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This research presents a process for analyzing a hybrid microgrid’s dependability

using a fuzzy Markov model. The research initiated an analysis of the various

microgrid components, such as wind power systems, solar photovoltaic (PV)

systems, and battery storage systems. The states that are induced by component

failures are represented using a state-space model. The research continues

by suggesting a hybrid microgrid reliability model that analyzes data using a

Markov process. Problems arise when trying to estimate reliability metrics for the

microgrid using data that is both restricted and imprecise. This is why the study

takes uncertainties into account to make microgrid reliability estimations more

realistic. The importance of microgrid components concerning their overall

availability is evaluated using fuzzy sets and reliability assessments. The study

uses numerical analysis and then carefully considers the outcomes. The overall

availability of hybrid microgrids is 0.99999.
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1 Introduction

Due to its versatile operational modes, encompassing grid-connected, and islanded

configurations, microgrids are increasingly pivotal in establishing resilient electrical energy

networks, especially in the face of natural disasters and adverse conditions. Typically

incorporating distributed generation facilities capable of supplying heat and electricity,

microgrids are anticipated to witness substantial integration of renewable energy sources.

They constitute a fundamental component of smart grids (Nikos, 2007; Ashraf et al., 2020).

Reliability, defined as the capacity of an entity to fulfill a specified function within

predetermined environmental and operational parameters and for a defined duration

(Billinton and Allan, 1992), is of paramount importance in the context of microgrid

systems. This significance arises from their role as backup power systems, particularly

during main grid blackouts or failures. An in-depth examination of microgrid system

reliability is crucial for system design andmaintenance. Such an analysis offers insights into

potential failure modes of subsystems and components, catering to the informational needs

of system designers, operators, and end-users. Furthermore, it facilitates the estimation of

the system’s operational lifespan by predicting the time elapsed before the occurrence of the

microgrid’s initial physical failure. Consequently, reliability analysis emerges as a critical

undertaking during the design and operational phases of microgrid implementation.
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In the study by Said et al. (2019), a new SMES controller

based on the fuzzy logic control method is presented, considering

the state of charge of the superconducting magnetic energy

storage (SMES) system to enhance its reliability. This controller

effectively avoids the short-lifetime shortcoming of SMES and

maintains constant bus voltages despite the fluctuating power of

PV generation, thereby improving the overall microgrid system’s

reliability. Additionally, the proposed controller design method

can be generalized for different microgrid architectures, offering

a versatile solution for enhancing microgrid reliability. Akbari

and Hesamian (2020) presented a method for constructing time-

dependent reliability systems based on intuitionistic fuzzy random

variables. The reliability functions of a k-out-of-n system are

evaluated using an intuitionistic fuzzy random variable with exact

parameters. The evaluation criteria are discussed and interpreted.

Numerical evaluations are presented to illustrate the calculation

of the system reliability criteria in the form of intuitionistic fuzzy

numbers. In the study by Kumar et al. (2021), the authors presented

the fuzzy reliability of a specific system utilizing intuitionistic

fuzzy set theory and the universal generating function technique.

The analysis relies on triangular fuzzy numbers and exponential

distribution in lower and upper forms. In the study by Talaat

et al. (2023), the authors provided a comprehensive review of

the challenges and potential solutions for integrating renewable

energy sources into microgrids. It highlights the role of artificial

intelligence (AI) in improving integration and control strategies. It

presents case studies on using AI to optimize the performance of

hybrid renewable energy systems. Overall, this file offers valuable

insights for researchers and practitioners working in the field

of renewable energy integration. In the study by Ren et al.

(2020), the authors developed a reliability model for radial multi-

microgrids using the Bayesian network considering distribution

network transmission capacity. A reliability assessment of aggregate

battery energy storage systems in microgrids was proposed by

Pham et al. (2020) using the Markov model. In the study by

Kwasinski et al. (2012), the authors addressed the availability

of microgrids during natural disasters. Microgrid availability is

evaluated using the Markov model and evaluated using minimal

cut set approximations. In the study by Ahshan et al. (2017),

the authors have built a microgrid reliability model that takes

into account the intermittent effects of renewable energy sources

such as wind using Monte Carlo simulation. Adefarati and Bansal

(2019) relied on the assessment of the reliability and economic

and environmental advantages of renewable energy sources in

the microgrid system. In the study by Ansari et al. (2016), the

authors assessed the reliability of microgrids containing prioritized

loads and distributed renewable energy resources through a

hybrid analytical simulation method. Xu et al. (2016) focused on

assessing the reliability of the microgrid accurately, taking into

account its operating condition. A reliability assessment of the

microgrid consisting of conventional generators, a photovoltaic

system, and a small hydropower plant based on Monte Carlo

simulation was presented (Na and Kim, 2019). In the study

by Santhan et al. (2022), the authors introduced a method

to enhance the resilience of existing microgrids against low-

probability, high-impact events using Monte Carlo simulation and

load prioritization. It evaluates this approach by modeling the

IEEE 5-Bus and IEEE 14-Bus systems, assessing the impact of load

shedding on microgrid resilience across different grid sizes, and

introducing a new resilience index. Khare and Chaturvedi (2023)

presented a thorough evaluation of microgrid systems, covering

optimal design considerations and control system evaluation, and

drew insights from a detailed analysis of literature and case

studies. Khalili et al. (2022) introduced a novel approach to

optimizing the power scheduling of energy sources in an isolated

microgrid, focusing on the upside risk for the first time. The

microgrid under consideration includes diverse sources such as

wind turbines, photovoltaic panels, diesel generators, and batteries.

Onaolapo and Ojo (2023) emphasize the importance of microgrids

in balancing power consumption and generation, thus enhancing

customer satisfaction and addressing challenges posed by events

such as COVID-19.

The above reliability models are such that the transition

rates of reliability are treated as crisp numbers. Input parameters

such as failure rates and repair rates have been extracted from

historical documents that may be prone to errors in reliability

assessment methods. Due to the probabilistic characteristics

of failure situations and variations in the environment, these

parameters reveal considerable unit-to-unit variability.

Presuming a probability distribution for input parameters and

utilizing either the conditional probability method by Billinton

and Allan (1992) or the Monte Carlo simulation by Li (2013) are

two traditional methods to integrate such uncertainties. However,

identifying appropriate probability distributions in most situations

proves challenging. Furthermore, the computational demands of

traditional probabilistic methods could be substantial, particularly

for expansive systems. In reliability analyses, methodologies based

on fuzzy sets should specifically consider the uncertainties of input

parameters (Klir and Yuan, 1996). Instead of single-point output,

they can also generate possibility distributions. In addition, a

subjective collection of information evaluated by expert opinions

may be considered in such applications (Bowles and Pelaez, 1995;

Kabir and Papadopoulos, 2018).

The reliability data for a device can be determined either

by relating statistical methods to historical data or by using

the reliability modeling of the device as a single system. The

proposed work deals with a reliability model for hybrid microgrids.

A reliability model for a hybrid microgrid was proposed by

Adefarati and Bansal (2017), in which reliability transition rates

were considered crisp numbers. In reliability evaluation methods,

input parameters such as failure and repair rates were derived from

historical records, which are prone to errors. Furthermore, due

to the stochastic character of both ecological changes and failure

situations, these metrics exhibit significant variability from one unit

to the next. The true and single-point values of these parameters

could lead to errors in reliability evaluations. Thus, fuzzy sets are

taken into account for reliability analysis to integrate the inherent

uncertainties associated with the input data.

This study focuses on the reliability modeling of a hybrid

microgrid through the application of a fuzzy Markov model.

Initially, comprehensive descriptions of microgrid components and

their functionalities are provided, followed by the development of

a state-space reliability model. The availability of the microgrid

is subsequently computed based on the formulated model.
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FIGURE 1

Hybrid microgrid.

FIGURE 2

Eight-state Markov model of wind subsystem.

The integration of fuzzy sets is employed in the reliability

analysis to account for uncertainties inherent in the input data.

Numerical illustrations are systematically studied to assess the

efficacy of the suggested framework. The utility of the suggested

FIGURE 3

Equivalent two-state Markov model of wind subsystem.

framework extends to microgrid manufacturers, offering a tool

for discerning critical microgrid components. This insight enables

manufacturers to optimize investments in microgrid components,

thereby enhancing overall microgrid availability.

The subsequent segments of this article are structured as

follows. Section 2 provides a concise discourse on the constituent

elements of a microgrid. The reliability modeling of the microgrid

and the application of fuzzification in the analysis are expounded

upon in Sections 3, 4, respectively. Section 5 undertakes numerical

investigations about the articulated model, while the conclusions

derived from this study are deliberated upon in Section 6.

2 Microgrid: a brief overview

A microgrid denotes a diminutive power system or localized

power station characterized by independent operational capacity or

parallel connectivity with other small-scale power grids (Adefarati

and Bansal, 2017; Adefarati et al., 2017; Wesly et al., 2020).

The functioning of a microgrid system relies on communication

infrastructure. It incorporates distributed generation technologies,

including photovoltaic (PV) systems, wind turbine generation

(WTG), diesel generators, and battery systems, as depicted in
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TABLE 1 Probability of the wind subsystem being in di�erent states.

State Probability State Probability

1 0.99203 5 9.3× 10−6

2 0.002484 6 8.1× 10−6

3 0.0027314 7 5.4× 10−6

4 0.0027208 8 3.64× 10−6

FIGURE 4

Eight-state Markov model of the PV subsystem.

Figure 1. The main goal of implementing microgrid systems over

conventional power systems is to enhance local energy delivery,

optimize energy efficiency, realize cost efficiencies, ameliorate

grid safety through congestion reduction, generate utility revenue,

bolster grid resilience, accrue savings on energy expenditures,

stimulate economic growth in rural areas, diminish electricity costs,

and ensure a reliable power supply. This approach concurrently

contributes to lower greenhouse gas (GHG) emissions (Klir

and Yuan, 1996; Kabir and Papadopoulos, 2018). The ensuing

discussion succinctly outlines the principal components integral to

the proposed microgrid.

2.1 Wind turbine generator

The power curve serves as a tool for assessing the generated

power value by the WTG in relation to varying wind speeds

(Tazvinga et al., 2017). The output of the WTG is contingent upon

the wind speed at the hub height, geographical coordinates, and

operational characteristics specific to the WTG (Del Granado et al.,

2016).

FIGURE 5

Equivalent two-state Markov model of PV subsystem.

TABLE 2 Probability of the PV subsystem being in di�erent states.

State Probability State Probability

1 0.994039 5 2.75× 10−6

2 0.002178 6 2.802× 10−6

3 0.00104 7 5.955× 10−6

4 0.002726 8 1.5× 10−8

2.2 Photovoltaic system

Solar energy undergoes direct conversion into electrical power

through the application of photovoltaic (PV) panels, serving

diverse functionalities within microgrid systems (Tazvinga et al.,

2017). The PV system possesses the capability to be interconnected

in both parallel and series configurations, strategically aligned

to fulfill the instantaneous power requisites of consumers at a

given time. The functionality of the PV system exhibits temporal

variation due to fluctuations in solar irradiation conditions,

temperature, geographical positioning, weather dynamics, and load

patterns (Wu and Xia, 2015).

2.3 Battery energy storage system

The battery energy storage system (BESS) functions as an

electrochemical apparatus designed to accumulate energy derived

from diverse sources, such as photovoltaic (PV) and Wind Turbine

Generator (WTG), offering versatility for multiple applications.

Its integration into a microgrid system is imperative due to the

inherently stochastic nature of solar and wind resources. The BESS

is instrumental in addressing scenarios characterized by energy

scarcity, ensuring the provision of stored energy to designated

load points. Conversely, it is engineered to store surplus power

generated by the microgrid system when the power output exceeds

consumer demand. The operational dynamics of the BESS are

evaluated through the assessment of its state of charge (SOC).

3 Reliability evaluation of microgrid

Every element depicted in Figure 1 possesses the capacity to

exist in either an operational (UP) state or a non-operational

(DOWN) state. When a subsystem lacks redundancy in its

components, the failure of any individual element within the

subsystem precipitates the failure of the entire subsystem. In

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1406086
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Swain et al. 10.3389/fcomp.2024.1406086

FIGURE 6

Eight-state Markov model of BES subsystem.

such instances, from a reliability perspective, the components

of the subsystem are considered to be arranged in series. The

subsequent subsections elucidate the state-space representation for

each microgrid subsystem.

3.1 Wind turbine generator

The wind subsystem comprises a WTG, an AC-to-DC

converter, and an inverter. Figure 2 depicts the 8-state Markov

model of the wind subsystem. State 1 is the working state or

UP state of the wind subsystem, and the remaining states are

DOWN states caused by the failure of components of the wind

subsystem. Combining states 2–8 in the Markov model, which

leads to the wind subsystem failure, into a unified DOWN state,

Figure 3 illustrates the resulting two-state Markov model for the

wind subsystem. The parameters for this equivalent model are

outlined below. The equivalent failure rate of the wind subsystem

is shown in Equation 1.

λws = λw + λAD + λDA (1)

The equivalent repair rate of the wind subsystem is shown in

Equation 2.

µws = (λw + λAD + λDA) ×

(

λw

µw
+

λAD

µAD
+

λDA

µDA

)−1

(2)

The probability of being at the UP state and DOWN state

in the wind subsystem equivalent model is given in Equations 3,

4, respectively.

Pupws =

(

1+
λw

µw
+

λAD

µAD
+

λDA

µDA

)−1

(3)

Pdnws =

(

λw

µw
+

λAD

µAD
+

λDA

µDA

)

×

(

1+
λw

µw
+

λAD

µAD
+

λDA

µDA

)−1

(4)

However, the probabilities of being in state 1, state 2, state 3,

state 4, state 5, state 6, state 7, and state 8 can be derived from

the 8-state Markov model as follows. The limiting probabilities

corresponding to these states are P1, P2, P3, P4, P5, P6, P7, and P8.

αP = α (5)

Here, α and P are limiting probability vectors and stochastic

transitional probability matrices, respectively, as given in

Equation 5.

[P1 P2 P3 P4 P5 P6 P7 P8]× P = [P1 P2 P3 P4 P5 P6 P7 P8] (6)

The stochastic transitional probability matrix is given in

Equation 7. Putting the values of failure and repair rates of each

component [19].
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p =



























A1 λω λAD λDA 0 0 0 0

µω A2 0 0 λAD 0 λDA 0

µAD 0 A3 0 λω λDA 0 0

µDA 0 0 A4 µω 0 µω 0

0 µAD µω 0 A5 0 0 λDA

0 0 µDA µAD 0 A6 0 λω

0 µDA 0 µω 0 0 A7 λDD

0 0 0 0 µDA µω µAD A8



























(7)

A1 = 1− λω − λAD − λDA

A2 = 1− µω − λAD − λDA

A3 = 1− µAD − λω − λDA

A4 = 1− µDA − λω − λDA

A5 = 1− µDA − µω − λDA

A6 = 1− µω − µDA − λAD

A7 = 1− µω − µDA − λAD

A8 = 1− µω − µAD − µDA

p =



























.655 .05 .152 .143 0 0 0 0

20 −19.295 0 0 .152 0 .143 0

55.232 0 −54.425 0 .05 .143 0 0

52.143 0 0 −51.345 0 0 0.05 0

0 55.232 20 0 −74.374 0 0 .143

0 0 52.143 55.232 0 −106.425 0 .05

0 52.143 0 20 0 0 −126.375 55.02

0 0 0 0 52.143 20 55.232 −126.38



























(8)

From Equations 6, 8

0.665P1 + 20P2 + 55.232P3 + 52.143P4 = P1 (9a)

0.05P1− 19.925P2 + 55.232P5 + 52.143P7 = P2 (9b)

0.125P1− 54.425P3 + 20P5 + 52.143P6 = P3 (9c)

0.143P1− 51.345P4 + 55.232P6 + 20P7 = P4 (9d)

0.152P2 + 0.05P3− 74.375P5 + 52.143P8 = P5 (9e)

0.143P3 + 0.152P4− 166.42P6 + 20P8 = P6 (9f)

For any system, the summation of the probability of all the

states is 1.

P1+ P2+ P3+ P4+ P5+ P6+ P7+ P8 = 1 (10)

The probabilities of the wind subsystem being in different states

can be obtained by solving Equations 9, 10, as shown in Table 1. The

probability of the wind subsystem being in UP state is Pup = P1 =

0.99203. The probability of the wind subsystem being in a DOWN

state is PDown = P2+ P3+ P4+ P5+ P6+ P7+ P8 = 0.00797.

3.2 PV subsystem

The PV subsystem comprises PV cells, a DC-to-DC booster,

and an inverter. Figure 4 depicts the 8-state Markov model of the

PV subsystem. State 1 is the working state or UP state of the PV

FIGURE 7

Equivalent two-state Markov model of BES subsystem.

TABLE 3 Probability of the BES subsystem being in di�erent states.

State Probability State Probability

1 0.994039 5 2.75× 10−6

2 0.002178 6 2.802× 10−6

3 0.00104 7 5.955× 10−6

4 0.002726 8 1.5× 10−8

subsystem, and the remaining states are DOWN states caused by

the failure of the PV subsystem’s components. Combining states

2–8 in the Markov model, which leads to the failure of the PV

subsystem, into a consolidated DOWN state, Figure 5 depicts the

resulting two-state Markov model for the PV subsystem. The

parameters for this equivalent model are detailed as follows.

The equivalent failure rate and repair rate are shown in

Equations 11, 12, respectively.

λpvs = λpv + λDD + λDA (11)

µpvs =
(

λpv + λDD + λDA
)

×

(

λpv

µpv
+

λDD

µDD
+

λDA

µDA

)−1

(12)

The probability of being at the UP state and DOWN state
in the PV subsystem equivalent model is given in Equations 13,
14, respectively.

Puppv =

(

1+
λpv

µpv
+

λDD

µDD
+

λDA

µDA

)−1

(13)

Pdnpv =

(

λpv

µpv
+

λDD

µDD
+

λDA

µDA

)

×

(

1+
λpv

µpv
+

λDD

µDD
+

λDA

µDA

)−1

(14)

The stochastic transitional probability matrix in Equation 15 of

the PV subsystem is computed by using the failure and repair rates
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FIGURE 8

Markov model of microgrid.

TABLE 4 Probability of the microgrid being in di�erent states.

State Probability State Probability

1 0.98068 5 2.545× 10−6

2 0.0073175 6 3.2× 10−6

3 0.006014 7 5.716× 10−6

4 0.00597104 8 2.68× 10−8

of each component (Adefarati and Bansal, 2017).

p =



























B1 λpv λDD λDA 0 0 0 0

µpv B2 0 0 λDD 0 λDA 0

µDD 0 B3 0 λpv λDA 0 0

µDA 0 0 B4 µpv 0 µpv 0

0 µDD µpv 0 B5 0 0 λDA

0 0 µDA µDD 0 B6 0 λpv

0 µDA 0 µpv 0 0 B7 λDD

0 0 0 0 µDA µpv µDD B8



























(15)

B1 = 1− λpv − λDD − λDA

B2 = 1− µpv − λDD − λDA

B3 = 1− µDD − λpv − λDA

TABLE 5 Equivalent parameters of wind subsystem.

95% Crisp value 105%

λew 0.3021 0.318 0.3339

µew 36.4164 42.3681 49.1693

Pupws 0.991773 0.99255 0.993255

Pdnws 0.00674501 0.00744972 0.00822745

B4 = 1− µDA − λω − λDA

B5 = 1− µDA − µpv − λDA

B6 = 1− µpv − µDA − λDD

B7 = 1− µpv − µDA − λDD

B8 = 1− µpv − µDD − µDA

However, the probability of being in state 1, state 2, state 3, state

4, state 5, state 6, state 7, and state 8 can be derived from the 8-

state Markov model of the PV subsystem using Equations 5, 6, 15.

The limiting probabilities corresponding to these states are P1, P2,

P3, P4, P5, P6, P7, and P8. Table 2 shows the probabilities of PV

subsystems in different systems.
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FIGURE 9

Membership function e�ective, (A) failure rate of wind subsystem, (B) repair rate of wind subsystem, (C) availability of wind subsystem, and (D)

unavailability of wind subsystem.

3.3 Battery energy storage subsystem

The battery energy storage subsystem comprises a battery bank,

battery charge controller, and inverter. Figure 6 depicts the 8-state

Markov model of the BES subsystem. State 1 is the working state or

UP state of the BES subsystem, and the remaining states are DOWN

states caused by the failure of components of the BES subsystem.

The consolidation of states 2–8 in the Markov model is

undertaken due to the resultant failure of the BES subsystem. These

states are amalgamated into a unified DOWN state, as illustrated

in Figure 7, representing the equivalent two-state Markov model

for the BES subsystem. The parameters delineating this equivalent

model are provided as follows. The equivalent failure rate and

repair rate are shown in Equations 16, 17, respectively.

λbats = λBat + λCC + λDA (16)

µbats = (λBat + λcc + λDA) ×

(

λBat

µBat
+

λcc

µcc
+

λDA

µDA

)−1

(17)

Pupbat =

(

1+
λBat

µBat
+

λcc

µcc
+

λDA

µDA

)−1

(18)

Pdnbat =

(

λBat

µBat
+

λcc

µcc
+

λDA

µDA

)

+

(

1+
λBat

µBat
+

λcc

µcc
+

λDA

µDA

)−1

(19)

The probability of being at the UP state and DOWN state

in the BES subsystem equivalent model is given in Equations 18,

19, respectively.

However, the probability of being in state 1, state 2, state 3, state

4, state 5, state 6, state 7, and state 8 can be derived from the 8-

state Markov model of the BES subsystem using Equations 5, 6, 15.

The limiting probabilities corresponding to these states are P1, P2,

P3, P4, P5, P6, P7, and P8. The stochastic transitional probability

matrix of BES is given in Equation 20.

p =



























E1 λBat λCC λDA 0 0 0 0

µBat E2 0 0 λCC 0 λDA 0

µCC 0 E3 0 λBat λDA 0 0

µDA 0 0 E4 µBat 0 µBat 0

0 µCC µBat 0 E5 0 0 λDA

0 0 µDA µCC 0 E6 0 λBat

0 µDA 0 µBat 0 0 E7 λCC

0 0 0 0 µDA µBat µCC E8



























(20)
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TABLE 6 E�ective failure rate, repair rate, availability, and unavailability of wind subsystem.

α λew1 λew2 µew1 µew2 Pupws1 Pupws2 Pdnws1 Pdnws2

0 0.30231 0.334224 36.4164 49.1693 0.991773 0.993255 0.00674501 0.00822745

0.1 0.303899 0.332347 37.0108 48.5343 0.991854 0.993182 0.00682491 0.00815343

0.2 0.305632 0.331047 37.6173 47.8267 0.991933 0.99311 0.00688989 0.00807401

0.3 0.307076 0.329314 38.3249 47.0686 0.992005 0.993038 0.00696209 0.00799458

0.4 0.308375 0.327726 38.8303 46.4621 0.992099 0.992966 0.00702708 0.00792238

0.5 0.310108 0.325993 39.4874 45.7545 0.992164 0.992901 0.00709928 0.00784296

0.6 0.311841 0.324404 39.9928 45.0975 0.992236 0.992829 0.00717148 0.00775632

0.7 0.313285 0.32296 40.4982 44.4404 0.992316 0.992764 0.00723646 0.00769856

0.8 0.314874 0.321227 41.1552 43.7834 0.992388 0.992691 0.00731588 0.00760469

0.9 0.316318 0.319928 41.8123 43.0758 0.99246 0.992619 0.00738087 0.00753971

1.0 0.318195 0.318195 42.4188 42.4188 0.99255 0.99255 0.00744972 0.00744972

TABLE 7 Equivalent parameters of wind subsystem.

95% Crisp value 105%

λepv 0.236265 0.2487 0.261135

µepv 35.7139 41.5508 48.2208

Puppv 0.993428 0.99405 0.994614

Pdnpv 0.00538623 0.00594983 0.00657201

E1 = 1− λBat − λCC − λDA

E2 = 1− µBat − λCC − λDA

E3 = 1− µCC − λBat − λDA

E4 = 1− µDA − λBat − λDA

E5 = 1− µDA − µBat − λDA

E6 = 1− µBat − µDA − λCC

E7 = 1− µBat − µDA − λCC

E8 = 1− µBat − µCC − µDA

The probability of the BES subsystem being in the UP state is

Pup = P1 = 0.99405. The probability of the BES subsystem being

in the DOWN state is PDown = P2+P3+P4+P5+P6+P7+P8 =

0.00594983. Table 3 shows the probabilities of the BES subsystem.

3.4 Microgrid

Each component in Figure 8 can reside in either the UP state

or DOWN state. It comprises three subsystems, i.e., the wind

subsystem, the PV subsystem, and the battery energy storage

subsystem, which are said to be in parallel from the reliability point

of view. The equivalent parameters of this model are as follows

(Billinton and Allan, 1992). Figure 8 shows the 8-state Markov

model of microgrid. State 1 to state 7 are UP states and state 8 is

the DOWN state. The equivalent repair rate

µmgd = µws + µpvs + µbats (21)

The equivalent failure rate

λmgd = λws × λpvs × λbats
(

rwsrpvs + rpvsrbats + rbatsrws
)

(22)

The availability,

Pupmgd = λws × λpvs × λbats × rws × rpvs × rbats (23)

Where, rws =
1

µws
, rpvs =

1
µpvs

, and rbats =
1

µbats
are the

probabilities of being in state 1, state 2, state 3, state 4, state 5,

state 6, state 7, and state 8 can be derived from the 8-state Markov

model of the microgrid using Equation 5 and stochastic transitional

probability matrix of the microgrid given in Equation 24.

p =



























F1 λωs λpvs λbats 0 0 0 0

µωs F2 0 0 λpvs 0 λbats 0

µpvs 0 F3 0 λws λbats 0 0

µbats 0 0 F4 µωs 0 µωs 0

0 µpvs µωs 0 F5 0 0 λbats

0 0 µbats µpvs 0 F6 0 λωs

0 µbats 0 µωs 0 0 F7 λpvs

0 0 0 0 µbats µws µpvs F8



























(24)

F1 = 1− λωs − λpvs − λbats

F2 = 1− µωs − λpvs − λbats

F3 = 1− µpvs − λωs − λbats

F4 = 1− µbats − λωs − λbats

F5 = 1− µbats − µωs − λbats

F6 = 1− µωs − µbats − λpvs

F7 = 1− µωs − µbats − λpvs

F8 = 1− µωs − µpvs − µbats

The limiting probabilities corresponding to these states are

P1, P2, P3, P4, P5, P6, P7, and P8. The stochastic transitional

probability matrix in Equation 24 of the microgrid is computed by

using the equivalent failure rates and equivalent repair rates of each

subsystem. Since the subsystems are in parallel, the availability of
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FIGURE 10

Membership function e�ective (A) failure rate, (B) repair rate, (C) availability, and (D) unavailability of PV subsystem.

the microgrid system, the summation of the probability of all the

states as given in Equation 10, is 1. From Equations 5, 21,

0.1341P1 + 42.3681P2 + 41.5508P3 + 48.9878P4 = P1 (25a)

0.318P1− 41.916P2 + 41.5508P5 + 48.9878P7 = P2 (25b)

0.2487P1− 41.168P3 + 42.3681P5 + 48.9878P6 = P3 (25c)

0.2992P1− 48.5357P4 + 41.5508P6 + 48.3681P7 = P4 (25d)

0.2487P2 + 0.318P3− 83.2181P5 + 48.98P8 = P5 (25e)

0.2992P3 + 0.2487P4− 89.8566P6 + 42.3681P8 = P6 (25f)

0.2992P2 + 0.318P4− 90.6046P7 + 41.5508P8 = P7 (25g)

0.2992P5+ 0.318P6+ 0.2487P− 131.9007P8= P8 (25h)

By solving the linear Equations 10, 25, the probability of the

microgrid being in different states is given in Table 4. Since the

subsystems are in parallel with the availability of the microgrid

system, the probability of the microgrid being in UP state is

Pupmgd =P1+P2+P3+P4+P5+P6+P7= 0.9999999989.

The probability of the BES subsystem being in the UP state is

Pdnmgd = P8= 2.68× 10-8. The probability of the microgrid to be

in the UP state is

Pupmgd = P1+ P2+ P3+ P4+ P5+ P6+ P7 = 0.9999999989.

The probability of the BES subsystem being in the UP state Pdnmgd

= P8= 2.68× 10-8.

4 Fuzzy Markov model-based
reliability analysis

Fuzzy sets have been employed to account for inherent

uncertainties in parameters, specifically failure and repair rates,

during reliability calculations. Consequently, reliability parameters

are represented as fuzzy numbers (Klir and Yuan, 1996;

Zimmermann, 2011). The degree of uncertainty increases with

the breadth of support of the membership function (Li and

Yen, 1995). Computational efficiency is a critical concern in

fuzzy analyses. Anzilli and Facchinetti (2019) demonstrated that

computational complexity in fuzzy analyses can be mitigated

by consolidating membership functions into alpha-cuts and
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TABLE 8 E�ective failure rate, repair rate, availability, and unavailability of PV subsystem.

α λepv1 λepv2 µepv1 µepv2 Puppv1 Puppv2 Pdnpv1 Pdnpv2

0 0.236316 0.260827 35.8073 48.1927 0.993428 0.994614 0.00538623 0.00657201

0.1 0.237519 0.259925 36.2857 47.608 0.993491 0.994567 0.00544043 0.00652347

0.2 0.238872 0.258571 36.9236 46.9701 0.993549 0.994509 0.00550542 0.0064657

0.3 0.240075 0.257519 37.5083 46.2791 0.993614 0.994451 0.00555596 0.0063935

0.4 0.241278 0.256316 38.0399 45.6944 0.993671 0.994394 0.00562094 0.00633574

0.5 0.242481 0.254962 38.5714 44.897 0.993736 0.994329 0.00566426 0.00627076

0.6 0.243534 0.253609 39.2625 44.206 0.993801 0.994285 0.0057148 0.00620578

0.7 0.244887 0.252556 39.794 43.5681 0.993866 0.99422 0.005787 0.00614079

0.8 0.24609 0.251203 40.4319 43.0365 0.993924 0.99417 0.00584477 0.00608303

0.9 0.247293 0.25015 41.0166 42.2924 0.993982 0.994112 0.00590253 0.00601083

1.0 0.248797 0.248797 41.5482 41.5482 0.99405 0.99405 0.00594983 0.00594983

TABLE 9 Equivalent parameters of the BES subsystem.

95% Crisp value 105%

λeBat 0.28424 0.2992 0.31416

µeBat 42.1062 48.9878 56.8516

Pupbat 0.993295 0.993929 0.994504

Pdnbat 0.0054956 0.00607057 0.00670529

performing mathematical operations within these intervals. The

crisp set comprising elements belonging to a fuzzy set to at

least the degree alpha is termed the α-cut of that fuzzy set.

The ensuing procedural steps delineate the application of fuzzy

reliability analysis to the microgrid.

Steps of Procedure:

Step 1: Express the input data, specifically failure and repair

rates, through the utilization of fuzzy numbers. Determine

membership functions based on past data or expert input.

Step 2: Establish alpha cuts of input data for α ∈ [0,1].

Step 3: Determine the parameters of the equivalent reliability

model for any specified α by employing the set of

Equations 21–23 and utilizing fuzzy arithmetic operations.

For each α-cut of the fuzzy number representing a parameter,

perform calculations based on Equations 21–23 to ascertain

the minimum and maximum attainable values of the output.

Step 4: The results computed in Step 3 are employed to

formulate fuzzy outputs.

5 Case study and discussion

This section showcases specific investigations aimed at

illustrating the advantages inherent in the proposed reliability

model. The preceding Section 3, scrutinized the crisp model,

whereas the focus here lies on the examination of fuzzy models.

In the realm of reliability studies, it is observed that reliability

transition rates exhibit asymmetry and are characterized by single-

kernel fuzzy numbers.

5.1 Wind subsystem

Table 5 presents the equivalent failure rate, repair rate,

availability, and unavailability fuzzy values considering 5% of crisp

value. Figure 9 depicts the membership function of effective failure

rate, repair rate, availability, and unavailability of wind subsystem

at different cuts from 0 to 1. The fuzzy calculation is employed to

analyze the equivalent two-state model. Table 6 presents the 11 cuts

for these parameters.

Comparing Tables 5, 6, it can be observed that fuzzy results

with alpha equal to 1 are expectedly identical to crisp results. In

Figures 9A, D are approximately symmetrical, while Figures 9B, C

are unsymmetrical. The Center of Area (CA) of Figures 9B, C are

not equal to their kernels, which is caused by the uncertainties

in the input data. The results of fuzzy analyses are more realistic

than those of crisp study. In addition, the triangular membership

function has been used because its results incorporate the effect

of uncertainties appropriately, and its corresponding computations

are plain.

5.2 PV subsystem

Table 7 presents the equivalent failure rate, repair rate,

availability, and unavailability fuzzy values considering 5% of

crisp value. Figure 10 depicts the membership function of effective

failure rate, repair rate, availability, and unavailability of PV

subsystem at different alpha cuts from 0 to 1. Table 8 shows 11 cuts

for these parameters.

Comparing Tables 7, 8, it can be observed that fuzzy results

with alpha equal to 1 are expectedly identical to crisp results. In

Figures 10A, D are approximately symmetrical, while Figures 10B,

C are unsymmetrical. The Center of Area (CA) of Figures 10B, C

are not equal to their kernels, which is caused by the uncertainties
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FIGURE 11

Membership function e�ective (A) failure rate, (B) repair rate, (C) availability, and (D) unavailability of battery energy storage system.

TABLE 10 E�ective failure rate, repair rate, availability, and unavailability of BES subsystem.

α λeBat1 λeBat2 µeBat1 µeBat2 PupBat1 PupBat2 PdnBat1 PdnBat2

0 0.28424 0.314801 42.1062 56.8516 0.993295 0.994504 0.0054956 0.00670529

0.1 0.285736 0.31278 42.8488 56.1628 0.993383 0.994437 0.006617 0.005563

0.2 0.287245 0.311191 43.5465 55.3488 0.993426 0.994394 0.006574 0.005606

0.3 0.288906 0.309747 44.1279 54.4767 0.993491 0.994336 0.006509 0.005664

0.4 0.290113 0.308303 44.8837 53.7791 0.993556 0.994271 0.006444 0.005729

0.5 0.291774 0.306859 45.5814 52.9651 0.993621 0.994213 0.006379 0.005787

0.6 0.293132 0.305271 46.2791 52.1512 0.993671 0.994162 0.006329 0.005838

0.7 0.294792 0.303971 46.9767 51.4535 0.993751 0.994119 0.006249 0.005881

0.8 0.296151 0.302238 47.6744 50.6395 0.993809 0.994061 0.006191 0.005939

0.9 0.297811 0.30065 48.314 49.8837 0.993866 0.993996 0.006134 0.006004

1.0 0.299321 0.299321 48.9878 48.9878 0.993929 0.993929 0.00607057 0.00607057
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TABLE 11 Equivalent parameters of microgrid subsystem.

95% Crisp value 105%

λews 0.3021 0.318 0.3339

λepvs 0.236265 0.2487 0.261135

λebs 0.28424 0.2992 0.31416

µews 40.2497 42.3681 44.4865

µepvs 39.4733 41.5508 43.6283

µebs 46.5384 48.9878 51.4372

TABLE 12 E�ective failure rate, repair rate, availability, and unavailability

of microgrid subsystem.

95% Crisp value 105%

λemgd 3.8535E-5 0.0000367 3.4865E-5

µemgd 126.261 132.9067 139.552

Pupemgd 0.9499997381405364 0.9999997243

58459463849798

1.0499997

1057638

Pdnemgd 2.618594635

093427E-7

0.00000027564

1540536150201

2.8942361

7562958E-7

in the input data. The results of fuzzy analyses are more realistic

than those of crisp study. In addition, the triangular membership

function has been used because its results incorporate the effect

of uncertainties appropriately, and its corresponding computations

are also plain.

5.3 Battery energy storage system

Table 9 presents the equivalent failure rate, repair rate,

availability, and unavailability fuzzy values considering 5% of

crisp value. Figure 11 depicts the membership function of effective

failure rate, repair rate, availability, and unavailability of battery

energy storage system at different alpha cuts from 0 to 1. Table 10

shows the 11 cuts for these parameters.

Comparing Tables 9, 10, it can be observed that fuzzy

results with alpha equal to 1 are expectedly identical to crisp

results. In Figures 11A, D are approximately symmetrical, while

in Figures 11B, C are unsymmetrical. Center of Area (CA) of

Figures 11B, C are not equal to their kernels, which is caused by

the uncertainties in the input data. The results of fuzzy analyses are

more realistic than those of crisp study. In addition, the triangular

membership function has been used because its results incorporate

the effect of uncertainties appropriately, and its corresponding

computations are also plain.

5.4 Microgrid system

The equivalent failure rate repair, rate, availability, and

unavailability of the microgrid are evaluated using Equations 21–23

and given in Tables 11, 12.

6 Conclusion

This study focuses on the reliability modeling of a

microgrid, employing the Markov process approach. To

address uncertainties in input parameters, fuzzy analysis is

implemented, incorporating the effective alpha-cut method

for precise calculations. The equivalent two-state model is

applied to compute probabilities and transition rates within

the microgrid reliability framework. A comparative analysis

is conducted using a numerical example involving both crisp

and fuzzy data. The findings indicate that assuming crisp

parameters equal to the kernel of fuzzy parameters results in a

lower microgrid availability when employing fuzzy calculations

compared to crisp analysis. This discrepancy is ascribed to

the inherent uncertainties present in the input data. The

availability of the wind subsystem, PV subsystem, and battery

subsystem are 0.99255, 0.99405, and 0.99392, respectively, at

an alpha-cut =1. The overall availability of hybrid microgrids

is 0.99999.
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Nomenclature

λw, λAD, λDA, λDD, λBat , λcc - are the failure rates of wind

turbine generation, solar photovoltaic, AC/DC converter, inverter,

DC/DC booster battery system, and charge controller, respectively.

λws, λpvs, and λbats are the equivalent failure rate of wind, PV,

and battery subsystems, respectively.

µws, µpvs, and µbats are the equivalent repair rates of the wind,

PV, and battery subsystems, respectively.

µw, µAD, µDA, µDD, µBat , µcc are the repair rates

of wind turbine generation, solar photovoltaic, AC/DC

converter, inverter, DC/DC booster battery systems, and charge

controllers, respectively.

Pupws , Puppv , Pupbat are the probability of being at UP state

in wind turbine generation, solar photovoltaic, and battery

subsystem, respectively.

Pdnws, Pdnpv, Pupbat are the probabilities of being at a DOWN

state in wind turbine generation, solar photovoltaic, and battery

subsystems, respectively.

λew1, λew2, µew1 µew2 Pupws1, Pupws2 Pdnws1, and Pdnws2
are the equivalent failure rate, repair rate, availability, and

unavailability fuzzy values of wind subsystem considering 5% of

crisp value, respectively.

λepv1, λepv2, µepv1,µepv2, Puppv1, Puppv2, Pdnpv1, andPdnpv2
are the equivalent failure rate, repair rate, availability, and

unavailability fuzzy values of the PV subsystem considering 5% of

crisp values, respectively.

λeBat1, λeBat2, µeBat1, µeBat2, PupBat1, PupBat2, PdnBat1 ,

and PdnBat2 are the equivalent failure rate, repair

rate, availability, and unavailability fuzzy values

of battery subsystem considering 5% of crisp

values, respectively.
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