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Shapley additive explanations are a widely used technique for explaining machine 
learning models. They can be applied to basically any type of model and provide 
both global and local explanations. While there are different plots available to 
visualize Shapley values, there is a lack of suitable visualization for geospatial 
use cases, resulting in the loss of the geospatial context in traditional plots. 
This study presents a concept for visualizing Shapley values in geospatial use 
cases and demonstrate its feasibility through an exemplary use case—predicting 
bike activity in a rental bike system. The visualizations show that visualizing 
Shapley values on geographic maps can provide valuable insights that are not 
visible in traditional plots for Shapley additive explanations. Geovisualizations 
are recommended for explaining machine learning models in geospatial 
applications or for extracting knowledge about real-world applications. Suitable 
visualizations for the considered use case are a proportional symbol map and a 
mapping of computed Voronoi values to the street network.
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1 Introduction

Geospatial explainable artificial intelligence (geospatial XAI) is utilized to analyze and 
understand machine learning outputs for geospatial use cases. One effective technique for XAI 
is the use of Shapley additive explanations (SHAP) (Lundberg and Lee, 2017). SHAPs enable 
the explanation of machine learning models globally and locally by their features. This 
technique is model agnostic, meaning it can be applied to any trained machine learning model. 
Different plots are commonly used to visualize SHAPs. For a global explanation, the summary 
plot is one way to show all SHAPs of all predictions at once. For local explanations, the force 
plot and the waterfall plot are popular, showing the local impact of the feature values on the 
model’s prediction. SHAPs can be used for various applications. However, when it comes to 
geospatial data, to our knowledge there is a lack of appropriate visualization techniques that 
intuitively integrate the Shapley values with the geospatial context. While the features 
themselves in geospatial use cases can be visualized like any other use case in known SHAP 
plots, the geospatial context is lost. It is possible that features with the same value may have 
different Shapley values at different geographic locations, which cannot be observed in these 
plots. To address this issue, this paper presents a novel approach how to visualize SHAPs and 
interpretations of SHAPs in geographic context. The innovative visualization method is 
demonstrated through a regression problem that predicts bike activity for a rental bike system 
based on real life data from the city of Hamburg, Germany, using a black-box neural network.

Regarding SHAPs, ‘[it] has been noted that they are not a measure of how important a given 
feature is in the real world, but rather how important a feature is to the model’ (source: https://
github.com/shap/shap/issues/1120, comment by GZuin on 24 November 2020). However, 
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we think that SHAPs have the potential to provide insights into real-
world applications. The real-world model is unknown, and we aim to 
enhance understanding it by utilizing machine learning and XAI with 
an appropriate visualization. In the case of a rental bike system, it is 
important to know what factors influence the bookings at stations. 
With this knowledge, domain experts could take measures to improve 
the attractiveness of their rental bikes. It could also help with the 
installation of a new station. Of course, the bike system operator only 
wants to install stations in  locations where many features have a 
positive impact on the number of bookings. These influencing factors 
could be  analyzed by an explainable AI and communicated with 
suitable visualizations. In order to address the objectives, we define the 
following research questions.

 • How can the geospatial distribution of explanations be visualized?
 • How can an area-wide knowledge extraction analysis 

be visualized?
 • How to visualize which features have the highest impact 

and where?

To answer research question 1, we will use a point visualization to 
display the exact locations of the explanations. The visualization 
methodology will be based on literature that identifies which visual 
semiotics are most effective for different types of data. For research 
question 2, we will utilize a visualization technique that can visualize 
point data across the entire geographic area of the city. To answer 
research question 3, we will use the techniques from the first two 
questions and visualize only the value and corresponding feature with 
the highest impact on the prediction. Within this, it is possible to 
visualize the highest positive, highest negative, or highest absolute 
impact. To evaluate our visualizations, we define requirements that the 
visualizations for geospatial XAI should have that are not covered by 
traditional SHAP plots. At this stage, we  will not evaluate each 
visualization with humans, as the goal of this study is to demonstrate 
the concept and its feasibility of using SHAPs with a visualization on 
a geographic map.

The paper is structured as follows: In Section 2 we will present the 
current state of the art for geospatial XAI and relevant visualizations. 
In Section 3 we will focus on the data, the implemented machine 
learning model, the calculation of Shapley values for the selected use 
case, and the visualization concept. In Section 4, we present the results 
and discuss them, considering our stated research questions and 
requirements. We will conclude the results of this study and give an 
outlook on future work in Section 5.

2 State of the art

XAI has the potential to increase the understandability and 
trustworthiness of machine learning models. This is achieved by 
generating explanations that can be understood by humans to describe 
the decisions and actions of AI systems. XAI techniques are 
predominantly utilized in the analysis of image and tabular data. 
Geospatial XAI refers to AI systems for regression or classification 
problems using geospatial data. Geospatial data merges geographic 
location information with ‘attribute information (the characteristics of 
the object, event or phenomena concerned) and temporal information 
(the time or life span at which the location and attributes exist)’ (IBM, 

2023, p.1). Consequently, the data itself can always be visualized in the 
form of geographic maps. However, this poses a challenge as the 
visualization of explanations from, for example SHAP, together with 
the geographic context becomes increasingly important. Common 
plots for XAI are inadequate because they do not combine XAI with 
the geospatial context in the visualization.

Geospatial use cases using XAI are diverse, for instance 
encompassing multiple applications in disaster management, such as 
forecasting slope failures and landslides (Maxwell et  al., 2021; 
Al-Najjar et  al., 2022; Fang et  al., 2023; Youssef et  al., 2023) or 
monitoring and combating wildfires (Cilli et  al., 2022; Lan et  al., 
2023). Other use case categories could be potential location mapping, 
for example for gold mineralization (Pradhan et al., 2022) and wind 
and solar power plants (Sachit et al., 2022), or use cases within traffic 
and transport, such as the classification of road car accidents (Amorim 
et al., 2023; Ardakani et al., 2023). These cases serve as examples of the 
many possible use cases that utilize machine learning with 
geospatial data.

An in-depth literature review of geospatial XAI was already 
conducted by Roussel and Böhm (2023). The most utilized types of 
machine learning models are boosting techniques like the extreme 
Gradient Boosting Machine, Neural Networks, and tree-based models 
such as Random Forest and Decision Trees. The most commonly used 
XAI technique are SHAPs, followed by Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro et al., 2016) and coefficients 
from models as feature importances. The review study by Roussel and 
Böhm (2023) examined current challenges in geospatial XAI and 
found that there is a shortage of appropriate visualizations for XAI in 
geospatial data. The study demonstrates that the geospatial context of 
the data is inadequately considered for a comprehensive understanding 
of the applied machine learning models. The authors conclude that: 
‘[…] a map-supported presentation should also be included in the XAI 
part, as most of the commonly used plots cannot adequately visualize 
the geographical features. For example, research has shown that the 
summary plot for SHAP values is not a suitable visualization for the 
feature contribution of coordinates. A map-based presentation is 
essential to find and understand the impact of the geospatial component 
of the data’ (Roussel and Böhm, 2023, p.17). Other studies (Xing and 
Sieber 2021; Xing and Sieber, 2023) have also found that 
geovisualization techniques could improve the integration of XAI and 
GeoAI. In another study (Li, 2023), the feature coordinates was further 
analyzed, and the package GeoShapley was implemented. The package 
combines the coordinate pair into one feature, as they would 
be considered two separable independent features otherwise. This 
package allows for the calculation of a Shapley value for the 
geo-component, which is a significant improvement in the field of 
geospatial XAI. However, adequately visualizing the explanations 
remains a problem, not only for the coordinates but also for every 
feature and comparing them as well.

Currently, there is a gap in visualizing explanations like SHAP for 
geospatial use cases. According to the review study for geospatial XAI 
(Roussel and Böhm, 2023), and to our knowledge, there is a lack of 
studies using a suitable visualization method. One study, where 
visualizations of Shapley values on geographic maps where used is by 
Li (2022). However, the visualization method used is insufficient for 
our stated research questions. In the study by Li (2022), they 
implemented a machine learning model for the use case of ride-
hailing and used SHAP to explain it. They then visualized the Shapley 

https://doi.org/10.3389/fcomp.2024.1414923
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roussel 10.3389/fcomp.2024.1414923

Frontiers in Computer Science 03 frontiersin.org

values on a geographic map using the census tracts in Chicago. This 
leads to the problem that the visualization includes areas where ride-
hailing is not possible, such as rivers or buildings. In addition, they did 
not visualize the spatial distribution of the Shapley values of all the 
other features in the dataset, which is our goal. We do not want to 
visualize the impact of location in use cases like ride-hailing, but 
rather the spatial distribution of features in the use case, as they may 
have different impacts in different locations. Our research has different 
goals than the one by Li (2022) and therefore cannot be compared.

Studies that utilize geospatial data and XAI still rely on conventional 
SHAP plots, such as the summary plot or force plot. This study aims to 
show the benefits of using geovisualizations for XAI to not only better 
understand the machine learning model, but specifically in relation to the 
real-world demands of the geospatial use cases.

3 Materials and methods

This Section presents the data and the machine learning model for 
the use case, the rental bike system. Then, the calculation of the 
Shapley values and the visualization concept are shown.

3.1 Data and machine learning model

Bike stations have a geospatial context with precise locations and 
are therefore suitable for this kind of study. Rental bike systems have 
a certain capacity for each station. To help managers of these systems, 
it can be helpful to estimate the bookings for a station at a given time, 
or to estimate the bookings at a potential location for a new station. In 
research studies dealing with data for rental bike systems, car sharing 
or off-street parking, POI (Points of Interest) data from, for example, 
OpenStreetMap1 have been used to define geospatial factors (Wagner 

1 https://www.openstreetmap.de/, accessed on 15 February 2024.

et al., 2014; Klemmer et al., 2016, 2018; Willing et al., 2017; Rolwes 
and Böhm, 2021; Schimohr and Scheiner, 2021), which can then 
be used for machine learning.

The original data was obtained from Deutsche Bahn AG2 and is 
published under the Creative Commons Attribution 4.0 International 
CC BY 4.0 license. The data includes booking numbers for each 
station in the rental bike system in Germany for the years 2014 to May 
2017. The used city of Hamburg contained approximately 200 rental 
bike stations. The raw data was then used to calculate the density of 
defined POI categories around each station in the study by Roussel 
et al. (2022) using the metric of geospatial impact by Rolwes and 
Böhm (2021). This metric uses three weights. The first weight is used 
for the distance of a POI from a station. If a POI is further away, it 
becomes less important for the station, as people are less likely to book 
a bike at that station to go to that POI. The second weight is the 
probability that the POI is open. The POI data was retrieved using 
OpenStreetMap, which can have missing data. For this reason, a 
probability is calculated for a POI category to be open. The last weight 
is defined by the use case, in this case bike rental. Some POI categories 
are more important to bike users than others. For example, this weight 
would be different for car users. All three weights are then used to 
calculate a POI density for each station at each hour. Table 1 shows an 
example of a data point.

This processed data is used as a regression problem to estimate the 
number of bookings at a station at a given time. For training, the data 
was divided into a training set (75%), a validation set (12.5%), and a 
test set (12.5%), and then scaled. In our previous study (Roussel et al., 
2022), we predicted the bike activity using the processed data and a 
Neural Network. We  predicted the number of bookings with 
deviations for each station for each hour. In this study we used a two 
hidden layer sequential Neural Network with swish activation 
function and Adam optimizer. We trained the Neural Network for 30 
epochs with a batch size of 200 and a reduced learning rate after ten 
epochs to reduce the fluctuation in generalization. The model 
performed with a root mean square error of 3.2, which is the mean 
deviation of the predicted number of bookings for this use case. As 
this type of data, calculated with the metric of geospatial impact 
(Rolwes and Böhm, 2021) has not been used in other studies, the 
results cannot bet compared to literature. We compared the Neural 
Network with Logistic Regression, Decision Trees, Random Forest, 
and a voting classifier of all three and found it to be the best choice for 
this use case. In this study we will use the already trained model, as 
we  already have assessed different machine learning models and 
tuning parameters in the study before.

3.2 Shapley values

SHAPs can be thought of as the impact of features on the output 
of the model. They are calculated using the mean prediction of the 
model (base value) and the model prediction of each data point. For 
each feature, a weighted average of marginal contributions to the 
prediction is calculated, resulting in the Shapley value. Following 

2 https://data.deutschebahn.com/dataset/data-call-a-bike.html, accessed 

27 September 2023

TABLE 1 Exemplary data point for the rental bike system use case.

Feature Value

Date 2014-01-01 01:00

Station id 131,547

Bookings 3

Shopping 0.0000

Health 0.0101

Food services 0.8707

Leisure time 0.2818

Others 0.6038

Grocery 0.0000

Services and specialty retail 0.0000

Finance and insurance 0.1726

Education 0.0000

Public sector 0.5268

Religion 0.0000
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Equation 1 shows the calculation of Shapley values, which consist of 
three parts. First, the sum part adds up all values for possible subsets 
S ⊆ F \ {i}, where a feature can have a contribution to a given coalition. 
The middle part is the calculation of the weight, which is the 
probability that the feature joins a certain coalition. The third part is 
the difference between the outcome of the coalition with v S i∪{ }( ) 
and without v S( ) the considered feature. In machine learning this 
means that two models are trained, one with the considered feature 
and one where the feature is withheld.

 
Φi

S F i

S F S
F

v S i v S=
− −( )
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⊆ { }
∑

! !

!

1
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The Shapley values then show the impact of all the features in 
pushing the base value towards the prediction. This means that the 
Shapley values depend on the average prediction of the machine 
learning model. If the Shapley values were calculated for only one data 
point, the base value and the predicted value would already be the 
same, and the Shapley values would not need to show any impact to 
push the average prediction to the true prediction. The values would 
all be zero. This is important to consider when recalculating SHAPs 
for a use case, as the sample of data must be the same. For regression 
problems, each feature in a prediction is assigned a Shapley value. For 
classification problems, there are Shapley values for each probability 
of a class. For example, if the use case predicts probabilities for three 
classes, there will be three times the Shapley value for each prediction 
for each feature. A disadvantage of SHAP can be that it may have 
problems with robustness due to data anomalies, missing data, 
outliers, or changes in the training set of the machine learning model. 
A new training set will change the mean prediction of the model, thus 
changing the base value of SHAP and thus all Shapley values. This 
needs to be kept in mind when using SHAP with different use cases, 
or even the same use case but different data. One solution could be to 
use Shapley-Lorenz values (Giudici and Raffinetti, 2021). However, 
this solution is currently underexplored in research and was very 
inefficient in an experimental implementation. For the purpose of our 
study, we think that SHAP is a good choice, as it is currently very well-
known and stable in implementation.

We use a sample of the data to calculate the explanations 
(timestamp: 2016-07-23 16:00:00, Saturday). The reason for using only 
a sample of the data to compute SHAPs and not the whole dataset is 
that the time to compute SHAPs increases very quickly depending on 
the type of explainer chosen. Also, for a conceptual visualization, 
SHAPs are not needed for every data point. For the considered use 
case, we  calculate the Shapley values using the Kernel-explainer. 
We cannot use the Tree-explainer, which is more efficient, as we used 
a Neural Network and not a tree-based algorithm. The complexity of 
the Kernel-explainer increases with the number of samples. For each 
calculation it is important to note which sample was used for 
reproducibility. Depending on the data sample, the base value changes 
and so do the Shapley values. Figure 1 shows the summary plot for our 
use case.

The summary plot shows disadvantages when it comes to 
analyzing the Shapley values regarding the geographic context. It is 
not possible to identify geographic clusters, patterns, or outliers. The 
impact of the features cannot be analyzed in a geographic context. Our 
research questions cannot be answered using traditional SHAP plots. 

In addition, the summary plot is not interactive, and outliers cannot 
be further analyzed. These disadvantages lead to a lack of insight when 
it comes to explaining and understanding machine learning models 
with geospatial context. With our following concept and exemplary 
application to the use cases, we  will show the advantages of a 
visualization of explainable AI for GeoAI.

3.3 Visualization requirements and concept

To implement and evaluate our visualizations, we  define 
requirements that a visualization method should have for geospatial 
XAI using SHAP. We  define the requirements according to our 
research questions and according to the current problems of 
insufficient SHAP plots.

 1 Geospatial context: the visualization method must include the 
geospatial context in the explanations. This means that the use 
of a geographic map is inevitable.

 2 Recognition factor: the visualization should be recognizable 
and based on the original use of the XAI method. For SHAP, 
this means that the known color scheme should be included in 
the visualization.

 3 Precise values: the visualization should allow to extract precise 
values through interaction. A color scale on the side where the 
values are roughly measured is not sufficient.

 4 Highest impacts: the visualization should have the ability to 
analyze the geospatial distribution according to the highest 
impact among all features.

Requirement 1 is the most important one, as this is the main goal 
of our study and is also represented in the research questions. 
We fulfill this requirement through our final geovisualizations, using 
geographic maps. To meet requirement 2, we use the quantitative 
divergent asymmetric color scale of SHAP, ranging from blue (RGB: 
0,0,255) to magenta (RGB: 255,0,255). This leads to a better 
recognition factor, as users who are already familiar with SHAP can 
understand the visualization method more quickly. To reduce 
cognitive overload in the visualization due to many colors, we choose 

FIGURE 1

Summary plot for the sample data of the rental bike system.
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a gray map base layer. Otherwise, colors in the base layer such as blue 
rivers or green parks could be misleading in interpretation. We use 
Tableau3 as our visualization tool. Tableau is useful for prototyping 
because it allows for quick implementation of visualizations and has 
sufficient functionality for our study. In addition, the software allows 
for interaction by hovering and clicking to get more information. With 
this, we follow the visual information seeking mantra for user interface 
design by Shneiderman (1996, p.1): ‘overview first, zoom and filter, 
then details on demand’. With this, we can interactively extract precise 
values, which is necessary according to requirement 3. However, the 
processed data and the visualization method itself must be able to 
provide these precise values. To perform geographic calculations and 
operations, we use QGIS4, an open-source geographic information 
system. In preparation for requirement 4, we add six columns to our 
dataset. These columns contain the following variables: the feature 
with the highest positive impact (or smallest negative impact if there 
are no positive values) and its corresponding impact value, the feature 
with the highest negative impact (or smallest positive impact if there 
are no negative values) and its corresponding impact value, and the 
feature with the highest absolute impact and its corresponding 
impact value.

To address our research questions, we need two different types of 
visualization methods, one for a precise visualization and analysis of 
Shapley values, and one for an area-wide knowledge extraction 
analysis. Both types of visualization should also be transferable to 
answer research question 3 with the highest impact. As a solution, 
we propose a point visualization as a proportional symbol map using 
size and coloring, and a mapping of the impacts to the street network. 
The point visualization will primarily be used to address research 
question 1. Following known visual variables and their syntactics 
(Roth, 2017), we use location as the placement of the points on the 
map, color for the Shapley values, and size for the feature values, 
which are also shown in the summary plot. For the quantitative data 
we have, location and size are considered good choices. Other visual 
variables that are marginal but not poor choices are orientation, hue, 
color value, texture, and saturation. We use the SHAP color scale to 
satisfy the recognition factor requirement. Using another visual 
variable would reduce the recognition of the Shapley values and 
hinder the interpretation of the visualization. This visualization could 
also be used to answer research question 3, with the color representing 
the category that has the highest impact. The Shapley value is 
visualized by size, which can reveal differences in impact even when 
two points belong to the same category. The feature value is discarded 
as it is not relevant to this research question.

To obtain a visualization that covers more than just the exact 
locations, we  will map the impacts for an area-wide analysis. A 
commonly used technique for an area-wide analysis of point data are 
heat maps, which are easy to implement and can be configured in a 
variety of ways (Netek et al., 2018). However, given our research goal, 
heat maps do not meet all of the requirements. Requirement 1 is met, 
as the heat map is a geovisualization and can show the data in a 
geospatial context. Requirement 2 could also be met, because the 
SHAP color scale can be used. With the third requirement, we have 

3 https://www.tableau.com/, accessed 19 February 2024.

4 https://www.qgis.org/en/site/, accessed on February 19, 2024.

the first disadvantage of heat maps. It is hardly possible to extract 
precise values by hovering over locations. Impacts can only 
be estimated by the color and color scale in the legend. Requirement 
4 cannot be met either. The heat map cannot be transferred to visualize 
the highest impacts. Features cannot be distinguished because heat 
maps do not allow multiple colors. After further consideration, there 
are more challenges that come up. One is that heat maps are affected 
by clustered points or outliers. Outliers appear less important and 
clustered points appear more important. Also, positive and negative 
values of clustered points can cancel each other out, which is hard to 
see in a heat map. Additionally, a heat map would overlay the entire 
city. Not only would the infrastructure be invisible, but the heat map 
would also show impacts over areas where it is impossible to place 
bike stations, such as rivers and buildings. This could be reduced by 
reducing the size of the heat map parameter and increasing the 
opacity, but then the colors and purpose of the heat map are lost. 
We do not think that heat maps are the solution regarding our target. 
Following Section shows our solution to this problem.

3.4 Shapley mapped Voronoi values

As a solution to the disadvantages mentioned in the Section 
before, we propose our Shapley mapped Voronoi values (SMVV), 
where we map the Shapley values to the city’s street network. It would 
be possible to use heat maps and intersect the heat map color with the 
street network, but it will only show colors, and not precise values. For 
various reasons, such as more detailed analysis by domain experts or 
machine learning engineers, it is better to work with precise values 
than with estimated color values. As alternative intermediate step for 
precise values, we propose to use Voronoi (Aurenhammer, 1991), also 
called Thiessen polygons (Brassel and Reif, 1979). A Voronoi polygon 
for a single point covers the entire area closest to that point. If there 
are several points at one location, the Voronoi polygons become 
smaller. Conversely, if there are fewer points, they become larger. In 
some cases, two Voronoi polygons can be neighbors with a significant 
difference in value. At the boundary of the two Voronoi polygons, the 
value can ‘jump’ by moving very few in the other direction. To smooth 
this out, it is possible to extract the supporting points of all Voronoi, 
then assign them the average value of all surrounding Voronoi and 
recalculate the Voronoi. This can be repeated after visual inspection. 
By visual inspection we  mean that after an iteration it should 
be checked if there are places where two Voronoi with a high difference 
in values are still located near each other. Depending on the 
geographical dimension of the use case, visual inspection may not 
be possible or may be too time consuming. As a solution it could 
be possible to create a data frame with all points, their values and their 
neighbor points with values. Then, a threshold for the difference of 
two neighboring Voronoi values could be  defined when another 
smoothing iteration should be considered.

We then map the Voronoi with its values onto the city’s street 
network. To do this, we extract all relevant streets using the Overpass 
API5 for OpenStreetMap. We use the following values for the key 
highway to extract the network for the rental bike use case: motorway, 

5 https://overpass-turbo.eu/, accessed 13 March 2024.
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trunk, primary, secondary, tertiary, unclassified, residential, service, 
sidewalk. We excluded values such as motorway or footway because 
they refer to streets where rental bike stations are not allowed or where 
bikes are not allowed to be ridden. We intersect the Voronoi and the 
extracted street layer in QGIS to create a line layer for all streets with 
impacts. The layer is then visualized twice: once to show the 
distribution of explanations for a feature, and once to show the highest 
impacts among all features.

4 Results and discussion

In this Section, we apply the concept of our visualizations to our 
use case, the rental bike data, and evaluate it against our defined 
requirements. Using geovisualizations, we always meet requirement 1. 
First, we visualize the distribution of explanations of a feature and the 
distribution of highest positive Shapley values with features using the 
proportional symbol map. Figure  2A shows an example of the 
distribution of Shapley values for the feature Food services. The color 
shows the Shapley values (satisfying requirement 2) of the feature Food 
services, and the size is represented by the original values of the feature 
Food services. Through interaction, precise values can be extracted, 
satisfying requirement 3. This allows us to see slight changes in the 
impacts, even if the color appears almost the same. Compared to the 
summary plot (Figure 1), clusters can be identified. In this plot, some 
stations with a high positive Shapley value (magenta) and a high 
feature value (larger size) are close to each other. This is not apparent 
in the summary plot. In the summary plot (Figure 1), we can see, that 
lower values of the feature Food services tend to have a negative impact 
on the model output, and higher values tend to have a positive impact. 
However, it is not possible to locate geographic clusters, which can 
be seen on the map and enhances the understanding of the model 
regarding the geospatial component. Another finding is that the 
feature becomes smaller in the east of the city. The Shapley value also 
becomes negative (blue). This means, that the feature Food services has 
a rather negative impact on predicting the number of bookings in this 
direction. There is a pattern of impact of the geospatial context within 
the feature that can only be  found through geovisualization. This 
satisfies requirement 1, which is to show the geospatial distribution of 
explanations. Finally, we need to transfer the visualization to show the 
highest impacts, to satisfy requirement 4. Figure  2B shows the 
distribution of features with the highest positive Shapley value in 
predicting the number of bookings. The size represents the impact. 
This shows, that in many cases, Food services (orange color) has the 
highest positive impact, but there are also four stations in the city 
center where Shopping (brown color) has the highest positive impact. 
When visualizing the highest negative impacts, the distribution is 
more random. The distribution of a feature can be seen, but it can also 
lead to misinterpretation. With this visualization, we meet all the 
requirements and could also answer research questions 1 and 3. 
However, there is a problem that may appear in Figure 2. The size of 
the points may give the wrong impression. Although size is considered 
a good choice for this type of data (Roth, 2017), we think that it may 
not be appropriate for interpreting impacts. Larger points (in this case, 
positive impacts in magenta for Figure 2A) appear more important 
and grab the viewer’s attention. However, the smaller points (with 
negative impacts in blue) are equally important. It is possible not only 
to make the larger points appear more important, but also to make 

them overlap with the smaller points. One way to solve this would 
be to create two different visualizations. One where the size ranges 
from small to large values, and one inverted, where small values are 
shown larger. This would also make it possible to analyze the points 
with negative impacts because they have a smaller feature value. 
Research question 2 is not answered because the points only show 
exact locations. For these questions, we need the following visualization.

Next, we visualize our new concept, the SMVV, where we compute 
Voronoi and map them onto the street network. First, we compute the 
Voronoi using only the bike stations and color them with the SHAP 
value of the feature Food services. The computation of Voronoi can 
lead to hard transitions of values in some places. In order to eliminate 
these unrealistic transitions, we decide to smooth the Voronoi. In 
Figure 3A, we can see an example of a place where the influence 
‘jumps’, just by moving a very small amount. For an impact of a feature 
to jump like that in our use case is not logical. Therefore, we extract 
the supporting points of the Voronoi and assign them the average 
impact of the surrounding Voronoi. Then the Voronoi are recalculated 
with the station points and the support points, which can be seen in 
Figure  3B. It is possible, that a single iteration of our Voronoi 
smoothing process is not sufficient. As a solution, we take an iterative 
approach, where multiple iterations can be applied. In this case, after 
visual inspection, we decide to apply two iterations. Figure 3C shows 
the same location after the second smoothing iteration. Now the 
transitions of the impacts are smoother, which is closer to the 
real world.

Figures 4A,B shows the full visualization for the distribution of 
the feature Food services (satisfying requirement 2 with the SHAP 
color scale) and for the highest positive impacts across all features 
(satisfying requirement 4), when using Voronoi. The advantage of 
using Voronoi is that we now have precise values for each region 
(satisfying requirement 3), which we can extract interactively. We can 
also see the distribution of the features with the highest positive 
impact. None of this was possible with heat maps. But there is still the 
problem that the visualization also includes areas with impact where 
it is impossible to locate bike stations. It is also difficult to see the 
city’s infrastructure.

As a final step for our SMVV, we map the Voronoi values onto the 
street network. Figures  5A,B shows both results. With this 
visualization, we  eliminate the drawback from before. Through 
selected street types, we  now visualize only geographic locations 
where bike stations could be located or where bikes are allowed to 
ride. In addition, the city’s infrastructure is visible because there is no 
overlap. The orientation for analysis and interpretation is now much 
easier than with heat maps or Voronoi that cover the whole city. The 
visualization can help for further analysis and interpretation. Our 
SMVV meet all the requirements. It shows the geospatial distribution, 
without overlapping, uses the SHAP color scale when visualizing a 
feature, has precise values, and can be used to show the highest impact 
distribution. However, unlike a point visualization, small errors 
may occur.

Figure 6 shows an area where the Voronoi mapping has led to an 
error. Above the river (white area) there is a small area where the 
feature Services and specialty retail (marked by interaction) is 
considered to have the highest positive impact. The previous Voronoi 
also had a small area overlapping the river to the area in the south. The 
street mapping now also shows that this feature has the highest impact 
there. But it is more likely that the feature Others (red) has the highest 
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FIGURE 2

Proportional symbol map for the (A) distribution of the Shapley values for the feature Food services using a proportional symbol map. (B) Distribution 
of the highest positive Shapley values among all features.
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impact there, since it covers most of the streets at this area. These are 
small errors that can occur due to the calculation process. It is 
important to keep this in mind when interpreting the visualization.

A potential problem with the visualizations that show the highest 
impacts, such as Figures 2B, 4B, 5B, may be the number of features. 
Fewer features mean fewer colors, which are easier to interpret. Too 
many colors can lead to cognitive overload, which should be avoided. 
Which colors and how many of them are considered ‘still okay’ should 
be  evaluated with test users. Otherwise, some features could 
be excluded from the visualization if domain experts could decide that 
they are not relevant for the use case.

Regarding our research questions, we  think that the first 
visualization, using a proportional symbol map, is useful to answer 
research questions 1 and 3 when it comes to understanding the 
machine learning model. This visualization uses only the originally 
computed Shapley values, so it is a good choice to analyze the current 
state of the model. The point visualization shows the geographic 
distribution, revealing clusters, patterns, or outliers, which we consider 
a big advantage over the traditional SHAP summary plot. When it 
comes to answering research question 2, with the background 
information of trying to understand specific demands in the use case, 
such as the placement of a new rental bike station, we propose the 
second visualization (SMVV), where we compute Voronoi values and 
map them onto the city’s street network. Contrary to the study by Li 
(2022), which only visualized the impact of the feature ‘location’, with 
our visualization, the impact of all features in the whole city can 
be analyzed and interpreted. This could be very useful for domain 
experts trying to better understand the reasons why, in this case, their 
bike rental stations are booked.

5 Conclusion and future work

In this study we proposed ways to visualize explainable AI for 
geospatial use cases as ‘there is still a gap between the used XAI 
technique and the appropriate visualization method in the case of 
geospatial data’ (Roussel and Böhm, 2023, p.1). To achieve this, 
we used Shapley values and demonstrated our concept on the use 
case of a rental bike system. In this use case we predict the booking 
numbers for all stations using a Neural Network. We applied two 
visualizations: a point visualization as a proportional symbol map, 

and a mapping of Voronoi values onto the city’s street network. Our 
visualizations showed several benefits over the traditional SHAP 
plots regarding an analysis of the geospatial distribution, 
in particular:

 • Finding geographic clusters: The visualization on a map can 
be used to find clusters of data points with similar Shapley values, 
or clusters where one feature has the highest impact.

 • Finding geographic patterns: Like the clusters, other patterns can 
be identified within the use case.

 • Finding and analyzing outliers: The summary plot can only show 
if there is an outlier in the Shapley value. Our visualization can 
also show data points as geographic outliers. This is a consequence 
of the first two benefits. Also, there is no interaction in the 
summary plot, so the outlier cannot be further analyzed. With 
interactive maps, outliers can not only be found, but also further 
analyzed by experts and end users. This also plays into the 
next benefit.

 • Time savings: Going through every local explanation with, for 
example waterfall plots, it is possible to gain insights like the three 
mentioned benefits above. However, this is extremely time 
consuming. With a geographic visualization and interactivity, 
time can be saved in understanding the models and in discussions 
between domain experts, end users and other stakeholders.

With respect to our stated research questions, we have proven the 
concept to visualize explainable AI for geospatial use cases with a 
geographic map and shown its feasibility. We think that the shown 
proportional symbol map using points with color and size is suitable 
to analyze the current state of the machine learning model. This means 
analyzing the distribution of a feature or the highest impacts in the 
model, embedded in the geospatial context. For other use case specific 
demands, we think more visualizations are useful, such as our SMVV, 
where we  compute Voronoi values and map them on the street 
network. Rental bike system operators not only want to understand 
the machine learning model, but also want to interpret its explanations 
with respect to their use case specific demands. It might be interesting 
to see how the features behave not only at the stations, but also in the 
whole city. This could, for example, help in the process of finding a 
location for a new station, as operators only want to find locations 
where many features have a high positive impact.

FIGURE 3

Example of smoothening the Voronoi visualization. (A) Voronoi for all rental bike stations. (B) Voronoi after first iteration of smoothening. (C) Voronoi 
after second iteration of smoothening.
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FIGURE 4

Voronoi visualization for (A) the feature Food services and (B) the highest positive impacts among all features.
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FIGURE 5

Street network visualization for (A) the feature Food services and (B) the highest positive impacts among all features.

https://doi.org/10.3389/fcomp.2024.1414923
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roussel 10.3389/fcomp.2024.1414923

Frontiers in Computer Science 11 frontiersin.org

In future work, additional visualizations could be considered to 
gain further insight and understanding of the machine learning 
model. For example, time series visualizations using animated graphs 
or slider bars could be explored. The traditional SHAP plots, as well 
as our visualization, do not illustrate changes in Shapley values over 
time. Including such visualizations would provide additional insight 
into the temporal component of the data. Other visualization methods, 
such as glyphs, could also be beneficial. Glyphs can be used as visual 
symbols to represent data and could improve the interpretability of 
geospatial visualizations by providing a compact and intuitive 
representation of complex data points. For example, different shapes, 
sizes, and colors of glyphs could be used to represent Shapley values 
of different features at a geographic data point, making it easier to 
recognize patterns and insights directly on the map. For the interested 
reader, we refer to the well-known work of Müller et al. (2014).

Another step for future work is to evaluate our visualization, 
especially for the use case of bike sharing. It would certainly be useful 
to work with domain experts to evaluate the impacts in the city of 
Hamburg, Germany. For this, further analyses and visualizations 
might be appropriate, such as a cluster analysis of the distribution of 
Shapley values of a feature. This could help the operators of the bike 
sharing system to better understand the reasons why people book 

their bikes more or less in different regions. This would be a use case 
specific study, which is why we did not include these steps in this 
study. We certainly believe that this would lead to many new insights.

In addition, it is important to visualize the uncertainties in the 
model output, such as deviations for regression problems or 
probabilities for classification problems. This is crucial for the end 
user, who should not blindly trust machine learning models, as there 
will always be uncertainties. These uncertainties also play a role in 
explainable AI. Another potential avenue for future work is to conduct 
a more in-depth analysis of feature relationships. This could 
be accomplished using a bivariate mapping technique, which merges 
two Shapley values of features into a single-color scale. Another option 
is to incorporate ratios, such as the ratio of the feature Food services to 
actual booking numbers, to provide additional information in the 
visualization. Our focus was to implement conceptual visualizations 
for geospatial XAI using Shapley values on a geospatial use case. 
We  evaluated the visualizations against defined requirements. 
We showed that a combination of explanations with a geovisualization 
can be a solution for a better understanding of the machine learning 
model and for further analysis and interpretation of specific use case 
requirements. With this finding, we think that further studies should 
be conducted where evaluations with domain experts are performed. 

FIGURE 6

Error in the mapping of the Voronoi impact values to the street network of the city.
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An evaluation with humans is necessary to measure the effectiveness 
of the visualization and to improve it with, for example, new color 
schemes or new visualization methods may be more suitable for each 
specific use case.
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