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A lightweight visualization tool
for protein unfolding by collision
detection and elimination

Hua Qian1, Yu Chen2 and Yelu Jiang2*

1School of Digital Arts, Suzhou Art and Design Technology Institute, Suzhou, Jiangsu, China, 2School

of Computer Science and Technology, Soochow University, Suzhou, Jiangsu, China

The experiments involving protein denaturation and refolding serve as the

foundation for predicting the three-dimensional spatial structures of proteins

based on their amino acid sequences. Despite significant progress in protein

structure engineering, exemplified by AlphaFold2 andOmegaFold, there remains

a gap in understanding the folding pathways of polypeptide chains leading to

their final structures. We developed a lightweight tool for protein unfolding

visualization called PUV whose graphics design is mainly implemented by

OpenGL. PUV leverages principles from molecular biology and physics, and

achieves rapid visual dynamics simulation of protein polypeptide chain unfolding

through mechanical force and atom-level collision detection and elimination.

After a series of experimental validations, we believe that thismethod can provide

essential support for investigating protein folding mechanisms and pathways.

KEYWORDS

protein unfolding, 3D visualization, dynamics simulation, collision detection, collision

elimination

1 Introduction

The biological functions of proteins are determined by their three-dimensional
structures, which arise from specific folding mechanisms dictated by their amino
acid sequences. The sequence information of a protein molecule determines its three-
dimensional structure, and the relationship between sequence and folding is a focal
point in structural biology (Anfinsen, 1973; Branden and Tooze, 2012). Under certain
conditions, protein unfolding can be seen as the reverse process of protein folding
(Ferina and Daggett, 2019). In nature, it is difficult to obtain a naturally unfolded
protein, using thermodynamic or mechanical means to unfold and refold proteins
is a feasible and effective approach for folding observations (McCully et al., 2008;
Mayor et al., 2000). Hence, the study on visualization based on simulations for protein
unfolding is important to understand protein folding process since visualizing the
protein unfolding process offers a cost-effective means of generating valuable reference
data for folding (Dinner and Karplus, 1999). Additionally, thermal unfolding assays
for protein characteristics assist in studying protein function and interactions (Kotov
et al., 2021). The folding and unfolding processes of the protein are shown in Figure 1.
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FIGURE 1

Schematic of protein folding and unfolding process. (A) Folding

process and (B) unfolding process.

In order to study the stability of proteins, many researchers
performed biological folding/unfolding experiments on proteins in
the past few decades. At the earliest stage, researchers obtained
a denatured protein through thermodynamic methods, e.g., high
temperatures, low temperatures, or high pressures, to induce
proteins to lose their native structure and study the relationship
of thermodynamics parameters and protein structures (Brandts,
1964; Swint and Robertson, 1993; Griko et al., 1994;Wintrode et al.,
1994; Greenfield, 2006; Puglisi et al., 2020). In the past century,
researchers used optical tweezers to manipulate single molecules
to perform unfolding process for denatured proteins (Kellermayer
et al., 1997; Tskhovrebova et al., 1997). After that, many more
detailed studies related to mechanical force on single molecule
emerged one after another (Raschke and Marqusee, 1997; Cecconi
et al., 2005; Shank et al., 2010; Stigler et al., 2011; Guinn et al., 2015;
Bustamante et al., 2021). The application of mechanical force has
numerous advantages, such as directly determining the energy of
states with poor quality, etc. (Bustamante et al., 2020).

When observing or recording the protein unfolding process
using biochemical experimental methods (such as NMR and X-
RAY), it’s crucial to note that these folding events happen within
an extremely brief time frame (Mortensen and Williams, 2015;
Eaton et al., 1996; Bustamante et al., 2020). This necessitates
stringent experimental conditions, which in turn, pose challenges
in obtaining reliable data and achieving high-resolution temporal
characterization (Dill et al., 2008; Ferina and Daggett, 2019). The
emergence of computational methods such as molecular dynamics
(MD) simulation (Thompson et al., 2022; Van Der Spoel et al.,
2005; Eastman et al., 2017) filled this gap. These approaches
can simulate the trajectory of folding/unfolding under different

denaturing conditions, e.g., high temperature or mechanical force,
and output amount of data (Levitt et al., 1995; Ackbarow et al.,
2007; Keten and Buehler, 2008; McCully et al., 2008; Childers and
Daggett, 2018; Ferina and Daggett, 2019). Moreover, Ackbarow
et al. (2007) and Keten and Buehler (2008) simulated the ultimate
strength through stretching to unfold. Although MD has provided
great convenience for studying protein folding, its simulation of
all ideal atoms still requires huge computational resources and
consumption (Ferina and Daggett, 2019), such as the calculation
of the interactions between the physical or chemical forces
of all atoms. Consequently, these experiments are tailored to
specific proteins, further complicating the process. In addition,
the accuracy and reliability of its simulation results are still
questionable (Ackbarow et al., 2007; Ferina and Daggett, 2019).
Therefore, it’s important to acknowledge that conducting these
experiments, as well as MD simulations, can incur substantial costs
and can easily be substituted by simpler models with efficient
sampling techniques (Barducci et al., 2011; Holdijk et al., 2023).

Recently, AI-based methods have emerged and received great
success in protein structure engineering, including structure
prediction (Senior et al., 2020; Cramer, 2021; Baek et al., 2021;
Wu R. et al., 2022) or protein structure design (Wu K. E. et al.,
2022; Ni et al., 2023). Protein structure prediction involves end-
to-end prediction from sequence to structure, while protein design
is to accurately obtain protein sequences by regularly observing
the expected structure. Specially, FoldingDiff (Wu K. E. et al.,
2022) simulates the folding process with angle-level diffusion to
design unknown proteins and ForceGen (Ni et al., 2023) considers
the nanomechanical response during the unfolding process when
designing the proteins. However, they all target the final stable
structure which means the precise of folding/unfolding process is
not really considered, e.g., collision detection.

Scientific computational visualization represents a fundamental
research domain within computer graphics. This approach
leverages computer graphics principles and techniques to convert
extensive datasets stemming from scientific and engineering
computations into visual representations, encompassing graphics,
images, animations, and more. The goal is to present complex
data in an easily comprehensible manner. This multidisciplinary
field spans computer graphics, image processing, computer
vision, computer-aided design, and graphical user interfaces.
One prevalent research application of computational visualization
involves the exploration of protein structures. Experienced
biochemists can often extract crucial patterns and insights from
these visual representations. Pymol (DeLano et al., 2002), Chimera
(Pettersen et al., 2004) and Discovery Studio (2008) are classical
biological visualization tools with users friendly interfaces.

The unfolding process of a peptide is governed by two
fundamental constraints. Firstly, the atoms within the peptide must
avoid colliding with each other. Secondly, the bonds connecting
these atoms must remain intact. This thesis adopts a representation
of the folded peptide chain as a linear structure, striking a balance
between rigidity and flexibility. Within this chain, each atom
has the freedom to rotate around its neighboring atom while
adhering to the constraints imposed by the bonds that connect
them. These bonds signify the connections between bonded
atoms. By applying an external force to both ends of the chain
and employing a dynamics simulation engine, the peptide chain

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1415648
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Qian et al. 10.3389/fcomp.2024.1415648

FIGURE 2

The workflow of PUV.

gradually elongates, ultimately revealing the primary structure of
the protein. This approach allows for a meticulous tracking of the
entire protein unfolding process and the simulation helps to predict
the mechanical properties of protein unfolding (Ni et al., 2024).

By employing the unfolding simulation, we have developed
and put into operation a visualization system, known as the
Protein Unfolding Visualization system (PUV), which is based on
constraint dynamics. This system aims to play the entire protein
unfolding process through 3D animations. The unfolding process
is both rapid and intricate, exhibiting variability under diverse
conditions. While PUV may not elucidate the underlying nature
of this process, it is capable of offering a plausible potential
pathway for investigation. Experimental findings demonstrate that
the system can unfold and animate a native protein with fewer than
130 residues in less than an hour. Due to its close integration with
protein unfolding and reduced emphasis on other functionalities,
PUV stands as a more lightweight tool when compared to PyMOL
(DeLano et al., 2002). The contributions of this paper encompass:

1. Introduction of an innovative visualization technique for
macromolecules, including proteins, through the use of a rigid
body representation.

2. Establishment of close integration with the solution for protein
unfolding through a straightforward dynamics approach. It can
assist any unfolding method in validating the unfolding path.

3. Implementation of effective collision detection and
resolution methods.

2 Methods

This section will concentrate on the design and implementation
of PUV, including the algorithms and technical intricacies inherent
in its development. It encompasses several key components: the
analysis and encapsulation of protein data files, the visualization of
the protein’s three-dimensional structure, as well as the detection
and resolution of collisions among protein atoms in space.

2.1 Overview of the algorithm

The PUV system has been developed using an object-oriented
approach, with data encapsulated within classes to ensure excellent
scalability. The workflow of PUV is depicted in Figure 2. It begins
with obtaining the relevant standard PDB file from the RCSB PDB
database (Bank, 1971), which is then input into the PUV system.
After passing through the protein data encapsulation module, the
protein molecular 3D structure display module, and the dynamics
simulation computation module, the protein unfolding process
is recorded in the form of sequential slice images. Finally, these
slice images are played in sequence to illustrate the protein
unfolding process.

2.2 The visualization of PDB file

The initial step in PUV involves importing protein data.
The primary objective is to accurately model and visualize
the three-dimensional structure of the protein. PUV primarily
works with protein data files in the PDB format which are
standard data files used in the RCSB Protein Data Bank. To
enable precise visualization and simulation computations, it’s
essential to encapsulate this protein structure data. Standard PDB
files contain spatial location information for individual atoms
within proteins, which we consider as the three-dimensional
structural data for the proteins. PUV offers various rendering
graphics for protein three-dimensional structures using OpenGL’s
API interfaces, including wireframe model (Line), VDW model,
backbone model (Backbone), and tube model (Tube).

2.2.1 Line model
Rendering protein wireframe models primarily involves

drawing bonds, which can be accomplished by iterating through
all the bonds. However, to achieve improved display effects and
distinguish between different atoms, we divide the bonds into two
segments. For instance, in a C-O bond, one half of the line near the
C atom is colored green, while the end near the O atom is colored
red. This technique enhances atom differentiation and contributes
to the visual representation of the protein structure.

2.2.2 VDW model
Rendering in VDW (van der Waals) mode primarily involves

representing atoms as spheres centered at their positions, with
the van der Waals radius serving as the sphere’s radius. With the
coordinates for all the atoms, and the van derWaals radii are known
data: carbon (C) atoms have the van der Waals radius of 1.7 Å,
oxygen (O) atoms have the radius of 1.52 Å, nitrogen (N) atoms
have a radius of 1.55 Å, and hydrogen (H) atoms have a radius of
1.20 Å, users can draw spheres of the corresponding colors at the
centers of the atoms to represent them in VDWmode.

2.2.3 Backbone and tube models
The backbone and tube models for proteins both represent

the peptide chain structure by connecting the Cα atoms of each
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residue to each other. In our protein structural system, referencing
the central positions of the Cα atoms is very convenient. The
difference lies in their visualization: the backbone is typically
represented using lines, while the tube model uses pipe-like or
band-like structures. For the backbone model, a simple straight line
drawing function can be employed to sequentially connect the Cα

atoms. Similarly, for the tube model, a pipe drawing function can
be used instead of a straight line drawing function to create the
tube-like representation.

2.3 Rigid body representation

In the representation of protein peptide chains, atoms are
depicted as rigid spheres, and they are connected by chemical
bonds. During actual simulation computations, it’s common to
omit disulfide bridges (SS bonds) after importing PDB data.
Biochemically, this means breaking the SS bonds, thereby avoiding
cyclic structures within the peptide chain.

Each atomic rigid body in the simulation possesses the
following attributes: position, orientation, linear velocity, angular
velocity and mass. These data values are all represented as vectors.
When an atom is connected to two ormore other atoms, it becomes
a joint node. This joint node can be considered as a rotational
axis, and its rotational amplitude must satisfy constraints such as
dihedral angles of the residues. Other atoms connected to this
joint atom must move (rotate) around this joint atom during their
motion. The joint nodes of the atomic rigid bodies are shown
in Figure 3. The relative distance between the atoms of chemical
bonds remains constant to ensure that the primary structure of the
protein does not break. In addition, when the simulation involves a
complex with multiple chains, we simply split the complex by chain
and then perform experiments on the specified chain.

The atomic mass is currently set to 1 unit, and all atoms are
assumed to be identical. When the simulation begins, PUV applies
a random force in a random direction to each atom, resulting
in initial linear velocities and angular velocities relative to the
joint nodes. For the centroid of the atomic body (Position), it is
represented using a 3× 1 matrix vector:

p =







px
py
pz







where px, py, pz are the three coordinate components representing
the centroid of the atomic body in space.

The linear velocity of an object is the derivative of its position
with respect to time. Similarly, we can represent the linear velocity
of an object with just a variable of the vector type. It is represented
with a 3× 1 vector as follows:

v =







vx
vy
vz






=







dpx/dt

dpy/dt

dpz/dt







FIGURE 3

Atomic rigid representation.

The angular velocity of an object is represented by a 3× 1 vector
as shown in the following formula:

ω =







ωx

ωy

ωz







If vector á represents the offset of a point on the atomic
sphere relative to its center of mass, then the corresponding relative
velocity and global velocity of this point are:

vlocal = dá/dt = ω × á

vglobal = dá/dt = ω × (Rá)+ v

where R is the rotation matrices to the global coordinates.
For the situation shown in Figure 3, the constraint formed

by the atomic body, joint, with the connected atoms Atom1 and
Atom2 can be described as:

p1 + R1á1 = p2 + R2á2 (1)

where p1 is the centroid position of atom1 and p2 is the centroid
position of atom2, á1 is the offset of atom1 relative to joint and á2
is the offset of atom2 relative to joint. R1 and R2 are the rotation
matrices of atom1 and atom2, respectively, relative to the global
coordinates.

Then differentiate Equation 1 with respect to time t:

d

dt
[p1 + R1á1] =

d

dt
[p2 + R2á2]
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v1 + Ṙ1á1 = v2 + Ṙ2á2

where Ṙ is the derivative of R with respect to dt .

v1 + ω̂1R1á1 = v2 + ω̂2R2á2 (2)

where ω̂ is the antisymmetric matrix of ω.
Finally, we obtain a constraint Equation 2

regarding linear velocity and angular velocity. Two
atoms connected by the same joint should satisfy
this constraint.

2.4 Collision detection algorithm of the
PUV system

Collision detection is a commonly used technology
in 3D graphics processing systems, playing a significant
role in enhancing the realism of simulation systems.
Given that proteins are composed entirely of spherical
atoms, we have employed the bounding sphere algorithm
to manage atom collisions (Jiménez et al., 2001). This
method boasts advantages such as ease of implementation,
minimal storage requirements, and low complexity in
intersection tests.

Given that our subject of study is spherical, which is quite
unique, we don’t need to consider the compactness of the bounding
in our case. In the PUV system, the atomic spheres are fully and
tightly bounded. In our experiments, based on the properties of
the atoms, the radius of the bounding sphere is set at a fixed value
of 0.45 Å.

Let the center of atomic body A be CA with radius rA, the center
of atomic body B be CB with radius rB, and the permissible surface
contact distance be δ, then:















|CA − CB| < rA + rB, collision

rA + rB < |CA − CB| ≤ rA + rB + δ, contact.

|CA − CB| > rA + rB + δ, no collision.

Due to the spherical collision, the type of collision contact is
point contact. Let ErAB be the unit vector of

−−−→
CACB, PA be the collision

point of atomic body A, and PB be the collision point of atomic
body B, then we have:

PA = CA + rA · ErAB; PB = CB + rB · ErAB

To accelerate the collision detection performance and reduce
the computational load, we use the dynamic octree for spatial
hierarchical division. Collision detection is only performed for
atomic bounding spheres located within the same octree leaf node.
This greatly reduces the number of pairwise intersection checks in
space, thus speeding up the simulation process.

The construction of the dynamic octree adopts a top-down
approach. Firstly, an evaluation system is established: specifying
the maximum depth of the tree and a threshold Kmax for the
number of objects contained in a leaf node. The establishment of
this evaluation system serves two purposes: (1) To prevent stack

overflow that may arise from excessively deep tree depths during
the recursive construction of the octree; (2) To limit the maximum
number of pairwise collision detection in a leaf node through
Kmax. If the number of atomic bodies contained in a node exceeds
Kmax and its depth is less than the maximum depth, the node will
undergo further spatial subdivision, forming eight child nodes.

This process continues until the specified evaluation system
criteria are met. When the position of an active atomic body
changes, the octree leaf node it originally belonged to no longer
suits it. At this point, it will be removed from its original leaf node
and inserted into a new one. This operation requires knowledge of
the leaf node that the atomic body originally belonged to. A full-tree
search for this would inevitably result in efficiency loss. To solve this
problem and more quickly locate the leaf node, after establishing
the spatial octree, a pointer must be added to each atomic body
pointing to the octree leaf node containing it.

When the position of an active object changes, the pseudocode
for updating the spatial octree is as the following Algorithm 1:

Given the ObjAtom, ObjIndex

for Each leaf node of ObjAtom do

Delete the atomic body index with an index

value of ObjIndex in this leaf node.

Clear the octree leaf node pointer array in the

atomic body.

Re-insert the atomic body ObjAtom into the

octree.

Algorithm 1. The update algorithm for the spatial octree.

When protein molecules, composed of a vast array of
atoms, undergo collisions between their atomic components,
the post-collision interactions become notably complex, resulting
in intricate interplay among the colliding entities. To enhance
collision detection efficiency, PUV utilizes octree spatial division to
manage colliding atomic bodies. The pseudocode for this algorithm
is provided in Algorithm 2.

2.5 The overall simulation algorithm of
PUV

During the unfolding process, the polypeptide chain must
adhere to two fundamental constraints: Firstly, there should be no
overlapping or penetration between the effective volumes of the
atoms. Secondly, the chemical bonds between the atoms within the
polypeptide chain and the residues should not break, meaning that
there are distance constraints between atoms.

We represent the polypeptide chain as a rigid linear chain with
specific degrees of freedom in motion. The atoms on the peptide
chain are visualized as rigid spheres capable of free rotation, while
atoms connected to each other are constrained by joint nodes.
Using this representation, we generate data for simulating protein
unfolding, as depicted in Figure 4. The simulation algorithm for
PUV is outlined in Algorithm 3.

During the simulation process, we apply external forces in
random directions to all protein atoms using the Monte-Carlo
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Given the time T

Set bCollision=False

for Each atomic body do

Detect the contact conditions between atoms

and calculate the force on the atomic body.

Calculate the motion state and spatial

position of the rigid body after a time slice T.

Update the scene’s octree leaf nodes.

Update the scene’s octree to make it meet the

evaluation system again.

for Each atomic body do

Detect whether collisions occur between

atoms, and store the indexes of atomic bodies

that collide in the collision object array.

if collisions occur then Set bCollision=True.

if bCollision==True then

for Each atomic body with collisions do

Calculate the motion state of the rigid body

after the collision and make a collision

response.

Update the scene’s octree leaf nodes.

Update the scene’s octree to make it meet the

evaluation system again.

Algorithm 2. The algorithm of managing collision atomic bodies.

FIGURE 4

Reconstruct the polypeptide chain using rigid spheres and joint

nodes.

method. On the N-terminus and C-terminus of the polypeptide
chain, we apply opposite, relatively large constant forces to
purposefully stretch the polypeptide chain in both directions (Rief
et al., 1997). Considering the possibility that the N-terminus and
C-terminus may knot with the loops in the complex polypeptide
chain during the stretching process; when initializing the system,
based on the structure of the protein, we prioritize the application
of traction forces on the N-terminus and C-terminus that move
away from the center of the protein structure, i.e., away from the
center position of the protein structural body.

1.Create collision atomic rigid bodies based on

PDB atom positions and attributes.

2.Identify all atoms that meet the criteria and

designate them as joint nodes while establishing

initial parameters.

3.Initialize the force received by all atomic

bodies and their related attributes.

repeat

Create collision data buffer

All geometries undergo constraint and force

calculations.

Collision detection operation.

Feedback of computational results (update).

Clear collision buffer.

until Protein Unfolded (Equation 3)

Organize and save simulation data.

Algorithm 3. PUV simulation.

Simply, stop the simulation when the spatial distance
between the N-terminus and C-terminus Cα atoms satisfies the
following formula.

||Cαa1 − Cαan || = R×

n−1
∑

i=1

||Cαai − Cαa(i+1) || (3)

here R is a scaling factor, where 0 < R < 1. This means that
when the distance between the N-terminus and C-terminus Cα

atoms reaches a certain proportion of the theoretical straightened
distance of the peptide chain, we consider that the peptide chain has
extended, and the unfolding simulation process is terminated.

3 Performance evaluation

Asmentioned above. We have designed a system for visualizing
protein unfolding simulations, named the Protein Unfolding
Visualization (PUV) system. This section will primarily showcase
the results and performance of our system.

3.1 PUV system

When using the PUV system to visualize protein unfolding
simulations, users can select the protein molecule PDB file they
want to simulate through the “Open” command in the file menu.
PUV utilizes STRIDE (Frishman and Argos, 1995) for classifying
protein secondary structures, which provides information about
hydrogen bonds, dihedral angles, and more. This data is used to
define biochemical condition constraints during protein unfolding
simulations. Moreover, STRIDE is a widely used tool for identifying
protein secondary structure elements, such as α-helix and β-sheet,
and it offers valuable insights into hydrogen bonds and dihedral
angles. This information is crucial for simulating protein structure
and dynamics. In the context of protein unfolding simulations, this
data is employed to constrain the protein’s structure and secondary
structure, enabling a more realistic simulation of protein unfolding
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FIGURE 5

Pdb displayed by PUV. Green spheres represent the Cα atoms on the backbone, while gray tubular lines represent the contacts.

under biochemical conditions. Once PUV loads the desired
protein molecule file for simulation, users can access the settings
menu to adjust various simulation parameters, such as simulation
step size, simulation process tolerance control coefficient, system
background color, and more. If no adjustments are made, the
system will proceed with its default parameters. The visual display
effect after opening a PDB file with the PUV system is shown in
Figure 5.

3.2 PUV’s display of protein 3D structure

Through the “Representation” button, PUV provides users with
multiple options for visualizing protein 3D structures, including
colored dot particles, colored line forms, ball-and-stick models,
and tubular representations. These diverse representations offer
excellent display performance for static protein 3D structures. The
visual effects of PUV for the protein 3EE7 are illustrated in Figure 6.

3.3 Protein unfolding simulation

We use PUV to conduct unfolding simulation tests on various
protein peptide chains. The tests were divided into two groups:

1. Experiments with varying protein peptide chain lengths.
2. Experiments with consistent protein peptide chain lengths but

different structures.

The experiments were conducted on a PC with the following
specifications: Intel Core2 dual-core 2.6GHZ CPU, 2GB RAM,

running on the Vista SP1 operating system. The protein structure
files were all sourced from the RCSB protein database. The steps
used for the protein unfolding simulation were consistent, yielding
results at the same simulation step size.

3.3.1 Test on proteins with di�erent numbers of
residues

The comparative test results for the unfolding simulation
of protein peptide chains with varying numbers of residues are
presented in Table 1.

The simulation results clearly indicate that as the number of
residues increases, the computational load in the all-atom mode
also significantly increases. Consequently, each simulation step
requires substantially more computation. With the same step size,
the number of simulation steps and the time required for peptide
chain expansion also increase noticeably.

3.3.2 Unfolding tests for proteins with the same
number of residues but di�erent structures

For the unfolding simulation of proteins with the same number
of residues, the comparative test results are shown in Table 2.

The simulation results suggest that protein peptides with the
same number of residues exhibit varying unfolding times, which are
closely related to the spatial folding structure of the protein. When
the protein’s spatial structure is relatively simple, the peptide chain
unfolds in less time and simulation steps. For example, 1CDN, with
fewer atoms, requires the longest simulation time, while 1FXT, with
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FIGURE 6

PUV displays the 3D structure of protein 3EE7: (A) Line model. The chemical bonds are distinguished by two colors. The half that is close to the

carbon atom is rendered in green, while the half that is close to the other atom interacting with the carbon is painted red. (B) VDW model. Di�erent

atoms are represented as spheres of di�erent colors centered at their positions, with the radius of the spheres being equal to the van der Waals

radius. The (C) Backbone skeletal model and (D) Tubular model utilize lines and tubes to represent the protein’s backbone, respectively. (C, D)

Employ distinct color segments to highlight the substructures of the protein for better visualization.

more atoms, consumes more simulation time. The 3D structures of
these two proteins are depicted in Figure 7.

As depicted in the figure above, the structure of the 1CDN
protein appears to be slightly more complex than that of the 1FXT
protein. Upon manual examination, it’s noticeable that the peptide

chain of 1CND is more tightly packed compared to that of 1FXT.
A more compact structure suggests stronger internal connections
within the protein. Further analysis of the proteins’ secondary
structure information used in this simulation experiment revealed
that peptide chains with a greater number of α-helix unfold more
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slowly, requiring a longer simulation time. Although the number of
β-sheet also influences the unfolding simulation speed, its impact
is less significant compared to that of the α-helix. The presence of
turn structures has minimal impact on the unfolding simulation.

3.3.3 Display of the unfolding process of protein
2JSV

We selected protein 2JSV as an example for the unfolding
simulation test. Protein 2JSV consists of 56 residues and 857
atoms. During its unfolding simulation, we used PUV’s real-time
screenshot feature to capture the unfolding process of its peptide

TABLE 1 Test results for proteins with varying numbers of residues.

Pdb Res num Atom
num

Steps Cost
minutes

2FQ8 20 311 2,153 4.0

1RES 43 697 4,971 7.2

2JSV 56 857 5,642 9.5

2K39 76 1,231 7,012 15.5

2AX5 99 1,541 13,674 26.0

chain. The effects of the 2JSV unfolding simulation process are
shown in Figure 8. Here, we’ve chosen four representative images.
Figure 8A shows the protein in its natural structure, Figures 8B, C
depict intermediate stages of the peptide chain’s unfolding process,
and Figure 8D displays the final simulated result of the protein’s
unfolding. The complete video of two examples can be found at:
github.com/yelujiang/PUVDisplay

3.3.4 Comparison on chignolin protein
As previously stated, the process of protein unfolding is swift

and subject to variation. Capturing the full and precise trajectory
of this process for various proteins poses a considerable challenge.
The advantage of PUV is its ability to quickly provide potential
unfolding pathways. We compared it with the latest method
combining Molecular Dynamics (MD) with deep learning and
stochastic optimal control, known as PIPS (Holdijk et al., 2023),
and presented the pathway results on chignolin protein. PIPS aims
to sample transition pathways (TPS) between an initial state and a
final state. For PIPS, we set the unfolded state as the initial state and
the folded state as the final state. We then use the reverse process
of its sampling as the unfolding process. As shown in Figure 9,
PIPS, after extensive computation, provided potential low-energy
pathways. Obviously, the pathways generated by the two methods
are similar to a certain extent.

TABLE 2 Test results for proteins with same number of residues but di�erent structures.

Pdb Res num Atom num α-helix num β-sheet num Turn angle num Steps Cost minutes

1AK8 76 1,149 5 0 4 5,956 12.0

1CDN 75 1,193 5 2 4 8,968 19.0

1S6O 76 1,209 3 4 6 6,857 15.2

1FXT 76 1,229 1 5 11 5,674 12.5

2K39 76 1,231 2 5 9 7,012 15.5

1BO0 76 1,272 2 3 6 6,426 15.1

FIGURE 7

Comparison of the 3D structures of protein peptide chain 1CDN and protein peptide chain 1FXT.
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FIGURE 8

Visualization of the unfolding simulation process for protein 2JSV. (A–D) Illustrate the step-by-step unfolding process of the protein.

4 Conclusion

We have developed and deployed a protein unfolding
visualization simulation system named PUV. The unfolding
data generated during these simulations can be employed
as a valuable dataset for reverse protein folding prediction
processes. However, we need to claim that there is no
silver bullet for unfolding regardless of the method used
due to the complex structure of various proteins. The

value proposition of our paper is developing a visualization
system that can assist any unfolding method in validating the
unfolding path.

To simulate the process of protein unfolding, PUV first
prepares the necessary data for the simulation. Then, it randomly
applies forces to all atoms on the polypeptide chains using the
Monte-Carlo method. Additionally, substantial external forces in
opposite directions are applied to the two Cα atoms at both ends
of the polypeptide chain. During the stretching process, care is
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FIGURE 9

Unfold comparison on chignolin protein and PIPS results were from the source code. (A) For PIPS and (B) for PUV.

taken to ensure that the existing chemical bonds between atoms do
not break, and they do not penetrate each other. By continuously
stretching, the naturally three-dimensional stable structure of the
polypeptide chain is gradually extended from these two endpoints
to a fully unfolded state.

The simulation results demonstrate that PUV’s visualization
unfolding simulation process exhibits good performance. For
protein polypeptide chains with up to 130 residues, the simulation
can fully extend the natural protein polypeptide chain in three-
dimensional space, achieving the primary protein structure state.
The simulation process typically takes <1 h.

Unfold process is so rapid that experimental or simulation data
is quite scarce. Moreover, due to various conditions, the unfolding
process of the same protein is complex and variable. Therefore,
current research mainly focuses on improving the optimization
algorithms of molecular dynamics, including reducing time
consumption and improving simulation accuracy. Our method
aims primarily to reduce time consumption and provide a potential
analysis of the unfolding process that is quick and easy to obtain.
Furthermore, natural protein unfolding processes are influenced
by a variety of environmental factors, including water molecules,
ions, and pH levels, and are regulated by specific thermodynamic
ensembles. However, when modeling protein unfolding, the PUV
approach solely considers the protein itself. Consequently, the
performance of PUV is constrained due to the absence of these
critical environmental factors in its simulations. A generative
method for protein unfolding is a tough problem and PUV cannot
solve it completely. We hope this system will assist any unfolding
method in validating its unfolding path.
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