
TYPE Technology and Code

PUBLISHED 19 June 2024

DOI 10.3389/fcomp.2024.1407365

OPEN ACCESS

EDITED BY

Huai Liu,

Swinburne University of Technology, Australia

REVIEWED BY

Yongquan Fu,

National University of Defense Technology,

China

Luca Deri,

University of Pisa, Italy

*CORRESPONDENCE

Konstantinos Papadakis

konstantinos.papadakis@helsinki.fi

RECEIVED 26 March 2024

ACCEPTED 31 May 2024

PUBLISHED 19 June 2024

CITATION

Papadakis K, Battarbee M, Ganse U,

Pfau-Kempf Y and Palmroth M (2024)

Hashinator: a portable hybrid hashmap

designed for heterogeneous high

performance computing.

Front. Comput. Sci. 6:1407365.

doi: 10.3389/fcomp.2024.1407365

COPYRIGHT

© 2024 Papadakis, Battarbee, Ganse,

Pfau-Kempf and Palmroth. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Hashinator: a portable hybrid
hashmap designed for
heterogeneous high
performance computing

Konstantinos Papadakis 1*, Markus Battarbee 1,

Urs Ganse 1, Yann Pfau-Kempf 1 and Minna Palmroth 1,2

1Department of Physics, University of Helsinki, Helsinki, Finland, 2Space and Earth Observation Centre,

Finnish Meteorological Institute, Helsinki, Finland

Scientific computing has become increasingly parallel and heterogeneous with

the proliferation of graphics processing unit (GPU) use in data centers, allowing

for thousands of simultaneous calculations accessing high-bandwidth memory.

Adoption of these resources may require re-design of scientific software.

Hashmaps are a widely used data structure linking unsorted unique keys with

values for fast data retrieval and storage. Several parallel libraries exist for

performing hashmap operations utilizing GPU hardware, but none have yet

supported GPUs and CPUs interchangeably. We introduce Hashinator, a novel

portable hashmap designed to operate e�ciently on both CPUs and GPUs using

CUDA or HIP/ROCm Unified Memory, o�ering host access methods, in-kernel

access methods, and e�cient GPU o	oading capability on both NVIDIA and

AMD hardware. Hashinator utilizes open addressing with Fibonacci hashing

and power-of-two capacity. By comparing against existing implementations,

we showcase the excellent performance and flexibility of Hashinator, making

it easier to port scientific codes that rely heavily on the use of hashmaps to

heterogeneous architectures.

KEYWORDS

hashmaps, hashtable, GPU, heterogeneous computing, CUDA, HIP, HPC

1 Introduction

Hashmaps serve as a crucial component in computer science, offering an efficient

mechanism for mapping unordered keys to values. They are commonly used in

applications including database management and data compression as well as in scientific

computing. Hashmaps operate by using a hash function that maps input keys to indices

in an array. This specific index links to the location of the related value in the array,

enabling quick access to the desired data. The size of this array is typically associated with

the maximum number of keys that the hashmap can store. To prevent collisions, where

multiple keys lead to the same index, hashmaps use collision resolution techniques such

as open and closed addressing (Liu and Xu, 2015), double hashing (Cormen et al., 2001a)

and perfect hashing (Cormen et al., 2001b). This allows multiple values to be stored at

the same index without data loss. However, central processing unit (CPU) based hashmap

implementations suffer from low throughput usually caused by irregular memory access

patterns in their probing mechanism. This has been mitigated through hashmaps which

utilize graphics processing units (GPUs) Lessley and Childs (2020); Awad et al. (2023)

which are capable of leveraging their massive parallelism to obscure memory latency and

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1407365
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1407365&domain=pdf&date_stamp=2024-06-19
mailto:konstantinos.papadakis@helsinki.fi
https://doi.org/10.3389/fcomp.2024.1407365
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1407365/full
https://orcid.org/0000-0002-3307-6015
https://orcid.org/0000-0001-7055-551X
https://orcid.org/0000-0003-0872-1761
https://orcid.org/0000-0001-5793-7070
https://orcid.org/0000-0003-4857-1227
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

efficiently manage very high hashing throughput. These hashmaps

operate on a GPU and are tailored to handle large parallel

data processing tasks. With the increasing need for efficient data

processing solutions (Freiberger, 2012) and scientific codes turning

to hybrid computing (Burau et al., 2010), GPU hashmaps have

gained popularity in high-performance computing (HPC) in recent

years. The majority of early implementations of GPU hashmaps

were static (Awad et al., 2021) and exclusively provided read

functionality on the GPU. Other implementations could only be

operated on device code and not on the host.

One example of the current state of the art in GPU hashmaps

is Warpcore (Jünger et al., 2020). Warpcore is a library that

provides optimized hashmaps for GPUs, including both single and

multi-value hashmaps. In their Single Value HashTable, a novel

probing scheme introduced in WarpDrive (Jünger et al., 2018) is

utilized, which employs CUDA’s Cooperative Group mechanism

to efficiently traverse the probing chain and achieve very high

insertion (1.6 billion key-values per second) and retrieval (4.2

billion key-values per second) rates. Although Warpcore has

demonstrated significant advancements and performance, it has

a limitation in the flexibility it provides. Warpcore’s interface

consists of host-side (CPU) methods which perform the necessary

hashmap procedures using highly optimized device kernels.

Direct access to hashmap entries from host is not supported.

In short, in Warpcore a user is unable to insert elements into

an already existing hashmap from host code. The insertion of

elements into a hashmap in Warpcore must be carried out by

calling device code, and by providing the respective elements

as inputs together with the respective CG to use. While this

may not pose an issue for certain workflows, other workflows

may require a more versatile approach for managing their

hashmaps, allowing for their operation from both host and device

code (GPU).

In the context of the Exascale era and in the constantly

evolving landscape of high-performance computing (HPC), the

porting of scientific codes from CPU to GPU architectures has

emerged as a crucial aspect in achieving optimal performance.

In this work, we introduce Hashinator (Papadakis et al., 2024),

a novel portable hashmap implementation designed for scientific

codes utilizing hashmaps on heterogeneous HPC environments.

Hashinator simplifies the utilization of hashmaps by enabling their

operations interchangeably across CPUs and GPUs. Hashinator can

act as replacement for std::unordered_map for host code

and that can seamlessly expose its data and functionalities on the

GPU side of the codebase achieving very high throughput thus

streamlining the porting process. In the rest of this manuscript,

the terms “host” and “device” are adopted to distinguish between

code executed on the CPU (host) and code executed on the GPU

(device). Hashinator exploits the CUDA/HIP Unified Memory

model, ensuring map data remains always valid whether it is

accessed or edited from either host or device. Section 2 presents

an in-depth examination of the design considerations in the

development of Hashinator. A comprehensive analysis of the host

and device implementations is provided, including a description

of their operating principles. The probing methods utilized by

Hashinator and its ability to perform operations such as inserting,

deleting, and retrieving elements are demonstrated and discussed.

In Chapter 3, a thorough evaluation of the performance of

Hashinator for both the host and device Application Programming

Interfaces (APIs) is conducted and compared to industry-standard

hashmap implementations.

2 Method

The Hashinator library consists of the Hashinator hashmap

itself, and an auxiliary vector implementation called SplitVector.

2.1 SplitVector

SplitVector is a vector library written in C++ that leverages

CUDA/HIP Unified Memory (Li et al., 2015) to store its data

and acts as a replacement for std::vector, whilst exposing its

data to both the GPU and the CPU. SplitVector is designed as

a flexible, header-only library and includes a comprehensive set

of tools to allow for seamless data access and manipulation in

both host and device code. To maintain portability SplitVector’s

codebase is architecture agnostic and can be compiled with CUDA

and HIP compilers without modifications. Since SplitVector uses

Unified Memory it provides the user with prefetching methods

both to and from the device to enable robust memory handling

and to avoid page faults resulting from on-demand data migration.

The utilization of advanced functionalities and algorithms that

come with SplitVector, including stream compaction and prefix

scan routines, significantly enhances the performance of data

processing in device code. Additionally, the availability of most host

member functions in device code allows for seamless integration

and efficient development. However, operations that modify the

size, such as resizing, reallocating, and reserving, can only utilize

storage up to the maximum capacity allocated via the host. As a

result, these operations, when called from device, may fail if the user

requests more space than what is currently allocated.

2.2 Hashinator: general implementation
overview

Hashinator is a portable hashmap implementation designed for

efficient lookup, insertion, and deletion of key-value pairs. The

key-value pairs are stored in buckets, which are in turn stored in

a contiguous memory region, which improves cache efficiency by

making it more likely that adjacent buckets will be loaded into the

cache together. This memory region is managed using SplitVector,

which was introduced in Section 2.1. In particular, Hashinator uses

an open addressing scheme (Liu and Xu, 2015), which means that

when a collision occurs (i.e., two keys hash to the same bucket),

it probes for the next available bucket in the table and places the

item there (as opposed to a “closed bucket”, chaining approach like

a linked list implementation for resolving collisions). Hashinator

employs a power-of-2 size for its hashmap, which means that the

number of buckets in the table is always a power of 2 (e.g., 16, 32,

64, etc.). This makes it faster to compute the bucket for a given key

using bitwise operations instead of using the modulo operator.

Choosing an appropriate hash function to map incoming keys

to the underlying hashmap is critical for minimizing collisions.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

Listing 1 32-bit Fibonacci multiplicative hash function. Here

sizePower is the exponent of the capacity of the hashtable bucket

array

u i n t 3 2 _ t f i b o n a c c i (u i n t 3 2 _ t key , cons t i n t

s i z ePowe r) {

key ^= key >> (32 − s i z ePowe r) ;

u i n t 3 2 _ t r e t v a l = (u i n t 6 4 _ t) (key ∗ 2654435769

u l) >> (32 − s i z ePowe r) ;

r e turn r e t v a l ;

}

The hash function must be both fast to compute and sufficiently

dispersive. In Hashinator, we use the Fibonacci multiplicative hash

function (Knuth, 1998; Chen et al., 2013), which takes the form:

h(x) =
M

W
(Ax mod W), (1)

where A is a predefined constant,M is the capacity of the hashtable

bucket array and W represents the size (in bits) of the key being

hashed. Defining φ = 1
2 (1 +

√
5) as the golden ratio we can select

A to be:

A = φ−1W, (2)

and we arrive at the Fibonacci multiplicative hash function which

is characterized by having very few collisions in a given range while

maintaining fast hashing rates. This makes it an excellent candidate

for use in applications that require efficient hashing with minimal

collisions. Furthermore, this choice of hash function enables

Hashinator to maintain a low memory footprint using powers of 2

bucket sizes. The impact of this memory footprint improvement,

compared against Warpcore, is exemplified in Section 2.5. In

Listing 1 we demonstrate the 32-bit Fibonacci hash function used

in Hashinator. In Hashinator, keys are restricted to 32 or 64-bit

integer values, while the bucket values can bemore complex objects,

provided they are trivially copyable.

Hashinator employs a linear probing scheme to handle

collisions, the specifics of which are detailed for each environment

in the following sections. Upon deletion of an element from the

hashmap, Hashinator employs a strategy to replace the associated

key with a tombstone (Purcell and Harris, 2005), a sentinel marker

indicating that the element has been deleted. This approach allows

Hashinator’s methods to skip over any tombstones during probing

queries. It is important to note that the use of tombstones comes

at the cost of filling the hashmap with residual data, which can

potentially degrade performance. There are alternative approaches

to handle collisions, such as the back-substitution method (Barnat

and Ročkai, 2008), but they are not suited for parallel processing

which is the target environment for Hashinator.

Hashinator offers three distinct interfaces that can be

easily deployed during software development. In “host-only”

mode, Hashinator performs all its operations on the CPU

and the hashmap behaves like a replacement for the standard

std::unordered_map. This mode is not thread-safe,

and the hashmap should be used serially, similar to other

standard implementations.

In “device-only” mode, Hashinator is passed into device code,

and elements are inserted, queried, and deleted on the GPU.

Access to Hashinator’s device pointer is either gained through the

upload() method, which returns a device pointer pointing to

Hashinator or by the user using dynamic allocation for initializing

Hashinator in Unified Memory.

Finally, Hashinator can be used in an “accelerated”mode, where

all operations are launched on host code but can be offloaded to the

GPU. This mode is intended for performance-critical applications

where the goal is to achieve the highest possible throughput. We

go into more details about the principles of operation and the

performance of these three modes in the following paragraphs.

In “host-only” mode, the bucket overflow, that is the number

of positions considered for insertion beyond the one determined

by the hash function, is restricted to a predetermined limit, known

as “bucket overflow limit” Olim. Once the limit is exceeded, the

contents of Hashinator are rehashed in a larger container with a

capacity corresponding to the next power of 2. The bucket overflow

limit is determined by the user. However, in “device-only” and

“accelerated” modes, Hashinator allows the buckets to overflow up

to the capacity of the SplitVector holding its buckets, tracked as

“current overflow” Ocurr. This allows Hashinator to continue its

operations on device code even if the load factor, defined as the ratio

of the number of occupied elements stored in the hashmap to its

capacity, approaches unity. Following any host-only operation or if

triggered by the user via a host-only method, Hashinator rehashes

its contents if Ocurr has surpassed Olim and essentially reduces the

load factor.

An important feature of both Hashinator and SplitVector is

their portability, which allows them to be used even on platforms

that do not support GPUs. Hashinator and SplitVector are designed

to be compiled using a standard C++ compiler and only expose

their GPU functionalities when compiled with a CUDA/HIP

compiler. The codebase strictly maintains an architecture agnostic

approach to provide portability between different systems. This

design approach enables the development process to employ

Hashinator and SplitVector in a variety of computing environments

and provides a convenient option for transitioning to GPU-

accelerated computing incrementally.

2.3 Hashinator: host only interface

Hashinator’s interfaces are built around three fundamental

operations: inserting new keys into the hashmap (or replacing

a value associated with a key with a new one), deleting

unwanted keys, and retrieving existing keys. Our goal in designing

Hashinator was to provide functionality similar to that of standard

implementations, so that it can serve as a near drop-in replacement.

In the following section, we will detail the mechanism underlying

these three key operations. We wish to note here that while thread-

parallel accesses on the device are possible and optimized, the host

API of Hashinator is not thread-safe so all the operations regarding

insertion and deletion are undefined when operated in parallel.

2.3.1 Insertion
In Hashinator, new keys are first hashed using the Fibonacci

hash function, as demonstrated in Listing 1, and then mapped

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

to a bucket in the hashmap. If the bucket is empty, the key is

inserted directly. If the bucket is already occupied, we examine the

key residing at the current bucket. If the key is the same as the

candidate key, its value is updated with the candidate’s value. If

the key is different, we iterate linearly over the subsequent buckets

and examine their keys until an empty bucket or a matching

key is found. After inserting the new key-value pair, the value of

Ocurr is updated. However, if Olim is reached during this probing

sequence, we stop and reinsert all the currently existing elements

into a new bucket storage array (constructed as a SplitVector),

which has double the capacity of the previous one. After that,

we re-attempt inserting the candidate key into the newly resized

hashmap. This resizing is repeated until the process succeeds. The

rehashing operation to double the capacity of the underlying bucket

container is computationally expensive, alleviated by the capability

of Hashinator being able to perform this operation in parallel on

the GPU.

2.3.2 Retrieval
To retrieve a key’s value from the hashmap, the key is first

hashed using the same method as during insertion. This generates

an index that points to a bucket location in the underlying buckets.

The bucket is then examined, and if the key residing there matches

the candidate key, its value is returned. If the key is not found at the

first bucket, the process is repeated by examining the subsequent

buckets until an empty bucket is encountered or Ocurr is reached. If

no matching key has been found, the candidate key does not exist

in the hashmap. Depending on the specific querying method being

used, Hashinator will either return an iterator pointing to the end

of the hashmap or abort the execution.

2.3.3 Deletion
Deleting keys from Hashinator involves first hashing the key to

generate an index in the underlying buckets. Similar to the retrieval

process, the key is then checked to determine whether it exists in

the hashmap or not. If the key is not found during probing or an

empty key is found, Hashinator returns and does nothing. If the

key is found during probing, it is replaced by a tombstone which is

ignored during the probing sequence.

2.4 Hashinator: device only interface

Hashinator offers a device interface that allows for the

implementation of various hashmap functionalities within device

code. Specifically, users can access a device pointer by calling

the upload() member function, which enables the insertion,

querying, and deletion of keys from the hashmap in kernel code.

When the upload() method is called, Hashinator performs an

asynchronous prefetch of its data and bookkeeping information to

the GPU so that operations launched later do not suffer page fault

performance penalties. Hashinator can be also used in device code

if allocated manually but in that case it is upon the user to execute

proper data prefetching by calling the supplied methods of

optimizeGPU() and optimizeCPU() to avoid any potential

page faults. The device pointer provided by upload()

is automatically deallocated at the end of lifetime of a

Hashinator object.

2.4.1 Insertion
Device insertion generally follows the same approach as the

host insertion method, with the same hash function and collision

avoidance protocol being utilized to maintain interoperability. Yet,

device code poses unique challenges in that numerous threads

may attempt to write to the hashmap concurrently, which can

result in data races. To address this issue, Hashinator employs

CUDA/HIP atomic operations. When attempting to insert keys,

threads follow the probing sequence and use atomic Compare and

Swap (atomicCAS) operations to insert keys and atomic exchange

operations (atomicExch) to update their values in a thread-safe

manner. In situations where a candidate key cannot be inserted into

a hashmap due to its probing chain being completely occupied (i.e.

more collisions than Olim have happened), the hashmap is allowed

to overflow further. We keep probing for empty buckets to insert

the candidate key and if successful we atomically update Ocurr to

match the current overflow. This makes each probing operation

more expensive, however, it is a design decision we opt to make

since otherwise an overflow situation would require termination of

the kernel execution and specific handling of this situation on the

host side.

2.4.2 Retrieval
Device retrieval does not carry the memory concurrency issues

that trouble insertion, since the hashmap’s state does not change

when elements are retrieved. Threads can concurrently query

keys from the hashmap safely, using the same approach as the

host interface for querying keys. The query probing process may

continue further than theOlim, up toOcurr, or until an empty bucket

is encountered.

2.4.3 Deletion
Deletion of elements on device code is following the same

procedure as the deletion of elements on host code. The elements

queued for deletion are atomically substituted with tombstones,

which are ignored during the probing traversal.

2.5 Hashinator: accelerated interface

Apart from the host and device interfaces, Hashinator is

equipped with an interface that can be operated by host code

and use device kernels for performing its three basic operations,

namely insertion, retrieval and deletion. The “accelerated” interface

is designed to deal with bulk insertion, retrieval and deletion

of key-value pairs from Hashinator. Crucially, this interface is

the most efficient and results in very high performance. The

methodology used is inspired byWarpcore (Jünger et al., 2020) and

detailed in the following sections. The bucket overflow limit (Olim)

value significantly impacts the probing sequence of the accelerated

interface. For the purposes of this discussion, we will assume an

Olim of 32, which aligns with the number of threads within a

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

CUDA warp unit. On AMD hardware, we would similarly use an

Olim of 64.

2.5.1 Insertion
To insert N key-value pairs into Hashinator using the

accelerated interface, N CUDA warps must be launched, with

each warp handling one of the N elements. The threads in each

warp operate under SIMT (Single Instruction Multiple Threads)

architecture, and our aim is to avoid branch divergence between

the threads within each warp but to also make the most of the

SIMT environment. Each key to be inserted into the map is hashed,

providing the optimal bucket index. Each thread in the warp then

accesses a subsequent bucket, offset by its warp thread index.

First, the threads perform an intra-warp vote using the

_ballot_sync() (or the HIP equivalent _ballot())

function to determine if the candidate key already exists in the

probing chain. The voting operation returns a 32-bit (AMD:

64-bit) mask whose bits are raised if the corresponding thread is

evaluated as true. If the key already exists, the team of threads

determines the valid thread by finding the first significant bit in the

voting mask using the _ffs() (find first bit set) function. The

thread with the first significant bit set is called the winner, and it

uses atomic operations to overwrite the value of the existing key

with the new provided value. Another voting operation signals the

warp to stop probing and exit. The process of detecting if the key

already exists repeats only until either the key or an empty bucket

is encountered. In the case where Ocurr is no greater than Olim,

i.e. aligns with the number of threads in a CUDA warp or AMD

wavefront, each probe only performs one pass, resulting in a highly

efficient probing algorithm.

In the event that no matching key is found during probing, the

candidate key is inserted into the hashmap. The threads follow the

same probing mechanism as before, this time voting for an empty

bucket in their respective probing buckets. When an empty bucket

is found, the winning thread is determined and it attempts to insert

the key into the underlying bucket. If this operation succeeds, an

atomic operation is used to replace the existing (unused) value with

the candidate value. If the atomic compare-and-swap operation

fails, it means another parallel access already added a key to that

bucket. The winner’s bit is unset in the voting mask and the process

is repeated by the next winner. This process continues until either

one thread manages to perform a successful insertion or until

there are no winners left in the voting mask. In the latter case,

the entire warp shifts to the right by a full 32 buckets, and the

process is repeated. This design enables the hashmap to overflow,

as with the “device-only” insertion interface. If the hashmap tries

to overflow beyond the capacity of the underlying bucket container

(i.e., the SplitVector holding the data), the program execution is

aborted. The insertion mechanism as described above is illustrated

in Figure 1.

2.5.2 Retrieval and deletion
The retrieval and deletion operations in the accelerated

interface follow the same probing scheme as the insertion method

described above. For retrieval the candidate key is probed for

and if found its key is returned. If the key is not found during

probing or an empty key is found the operation exits without

returning a value. For deletion, if the key to be deleted is

found during probing it is replaced atomically with a tombstone.

If the key is not found during probing or an empty key is

met the deletion algorithm returns. This process ensures that

the underlying hashmap structure remains intact and that the

program execution does not crash due to improper manipulation

of the hashmap.

2.5.3 Tombstone cleaning
Cleaning up tombstones using traditional methods involves

a complete rehash of the entire hashmap, which can be a

computationally expensive operation. To address this issue, we

introduce a new tombstone cleaning method in Hashinator that

can efficiently remove all existing tombstones while also potentially

reducing Ocurr faster than a complete rehash of the hashmap’s

contents. This new method leverages the massive parallelism

offered by heterogeneous architectures to perform tombstone

cleanup in two steps as illustrated in Figure 2. First, we utilize a

parallel stream compaction provided by SplitVector (inspired by

Billeter et al., 2009) to extract all elements that have overflown

beyond their nominal bucket position. This stream compaction

kernel also resets all tombstones to empty elements. Then, we

use the insertion mechanism as illustrated in Figure 1 to re-

insert all extracted elements back into the hashmap. If there are

no elements extracted by the stream compaction algorithm, the

hashmap is already in a valid state and the process can return.

In the performance evaluation section of this work we evaluate

the efficiency of our tombstone cleaning method against more

commonly found approaches.

3 Results

The computational performance of any tool or software that

uses hashing techniques is critical in many applications that

require fast data retrieval and storage. In this chapter we evaluate

Hashinator’s performance by analyzing the insertion, deletion,

and retrieval execution times for all three different interfaces

as described above. Moreover, we show comparisons against

other commonly used containers. For the host and device only

interfaces we compare against the standard library version 12.2

std::unordered_map and for the accelerated interface we

compare against Warpcore’s Single Value Hashtable. We perform

all of our following NVIDIA tests on an HPC node equipped with

an Intel R©Xeon R©Gold 6226R CPU,1 an NVIDIA R© A100 R© 80GB

GPU,2 and 512,GB of RAM. We use CUDA 12.1 and NVCC to

compile all code-bases. Specifically since Hashinator is portable

between NVIDIA and AMD, we also demonstrate the performance

of the accelerated interface on AMD hardware. Those tests are

performed on an HPC node equipped with an AMD R©EPYC R©
Trento R©7A53 64-Core Processor, an AMD R©Instinct R©MI250x

1 https://www.intel.com/content/www/us/en/products/sku/199347/

intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.

html

2 https://www.nvidia.com/en-us/data-center/a100/

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.intel.com/content/www/us/en/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
https://www.nvidia.com/en-us/data-center/a100/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

FIGURE 1

The accelerated insertion mechanism used in Hashinator. A team of S threads attempts to insert a new key-value pair using voting instructions. The

threads first check if the key already exists and, if it does, overwrite its value. If the key is not present in the buckets, the team inserts it into an empty

bucket using a voting-based mechanism.

FIGURE 2

Parallel tombstone cleaning in Hashinator. (A) Initial state of the hashmap with tombstones marking deleted elements. (B) Step 1: A parallel stream

compaction extracts all elements that have overflowed beyond the zeroth bucket in their probing chain and resets tombstones to empty elements.

(C) Step 2: Using the insertion mechanism we reinsert all extracted elements back into the hashmap. This new tombstone cleaning mechanism in

Hashinator utilizes parallelism to optimize the tombstone removal without using a full rehash.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

GPU3 and 512GB of RAM.We use ROCm version 5.3.3 and HIP to

compile hashinator on AMD. All timings illustrated in our figures

are averaged across 10 consecutive executions, unless specifically

stated otherwise.

3.1 Host and device interfaces

In this subsection, we investigate the performance of

Hashinator’s host and device interfaces by comparing them to

the performance of std::unordered_map. We conduct four

distinct tests and present our findings here. Firstly, we evaluate

the performance of raw insertion for an increasing number of

32-bit unique key-value pairs into an empty hashmap of capacity

resulting in a final load factor of 0.5. We measure the throughput

of Hashinator and compare it with std::unordered_map

for inserting these elements. Next, we conduct a raw retrieval

test where we insert the same unique key-value pairs into each

hashmap and measure the throughput of retrieving all of them.

Third, we conduct a deletion benchmark where all elements that

were previously inserted in the hashmap are now deleted. For

Hashinator the key-value pairs are allocated using Unified Memory

and are appropriately prefetched to host or device depending

on the test case. The prefetching overhead is not included in the

depicted throughput measurements.

Deletion can have a significant impact on performance. This

is because hashmaps rely on a hashing function to quickly locate

the position of an element within the data structure. When a key-

value pair is deleted, the hashmap needs to adjust its internal

state to maintain proper indexing in case of hash collisions,

which can result in a performance degradation. Additionally,

some implementations of hashmaps may also require rehashing

or resizing of the data structure after a certain number of

deletions, further impacting performance. Thus, we also set up

a fourth, more realistic test scenario where we insert all the 32-

bit unique key-value pairs into each hashmap, retrieve them,

and then delete half of the elements. Finally, we immediately

re-insert all the elements into the hashmaps and retrieve all

the elements again. We measure the execution times for both

Hashinator and std::unordered_map for this scenario, and

evaluate the throughput. We present the results of these three

tests in Figure 3. For the device interface we launch CUDA/HIP

kernels with maximal launch parameters. Specifically, we utilize

1024 threads per block and launch as many grids as necessary to

cover the input size. To provide a baseline for comparison, we

also evaluate the device performance using a single thread, which

executes tasks in a sequential fashion. In Figure 3 the performance

of Warp Accessor methods is also illustrated. Warp Accessor

methods can be called from within device-code and make use of

the probing scheme used in the “accelerated” interface which is

explained in depth in Section 2.

As shown in Figure 3, our device-serial test exhibits lower

performance compared to other tests. This can be attributed to

the comparatively slower clock speeds of GPUs when compared to

3 https://www.amd.com/en/products/accelerators/instinct/mi200/

mi250x.html

CPUs, as well as the inherent inefficiencies of GPUs in executing

single-threaded code. However, we observe that the use of a

maximum launch configuration in the device test leads to a

significant improvement in performance. With this configuration,

insertion, retrieval, and deletion operations are executed in parallel

by multiple CUDA/HIP threads. The observed performance gap in

device mode between the two distinct architectures (NVIDIA and

AMD) as illustrated in Figure 3 can be attributed to the utilization

of atomic operations, which are necessary for ensuring thread

safety during hashmap operations on device. The atomic operations

employed by Hashinator appear to incur greater performance

penalty on AMD hardware.

3.2 Accelerated interface

In this subsection we benchmark the performance of

Hashinator’s accelerated interface. We conduct the same four

tests as in the previous subsection, this time comparing our

results against Warpcore Jünger et al. (2018). Our benchmarks

test for insertion, deletion and retrieval performance as well as

the performance in a more realistic test case scenario. We use

NVIDIA’s Nsight Compute to measure the execution times

of the kernels launched by each hashmap. For the performance

metrics of Hashinator on AMD hardware as shown below, we

use AMD’s rocProf profiler. We demonstrate these results in

Figures 4–8.

In Figures 4, 5, 6, we present a performance analysis of

inserting, deleting and retrieving 32-bit elements at a target load

factor of 0.5. This approach allows us to compare the performance

of the two hashmaps under similar capacities. We examine the

capacity of each hashmap and report their respective memory

footprints using shaded bars in both figures. Notably our results

demonstrate that Hashinator manages to outperform Warpcore in

terms of insertion and retrieval as illustrated in Figure 4, 6 while

maintaining a smaller memory footprint, particularly up to the

1 million mark (220). Warpcore seems to outperform Hashinator

for deletion operations of relatively small datasets as illustrated

in Figure 5. It is important to note here that our measurements

illustrated in Figures 4–8 capture kernel times only, excluding any

overhead that may be caused by kernel launches.

As previously noted, both implementations utilize tombstones

to manage key deletions. However, it is important to consider

that the performance of the hashmaps may be impacted as the

tombstone ratio increases. Therefore, we conduct a more realistic

test case scenario to further examine the performance of both

implementations. To evaluate the performance of the hashmaps,

we (similar to the host and device interface tests) populate each

implementation with a unique set of random 32-bit key-value

pairs until reaching a target load factor of 0.5. Subsequently, we

retrieve all keys and immediately delete half of them. Finally,

we re-insert all key-value pairs and perform a final retrieval

of the data. For Hashinator we perform tombstone cleaning

before the second insertion. For Warpcore, rehashes happen

whenever deemed necessary. We measure the timings of all the

kernels executed by each implementation. We present the resulting

throughput values in Figure 7. The illustrated throughput rates

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

FIGURE 3

Comparison of Hashinator’s host and device interfaces against std::unordered_map. (A–D) illustrate throughput on NVIDIA hardware while (E–H)

illustrate throughput on AMD hardware. (A, E): Insertion performance. (B, F): Retrieval performance. (C, G): Deletion performance. (D, H):

Performance for a more realistic test case where elements are inserted, retrieved, deleted, reinserted and finally retrieved again. The device serial

throughput provides insight into the performance of a CUDA/HIP kernel operating in a serialized manner with a single thread. The depicteded results

are the median value obtained from a series of 10 consecutive runs for each test.

indicate that Hashinator matches the performance of Warpcore

for problem sizes up to 1 million elements. However, for larger

problem sizes, Hashinator takes the lead, demonstrating superior

performance in the realistic test case. Again, Hashinator maintains

a smaller memory footprint for the smaller problem sizes, as

illustrated by the shaded bars. This means thatWarpcore effectively

operates at a much lower load factor for the left-most part of

Figure 7.

To fully assess the performance of both implementations,

we conduct a test to evaluate their behavior under high load

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

FIGURE 4

The curves show the insertion performance (left vertical axis) for progressively larger numbers of elements, comparing Hashinator and Warpcore

with a target load factor of 0.5. The shaded bars in the figure represent the memory used by each implementation, showing the total number of

buckets utilized (right vertical axis).

FIGURE 5

The curves show the deletion performance (left vertical axis) for progressively larger numbers of elements, comparing Hashinator and Warpcore with

a target load factor of 0.5. The shaded bars in the figure represent the memory used by each implementation, showing the total number of buckets

utilized (right vertical axis).

factors. This is particularly crucial for hashmaps because a high

load factor can lead to increased collision rates and decreased

performance in both insertion and retrieval operations. To evaluate

the performance of the hashmaps, we construct the hashmaps

with a fixed capacity of 225 elements and we populate each

implementation with an increasing amount of random 32-bit

key-value pairs until reaching a target load factor of up to

0.95, after which we retrieve all the elements. We report our

throughput evaluation in Figure 8. We note that Hashinator

manages to outperform Warpcore for load factors up to 90% but

incurs more penalty than Warpcore for very high load factors.

Warpcore’s double hashing scheme outperforms Hashinator’s

Fibonacci hash function in collision avoidance, but it comes with

added instruction overhead.

Finally we demonstrate the performance of Hashinator across

NVIDIA and AMD GPUs by normalizing the insertion and

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

FIGURE 6

The curves show the retrieval performance (left vertical axis) for progressively larger numbers of elements, comparing Hashinator and Warpcore with

a load factor of 0.5. The shaded bars in the figure represent the memory used by each implementation, showing the total number of buckets utilized.

FIGURE 7

The curves show the accelerated interface performance (left vertical axis) comparing Hashinator and Warpcore for a more realistic test case where

32-bit elements are inserted, retrieved, deleted, reinserted and finally retrieved again. Initial insertions result in a load factor of 0.5. Shaded bars

denote the capacity used by each implementation to carry out the test.

retrieval throughput, measured in operations per second, by the

maximum theoretical memory bandwidth, measured in GB/s, of

the respective hardware. The resulting metric is termed the “Figure

of Merit” and is illustrated in Figure 9.

We observe that Hashinator exhibits higher efficiency on

NVIDIA hardware. This can be attributed to the parallel

probing mechanism discussed in Section 2, which both employs

independent thread synchronization intrinsics unsupported by

AMD hardware and necessary atomic operations to maintain

thread safety. As a consequence, unnecessary warp synchronization

occurs within the parallel probing algorithm on AMD hardware,

leading to decreased efficiency. Insertions incur more penalty

on AMD hardware compared to retrievals due to the extra and

unavoidable atomic operations required to emplace the new values

along with their associated keys in the hashmap in a thread

safe manner.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

FIGURE 8

Comparison of Hashinator’s and Warpcore’s hashmaps in terms of insertion (A) and retrieval (B) performance for di�erent load factors. Both panels

demonstrate the throughput of insertion and retrieval operations, as a function of the load factor. For this test we use a constant capacity of 225

elements.

FIGURE 9

Figure of Merit of Hashinator’s performance. Gray bars indicate the

FoM for both insertion and retrieval on NVIDIA hardware. Purple bars

indicate the FoM for both insertion and retrieval on AMD hardware.

3.3 Tombstone cleaning performance

Hashinator is able to efficiently clean up tombstones resulting

from multiple key deletions, which significantly improves the

probing traversal and speeds up insert and retrieval operations.

The problem with tombstones arises when they are not properly

cleaned up, as they can lead to a build-up of deleted elements in

the hashmap. This can cause performance issues such as slower

lookup times and increased memory usage. Traditionally, cleaning

up tombstones in a hashmap requires a complete rehash of

the hashmap contents, processing only valid keys while ignoring

any tombstones. This process is often costly. To assess the

efficiency of the tombstone cleaning mechanism in Hashinator,

we profile key insertions at high load factors under the presence

of tombstones. To prepare the test, we populate the hashmap

with an increasing amount of random 32-bit key-value pairs

until reaching a load factor close to 90% after rounding down

to the nearest integer count of elements. We then delete 20%

of the inserted elements. We then measure the time to reinsert

half of the deleted elements (which corresponds to 10% of the

original dataset) and evaluate the throughput. The last insertion

leaves the hashmap with only 1% of vacant buckets as all other

buckets are either occupied or tombstones. We perform the test

for three different approaches: when tombstones are not cleaned

up, when contents are rehashed using a CUDA kernel, and when

our tombstone cleaning mechanism is employed. The timings

include the time spent in rehashing or tombstone cleaning along

with the time spent in the final insertion. Each test is repeated

10 times with the mean timing used for throughput evaluation.

This allows us to simulate the presence of tombstones in real-

world scenarios and to analyze the effectiveness of Hashinator’s

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

FIGURE 10

Comparison of key insertion performance in Hashinator with and

without tombstone cleanup. The test is conducted by populating

the hashmap with an increasing amount of random 32-bit key-value

pairs until reaching a load factor of 90%. We then delete 20% of the

inserted elements and reinsert half of the deleted elements. The test

is performed three times: without tombstone cleanup, after

rehashing the contents using a CUDA kernel, and with Hashinator’s

tombstone cleaning mechanism. The timings include the time spent

in rehashing/tombstone cleaning and the final insertion. The figure

demonstrates the significant improvement in key insertion

performance achieved with Hashinator’s tombstone removal

scheme.

tombstone removal mechanism against other common approaches.

The resulting throughput values are presented in Figure 10. We

note that the tombstone cleaning method visibly outperforms all

the other examined methods in terms of throughput performance,

except for very small hashmap sizes.

3.4 Bucket overflow limit parameterization

As previously mentioned, Hashinator uses a parallel warp

voting scheme for its probing operations. Since the Olim and

hardware warp size are closely intertwined, a natural choice forOlim

is 32, the number of threads in a CUDA warp, or 64, the number of

threads in an AMD wavefront. However, Hashinator can decouple

these concepts by utilizing sub-masking to form teams of threads

within a single warp/wavefront, allowing for smaller Olim values.

These teams, known as Virtual Warps in Hashinator’s terminology,

enable independent probing and processing of several elements by

a single hardware warp. They closely resemble CUDA’s cooperative

groups and are used in Hashinator to maintain portability on

AMD hardware. The benefit of concurrent processing of several

elements outweighs the penalty of higher warp divergence. Thus,

finding the optimal balance between these two concepts is crucial

for achieving the best performance. Additionally, restricting Olim

to 32 would pose a significant penalty for the “host-only” mode,

as it would make the “host-only” probing more expensive on

average. On the architectures used for this work, we determined

that Hashinator performs optimally with 4 Virtual Warps and an

Olim of 8. Therefore, for our tests and timings presented in this

work, we utilize an Olim of 8 and 4 Virtual Warps, enabling a single

hardware warp to process 4 key-value pairs concurrently. We have

determined that on AMD hardware hashinator performs optimally

with an Olim of 8 and 8 Virtual Warps.

4 Discussion

In this work, we have introduced Hashinator, a novel

heterogeneous and portable hashmap that is designed to facilitate

the porting of scientific codes to GPU platforms. Hashinator

employs a parallel probing scheme inspired by Warpcore (Jünger

et al., 2020), and it utilizes the CUDA/HIP Unified Memory model,

allowing it to expose its data and functionalities to both host and

device code seamlessly. This is unlike the previous state of the art,

which allowed hashmaps to operate only on either host or device

code exclusively. Furthermore, Hashinator uniquely supports both

AMD and NVIDIA hardware, with the HIP/ROCm and CUDA

interfaces, and is a lightweight header-only library, easily included

in existing software projects. Hashinator offers three distinct

modes: the “host-only” mode, the “device-only” mode and the

“acceleratedmode”. Hashinator enables operations to be performed

on both host and device code, avoiding unnecessary data transfers,

and using internal prefetching methods to avoid page faults.

Moreover, Hashinator provides robust portability by maintaining

an architecture agnostic codebase which compiles for bothNVIDIA

and AMD GPUs and for CPU-only use. This feature makes it

an ideal choice for developers seeking to accelerate scientific

codes on heterogeneous architectures while also simplifying the

development process.

Our results demonstrate that Hashinator performs well

compared to industry standard implementations in terms of

retrieval and insertion throughput when operated in “host-only”

and “device-only” modes, as illustrated in Figure 3. Additionally,

we conduct a comprehensive set of performance tests to assess

the GPU performance of Hashinator’s “accelerated” mode. Our

throughput analyses of bulk insertion and retrieval rates of

Hashinator, depicted in Figures 4, 5, reveal that Hashinator

achieves better performance results against other cutting-

edge implementations. Furthermore, our results indicate that

Hashinator maintains a smaller memory footprint compared

to other implementations, particularly for smaller datasets, as

illustrated by the capacity bars in Figures 4–7.

Importantly, our results demonstrate that Hashinator incurs

little throughput penalty for medium to high load factors, as

shown Figure 8 and only incurs performance degradation at very

values. This behavior is attributed to the favorable properties of

the Fibonacci hash function used by Hashinator, which minimizes

the number of collisions that occur. Other hashing schemes

such as double hashing, can outperform the Fibonacci hash

function in terms of collision avoidance but come with added

instruction overhead.

In this work, we also introduced a novel tombstone cleaning

mechanism in Hashinator, which leverages SplitVector’s stream

compaction routines to maintain excellent throughput even

in situations where a large number of elements have been

deleted, leading to a hashmap overloaded with tombstones. The

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

effectiveness of our approach is demonstrated in Figure 10, where

we compare Hashinator’s tombstone cleaning method against other

commonly used techniques, showing the considerable speedup

achieved by Hashinator’s approach. This highlights Hashinator’s

potential to address common challenges associated with managing

tombstones in hashmaps and leading to improved performance

and scalability.

In summary, Hashinator provides a valuable tool for

heterogeneous high-performance computing by offering

an efficient and flexible hashmap implementation that can

seamlessly operate on both CPUs and GPUs while at the same

time providing cutting edge performance. By facilitating the

porting of scientific codes between CPU and GPU architectures,

Hashinator enables faster and more efficient computation across

a wide range of applications, and fulfills a need previously

unanswered. Overall, Hashinator represents a significant

advancement in the field of hashmap implementations,

with the potential to drive innovation in heterogeneous

high-performance computing.

Data availability statement

The source code of Hashinator (Papadakis et al.,

2024) is publicly hosted on GitHub at https://github.com/

kstppd/hashinator. Further inquiries can be directed to the

corresponding author.

Author contributions

KP: Conceptualization, Formal analysis, Investigation,

Methodology, Software, Validation, Visualization, Writing—

original draft, Writing—review & editing. MB: Conceptualization,

Formal analysis, Investigation, Methodology, Software, Validation,

Writing—original draft, Writing—review & editing, Supervision.

UG: Conceptualization, Methodology, Software, Supervision,

Writing—review & editing. YP-K: Writing—review & editing,

Supervision. MP: Funding acquisition, Project administration,

Writing—review & editing, Supervision.

Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was related to the European High Performance Computing Joint

Undertaking (JU) under grant agreement No 101093261 (Plasma-

PEPSC). The Academy of Finland (grant nos. 336805, 339756,

339327, 347795, 345701 and in particular for MB’s work, 335554)

is acknowledged.

Acknowledgments

The work presented in this paper would not have been possible

without the high-performance computing resources provided by

the Finnish IT Center for Science (CSC). The verification of

Hashinator was conducted on Puhti and Mahti supercomputers

and the performance tests for AMD hardware presented in this

paper were run on the LUMI supercomputer. The authors also wish

to acknowledge the Oregon Advanced Computing Institute for

Science and Society (OACISS). The performance tests for NVIDIA

hardware were run on a Voltar supercomputing node.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Awad, M. A., Ashkiani, S., Porumbescu, S. D., Farach-Colton, M., and
Owens, J. D. (2022). Better GPU hash tables. arXiv [Preprint]. arXiv: 2108.07232.
doi: 10.48550/arXiv.2108.07232

Awad, M. A., Ashkiani, S., Porumbescu, S. D., Farach-Colton, M., and Owens, J.
D. (2023). “Analyzing and implementing GPU hash tables,” in SIAM Symposium on
Algorithmic Principles of Computer Systems (Florence: APOCS23), 33–50.

Barnat, J., and Ročskai, P. (2008). Shared hash tables in parallel model checking.
Elect. Notes Theoret. Comp. Sci. 198, 79–91. doi: 10.1016/j.entcs.2007.10.021

Billeter, M., Olsson, O., and Assarsson, U. (2009). “Efficient stream compaction
on wide SIMD many-core architectures,” in Proceedings of the Conference on High
Performance Graphics 2009 (New York, NY: ACM).

Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., et al. (2010).
PIConGPU: A fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans.
Plasma Sci. 38, 2831–2839. doi: 10.1109/TPS.2010.2064310

Chen, M., Xiao, Q., Matsumoto, K., Yoshida, M., Luo, X., and Kita, K. (2013). “A
fast retrieval algorithm based on fibonacci hashing for audio fingerprinting systems,” in
Advances in Intelligent Systems Research (Amsterdam: Atlantis Press).

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001a). Introduction to
Algorithms. London: MIT Press, 221–252.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001b). Introduction to
Algorithms. London: MIT Press, 277–282.

Freiberger, M. (2012). “The agile library for image reconstruction in biomedical
sciences using graphics card hardware acceleration,” in Technical report, Karl-
Franzens Universität Graz, Technische Universität Graz (Graz: Medizinische
Universität Graz).

Jünger, D., Hundt, C., and Schmidt, B. (2018). “WarpDrive: Massively
parallel hashing on multi-GPU nodes,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (Vancouver,
BC: IEEE).

Jünger, D., Kobus, R., Müller, A., Hundt, C., Xu, K., Liu, W., and Schmidt, B. (2020).
Warpcore: A Library for Fast Hash Tables on GPUS.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3, Sorting and
Searching. Boston: Addison Wesley.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://github.com/kstppd/hashinator
https://github.com/kstppd/hashinator
https://doi.org/10.48550/arXiv.2108.07232
https://doi.org/10.1016/j.entcs.2007.10.021
https://doi.org/10.1109/TPS.2010.2064310
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Papadakis et al. 10.3389/fcomp.2024.1407365

Lessley, B., and Childs, H. (2020). Data-parallel hashing
techniques for GPU architectures. IEEE Trans. Parallel
Distrib. Syst. 31, 237–250. doi: 10.1109/TPDS.2019.29
29768

Li, W., Jin, G., Cui, X., and See, S. (2015). “An evaluation of
unified memory technology on NVIDIA GPUs,” in 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(Shenzhen: IEEE).

Liu, D., and Xu, S. (2015). Comparison of hash table performance with
open addressing and closed addressing: an empirical study. IJNDC 3:60.
doi: 10.2991/ijndc.2015.3.1.7

Papadakis, K., Battarbee, M., and Widera, R. (2024). fmihpc/hashinator: v1.0.1
Hashinator stable. Zenodo. doi: 10.5281/zenodo.11396297

Purcell, C., and Harris, T. (2005). “Non-blocking hashtables with open
addressing,” in Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg,
108–121.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1407365
https://doi.org/10.1109/TPDS.2019.2929768
https://doi.org/10.2991/ijndc.2015.3.1.7
https://doi.org/10.5281/zenodo.11396297
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Hashinator: a portable hybrid hashmap designed for heterogeneous high performance computing
	1 Introduction
	2 Method
	2.1 SplitVector
	2.2 Hashinator: general implementation overview
	2.3 Hashinator: host only interface
	2.3.1 Insertion
	2.3.2 Retrieval
	2.3.3 Deletion

	2.4 Hashinator: device only interface
	2.4.1 Insertion
	2.4.2 Retrieval
	2.4.3 Deletion

	2.5 Hashinator: accelerated interface
	2.5.1 Insertion
	2.5.2 Retrieval and deletion
	2.5.3 Tombstone cleaning

	3 Results
	3.1 Host and device interfaces
	3.2 Accelerated interface
	3.3 Tombstone cleaning performance
	3.4 Bucket overflow limit parameterization

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

