
TYPE Original Research
PUBLISHED 22 July 2024
DOI 10.3389/fcomp.2024.1412458

OPEN ACCESS

EDITED BY

Andrej Kos̆ir,
University of Ljubljana, Slovenia

REVIEWED BY

Radoslava Stankova Kraleva,
South-West University “Neofit Rilski,” Bulgaria
Daisuke Saito,
Waseda University, Japan

*CORRESPONDENCE

Toyohisa Nakada
nakada@nuis.ac.jp

RECEIVED 23 April 2024
ACCEPTED 09 July 2024
PUBLISHED 22 July 2024

CITATION

Nakada T and Miura M (2024) Extracting
typing game keystroke patterns as potential
indicators of programming aptitude.
Front. Comput. Sci. 6:1412458.
doi: 10.3389/fcomp.2024.1412458

COPYRIGHT

© 2024 Nakada and Miura. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Extracting typing game keystroke
patterns as potential indicators of
programming aptitude

Toyohisa Nakada1* and Motoki Miura2

1Department of Information Systems, Faculty of Business and Informatics, Niigata University of
International and Information Studies, Niigata, Japan, 2Department of Information and Communication
Systems Engineering, Faculty of Engineering, Chiba Institute of Technology, Chiba, Japan

This study attempted to determine whether individuals possess programming
aptitude solely based on keystroke information from typing games where
participants type computer programs. The participants were students enrolled
in university programming courses. The results indicated that using typing speed
alone as an indicator achieved an accuracy of 0.71, while employing a custom
machine learning model achieved an accuracy of 0.83. Additionally, it was found
that individuals with programming aptitude tended to type the enter key relatively
slower compared to other keys.

KEYWORDS

typing game, programming aptitude, machine learning, programming education,

keystroke analysis

1 Introduction

A typing game is a game that requires the player to quickly and accurately type a

given text or passage. These games have been recognized not only for their entertainment

value but also for their practical applications, such as serving as tools for creating corpora

related to English word spelling errors (Tachibana and Komachi, 2016), or improving

children’s finemotor skills (McGlashan et al., 2017). Meanwhile, the extent to which players

understand the content of the text they are typing has not been extensively discussed.

Therefore, in this study, we investigated how the typing speed and rhythm differ depending

on whether players understand the code they are typing in programming language typing

games (Nakada andMiura, 2023). In other words, this implies that it is possible to estimate

the level of comprehension of the program being typed based solely on the keystroke

information.

Research on keyboards traditionally falls within the realm of Human-Computer

Interaction (HCI), where studies have focused on aspects such as usability (Wang et al.,

2021) and constructingmodels for human acquisition of keyboard skills (Pinet et al., 2022).

However, beyond serving as input devices that transmit keystrokes to computers, there

is also research that extends into areas such as estimating user emotions from keystroke

rhythms (Yang and Qin, 2021). This study contributes to the applied research in keyboard

studies. In typing games, users interact with the same program code, but differences

in keystroke movements may arise between those who understand the meaning behind

the code and those who do not. This research analyzes whether there are variations in

motor actions related to keystrokes between these two groups. Studies treating perception,

cognition, and behavior as mutually influencing factors are outlined by Hommel et al.

(2001). This research specifically focuses on the cognitive aspect of computer program

comprehension within this framework.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1412458
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1412458&domain=pdf&date_stamp=2024-07-22
mailto:nakada@nuis.ac.jp
https://doi.org/10.3389/fcomp.2024.1412458
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1412458/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

This study’s novelty lies in developing a machine learning

model capable of correctly identifying whether a person

understands the computer program they are typing, based

solely on typing keystroke information, achieving an accuracy

rate of approximately 80%. Furthermore, the analysis of this

machine learning model suggests that individuals who understand

the program tend to press the Enter key relatively slower.

Importantly, these characteristics appear not as a result of

learning but potentially as innate traits from the early stages

of programming education. These findings were made possible

through advanced machine learning techniques, which traditional

statistical methods alone would have struggled to achieve. The

contribution of this research is enabling the estimation of program

comprehension solely from keystrokes, thereby potentially

influencing programming education significantly. The summary of

the research process and contributions is as shown in Table 1.

In this paper, we first discuss the research methodology

in Section 2. We detail the collection of keystroke data from

typing games, the test to determine program comprehension, and

the development of the machine learning model. In Section 3,

raditional statistical methods focusing solely on typing speed are

able to explain whether individuals understand programs with

only 70% accuracy. Subsequently, we present results showing

that applying machine learning can estimate comprehension with

approximately 80% accuracy. Moreover, we highlight a significant

finding that individuals who understand the program tend to

press the Enter key relatively slower. Section 4 interprets these

findings, suggesting that the identified characteristics manifest early

in programming courses, hinting at innate rather than learned

traits. Finally, in Section 5, we summarize the paper’s findings.

2 Methods

We collected typing data from students at Niigata University

of International and Information Studies who were enrolled in a

programming course. The participants were asked to type a series

of fixed programming codes as part of a typing game. Furthermore,

participants were administered comprehension tests at the end of

the programming course period.

2.1 Typing game keystroke data

The programming classes for the beginner and pre-

intermediate courses at the university consist of 180 min of

instruction per week, spanning 15 weeks. The participants consist

of university students attending the class, ranging in age from

18 to 21. Typing games were conducted once each week at the

beginning of the class. Understanding of the typed programs is

measured through tests administered in the final week. The typing

data used for analysis were collected within two weeks of the test

administration, and the data closest to the test date were selected.

Table 2 summarizes an overview of the data used for analysis.

In addition to absolute typing speed, which measures the overall

typing speed, we also employ relative normalized typing speed to

analyze variations in typing speed within individual participants.

This relative normalized typing speed is normalized between 0

and 1 to eliminate the influence of individual differences in typing

speed. Additionally, the data include information on typing errors.

Relative normalized typing speeds were record the milliseconds

it takes to type the correct key in a typing game, and in the

case of an error, the interval from the mistaken key. This is

based on the hypothesis that the timing of typing breaks may

reveal characteristics related to code comprehension. For example,

when attempting to type a word like “while,” a player with a

good understanding of the code may consistently strive to type

it correctly, even if they make a typing error along the way. In

contrast, a player with less code comprehension might stop their

typing input midway through typing “while.” To make it easier to

identify such patterns, the data used for analysis includes intervals

from the previous keystrokes, including errors, until the correct key

is typed. In other words, this data is used to analyze where typing

input is paused or interrupted.

2.2 Code comprehension test

The participants were students enrolled in a university

programming course, which consisted of 15 weeks of

classes, with each class lasting 180 min per week. A

comprehension test was conducted in the final week of the

course. The comprehension test is a program that creates

software meeting specified specifications, encompassing

the most fundamental structures of programming such as

loops, conditional statements, input/output operations, and

so forth.

The participants target both the beginner course, designed

for those encountering programming for the first time, and

the pre-intermediate course, aimed at students who have

completed the beginner course. The learning objectives for

the beginner course include attaining a level of understanding

where participants comprehend all programs typed in the

typing game.

2.3 Machine learning for analysis

The machine learning used in this study is known as supervised

learning, which involves providing correct data to the model to

train it on a certain input data. Specifically, typing keystroke

information is set as input data, and the output indicates whether

the program understands it or not (Burkart and Huber, 2020).

While supervised learning models are expected to achieve high

classification accuracy, it has been traditionally acknowledged that

understanding why the model succeeds or fails in classification

is challenging, as the model is often considered a black box.

In this study, we first develop this machine learning model

independently to verify the extent of classification accuracy

achieved. We do not delve deeply into explaining the classification

in this study.

The developed model is illustrated in Figure 1. The

convolutional layer denoted as Conv1D is commonly used in

image recognition tasks, as it helps analyze images by breaking

them down into smaller parts. When dealing with input data

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

TABLE 1 The overview of the research process and contributions.

Research Question Can keystroke dynamics alone differentiate between individuals who comprehend the program code they are typing in typing games and those
who do not?

Data collection 1. Typing game keystroke data indicating when and which keys were pressed.

2. Results from the program comprehension test.

We collected data from 144 participants and analyzed the data from 112 participants who could clearly be identified as understanding the code
or not.

Research methodology 1 Statistically analyze keystroke dynamics to determine if the typed code is understood. Estimating program comprehension solely based on
average typing speed. It was explainable with approximately 70%.

Research methodology 2 Using machine learning techniques to determine if the typed code is understood. According to our developed machine learning model, we
were able to estimate comprehension with approximately 80% accuracy. Furthermore, individuals who understood the program were found to
press the Enter key relatively slower compared to other keys.

Contributions of the study 1. Typing speed has been shown to correlate with the understanding of programming.

2. A machine learning model has been developed that can estimate programming understanding based on keystroke dynamics with
approximately 80% accuracy.

3. It has been shown that individuals who understand programming tend to press the Enter key relatively slower compared to other keys.

4. Keystroke characteristics suggest that they reflect inherent abilities individuals possess rather than something acquired through learning.

TABLE 2 Features of typing data used for analysis.

Absolute typing speed Information on when and which keys were pressed is acquired in milliseconds.

Relative normalized typing speed The delay time is the time it takes to press a specific key from the previous Relative latency in my typing data key. The delay time is
normalized using the maximum time in a typing game as 1 and the minimum time as 0.

Mistyped keys It is data that records which key was intended to be pressed when a typing error occurred.

FIGURE 1

Machine learning model.

from images, multiple layers of convolutional layers are stacked

to enable each layer to recognize features of different sizes

simultaneously, such as large and small objects within the

image. In contrast, for typing data, where the size of words

is typically fixed (e.g., while, for), a single layer is considered

sufficient. Additionally, while images have two axes (width and

height), typing data is one-dimensional, only along the time

axis. Subsequent to these convolutional layers, conventional

techniques used in image recognition are applied. Dropout

is utilized to intentionally reduce the amount of data, thus

improving the generalization performance of classification. This

is followed by a MaxPooling1D layer to extract the maximum

value and a Flatten layer to connect to the final fully connected

layer. The output consists of two nodes: one node outputs a

large value when the program understands the input, while

the other outputs a large value when the program fails to

understand it.

3 Results

3.1 Comprehension test and absolute
typing speed

The participants consist of students enrolled in both the

beginner course, where understanding programs typed in the

typing game serves as an educational objective, and the pre-

intermediate course, which builds upon the beginner course

by introducing more advanced programs. While both courses’

comprehension tests are scored out of 30 points, the scoring for pre-

intermediate course students is designed such that achieving half

of the total points (15 points) on the comprehension test indicates

understanding of programs typed in the typing game. Therefore,

the analysis focuses on the score obtained by adding 15 points to

the raw score of pre-intermediate course students.

Furthermore, in order to determine whether participants

understand the programs typed in the typing game based on

the results of the comprehension test, scores ranging from 20

to 30 points will be excluded from the analysis. Participants

scoring below 20 points will be considered as not understanding,

while those scoring above will be considered as understanding.

Additionally, anticipating the implementation of machine learning,

it is necessary to avoid artificially inflating the classification

accuracy by creating multiple sets of learning data for each

participant. Therefore, only the data acquired initially for

each participant will be retained, while subsequent data will

be discarded.

Within 2 weeks of taking the comprehension test,

a total of 144 participants had recorded their typing

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

FIGURE 2

Absolute typing speed and comprehension test.

game performance. Figure 2 illustrates the relationship

between typing speed and comprehension test results. The

horizontal axis represents typing speed, measured as the

number of keys typed per second in the typing game.

Additionally, the vertical axis displays comprehension test

results, adjusted to include an additional 15 points for

participants in the pre-intermediate course. Subsequent

analysis will categorize scores below 20 as indicative of a

lack of understanding of the programs typed in the typing

game, while scores of 30 or above will be considered as

indicating understanding.

Since normality was not confirmed by the Shapiro-Wilk

test (p <0.05), Spearman’s rank correlation coefficients were

computed. The results showed that for the combined data from

both courses, r = 0.41, p <0.001. When analyzed separately

by course, the correlation coefficients were r = 0.35, p <0.001

for the beginner course, and r = 0.25, p = 0.011 for the pre-

intermediate course.

FIGURE 3

Classification of comprehension based on absolute typing speed.

3.2 Comprehension assessment based on
absolute typing speed

Figure 3 illustrates the results of linear classification regarding

whether participants understand the program based on their typing

speed. Participant data excludes scores between 20 and <30, where

understanding is ambiguous, and further, anticipating comparison

with machine learning models to be conducted later, only the initial

comprehension test results for participants enrolled in both courses

are retained, with subsequent data being discarded.

The results showed that people who understand how the

program works tend to type fixed programming codes faster.

However, the accuracy was about 0.7143, and there were about

30% of people who could type quickly without understanding the

program, or vice versa.

3.3 Analysis of characteristics by key type

Thomas et al. (2005) collected all the keylogs of students typing

during regular programming exercises, not typing games, and

analyzed the differences in keystrokes for each key between those

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

FIGURE 4

Normalized keystroke latency a comparison of di�erent gap types. * indicates significant di�erences (p < 0.05) observed in means of two
independent samples.

FIGURE 5

Code heatmap: distribution of characteristics between individuals who understand the typed program based on relative typing speed and those who
do not.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

who understood programming and those who did not. First, we

define the key types as follows:

• B: Keys for browsing within the editor

• A: Alphabets

• N: Numbers

• O: Others

Next, Thomas et al. (2005) analyze the points where the key type

changes.

• E: Keys that change the key type from the previous key

• Symbol: Keys that do not change the key type

The results showed that the delay time of E, where the type

changes, is shorter for people who understand the program. For

example, when trying to type “ab = 10,” it is encoded as AEEO

according to Thomas’s definition. The fact that E is typed quickly

means that “ab = 10” is treated as a single chunk. In other words,

people who understand the program have a larger chunk size when

typing than those who do not.

In the context of typing a fixed program like a typing game,

the results of this study aligned with those depicted in Figure 4.

Statistically significant differences in keystroke gaps were found for

N. Particularly, there were no notable differences observed for E as

observed by Thomas et al. (2005).

3.4 Comprehension assessment based on
relative normalized typing speed

The “Relative normalized typing speed” is an indicator that

shows the fast and slow aspects of typing within an individual

subject, and it represents data normalized between 0 and 1. When

comparing this relative typing speed between groups of individuals

who understand the program and those who do not through a

mean comparison test, significant differences were observed in

the area highlighted in yellow in Figure 5. The yellow highlights

indicate areas where individuals who understand the program type

slower. Additionally, there is one instance of green text (u) in

Figure 5, indicating areas where individuals who do not understand

the program type slower. The downward arrow represents the

Enter key. Upon reviewing these results, it can be observed that

individuals who understand the program tend to press the Enter

key relatively slower compared to other keys.

3.5 Comprehension assessment based on
machine learning

In Section 2.3, we trained a custom-developed machine

learning model where the input consisted of the delay times of

all keys represented as Relative normalized typing speed, and the

output was whether the individual understood the program or not.

The results evaluated through 3-hold cross-validation are

presented in Table 3. We achieved a classification accuracy of 0.83

on average. This value surpasses the baseline of 0.7143, which is

TABLE 3 Evaluation of the machine learning model.

Test set number Number of data Accuracy rate

1 38 0.8421

2 37 0.8108

3 37 0.8378

Average 37.33 0.8304

simply linearly separable based on typing speed alone, bymore than

0.1. This indicates that the fast and slow aspects of an individual’s

typing, akin to the rhythm of typing games, serve as valuable

indicators for determining whether the individual understands the

program they are typing.

3.6 Comprehension and typing errors

There might be different characteristics in the information

pertaining to typing mistakes between individuals who understand

the program and those who do not. For instance, it’s conceivable

that individuals who do not understand the program make more

mistakes compared to those who do. Figure 6 illustrates the

frequency distribution of typing mistakes. The horizontal axis

represents the number of keys with mistakes made within a

single typing game, while the vertical axis represents the number

of participants with that frequency of mistakes. No significant

differences are particularly evident.

Next, the keys with typing mistakes are shown in Table 4. For

example, if the missed key with a score of “good” is “n,” it indicates

the number of times the key “n” was attempted but failed to be

typed correctly. Since the same keys often appear in the top 10

rankings, albeit with different positions, it is suggested that there

is no significant difference in the major characteristics of typing

mistakes between the two groups.

4 Discussion

4.1 Keystroke and comprehension of the
typing text

In the era when there was a profession called a typist, there

were studies conducted to devise models for analyzing these typists

(Card et al., 1980; Salthouse, 1986). During that era’s research, it was

believed that the performance of typists did not depend on their

comprehension of the text they were typing (Salthouse, 1984).

On the other hand, recent research has reported differences in

keystroke logs between tasks that involve simply copying text, such

as typing games, and tasks that require constructing text, such as

composing emails (Conijn et al., 2019). However, it has not been

investigated whether understanding the text being typed in tasks

that involve copying text affects keystrokes.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

FIGURE 6

Distribution of typing mistakes.

4.2 Personal authentication using
keystroke dynamics

Authentication is the process of determining who the person

operating the computer is. While passwords are the most

commonly used method, creating and managing strong passwords

can be challenging. Therefore, methods utilizing personalized

biometric information or characteristics of movement exist

for authentication. Keystroke dynamics (Shanmugapriya and

Padmavathi, 2009) is a field of study that focuses on how individuals

type rather than what they type, utilizing these dynamics for

authentication purposes. Gedikli and Efe (2019) has reported

an identification accuracy of 94.7% using mechanisms of deep

learning. These studies operate under the assumption that there

are individual differences in typing movements, akin to identifying

whether a program understands keystrokes based solely on typing

patterns, which is the premise of our study.

4.3 Keystroke and cognitive abilities

Wetherell et al. (2023) reported that there are changes in

typing rhythm under stress. This suggests that keystroke dynamics

not only rely on static characteristics of individuals but also on

dynamically changing movements. There is also research aimed

at detecting long-term changes from keystrokes. Hossain et al.

(2021) and Holmes et al. (2022) are involved in studying cognitive

impairment detection through keystroke behavior. According to

Alfalahi et al. (2022), these studies are numerous, suggesting

TABLE 4 Ranking of the 10 most frequently mistyped keys along with

their average error rates.

score=good score=not good

Missed key Average count Missed key Average
count

n 2.85 i 3.77

(space) 2.73 l 2.7

l 2.62 . 2.33

; 2.37 ; 2.27

i 2.31 } 2.27

v 2.04 n 2.25

(1.85 (2.22

a 1.77 (space) 2

e 1.75 t 1.67

d 1.73 # 1.52

that keystrokes are a promising indicator for detecting cognitive

impairments.

There is also research attempting to infer innate individual

traits from keystrokes. Kovac̆ević et al. (2023) endeavors to estimate

personality traits, such as those described by the Big Five model

(Goldberg, 1992), through keystroke dynamics. Additionally, Pinet

(2024) demonstrated in a comparative experiment between groups

capable and incapable of touch typing that the former group not

only typed words displayed on the screen faster but also exhibited

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

shorter response times in tasks involving repeated movements,

such as repeating verbally heard words. This suggests that typing

proficiency may correlate with language processing abilities.

4.4 Programming learning

Despite the multitude of research, practical examples, and

continually evolving effective learning materials in programming

education, it is still recognized as a challenging task for learning

(Cheah, 2020; Kadar et al., 2021). There is a study that suggests that

a necessary ability for mastering programming is fluid reasoning

(Prat et al., 2020). Fluid reasoning, proposed alongside crystallized

reasoning by Cattell (1943), is considered to be the capacity to

identify relationships, while crystallized reasoning is thought to be

the capacity that results from the habituation of abilities discovered

through fluid reasoning. However, the definition of fluid reasoning

is not fixed, and according to Kievit et al. (2016), fluid reasoning

is defined as the ability to solve new abstract tasks, irrespective of

task-specific knowledge. This definition is considered important for

acquiring programming skills.

Analysis of keystrokes during programming, as revealed

by Thomas et al. (2005), has shown that individuals with

better programming performance tend to type a greater number

of words as a single chunk compared to those with poorer

performance. However, the relationship between keystrokes in copy

tasks like typing games and programming performance remains

unclear. In recent years, extensive research has been conducted

using various methods, including keystroke analysis, to measure

student performance in programming courses (Choi et al., 2023).

Edwards et al. (2020) analyzed keystrokes of students during

programming courses and discovered a consistent correlation

between typing speed and grades, albeit with variations across

different programming languages. They also reported that a

machine learning model using random forests can predict student

grades from keystrokes with an accuracy rate of approximately

60%–70%. Furthermore, some studies aim not only to directly

estimate grades but also to identify students needing assistance

during programming courses based on keystroke behavior. Zhao

et al. (2021) reported the ability to estimate with 94% accuracy

when students are facing difficulties, while Shrestha et al. (2022)

highlighted the importance of pause times in keystrokes as a critical

factor in grade estimation.

4.5 Characteristics of typing: student
growth or programming aptitude

Lindemann et al. (2007) demonstrated that there is a correlation

between the cognitive recognition of numerical magnitudes and

manual movement. This suggests that internal cognitive processes

such as knowing and understandingmanifest as observable external

phenomena, such as bodily movements. For instance, in the case of

typing games, it is believed that understanding a program leads to

changes in typing behavior, indicating growth in the participant.

If typing rhythm characteristics represent student growth, we

should observe changes between the beginning and the end of

the lecture course. Of course, some students may have already

learned about programming to some extent before the start of the

course. However, it is unlikely that all students will have understood

programming at the start of the course. Therefore, we will conduct

a time series comparison between the group of students who are

eventually judged to have understood the program and the group

who are judged not to have understood it, from the beginning to

the end of the course.

Figures 7–9 depict the temporal changes in typing

characteristics that distinguish individuals who have demonstrated

understanding of the programming being typed vs. those who

have not, as revealed in our study. Figure 7 represents the absolute

typing speed, Figure 8 illustrates the average latency in pressing

the return key, and Figure 9 shows the results of understanding

judgments by the machine learning model. The horizontal axis

of each graph represents the normalized date within the 15-week

lecture course, with the first day of class designated as 0 and the last

day of class designated as 1. The translucent band around the fitted

regression line represents a 95% confidence interval.

From these results, it is suggested that students who achieve

high scores on comprehension tests administered at the end of the

course, regardless of which indicators are difficult to conclusively

determine due to large data variance, possess these characteristics

from the beginning of the course. If these characteristics represent

student growth, then the difference between the group eventually

understanding the program and the group not understanding it at

the beginning of the course should not be clearly distinguished until

closer to the end of the course.

It might indicate a tendency to treat a typing game, or any

program being typed, not as a mere sequence of meaningless

characters, but rather, to carefully perceive it as meaningful line

by line. This attentiveness correlates with fluid reasoning ability

(Cochrane et al., 2019), and fluid reasoning is a necessary skill for

acquiring programming knowledge (Prat et al., 2020).

Furthermore, the fact that the characteristics extracted by the

machine learning model appear from the early stage of the class

period suggests that they may represent innate aptitude rather than

student growth. This is an important finding, as it suggests that it

may be possible to identify students who have a natural aptitude for

programming early on and provide them with the resources they

need to succeed.

However, it must be noted that the data for this typing game

were obtained within the context of a programming class. This

implies that participants were typing what they were learning in the

programming course as part of the typing game. Therefore, unlike

conventional typing games that assess speed and accuracy, there is a

possibility that participants perceived this activity as a part of their

learning process, hence attributing it with some degree of learning

time. Due to the lack of data regarding this aspect, further analysis

cannot be conducted. This stands as a limitation of the present

study.

5 Conclusion

This study sheds light on the intriguing relationship between

typing rhythm and programming aptitude among university

students enrolled in programming courses. The analysis of typing

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

FIGURE 7

Changes in typing speeds over the academic term.

FIGURE 8

Changes in keystroke-to-enter press latency over the academic term.

data revealed a significant correlation between understanding of

programming concepts and typing proficiency, indicating that

individuals with a deeper comprehension of program functionality

tend to exhibit faster typing speeds for fixed programming

codes. However, it is noteworthy that a considerable portion

of participants demonstrated high typing speeds without a

corresponding understanding of the program, and vice versa,

highlighting the complexity of this relationship. To address this

challenge, a machine learning model leveraging typing rhythm was

developed, achieving an impressive accuracy rate of approximately

83.0% in distinguishing individuals based on their comprehension

of the program. Importantly, the characteristics identified by

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

FIGURE 9

Changes in probability of good predicted by the ML model over the academic term.

this model emerged early in the course, suggesting the potential

presence of innate aptitude rather than solely reflecting student

progression. These findings underscore the multifaceted nature of

programming aptitude and emphasize the importance of further

research in understanding and harnessing individual differences in

programming proficiency.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent from the

patients/ participants OR patients/participants legal guardian/next

of kin was not required to participate in this study in accordance

with the national legislation and the institutional requirements.

Author contributions

TN: Conceptualization, Data curation, Formal analysis,

Methodology, Project administration, Resources, Software,

Supervision, Visualization, Writing – original draft. MM:

Funding acquisition, Resources, Validation, Writing – review

& editing.

Funding

The author(s) declare financial support was received

for the research, authorship, and/or publication of this

article. This work was supported by JSPS KAKENHI Grant

Number JP22K12319.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Nakada and Miura 10.3389/fcomp.2024.1412458

References

Alfalahi, H., Khandoker, A. H., Chowdhury, N., Iakovakis, D., Dias, S. B.,
Chaudhuri, K. R., et al. (2022). Diagnostic accuracy of keystroke dynamics as digital
biomarkers for fine motor decline in neuropsychiatric disorders: a systematic review
and meta-analysis. Sci. Rep. 12:7690. doi: 10.1038/s41598-022-11865-7

Burkart, N., and Huber, M. F. (2020). A survey on the explainability of supervised
machine learning. arXiv, abs/2011.07876.

Card, S., Moran, T., and Newell, A. (1980). The keystroke-level model for
user performance time with interactive systems. Commun. ACM 23, 396–410.
doi: 10.1145/358886.358895

Cattell, R. B. (1943). The measurement of adult intelligence. Psychol. Bull. 40,
153–193. doi: 10.1037/h0059973

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning
of computer programming: a literature review. Contemp. Educ. Technol. 12:ep272.
doi: 10.30935/cedtech/8247

Choi, W., Lam, C., and Mendes, A. (2023). “A systematic literature review on
performance prediction in learning programming using educational data mining,” in
2023 IEEE Frontiers in Education Conference (FIE), pages 1-9, Los Alamitos, CA, USA
(IEEE Computer Society). doi: 10.1109/FIE58773.2023.10343346

Cochrane, A., Simmering, V., and Green, C. S. (2019). Fluid intelligence is related
to capacity in memory as well as attention: Evidence from middle childhood and
adulthood. PLoS ONE 14:e0221353. doi: 10.1371/journal.pone.0221353

Conijn, R., Roeser, J., and van Zaanen, M. (2019). Understanding the keystroke
log: the effect of writing task on keystroke features. Read. Writ. 32, 2353–2374.
doi: 10.1007/s11145-019-09953-8

Edwards, J., Leinonen, J., and Hellas, A. (2020). “A study of keystroke data in
two contexts: written language and programming language influence predictability of
learning outcomes,” in Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, 413–419. doi: 10.1145/3328778.3366863

Gedikli, A. M., and Efe, M., Ö. (2019). “A simple authentication method
with multilayer feedforward neural network using keystroke dynamics,” in
Mediterranean Conference on Pattern Recognition and Artificial Intelligence.
doi: 10.1007/978-3-030-37548-5_2

Goldberg, L. R. (1992). The development of markers for the big-five factor structure.
Psychol. Assess. 4:26. doi: 10.1037//1040-3590.4.1.26

Holmes, A. A., Tripathi, S., Katz, E., Mondesire-Crump, I., Mahajan, R., Ritter, A., et
al. (2022). A novel framework to estimate cognitive impairment via finger interaction
with digital devices. Brain Commun. 4:fcac194. doi: 10.1093/braincomms/fcac194

Hommel, B., Müsseler, J., Aschersleben, G., and Prinz, W. (2001). The theory of
event coding (tec): A framework for perception and action planning. Behav. Brain Sci.
24, 849–878. doi: 10.1017/S0140525X01000103

Hossain, M. N., Uddin, M. H., Thapa, K., Al Zubaer, M. A., Islam, M. S.,
Lee, J., et al. (2021). Detecting cognitive impairment status using keystroke
patterns and physical activity data among the older adults: a machine
learning approach. J. Healthc. Eng. 2021:1302989. doi: 10.1155/2021/130
2989

Kadar, R., Wahab, N. A., Othman, J., Shamsuddin, M., and Mahlan, S. B. (2021).
A study of difficulties in teaching and learning programming: a systematic literature
review. Int. J. Acad. Res. Progr. Educ. Dev. 10, 591–605. doi: 10.6007/IJARPED/v10-i3/1
1100

Kievit, R. A., Davis, S. W., Griffiths, J., Correia, M. M., Cam,-C. A. N., and
Henson, R. N. (2016). A watershed model of individual differences in fluid intelligence.
Neuropsychologia 91, 186–198. doi: 10.1016/j.neuropsychologia.2016.08.008

Kovac̆ević, N., Holz, C., Günther, T., Gross, M., and Wampfler, R. (2023).
Personality trait recognition based on smartphone typing characteristics in the wild.
IEEE Trans. Affect. Comput. 14, 3207–3217. doi: 10.1109/TAFFC.2023.3253202

Lindemann, O., Abolafia, J. M., Girardi, G., and Bekkering, H. (2007). Getting a
grip on numbers: Numerical magnitude priming in object grasping. J. Exper. Psychol.
33, 1400–1409. doi: 10.1037/0096-1523.33.6.1400

McGlashan, H. L., Blanchard, C. C., Sycamore, N. J., Lee, R., French, B., andHolmes,
N. P. (2017). Improvement in children’s fine motor skills following a computerized
typing intervention. Hum. Mov. Sci. 56, 29–36. doi: 10.1016/j.humov.2017.10.013

Nakada, T., andMiura,M. (2023). “Correlation analysis between keystroke and code
understanding in programming language typing game,” in Proceedings of 2023 Summer
Conference, Digital Games Research Association JAPAN, 29–34.

Pinet, S. (2024). “What are you looking at? Beyond typing speed and formal training
for assessing typing expertise,” in Proceedings of the Annual Meeting of the Cognitive
Science Society.

Pinet, S., Zielinski, C., Alario, F.-X., and Longcamp, M. (2022). Typing expertise in
a large student population. Cogn. Res. 7:77. doi: 10.1186/s41235-022-00424-3

Prat, C. S., Madhyastha, T. M., Mottarella, M. J., and Kuo, C.-H. (2020). Relating
natural language aptitude to individual differences in learning programming languages.
Sci. Rep. 10:3817. doi: 10.1038/s41598-020-60661-8

Salthouse, T. (1984). Effects of age and skill in typing. J. Exper. Psychol. General 113,
345–371. doi: 10.1037/0096-3445.113.3.345

Salthouse, T. A. (1986). Perceptual, cognitive, and motoric aspects of transcription
typing. Psychol. Bull. 99:303. doi: 10.1037//0033-2909.99.3.303

Shanmugapriya, D., and Padmavathi, G. (2009). A survey of biometric keystroke
dynamics: approaches, security and challenges. arXiv preprint arXiv:0910.0817.

Shrestha, R., Leinonen, J., Zavgorodniaia, A., Hellas, A., and Edwards, J. (2022).
“Pausing while programming: Insights from keystroke analysis,” in 2022 IEEE/ACM
44th International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET), 187–198. doi: 10.1109/ICSE-SEET55299.2022.9794163

Tachibana, R., and Komachi, M. (2016). “Analysis of english spelling errors in a
word-typing game,” in Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), 385–390.

Thomas, R. C., Karahasanovic, A., and Kennedy, G. E. (2005). “An investigation into
keystroke latency metrics as an indicator of programming performance,” in Proceedings
of the 7th Australasian Conference on Computing Education -Volume 42, ACE’05 (AUS.
Australian Computer Society, Inc.), 127–134.

Wang, Y., Lin, T., Yu, J., Wang, L., He, J., and Ke, L. (2021). “Current status of
user experience of the keyboard on smartphones: An overall questionnaire analysis,” in
HCI International 2021 - Late Breaking Papers: Multimodality, eXtended Reality, and
Artificial Intelligence, eds. C. Stephanidis, M. Kurosu, J. Y. C. Chen, G. Fragomeni,
N. Streitz, S. Konomi, et al. (Cham: Springer International Publishing), 168–182.
doi: 10.1007/978-3-030-90963-5_14

Wetherell, M. A., Lau, S.-H., and Maxion, R. A. (2023). The effect of
socially evaluated multitasking stress on typing rhythms. Psychophysiology 60:e14293.
doi: 10.1111/psyp.14293

Yang, L., and Qin, S.-F. (2021). A review of emotion recognition methods
from keystroke, mouse, and touchscreen dynamics. IEEE Access 9, 162197–162213.
doi: 10.1109/ACCESS.2021.3132233

Zhao, H., Li, M., Lin, T., Wang, R., and Wu, Z. (2021). Prolog2vec: Detecting
novices’ difficulty in programming using deep learning. IEEE Access 9, 53243–53254.
doi: 10.1109/ACCESS.2021.3067505

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1412458
https://doi.org/10.1038/s41598-022-11865-7
https://doi.org/10.1145/358886.358895
https://doi.org/10.1037/h0059973
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.1109/FIE58773.2023.10343346
https://doi.org/10.1371/journal.pone.0221353
https://doi.org/10.1007/s11145-019-09953-8
https://doi.org/10.1145/3328778.3366863
https://doi.org/10.1007/978-3-030-37548-5_2
https://doi.org/10.1037//1040-3590.4.1.26
https://doi.org/10.1093/braincomms/fcac194
https://doi.org/10.1017/S0140525X01000103
https://doi.org/10.1155/2021/1302989
https://doi.org/10.6007/IJARPED/v10-i3/11100
https://doi.org/10.1016/j.neuropsychologia.2016.08.008
https://doi.org/10.1109/TAFFC.2023.3253202
https://doi.org/10.1037/0096-1523.33.6.1400
https://doi.org/10.1016/j.humov.2017.10.013
https://doi.org/10.1186/s41235-022-00424-3
https://doi.org/10.1038/s41598-020-60661-8
https://doi.org/10.1037/0096-3445.113.3.345
https://doi.org/10.1037//0033-2909.99.3.303
https://doi.org/10.1109/ICSE-SEET55299.2022.9794163
https://doi.org/10.1007/978-3-030-90963-5_14
https://doi.org/10.1111/psyp.14293
https://doi.org/10.1109/ACCESS.2021.3132233
https://doi.org/10.1109/ACCESS.2021.3067505
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Extracting typing game keystroke patterns as potential indicators of programming aptitude
	1 Introduction
	2 Methods
	2.1 Typing game keystroke data
	2.2 Code comprehension test
	2.3 Machine learning for analysis

	3 Results
	3.1 Comprehension test and absolute typing speed
	3.2 Comprehension assessment based on absolute typing speed
	3.3 Analysis of characteristics by key type
	3.4 Comprehension assessment based on relative normalized typing speed
	3.5 Comprehension assessment based on machine learning
	3.6 Comprehension and typing errors

	4 Discussion
	4.1 Keystroke and comprehension of the typing text
	4.2 Personal authentication using keystroke dynamics
	4.3 Keystroke and cognitive abilities
	4.4 Programming learning
	4.5 Characteristics of typing: student growth or programming aptitude

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

