantify and categorize the AD stage. The

author concentrated on using various DL algorithms to classify AD

MRI images into multiple classes. The author suggested the most

effective pre-trained model to forecast the patient’s stage in this

work reliably. Visualization methods like Saliency Map and Grad-

CAM are applied to the model that best explains the image’s region

of focus, allowing for the prediction of the image’s class.

To characterize brain patterns seen in 2D slices of MRI images,

Avots et al. (2024) implemented the performance of 16 histogram-

based image texture descriptors and features taken from 18 pre-

trained CNN. The main goal is to find this assignment’s most

helpful feature types. The initiative known as the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) provided the MRI dataset

that was utilized to derive the features. This paper used five

binary machine learning approaches to classify the data after

computing characteristics on 2D axial, coronal, and sagittal slices.

Data collection should be done using an autonomous, distinct,

and efficient AD detection framework that directs the different AD

detection techniques. This would facilitate enhancing the models’

capacity to generalize the subsequent datasets.

Zuo et al. (2024) introduce a PALH model for predicting

faulty brain connections using triple-modality medical images. An

adversarial technique estimates anatomical knowledge’s previous

distribution to assist multimodal representation learning. An

additional pairwise collaborative discriminator structure is used

to narrow representation distribution differences. To fuse learned

representations and establish high-order interactions inside and

between multimodal images, the hypergraph perceptual network

is designed. Zong et al. (2024) developed a diffusion-based brain

network pipeline for end-to-end brain network building. Using

diffusion, the brain region-aware module (BRAM) correctly locates

brain regions without subjective parameter selection. DGCL then

uses graph contrastive learning to improve brain connections by

reducing individual differences in redundant connections unrelated

to diseases, improving brain network consistency within a group.

In Pan et al. (2024), the authors implemented a decoupling

module that divides a brain network into two parts: sparse graphs

representing neuronal circuits influencing AD progression and a

supplement graph with minimal impact on AD. Additionally, the

adversarial technique guides the decoupling module to extract AD-

related features. Table 5 provides a comparison of a variety of

studies that diagnose AD using a variety of AD approaches.

Upon reviewing the latest literature on the early diagnosis

of Alzheimer’s disease, it was found that to enhance overall

performance and increase diagnostic accuracy through a computer

program, the following considerations must be addressed: A

significant problem is the acquisition of comprehensive and

balanced data pertaining to Alzheimer’s disease. Data augmentation

and preprocessing methods can enhance the overall state-of-the-

art performance. Many recently implemented approaches and

techniques connected to deep learning are striving to address the

previously described issues. All studies possess both advantages and

disadvantages. This section addressed only five strategies of deep

learning, despite the existence of numerous approaches, focusing

on the most prevalent one for diagnosing Alzheimer’s disease. This

section examines five datasets and the existing literature from prior

years of research.

4 Data set

Even though AD detection is challenging, researchers can

use a variety of datasets and software packages to aid in their

work. The DL model can be implemented using software packages

like PyTorch, Keras, TensorFlow, Torch, and others. Publicly

accessible biomarkers are provided via datasets (Popuri et al.,

2020), like the ADNI, the open access series of imaging studies

(OASIS), the Australian imaging biomarkers and lifestyle study of

aging (AIBL), and MICAAI stands for medical image computing

and computerized assistance intervention, and the Internet brain

segmentation repository (IBSR). Table 6 shows the several datasets

that DL techniques were utilized to identify AD.

4.1 ADNI

Nearly 90% of studies use ADNI, the most often used dataset

in research, alone or in conjunction with other studies. The current

go-to data source for studies on AD is ADNI. It was established in

2004 by the National Institutes of Health and the National Institute

on Aging with the goal of compiling and organizing data on AD

patients, tracking their progression, detecting pathogenesis-related

alterations and causes, and finally discovering the origins of the
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TABLE 5 Various studies on AD diagnosis using DL approaches.

Limitations The techniques exhibited a

tendency to overfit, yet

they performed well on the

training set and poorly on

the testing set

An autoencoder was

utilized to pre-train the

convolutional layer

employed in these tests,

but it was not adjusted

Since the role of the expert

is disregarded, it

demonstrates how the

quality of data may have an

impact on the feasibility

and performance of the

system

Setting parameters with

more different variations is

important in order to

identify the appropriate

technique

This model should be

applied with caution in

reality because of the

discrepancy in accuracy

between ADNI evaluation

and local data validation

There were no appreciable

distinctions between the

different ensemble

approaches

A hyperparameter search

technique like grid search

may produce even more

improvement

Benefits Theoretically, it increased

the difficulty of feature

learning but controlled the

overfitting

Utilized 3D convolutions

on the whole MRI image,

which yield better

performance than 2D

convolutions

Significantly solves the

issues of time-consuming

ROI labeling and

inadequate labeled data

Parameters are hypertuned

to increase the accuracy

A similar outcome that just

used the hippocampal

region yielded superior

results

Examining how the illness

has evolved is essential to

distinguishing between the

disease-related

neurodegenerative process

and the normal

deterioration of aging

Transfer learning provides

less training time

% Accuracy 91.4 92.11 91.95 91.76 98.3 90 96.25

% Specificity 91.67 – 93.82 92.96 – 94 –

% Sensitivity 92.32 – 89.49 90.59 – 86 –

Types of image MRI MRI MRI, PET MRI MRI, PET MRI, PET MRI

Data set ADNI ADNI ADNI OASIS ADNI ADNI OASIS

Method Auto-encoder Auto encoder Auto encoder Auto encoder DBN DBN DBN

References Liu et al., 2014a Payan and Montana, 2015 Chen et al., 2017 Faturrahman et al., 2017 Ortiz et al., 2016 Ortiz et al., 2017 Hon and Khan, 2017

S.No 1 2 3 4 5 6 7

Limitations The approach did not use

the multi-omics dataset

from the same sample

group; instead, it

concentrated on

integrating two molecular

layers

A reasonably small private

dataset has been used to

validate the suggested

strategy

The linear SVM created

slightly greater weight

amplitudes in the

diagnosis-relevant regions,

although this impact

needed rigorous

smoothing

Merely categorizing the

states from LMCI to EMCI

does not provide enough

information to predict how

the disease will progress

Creating a brain-functional

connectivity network that is

effective for MCI detection

is a problem

It requires both a large

memory and a prolonged

recognition period

Lack of nitive anatomical

defi information on the

critical brain regions

Benefits It is capable of locating

molecular components

thought to be significant

for the prediction models

It achieves relatively higher

accuracy and is completely

automated

The approach looked at a

wide range of smoothings

and thresholds to find the

optimal fit between

heatmaps and

meta-analysis

Choose a small number of

disease-relevant and

time-sensitive features

while keeping a high

prediction power

The performance of the

categorization is assessed

using leave-one-out

cross-validation

Utilizing the new Improved

Attribute Ranker, filter the

relevant features from the

retrieved features

A technique that allows

features whose Euclidean

sample norms are too small

about the mean of feature

vector norms within their

tissue class to be eliminated

% Accuracy 93.9 94.85 88.3 93.5 97.24 95.4 97.65

% Specificity 93 – – – 83.33 94.3 97.35

% Sensitivity 85 86 – – 96.55 96.1 97.66

Types of image MRI MRI MRI MRI MRI MRI MRI
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TABLE 5 (Continued)

Data set DNA methylation dataset The Gwangju Alzheimer’s

and related dementia

(GARD) dataset

ADNI ADNI ADNI-2 ADNI OASIS

Method DNN DNN DNN RNN (LSTM) RNN (Bi-LSTM) RNN (Bi-GRU) CNN

References Park et al., 2020 Basher et al., 2021 Wang et al., 2023 Hong et al., 2019 Liu et al., 2020

Rajasree and Brintha

Rajakumari, 2024

Wang et al., 2018b

S. No 8 9 10 11 12 13 14

Limitations Collaborative

learning may

improve learning

outcomes even

further, considering

the underlying

relationship

between clinical

ratings and class

labeling

It requires a more

extended

convergence period

to produce high

accuracy

Attempting to

incorporate other

neurodegenerative

illnesses is

worthwhile in order

to assess the

algorithm’s

resilience to related

conditions

When dealing with

irregular data, the

approach might not

function well

A smaller sample

size for analysis

results in lower

statistical

performance

Large datasets are

needed for deep

learning to extract

deep features,

which can cause

overfitting and class

imbalance

When the

availability of a

graphics processing

unit (GPU) is

limited or

impossible, this is

highly competitive

This causes serious

issues with memory

and time

consumption

There was an

extended

computation time,

which could have

affected the

method’s outcome

Benefits Strong

generalization and

resilience are crucial

aspects of the

approach, especially

when processing

multi-center MR

images in

real-world

applications

Transfer learning

reduces large

amount of data for

training. overfitting

is reducing using

dropout

When considering

similar studies, the

test set was

comparatively

larger

The technique can

generate

predictions based

on integrated data

by adding the

category

probabilities of

multiple base

classifiers

The suggested work

has a strong

relationship with

clinical goals

A deep

feature-based

model

outperformed

handcrafted and

deep learning

method

The suggested

architecture

reduced the

number of layers in

depth to one or two

to address the

overfitting issue

overcomes the

difficulties

associated with

extracting

characteristics

manually and

achieves full

automation

Various medical

image

classifications can

accomplished with

deep convolutional

neural network

techniques

% Accuracy 91.4 99.14 92 98.83 95 99.21 93.5 98.57 81.5

% Specificity 90.42 97 91 – 94 – 93.9 – 71

% Sensitivity 92.32 96.89 92 – 95 – 92.5 – –

Types of image MRI, PET sMRI PET MRI MRI MRI MRI MRI MRI

Data set ADNI ADNI ADNI ADNI Chettinad Health

City

OASIS ADNI ADNI OASIS

Method 3D CNN 2D-CNN CNN (Inception v3) 3D CNN Dense

Nets

CNN (Alex Net) CNN (AlexNet) 2D CNN CNN DCNN

References Liu et al., 2018 Jain et al., 2019 Ding et al., 2019 Wang H. et al., 2019 Chitradevi and

Prabha, 2020

Nawaz et al., 2021 Marzban et al., 2020 Kundaram and

Pathak, 2021

Ajagbe et al., 2021

S. No 15 16 17 18 19 20 21 22 23

(Continued)
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TABLE 5 (Continued)

Limitations Little

information

may get lost in

the converting

process

This

procedure

cannot used as

a routine

detection tool

because of the

acquisition of

samples

This model is

trained just on

areas of the

hippocampal

tissue. Further

advancements

might made by

using different

brain regions

The higher

learning rate

can cause a

higher value

loss

Poor

processing

efficiency

limitation

brought on by

the

preprocessing

step that

requires

advanced

annotation of a

particular area

There’s a

chance that the

model has

overfitted

relative to the

training set

Multiclass AD

stage

classifications

are not

supported

Using their

unique

imaging

feature vectors,

it simply

considers

pairwise

similarity

across subjects,

not modeling

relationships

between

subjects

No analysis of

the suggested

strategy was

done using a

collection of

real-time

clinical brain

images, so the

investigation’s

outcomes are

limited to the

brain images

in one dataset

It is not

evaluated for

other types of

dementia, such

as vascular

dementia

(VD),

frontotemporal

dementia

(FTD), or

Lewy-body

dementia

(LBD)

The

performance

of standard

histogram

descriptors

may

sometimes be

surpassed by

the efficacy of

feature

extraction

using this

technique, as it

may vary

depending on

the plane

Benefits These

pre-processed

images lead to

generate good

features and

also will save

the

computation

cost,

increasing

number of

layers order to

increase the

accuracy of

model

Effectively

address the

issue of local

information

loss in

conventional

CNN and

extract

long-distance

correlation

from feature

space

To boost

performance,

the model

incorporates

more global

shape data

This model

does not

exhibit

overfitting or

overshooting

The technique

increases

classification

accuracy, and

the approach

can build a

latent

representation

with several

residual blocks

The model

performs

better and

extracts

valuable

features from

the input data

without

pre-processing

Lessen the

amount of

memory used,

the complexity

of the

algorithm,

overfitting,

and the

processing

time

Population

graph

computation

utilizing graph

kernels can

efficiently

represent

individual

correlations.

Therefore,

preventing the

intricate

building of a

neural

network of

connections in

the brain

The suggested

Eigen-based

image fusion

and arithmetic

addition

approaches

improve the

low-intensity

brain MRI

images

This method

randomly

duplicates the

images of the

class with the

fewest samples

(minority

class). It may

reduce the

chances of the

model getting

over-fit

Using this

model on

particular

slices can

identify the

maximum

level of

discriminatory

capability

% Accuracy 99.9 97.1 92.5 95 89.3 96.12 97 90.7 99.9 99 98

% Specificity 99.5 95.3 94.9 96 – 97.73 94.32 94 99.8 99.9 98

% Sensitivity 99.9 95.5 88.2 – 87.5 94.99 93.6 91.1 99.8 98 97

Types of image fMRI MRI MRI MRI MRI MRI MRI fMRI MRI, CT MRI MRI

Data set ADNI ADNI ADNI OASIS ADNI ADNI ADNI ADNI ADNI ADNI ADNI

Method VGG - 16 CNN

ResNet-50

CNN2

DenseNet

AlexNet 3D CNN VGGNet 3D CNN G-CNN P-LeNet ResNet AlexNet

References Janghel and

Rathore, 2021

Sun et al., 2021 Katabathula

et al., 2021

Fu’Adah et al.,

2021

Pei et al., 2022 Faisal and

Kwon, 2022

Helaly et al.,

2022

Meng and

Zhang, 2023

Prasath and

Sumathi, 2024

Ravi et al.,

2024

Avots et al.,

2024

S. No 24 25 26 27 28 29 30 31 32 33 34
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TABLE 6 Various datasets used for AD detection.

S. No Name of the dataset Abbreviation Address link

1 ADNI Alzheimer’s Disease Neuroimaging Initiative https://adni.loni.usc.edu/data-samples/access-data/

2 OASIS Open Access Series of Imaging Studies https://www.oasis-brains.org

https://www.kaggle.com/datasets/jboysen/mri-and-alzheimers

3 AIBL The Australian Imaging, Biomarker & Lifestyle

Flagship Study of Aging

https://aibl.csiro.au/research/neuroimaging/

4 IBSR The Internet Brain Segmentation Repository https://www.nitrc.org/projects/ibsr/

5 MICCAI Medical Image Computing and Computer

Assisted Intervention

http://braintumorsegmentation.org/

disease and developing a therapy. The four stages of ADNI data

are now separated into ADNI-GO, ADNI-1, ADNI-2, and ADNI-3,

according to the authors of Dimitriadis et al. (2018). In comparison

with ADNI-GO and ADNI-1, which are baseline data, the majority

of the information in ADNI-2 and ADNI-3 is monitoring and

newly added modal data. The basis of AD is primarily genetic.

To help researchers better understand the genetics behind

illness causation, enabling the linking of genomes with

neuroimaging and medical evidence is one of ADNI’s main

objectives. To monitor the onset of MCI and early AD, the main

objective of ADNI is to ascertain whether ongoing MRI, PET,

and biological samples may be used. Through the Laboratory on

Neuroimaging (LONI), Image and Data Archive (IDA), a safe

research data repository, all ADNI data are accessible without

restriction. To conduct research, disseminate knowledge, or

organize clinical research trials, interested scientists may have

access to ADNI imaging, clinical, genomic, and biomarker data.

Access is subject to compliance with the ADNI data use agreement

and the policies indicated for the publications. Through the IDA,

data from several dementia studies that supplement ADNI are

also accessible. Among them are the ADNI project and the AIBL

study, which examine the impact of traumatic brain injury and

post-traumatic stress disorder on AD in veterans.

4.2 OASIS

OASIS-3 and OASIS-4 were recently provided by OASIS, an

organization that aims to give the scientific community open

access to neuroimaging datasets. Pre-published data for OASIS-

cross-sectional (Marcus et al., 2007) and OASIS-longitudinal

(Marcus et al., 2010) have been utilized in hypothesis-driven

data analysis, neuroanatomical atlases, and segmentation algorithm

development. The OASIS-3 dataset for normal aging and AD is

a longitudinal multimodal neuroimaging, clinical, cognitive, and

biomarker dataset. OASIS-4 contains MR, clinical, cognitive, and

biomarker data for people who complained about their memory

(Khagi et al., 2019).

The OASIS initiative, which comprises two large datasets, aims

to provide open brain MRI data, according to the authors of

Prasath and Sumathi (2024). The cross-sectional data collection

comprised 416 people aged 18–96 with MRI results (people with

dementia who are young, middle-aged, and old). For each MRI

scan, aminimumof three to four high-resolution-to-noise ratio T1-

weighted images were obtained. Intracranial volumemeasurements

and total brain capacity were employed to investigate AD and

normal aging (Bachman et al., 2014). The collection also contained

information on 20 individuals who had dementia. The xnat.org

central The OASIS datasets provide the public with free access

to a substantial neuroimaging and processed imaging data source

spanning a broad range of demographic, cognitive, and genetic

characteristics, together with a user-friendly platform for usage in.

4.3 AIBL

The largest study, the AIBL initiative, uses PET scans.

Participants also undergo a variety of other scans, such as a PET

to evaluate brain function, a series of MRI contrasts for anatomical

characterization (T1w, PDw, and T2w), the structural integrity

of the white matter, and pathological imaging, in addition to the

PET. MRI is a potent technique for capturing various brain tissues

with excellent anatomical detail. Because MRI can evaluate the

cortical atrophy linked to neurodegeneration, it has emerged as

a crucial method for diagnosing AD. The accurate delineation of

the outer cortical mantel is made possible, particularly by relatively

quick T1w scans that provide excellent contrast between white and

gray matter.

AIBL aims to pinpoint the biomarkers, cognitive

characteristics, and lifestyle and health variables that impact

the development of symptomatic AD. This includes biopsies, PET,

MRI, clinical and cognitive tests, and lifestyle assessment (Martins

et al., 2018). In the dataset, about 2,000 people’s personal details

are contained. The data was gathered using a variety of clinical

procedures and surveys. Over a 10-year period, the entire data

set was obtained, which included patient records for 582 normal

individuals, 142 AD, and 220 MCI. Furthermore, the baseline

cohort includes data on 786 healthy individuals, 133 MCI, and

211 AD. The recruitment times, gender, and age were used as

proxy data.

4.4 IBSR

Initial funding for the IBSR came from the National

Institute of Neurological Disorders and Stroke. Researchers from
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Boston University, Draper Laboratory, North Eastern University,

Massachusetts Institute of Technology, Massachusetts General

Hospital and Harvard Medical School use this award to research

MR brain segmentation. Since the old website is no longer fully

functional (Martins et al., 2018), all data will be made available at

the respective website address.

After positional adjustment, the three-dimensional coronal T1-

weighted medical examination is the MRI data. Often referred to

as “outlines,” the segmentation files result from labor-intensive,

semi-automated processes that require many hours of expertise

from trained individuals. While manual segmentations aren’t quite

“ground truth,” they are a good place to start when contrasting

different automated segmentation methods.

The IBSR offers carefully guided findings for expert

segmentation and data from magnetic resonance brain images

(Fatima et al., 2022). Its objective is to further segmentation

technique analysis and progress. The ground truth is made up of

20 real T1-weighted (T1w) MRI pictures with carefully focused

expert segmentation findings. Additionally, each MRI volume

includes ∼60 3.1mm resolution coronal T1w slices and 18 1.5mm

resolution cortical T1w scans (slice gap between succeeding slices).

With voxels separated at frequencies of 0.84 × 0.84 × 1.5 mm3 to

0.94 × 0.94 × 1.5 mm3 to 1.0 × 1.0 × 1.5 mm3, the topic volumes

in this dataset have a size of 256 × 256 × 128 pixels. A manual

division of 32 noncritical structures has also been performed.

4.5 MICCAI

The main objective of the MICCAI BraTS’21 challenge is to

segment intrinsically heterogeneous brain glioma sub-regions in

MRI scans using multi-institutional foundation multi-parametric

magnetic resonance imaging (mpMRI) data. A significant

pool of routine multi-institutional clinically acquired mpMRI

scans of gliomas with a pathologically verified diagnosis and

accessible O(6)-methylguanine-DNA methyltransferase promoter

methylation status was used to generate the testing, training, and

validation. Specifically, the data set used for this year’s challenge

has received a significant addition of routinely collected mpMRI

images since BraTS’20. The validation, training, and testing

datasets contain information about a single subject; experienced

neuroradiologists produce and approve ground truth annotations

of the tumor sub-regions to quantitatively evaluate the predicted

tumor segmentations of Task 1. Clinical data is used to assess

Task 2.

The MICCAI-2012 dataset (Landman and Warfield, 2012)

includes 134 manually segmented structures from 35 T1w MRI

volumes received from Scotts Valley, California-based Neuro-

Metrics, Inc. The segmentation of tissue, tumors, and structures

is its principal application. In 2012, this dataset began with

80 authentic and artificial examples. The amount of training

and testing data has grown over time. Subcortical structure

segmentation is accomplished using the MICCAI 2012 challenge

in multi-atlas labeling. The study simulated various methods for

accurately recognizing AD using brain MRI data. The ablation

study considers how each contribution affects the effectiveness

of the measures. The performance metrics of the suggested

methods are contrasted with those of alternative strategies in the

following section.

5 Performance measures

DL classification problems are frequently validated by

sensitivity, specificity, precision, accuracy, Matthews Correlation

Coefficient (MCC), F1 Score, Fine Motor Impairment (FMI), and

comparing several models using receiver operating characteristics

(ROC) and area under the curve (AUC) in particular to assess

the effectiveness of recommendation systems or to comprehend

generalizability (Luque et al., 2019).

Sensitivity: The classifier’s ability to identify positive samples is

enhanced by false negatives (Fn), the proportion of total positive

samples the model interprets as true positives (Tp).

Sensitivity =
Tp

(

Tp+ Fn
)

Specificity: The classifier’s ability to identify negative samples is

represented by the percentage of false positives (Fp) samples that

the model determines to be true negatives (Tn).

Specificity =
Tn

(

Tn+ Fp
)

Precision is the percentage of all findings that are deemed to be

positive research.

Precision =
Tp

(

Tp+ Fp
)

MCC: TheMCC indicator is more accurate because it considers

Tp, Tn, Fp, and Fn. It is frequently used to assess categorization

performance while working with dichotomies.

MCC =
(
(

Tp× Tn
)

−
(

Fp× Fn
)

)
√

((

Tp+ Fp
)

×
(

Tp+ Fn
)

×
(

Tn+ Fp
)

× (Tn+ Fn)
)

Accuracy: This represents the proportion of correct predictions

to all other predictions.

Accuracy =
(Tp+ Tn)

(

Tp+ Tn+ Fp+ Fn
)

Loss: For binary classification, apply binary cross-entropy loss,

where y is the actual value and p is the predicted value.

log (M) = y log
(

p
)

+
(

l− y
)

log
(

l− p
)

where l is the loss value andM is the number of classes.

F1 score: This represents the harmonic mean of recall and

precision. Its range is between 0 and 1. The model’s performance

improves with increasing the F1 score.

F1 =
(2× Tp)

(

2× Tp+ Fp+ Fn
)

FMI refers to the geometric mean of the recall and precision

rates. It functions as an external indicator for measuring
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the performance of clustering. Higher values lead to better

clustering outcomes.

FMI =
Tp

2

√

(

(Tp+ Fp)× (Tp+ Fn)
)

ROC: The curve for the operating characteristic of the receiver.

The capacity of a classifier to differentiate between samples can

be easily determined at a certain threshold. It needs to be more

responsive to changes in the distribution of classes, simple, and

intuitive. A comprehensive representation of the performance of a

diagnostic approach is provided by the ROC curve, which precisely

illustrates the relationship among the specificity and sensitivity of

a particular analytical method and combines the two. The Tp vs.

Fp plot for various thresholds in the interval [0, 1] provides an

appropriate limit threshold for the predictive model.

The confusion matrix provides a matrix as output and serves

as the foundation for other metrics that depend on the Tp, Tn,

Fp, and Fn metrics. It is a comprehensive representation of the

model’s performance. The following section discusses the various

challenges of an early diagnosis of AD.

6 Discussions

Predicting the transition from MCI to AD and identifying

the initial stage of patients with MCI are more beneficial for

the diagnostic work of AD. When it comes to efficiency, DL

is superior to traditional ML. The efficacy of the AD detection

technique is highly dependent on the accuracy of the neuroimaging.

RoIs and patch-based strategies are critical. Combining genetic

data, cognitive test scores, CSF biomarkers, and traits extracted

from neuroimaging models can also lead to accurate classification.

The research analyzed in this paper demonstrates that DL has

been heavily used in AD detection. According to medical imaging

studies, CNN end-to-end training has emerged as the favored

method for medical imaging in recent years (AbdulAzeem et al.,

2021). Even though DL techniques have produced encouraging

findings, AD diagnosis is still quite difficult. While the proliferation

of learning methodologies and the expansion of data have limited

harmonization in survey and data gathering, insufficient data

samples may still cause issues with generalization. This issue can

be remedied by using data creation techniques to generate new

images from the current methodology (Arbabyazd et al., 2021). The

investigation in this field will continue despite the expansion of the

dataset, as its efficacy remains uncertain.

In addition to this, image annotation (Choi et al., 2020) is

another problem. Radiologists should annotate the image data

provided for certain tasks when tagging medical images. The

classification process is very time-consuming. This problem has

been handled through supervised learning, and the requirement

for expert experience has diminished; nevertheless, further research

is still needed. Though algorithms for DL have produced amazing

achievements, the area of AD detection still faces a number

of challenges and limitations. A detailed description of the DL

approach, benchmarking platform, and additional components is

necessary in order to identify the optimal combination of several

biomarkers (Meyer, 2018).Whether it can improvemedical efficacy

and reducemedical expenses is still debated. The primary limitation

is the lack of research on image analysis of AD histology (Irankhah,

2020). Enhancing the DL approach is one of the most significant

advances in improving these systems (Fu’Adah et al., 2021; Helaly

et al., 2022). It summarizes the basic principles and information

related to the provided survey.

6.1 Research gaps

This research study examines diverse methodologies to

tackle the identified research issues in order to combat this

global sickness. Investigation into effective and precise early

detection of Alzheimer’s disease is essential to facilitate timely

treatment alternatives. Automated methods are necessary to

manage the substantial volume of patients’ medical imaging data.

The fundamental etiology of the disease remains unidentified,

with the exception of a limited number of family instances

attributable to genetic mutation. At present, there is an absence

of therapeutic interventions for the disease, necessitating a

solution for the substantial amounts of imaging data required

to manage a significant number of patients. A crucial viewpoint

is the examination of longitudinal data. Alzheimer’s disease is a

degenerative condition that develops gradually, and documenting

the dynamic alterations is essential for comprehending

its progression.

6.2 Challenges

Moreover, it is essential to tackle the obstacles related

to restricted data accessibility in Alzheimer’s disease research.

Deep learning methodologies frequently necessitate substantial

quantities of labeled data for peak efficacy. Nevertheless, AD

datasets are generally constrained by the challenges and expenses

associated with data acquisition.

6.3 Future directions

Future research should concentrate on advancing strategies to

improve the transparency and explainability of deep learning

models in Alzheimer’s disease diagnosis and prediction.

Interpretability in medical applications is essential for fostering

clinician trust and acceptance, as well as ensuring the ethical

implementation of AI technologies. It is essential to include

interpretable elements, such as attention mechanisms or saliency

maps, into deep learning frameworks for Alzheimer’s disease

analysis. It is advisable to establish uniform benchmarks and

evaluation criteria for deep learning activities linked to Alzheimer’s

disease to foster collaboration and expedite advancements in the

field. This would enable equitable comparisons among various

models and promote the repeatability of research results. Moreover,

the dissemination of meticulously curated and annotated datasets

helps mitigate the challenges posed by data scarcity and promote

the advancement of innovative algorithms and approaches.
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To address this difficulty, researchers may investigate transfer

learning methodologies, wherein pre-trained models on analogous

tasks or datasets are refined for Alzheimer’s disease analysis.

Furthermore, data augmentation techniques can artificially

enhance the volume and diversity of accessible data, facilitating

the development of more robust and generalizable models. Deep

learning models ought to persist in investigating the integration

of diverse data sources, including neuroimaging, genetics, and

clinical information. Utilizing the complimentary information

from different modalities can improve the precision of Alzheimer’s

disease diagnosis, prognosis, and treatment response prediction.

The integration of multimodal data can yield a more holistic

understanding of the condition and facilitate the formulation of

individualized treatment approaches. Deep learning architectures

possess significant potential for enhancing our comprehension

of Alzheimer’s disease and refining diagnosis, prognosis, and

treatment. Integrating various modalities, evaluating longitudinal

data, resolving data restrictions, improving interpretability, and

promoting collaboration can facilitate the development of more

accurate, efficient, and interpretable deep learning models in

Alzheimer’s disease research. These initiatives possess the capacity

to revolutionize clinical practice and aid in the formulation of

individualized and targeted interventions for those at risk of or

impacted by Alzheimer’s disease.

7 Conclusion

Because AD is hard to diagnose in its early stages, researchers

are always searching for new approaches. This survey’s primary

topics are the pre-treatment approach, the technique for identifying

traits associated with AD, and the application of deepmodels to AD

diagnosis. This evaluation examined CNN’s use in classifying AD,

the datasets that were made publicly available, the neuroimaging

modalities that were available, the pre-processing methods that

were employed, and the data that were fed into the CNN. MRI

is the modality most frequently used to classify AD. When

complementary data from various modalities is used, multiple

modalities’ AD categorization results are more accurate than those

of a single modality. Compared to slice-based and voxel-based

technologies, the methods for managing patch and RoI data are

significantly more efficient. Compared to other DL models, CNN

is the most widely used and significant classification technique in

this industry. The overfitting problem with the data set remains

to be resolved, though. Study regions in medical images evolve

due to self-monitoring and unsupervised operations brought on

by a lack of medical information. Even though there are still many

unanswered problems about how to classify AD, DL technology is

still quite successful. There are situations when a person can detect

AD better than a medical practitioner. A scientific study has also

focused on using DL algorithms to identify MCI signs in MRI brain

scans to halt the disease’s growth and protect human life for a better,

more peaceful future.
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