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Spatial attention guided cGAN for
improved salient object detection

Gayathri Dhara and Ravi Kant Kumar*

Department of Computer Science and Engineering (CSE), SRM University, Amaravathi, Andhra Pradesh,

India

Recent research shows that Conditional Generative Adversarial Networks

(cGANs) are e�ective for Salient Object Detection (SOD), a challenging computer

vision task that mimics the way human vision focuses on important parts of

an image. However, implementing cGANs for this task has presented several

complexities, including instability during training with skip connections, weak

generators, and di�culty in capturing context information for challenging

images. These challenges are particularly evident when dealingwith input images

containing small salient objects against complex backgrounds, underscoring the

need for careful design and tuning of cGANs to ensure accurate segmentation

and detection of salient objects. To address these issues, we propose an

innovative method for SOD using a cGAN framework. Our method utilizes

encoder-decoder framework as the generator component for cGAN, enhancing

the feature extraction process and facilitating accurate segmentation of the

salient objects. We incorporate Wasserstein-1 distance within the cGAN training

process to improve the accuracy of finding the salient objects and stabilize the

training process. Additionally, our enhanced model e�ciently captures intricate

saliency cues by leveraging the spatial attention gate with global average pooling

and regularization. The introduction of global average pooling layers in the

encoder and decoder paths enhances the network’s global perception and fine-

grained detail capture, while the channel attention mechanism, facilitated by

dense layers, dynamically modulates feature maps to amplify saliency cues. The

generated saliency maps are evaluated by the discriminator for authenticity and

gives feedback to enhance the generator’s ability to generate high-resolution

saliency maps. By iteratively training the discriminator and generator networks,

the model achieves improved results in finding the salient object. We trained and

validated our model using large-scale benchmark datasets commonly used for

salient object detection, namely DUTS, ECSSD, and DUT-OMRON. Our approach

was evaluated using standard performance metrics on these datasets. Precision,

recall, MAE and Fβ score metrics are used to evaluate performance. Our method

achieved the lowest MAE values: 0.0292 on the ECSSD dataset, 0.033 on the

DUTS-TE dataset, and 0.0439 on the challenging and complex DUT-OMRON

dataset, compared to other state-of-the-art methods. Our proposed method

demonstrates significant improvements in salient object detection, highlighting

its potential benefits for real-life applications.
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1 Introduction

The concept of visual attention has motivated numerous

researchers to replicate the human visual system’s capabilities in

computer vision. SOD is a technique that seeks to replicate the

attention mechanisms observed in human vision. It enables the

identification of prominent areas in an image that capture human

gaze. Within the realm of computer vision, saliency detection

serves as a cornerstone for many of the applications centered

around image comprehension. These applications encompass

diverse areas, including image compression (Zünd et al., 2013),

scene classification (Qi andWang, 2016), object localization (Aamir

et al., 2023), object tracking (Borji and Itti, 2012), and various

multimedia applications (Singh, 2020; Sun et al., 2022). The U-

Net (Ronneberger et al., 2015), a representative example of a fully

convolutional neural network, has achieved remarkable success

in medical image segmentation. Its effectiveness in suppressing

background noise is achieved through a two-step process: jointly

employing an encoder and decoder to process image data, and

then integrating the information using skip connections. When

utilized for the purpose of saliency detection in natural images,

the challenges become more intricate. This complexity arises from

the presence of objects that are challenging to differentiate from

complex backgrounds. These backgrounds include elements like

pixel blocks with substantial contrast variations and mirrored

reflections of salient objects (Zhang et al., 2019). Therefore,

an enhanced methodology is imperative to effectively address

the difficulties in distinguishing salient objects from intricate

backgrounds.

This paper proposes a novel encoder-decoder network with

attention mechanisms to address the limitations of existing

methods in SOD. SOD aims to identify and segment the most

visually important objects in an image. We formulate this task as

a binary segmentation problem, where the goal is to distinguish the

salient foreground objects from the non-salient background.The

resulting segmentation map represents a binary mask, where the

foreground regions are typically assigned as white or 1, while the

background regions are marked as black or 0. Binary segmentation

has numerous applications in vision computing, which include

object detection, image editing, medical image analysis, and

scene understanding. It provides a foundation for more complex

segmentation tasks and enables subsequent analysis and processing

of the segmented regions. In the past few years, cGANs have

evolved as a robust framework for various tasks image generation,

style transfer, and semantic segmentation. Numerous studies

have been dedicated to enhancing the theoretical foundations

of GANs (Goodfellow et al., 2014; Gulrajani et al., 2017; Isola

et al., 2017), Goodfellow et al. (2014) introduced the original

GAN model, which aimed to produce synthetic samples that are

indistinguishable from real data by training a generative model in

an adversarial fashion. In this model, the discriminator is tasked

with discerning between fake and real samples, while the generator

is trained to deceive the discriminator. The conditional nature

of cGANs allows for the generation of outputs conditioned on

input data, making them specifically well-suited for applications

where the output is dependent on specific input information. The

architectural difference between GAN and cGAN is as shown

in Figure 1.

The motivation to adopt our proposed approach resides

in its skill to manage the limitations of existing U-Net-based

methods in salient object detection. By incorporating attention

mechanisms, we aim to enhance model’s capability to emphasize

relevant spatial regions while selectively suppressing irrelevant or

distracting elements. This attention-guided mechanism is expected

to significantly improve the accuracy and robustness of salient

object detection, leading to more precise and reliable segmentation

results.

The main contributions of this research are:

• To investigate the application of cGAN with an enhanced

encoder-decoder network architecture in the context of

SOD. We put forward an enhanced encoder-decoder

framework that strategically addresses the differences between

abstract and detailed features while incorporating the unique

characteristics of the contracting path and expanding path.

• Attention mechanisms are incorporated to address the

difficulty of SOD by selectively amplifying the significance

of prominent spatial regions and channels within the input

data. This focused approach allows the network to extract

more meaningful features from these regions, leading to

improved accuracy and precision in tasks like segmentation

and detection.

• To comprehensively evaluate our method’s performance,

we conducted experimental analysis on three challenging

datasets for SOD. The results convincingly demonstrate the

performance of our proposed network in this task.

The related work is given as part of Section 2, and the proposed

method for SOD is introduced and elaborated under Section 3.

Details of metrics used for evaluation are part of the Section

4.2. The results and discussion are detailed in Section 4. The

quintessence of the proposed work is summarized in Section 6.

2 Related works

Drawing inspiration from Feature Integration Theory (FIT)

(Treisman and Gelade, 1980), Koch and Ullman (1987) developed

a computational architecture grounded in biological plausibility to

model human selective attention mechanisms by replicating the

early feature representations described in FIT.

In practice, the development of bottom-up methods

significantly depends on various saliency priors such as center-

surround prior, foreground prior, boundary connectivity prior,

local and global contrast prior, focusness prior, and geodesic prior

(Perazzi et al., 2012; Wei et al., 2012; Jiang et al., 2013a; Yang et al.,

2013; Cheng et al., 2014; Li et al., 2014). These priors function

as semi-supervised guides, influencing the creation of heuristic

bottom-up techniques constrained by these factors. For example,

Zhu et al. (2014) presented a saliency optimization approach that

calculates the background probability of superpixels using geodesic

saliency. Likewise, Yang et al. (2013) proposed a graph-basedmodel

with manifold ranking, where boundary nodes are generally treated

as background or non-salient. However, bottom-up methods are

fundamentally heuristic and dependent on specific saliency priors,

which can limit their effectiveness when images do not conform
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FIGURE 1

Architectural di�erence between GAN and cGAN Mino and Spanakis (2018).

well to these priors. This dependence on unsupervised techniques

based on preset constraints creates a performance bottleneck. In

contrast, top-down approaches focus more on feature extraction

and classifier design, especially before the deep learning era.

Jiang et al. (2013b) proposed a discriminative regional feature

integration approach that uses a random forest regressor to map

regional feature vectors to saliency scores. A method for detecting

salient objects by modeling saliency features through conditional

random field (CRF) learning in (Liu et al., 2010).

Region proposal algorithms lay the groundwork for faster

Recurrent Neural Network (R-CNN) models in object detection.

These algorithms slide a compact network over a feature map,

classifying objects within specific regions. Girshick et al. (2014)

suggested the region-based convolution neural network (R-CNN)

to address the challenge of region generation, leveraging the

selective search algorithm. Introducing Faster R-CNN, Ren et al.

(2015) revolutionized neural networks by eliminating the selective

search algorithm for region proposal extraction. Instead, they

harnessed a separate network, the Region Proposal Network

(RPN), to predict region proposals, resulting in a substantial

performance boost. Using RPN for region generation enables

Faster R-CNN to outpace the execution speed of R-CNN and fast

R-CNN. For precise pixel-level image segmentation, Buric et al.

(2018) put forth Mask R-CNN, a network incorporating aligned

Region of Interest (ROI) Pooling, yielding enhanced accuracy in

pixel-wise image segmentation. Nonetheless, this network does

suffer from slower detection times. Overall, the evolution from

R-CNN to Fast R-CNN and finally to Faster R-CNN has focused on

overcoming the limitations of the selective search algorithm while

improving the efficiency and precision of object detection. (Guan

et al., 2021) introduced a method for image object detection and

classification utilizing a deep neural network (DNN) that relies on

precise object localization.

Deep convolutional neural networks (CNNs) have brought

about remarkable enhancements in image classification and object

detection when contrasted with manually crafted features. These

CNN-based approaches adeptly extract semantic information or

features at multiple levels and integrate them with high efficiency.

Traditional methods for salient object detection primarily depend

on intrinsic cues to generate saliency maps. However, these

methods were constrained in their capacity to extract high-level

semantic features. The work of Chen et al. (2014) gave rise to

DeepLab, an architecture that integrates deep CNNs, substituting

conventional downsampling with atrous convolutions within

convolutional layers. Expanding upon the foundations of DeepLab,

Chen et al. (2017b) introduced DeepLabV3, surpassing its

predecessors, DeepLabV1 and DeepLabV2, through heightened

segmentation task efficiency. This network was meticulously

designed to yield feature maps that adeptly encapsulate multiscale

content. In recent developments, Chen et al. (2018) introduced

DeepLabV3+, an extension of DeepLabV3. This model integrates

the Xception Model and applies depth-wise separable convolutions

to both the atrous spatial pyramid pooling (ASPP) and decoder

modules, yielding a discernible advancement in performance.

The introduction of a multi-level feature aggregation network,

AmuletNet, which utilizes convolutional features from multiple

levels as saliency cues for salient object detection is proposed by

Zhang et al. (2017). The design of a network module that can

capture and aggregate global context information from different

scales and levels, which progressively refine the saliency prediction,

is proposed in Chen et al. (2020).

Methods based on upsampling/deconvolution have also

been suggested for image segmentation. In this context, Jégou

et al. (2017) introduced FC-DenseNet, a model built upon the

DenseNet architecture. FC-DenseNet harnesses pre-trained

parameters and employs post-processing techniques to enhance

scene comprehension. By incorporating both upsampling and

downsampling pathways alongside skip connections, FC-DenseNet

effectively retains and utilizes spatial information.

Badrinarayanan et al. (2017) suggested SegNet for precise

pixel-wise classification and boundary localization. This approach

employs an encoder-decoder network structure, with each encoder
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layer correspondingly linked to its decoder counterpart. However,

the computational intricacy associated with pixel-wise labeling

presents challenges for real-time scene segmentation. Additionally,

SegNet’s prolonged inference time makes it less suitable for

applications requiring rapid responses. In response to these

limitations, Zhao et al. (2018) presented ICNet, a network designed

to attain swift and accurate segmentation. These methods based on

upsampling/deconvolution, encompassing FC-DenseNet, SegNet,

and ICNet, have notably advanced semantic segmentation by

enabling meticulous pixel-wise classification and precise boundary

delineation. While each approach boasts distinct merits and

drawbacks, they collectively offer valuable insights for addressing

challenges in scene comprehension and real-time segmentation.

Feature Encoder-Based Methods: These methods rely on

converting categorical variables into continuous ones for effective

integration into the model. For instance, VGG Net was introduced

by Simonyan and Zisserman (2015), which incorporated a series

of consecutive 3×3 convolutions inspired by the architecture of

AlexNet (Krizhevsky et al., 2012). However, as the network’s depth

increased, performance saturation and degradation challenges

emerged. To tackle these issues, He et al. (2016) introduced ResNet

(residual network), which addressed the problem of vanishing

gradients by incorporating residual blocks in a pre-activation

configuration. While effective, ResNet’s dense residual layers led

to heightened computational complexity, especially when dealing

with datasets of limited size. In recent years, many deep CNN-

based models have adopted an encoder-decoder framework based

on FCN and can be trained end-to-end using pixel-wise annotated

saliency maps. Specifically, these models typically operate within an

FCN-like structure, originally designed for other image-to-image

learning tasks such as semantic segmentation (Chen et al., 2017a,

2018) and edge detection (Xie and Tu, 2015). Techniques like

skip connections (Ronneberger et al., 2015), atrous convolution

(Chen et al., 2017a), and pyramid pooling modules (Zhao et al.,

2017) can be implicitly or explicitly incorporated to develop

new deep CNN models for SOD. Recently, several multi-scale

techniques have been developed to enhance the ability to learn

semantic information. For instance, MINet (Pang et al., 2020) is

a network that merges features from adjacent layers and detects

salient objects by minimizing noise from resolution differences

in feature maps using small up-/down-sampling rates. Chen

et al. (2019) proposed an innovative method featuring a parallel

multi-scale structure to integrate salient features at various levels.

Ji et al. (2018b) introduced a technique for learning context

between feature information of different scales by applying spatial

and channel attention modules to multi-scale encoder-decoder

networks. To tackle the challenge of scale variations in objects,

most SOD models focus on enhancing multi-scale feature fusion

by incorporating advanced feature fusion modules within their

networks. ICON (Zhuge et al., 2022) incorporated convolutional

kernels of various shapes to boost feature diversity through multi-

level feature fusion. MENet (Wang et al., 2023) utilized atrous

spatial pyramid pooling (ASPP) (Lian et al., 2021) to combine

multi-scale features, thereby improving feature representation.

Additionally, several techniques have been developed to enhance

segmentation performance in salient object detection (SOD) by

incorporating contour or edge information from input images

and prediction maps. For instance, the authors of (Zhao et al.,

2019) introduced EGNet, which learns edge information via

supervised learning using multiple branches, integrating local edge

and global location information. Han et al. (2019) enhanced U-

Net by adding an edge convolution constraint to achieve more

accurate saliency maps. Within the current body of literature,

the significance of computational time in deep learning-based

segmentation techniques has garnered recognition. Nonetheless,

it has been noted that enhancements in a model’s performance

are not necessarily directly proportional to the computational

time invested. Moreover, diverse models face specific challenges

and constraints. For instance, feature-encoder-based models often

grapple with memory limitations, particularly when applied to

expansive datasets (Simonyan and Zisserman, 2015). Existing

deep learning methods for salient object detection have made

significant advancements, but they still suffer from several

drawbacks, such as overfitting, sensitivity to hyperparameters,

real-time performance issues, and model complexity and size.

Our proposed architecture effectively addresses several issues by

employing a conditional Generative Adversarial Network (cGAN)

combined with an enhanced UNET architecture. The cGAN

framework, through its adversarial training process, improves the

model’s ability to generalize across diverse datasets and conditions,

enhancing robustness to noise and distortions. The enhanced

UNET architecture, known for its efficient use of convolutional

and deconvolutional layers, reduces computational complexity and

achieves finer granularity in segmentation tasks. This combination

not only improves real-time performance but also ensures precise

boundary detection and better interpretability of results. Since the

generator is trained using the pre-trained weights of an enhanced

UNET, the convergence rate is significantly improved.

3 Proposed method

3.1 Method overview

Our proposed model, depicted in Figure 2, is designed as

a combination of two networks: a generative network and a

discriminator network. The generative network utilizes an encoder-

decoder mechanism, which learns the structural information of

salient objects through adversarial learning. It is trained in an end-

to-end fashion with a discriminator network to distinguish real

salient maps from the fake ones produced by the generator. In

this network design, we treated saliency detection as a semantic

segmentation problem, as both tasks involve understanding and

identifying essential regions in an image. SOD focuses on finding

the most visually salient objects in an image, akin to the objective

of object localization in semantic segmentation. Furthermore, both

saliency detection and semantic segmentation take into account the

relevant details of an image. In saliency detection, context is crucial

for determining the relative importance of regions within an image.

Similarly, semantic segmentation relies on contextual information

to accurately assign labels to pixels based on their surrounding

regions. The U-Net framework has demonstrated remarkable

potential in various image analysis tasks, including semantic

segmentation. However, its direct application to visual saliency

detection may only partially leverage the unique characteristics of

salient regions.
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Furthermore, the original U-Net framework suffers from the

following drawbacks: Firstly, while skip connections aid in the

efficient transmission of low-resolution information in feature

maps, they often lead to a blurring effect on the obtained image

features. Additionally, the complex features that the network

extracts often miss out on high-resolution edge details from the

input. This lack of detail can cause uncertainty, especially in

situations where high-resolution edges play a crucial role in the

network’s decisions, such as when detecting small or intricate

salient objects like butterflies or flowers. In these cases, high-

resolution edge information is vital for accurate segmentation.

Lastly, finding the optimal frequency of pooling operations

for extracting high-level global features presents a significant

challenge, as the utilization of pooling operations is subject to

change based on the size of the object. To address these issues,

we established an encoder-decoder structure, as illustrated in

Figure 3. Our approach integrates attention mechanisms into the

encoder and decoder design to improve feature extraction and

highlight salient regions. The encoder portion obtains multiscale

features from the input image, while the decoder part recreates

the saliency map by combining the encoded features with

the attention-guided information. Our method utilizes spatial

attention gate, an approach employed in CNNs to enhance their

performance in segmenting an image and detection of object.

This method selectively highlights important areas within feature

maps, directing the network to concentrate on the most relevant

sections of the input image. During the processing of the input

feature map, a 1×1 convolution is utilized, which functions as

a filter to assess the value of each pixel across all channels. The

resulting output from this operation consists of a single channel

that assigns an “attention score” to each individual pixel. These

scores undergo a sigmoid activation function, transforming them

into values ranging between 0 and 1. The attention scores essentially

serve as a filter implemented individually to each element of

the original input feature map. Pixels receiving high attention

scores, nearing 1, undergo a boost, heightening their impact on the

final result. Conversely, pixels with low attention scores, nearing

0, are dampened, decreasing their significance. In our proposed

approach, we integrate the encoder-decoder architecture as the

generator component of cGAN for generating salient maps. The

benefits of attention mechanism followed are :

• Improved performance: by concentrating on significant

areas, the network has the capability to extract more

meaningful characteristics, resulting in improved accuracy

and precision for tasks like segmentation and detection.

• Enhanced interpretability: the attention maps created by the

gate can be displayed visually, offering insights into the image

regions that the network deems most crucial for its decision-

making process.

• Reduced Sensitivity to Noise: By suppressing irrelevant

regions in the feature maps, the network becomes less

vulnerable to noise and imperfections in the input image.

The model extracts features at various scales using

convolutional layers, downsampling through pooling, and

encoding spatial information. At a bottleneck point in pool4,

the attention gate refines feature maps. In our enhanced U-Net

framework, the gate is strategically positioned before the expansive

path, ensuring attention-guided feature recovery.The upsampling

process incorporates refined features, enabling attention-informed

reconstruction. The gate produces spatially weighted features,

guiding subsequent layers.

The architecture, trained using the DUTS-TR dataset, generates

segmentation masks that accurately identify and emphasize the

salient regions within the input images. On the otherhand,

the discriminator component of the cGAN also receives the

original input images along with their segmentation masks as

part of the conditioning. cGANs consist of a generator and a

discriminator, engaged in a competitive game aiming to enhance

the quality of generated samples through a min-max framework.

By incorporating conditional information, cGANs can generate

images conditioned on specific attributes or input data. They

learn to differentiate between actual saliency maps (generated

from the segmentation masks and input images) and fake saliency

maps (generated by the generator component). The discriminator

uses the conditioning information to guide its discrimination

process and provide feedback to the generator to enhance the

saliency map generation. Specifically, within the cGAN framework,

we utilize the Wasserstein distance to maintain the process of

training. Additionally, an L2 norm loss is applied between the

produced saliency mask and the ground-truth map. Furthermore,

recent studies have shown that DCNN models (Zheng et al.,

2015; Chen et al., 2017a), when combined with fully-connected

conditional random fields (CRFs), can significantly improve

semantic segmentation accuracy. This research encourages us

to enhance the generated saliency mask by applying dense

CRF inference as a post-processing step. The research works of

Arjovsky et al. (2017); Ji et al. (2018a) incorporated the Earth-

Mover (EM) distance into the traditional Generative Adversarial

Network (GAN) model, addressing a fundamental challenge in

the objective function of conventional GANs. The EM distance

demonstrates robust performance, particularly in scenarios where

two distributions do not overlap, distinguishing itself from other

probability distances and divergences. Previous research has shown

that this approach significantly enhances the stability of the training

process and helps mitigate issues such as mode collapse. The initial

training phase of the cGAN model is crucial for achieving a good

detection model. The key to deceiving the discriminator during

training is the adaptive feedback mechanism. When salient and

non-salient samples can be easily distinguished, the discriminator

becomes increasingly stronger throughout the training process.

However, this could cause the generator into a significant mode

collapse issue by producing negative samples with a limited pattern.

To overcome this challenge, we introduce a technique that penalizes

the generation of unrealistic images during training. This method

compares the generated image to a real image from the target

domain and focuses on minimizing the difference between them.

Importantly, since the source image stays the same throughout the

process, we only compare the generated image to the target image’s

true counterpart.

To train our cGAN model effectively, we define an objective

function that specifies as

G∗ = argmin
G

max
D

LcGANw(G,D)+ λLL1(G) (1)
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FIGURE 2

Proposed architecture. Input image is taken from the publicly available ECSSD dataset (image no: 0213).

In this equation, λ serves as a penalty weight for the loss

between the ground-truth saliency and the generated saliency

map. We assign a substantial weight to the L2-norm loss

function to encourage the production of more challenging

negative samples. Within this cGAN framework, the training

process is guided by images and their corresponding ground-truth

saliency maps.

Recent research (Chen et al., 2017a; Ji et al., 2018a) has shown

significant improvements in semantic segmentation accuracy by

augmenting CNNs with fully connected CRFs. Inspired by the

success of densely connected Conditional Random Fields (CRFs) in

improving pixel-level annotation tasks, we integrated this approach

into our saliency mask generation process. This incorporation

aims to further refine the generated saliency masks. Traditional

CRFs employ sparse connections between nodes, hindering their

ability to capture long-range dependencies within the image.

To overcome this limitation, researchers have proposed fully

connected CRF models, which establish connections between all

node pairs. This model aims to overcome the sparse connectivity

issue by introducing a comprehensive network of connections,

enabling effective modeling of long-range dependencies. The

energy function for the densely connected Conditional Random

Field (CRF) model is expressed as:

E(y) =
∑

i

ψu(yi)+
∑

i<j

ψp(yi, yj) (2)

where y represents the variable, and the potential functions

ψu and ψp operate on individual variables and pairs of variables,

respectively. In Krähenbühl and Koltun (2011), a mean-field

approximation using weighted Gaussians to model pairwise

potential was introduced for efficient inference. The pairwise

potential is specified as:

ψp(ui, uj) = µ(ui, uj)

[

w1 exp

(

−
‖posi − posj‖

2

2σ 2
α

)

−
‖colori − colorj‖

2

2σ 2
β

+w2 exp

(

−
‖posi − posj‖

2

2σ 2
γ

)]

(3)

The unique modifications and improvements that make it

exceptionally suitable for detecting prominent objects set the

proposed method apart from the conventional U-Net design are:

The proposed architecture, composed of an encoding path

and a decoding path, is adept at detecting prominent objects.

The encoder, the initial segment of the network, captures, and

abstracts meaningful features from the input data through several

convolutional layers, each followed by batch normalization

and activation functions. These layers operate on the input

image, progressively extracting hierarchical features. The spatial

dimensions of the feature maps are gradually reduced using max-

pooling layers. A critical component, the bottleneck, compresses

the learned features into a compact representation through

global average pooling and dense (fully connected) layers. The

decoder reconstructs the original spatial dimensions from the

compressed representation and generates the final output. It

consists of transposed convolutional layers and skip connections

from the encoder. The final layers of the decoder involve additional

convolutional operations, batch normalization, activation

functions, and a convolutional layer with a single channel to

generate the reconstructed output, matching the original input size

of 256×256 pixels with a single channel. This method introduces

several enhancements to the conventional U-Net design, making it

particularly adept at detecting prominent objects. It incorporates

dense layers and multiplication operations, which capture complex

relationships within the data, thereby improving segmentation
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FIGURE 3

Detailed view of generator. Input image is taken from the DUTS-TR dataset (image no: ILSVRC2012_test_00000181).

accuracy. The model also extracts adaptive contextual information,

which aids in segmenting intricate structures. A unique feature

of this method is the hierarchical feature fusion mechanism,

which emphasizes features based on their importance. The

architecture is tailored to address specific segmentation challenges,

demonstrating its adaptability. Integrating channel and spatial

attention mechanisms enhances feature relevance and contextual

awareness. These mechanisms, along with multi-layer feature

fusion and adaptive contextual information integration, contribute

to improved segmentation accuracy. This method marks a notable

advancement in the realm of object detection and segmentation.

This enhancedU-Net variant showcases its distinctive strengths

in scenarios where fine-grained segmentation, detailed feature

extraction, and intricate boundary detection are paramount. Its

hybrid approach, combining U-Net’s foundational architecture

with supplementary components, positions it as a versatile tool

for applications ranging from medical image analysis to remote

sensing. The proposed architecture is illustrated in Figure 2, and

the detailed generator module is provided under Figure 3. The

discriminator receives the actual input image, its corresponding

mask, and the saliency map generated by the generator. These

inputs are fed into the discriminator network for analysis and

classification. The primary function of the discriminator is to

assess the validity of the generated saliency map, learning to

differentiate between genuine saliency maps and those produced

by the generator. The discriminator architecture as shown in

Figure 4 consists of four convolutional layers, each with a 3×3

kernel size, followed by a Leaky-ReLU activation layer and a

max-pooling layer. These additional layers help extract relevant

features and downsample the data, enabling the discriminator

to learn hierarchical representations of the input data. The

convolutional layers capture discriminative features at multiple

scales, while the Leaky-ReLU activation function aids gradient flow

and prevents neuron saturation, ensuring effective information

propagation within the network. The max-pooling layers reduce

the spatial dimensions, providing a compressed representation of
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the features obtained by the convolutional layers. In the final

step of the model, a sigmoid activation function is applied to

the last layer. This function produces a score that indicates

whether the saliency map originates from the generator or the

ground truth. The sigmoid function outputs values between 0

and 1, allowing for a probabilistic interpretation of the score.

A score close to 1 suggests a high probability that the saliency

map corresponds to the ground truth, while values closer to 0

indicate that the generator produced the saliency map. During

the training process, the discriminator aims to accurately classify

input saliency maps as real or generated, minimizing classification

error and improving its ability to distinguish between the two

types of maps. As training progresses, the discriminator becomes

more skilled at identifying subtle differences between real and

generated saliency maps. This feedback is crucial for the generator’s

learning process, enabling it to refine its saliency map generation

by producing maps that are harder for the discriminator to

classify as generated. The adversarial interplay between the

generator and discriminator networks helps the generator produce

saliency maps that are both visually accurate and realistic. The

discriminator uses binary cross-entropy loss to classify the real and

fake pairs.

In summary, the encoder, bottleneck, and decoder work

together to transform the input image into a compressed

representation, process it to learn relevant features, and finally

decode the representation to generate the final output. The

architecture’s sizes and parameters, such as filter sizes, channel

counts, and spatial dimensions, play a crucial role in its ability to

extract and manipulate intricate image features. To enhance the

performance of cGAN, several strategies were employed in this

study, as outlined in Mino and Spanakis (2018). These included

incorporating batch normalization, using leakyReLU activation,

initializing weights randomly from a Gaussian distribution with

a standard deviation of 0.002 for both the discriminator and

generator. Additionally, L2 regularization was applied to all layers

of the discriminator. These changes significantly improved the

convergence speed of the model. The sizes of all feature vectors

in the input and output layers of the generator are illustrated in

Figure 3.

3.2 Objective function

The objective function of conditional GAN can be expressed as:

min
G

max
D

V(D,G) = Ex∼pdata(x),y∼pdata(y)[logD(x, y)]+

Ez∼pz(z),y∼pdata(y)[log(1− D(GU-Net(z, y), y))]
(4)

The training process involves two main goals, represented by the

loss function. The first part focuses on the discriminator, aiming

to improve its ability to distinguish real data (like real photos)

from generated data (like artificial images). The second part helps

the generator create more realistic data by penalizing it when the

discriminator correctly identifies the produced data as fake.

3.3 Loss functions

BCE Loss: We have used the BCE loss function in training our

enhanced U-Net model to classify the foreground and background.

LBCE = −

H
∑

i=1

w
∑

j=1

[

GijlogPij +
(

1− Gij

)

log
(

1− Pij
)]

(5)

Generator Loss The generator’s loss function plays an important

role and consists of two main components:

• Adversarial Loss :this component aims to fool the

discriminator by minimizing the difference between the

discriminator’s predictions on the generated images and the

true labels.

• MSE loss: this standard loss function measures the average

squared differences between the generated output and the

target output. Also known as L2 loss.

The total generator loss is given by:

Ltotal = Ladv + λMSE ×MSE Loss (6)

Where: Ltotal is the total generator loss. Ladv is the adversarial

loss. λMSE is a hyperparameter controlling the relative importance

of the MSE Loss.

The adversarial loss is computed by evaluating the probabilities

assigned by the discriminator D to the reconstructed images G(I)

across all training samples:

Ladv = −

N
∑

n=1

logD(G(In)) (7)

The MSE Loss measures the pixel-wise difference between the

generated images and the ground truth images:

L2 Loss =
1

N

N
∑

i=1

(IGTi − G(Ii))
2 (8)

Discriminator Loss: The overall discriminator loss comprises

the real data loss and the fake data loss. We use the BCE Loss

(binary cross-entropy loss) function to calculate it:

LD = −

(

1

N

N
∑

i=1

log
(

D(xi)
)

+
1

N

N
∑

i=1

log
(

1− D(G(zi))
)

)

(9)

Where: - D(xi) represents the discriminator’s output for a real

data sample xi. - D(G(zi)) represents the generator’s output for a

noise sample zi. - N is the batch size. - log denotes the natural

logarithm.

The first term computes the average binary cross-entropy loss

for real data samples, and the second term computes the average

binary cross-entropy loss for fake data samples.

3.4 Implementation details

During the training process, a series of preprocessing steps have

been applied to enhance the performance and generalization of our

proposed network for visual saliency detection.
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FIGURE 4

Discriminator module.

Image preprocessing: each input image is initially resized to a

resolution of 256× 256 pixels.

No existing backbones: our proposed network does not rely

on any pre-existing backbone architectures. Instead, we design and

implement an encoder-decoder architecture suitable for training

the generator. A total of 8,470,850 trainable parameters are used

for training the model.

Data normalization: all input data is normalized before

training to ensure stable and consistent learning. Normalization

is performed by subtracting the mean and scaling the images by

the standard deviation. This normalization process helps the model

converge more effectively and mitigates issues related to input

distribution disparities. The training parmeters for cGAN are given

in Table 1.

3.5 Technical details

The proposed architecture was implemented using Python 3

and TensorFlow framework. Training and testing were conducted

on a single NVIDIA Tesla V100—SXM2 Graphical Processing

Unit with 16 GB of memory. For initialization, the pre-trained

enhanced U-Net model on the DUTS-TR dataset is used. The

generator’s weights were initialized with the pre-trained U-Net

weights, while the discriminator was randomly initialized using a

Gaussian distribution with a standard deviation of 0.002. During

training, Adam optimization was employed with a learning rate of

1×10−3 for the generator and 1×10−4 for the discriminator. In

the testing phase, the thoroughly trained generator was utilized to

predict saliency maps. During the evaluation stage, we utilized a

generator that is well-trained from our model to predict saliency

maps. The generator, with its learned weights, was able to converge

faster and produce accurate, reliable saliency maps, as depicted in

Figure 5. To enhance the generalization ability of our model and

prevent overfitting, we implemented early stopping with patience

of 10. Early stopping is a technique that monitors the validation

loss during training and terminates the training if the loss does not

improve for a certain number of consecutive epochs. We utilized

the Early Stopping callback from TensorFlow’s Keras library,

configuring it with patience of 10. Moreover, we set the “restore

TABLE 1 Training parameters for cGAN.

Number of epochs 50 (Early stopping
callback yielded 17.5
epochs)

Batch size 32

Optimizer Adam

Learning rate 0.001 for generator and 0.0001 for

discriminator

Momentum of β1 and β2 0.5 and 0.999

Loss function Margin + L2 Loss Adversarial Loss, BCE Loss

and L2 loss

best weights” parameter to True, ensuring that the model’s weights

are restored to the best observed weights when the training is

prematurely halted. This technique helps in preventing overfitting

by terminating the process of training when the model’s efficacy

on the validation set reaches a plateau. It ensures that the model

does not continue to learn from noise or irrelevant patterns in

the data, thereby improving its ability to generalize to unseen

examples. By leveraging the power of TensorFlow, the pre-trained

U-Net model, and our carefully chosen training and optimization

strategies, the proposed model is effective in the prediction of

saliency maps.

3.6 Ablation study

In this section, we explore the individual contributions

of each module. To determine the effectiveness of each

module, we separately evaluate U-Net, our enhanced U-

Net, and the fusion of enhanced U-Net and cGAN. These

evaluations are conducted across three datasets, using maxF

and MAE as our evaluation metrics. The study involved

systematically removing or modifying specific model elements

and evaluating their impact on performance. The following

ablation experiments were performed and are given in

Table 2:
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Baseline U-Net: we established a baseline by training the

original U-Net architecture without any modifications. This serves

as a reference point for comparing the performance of subsequent

variations.

FIGURE 5

PR plot on ECSSD dataset is shown in (A) and PR plot on DUTS-TE

dataset is shown in (B).

Spatial attentionmodule: to investigate the contribution of the

spatial attention mechanism, we trained an enhanced U-Net model

including the spatial attention module. This allows us to assess the

influence of spatial attention on saliency detection accuracy.

Dropout regularization: we trained an enhanced U-Net model

by excluding the dropout layers in the convolutional blocks. This

experiment aims to assess the impact of dropout regularization on

the model’s generalization ability and resistance to overfitting, with

dropout set to 0.2.

Batch normalization: an encoder-decoder module was trained

by removing the batch normalization layers from both the encoder

and decoder blocks. This experiment helps evaluate the effect of

batch normalization on training stability and convergence.

We used the same training and evaluation protocols for each

ablation experiment, including the loss function, optimizer, and

evaluation metrics. Both models underwent training using the

identical dataset and were subsequently assessed using established

metrics such as accuracy, precision, recall, and F1-score. The

outcomes of the ablation study yield valuable insights into how

distinct elements andmethods contribute to enhancing the saliency

detection capabilities of our proposed architecture.

4 Experimental analysis

4.1 Datasets

To assess the performance of our proposed method, we

conducted experiments on three popular benchmark datasets,

including DUTS (Wang et al., 2017), ECSSD (Shi et al., 2015), and

DUT-OMRON (Yang et al., 2013). The DUTS dataset contains two

subsets namely DUTS-TR and DUTS-TE, comprise 10,553 images

for training and 5,019 testing images respectively collected from

different scenes. ECSSD is a complex scene dataset comprising

1,000 high-resolution images, while DUT-OMRON consists of

5,186 images derived from actual scenes.

4.2 Evaluation metrics

To comprehensively assess the quality compared to the ground

truth, we utilize standard measures: sensitivity, specificity, F-score,

TABLE 2 Ablation study of individual module on ECSSD, DUTS-TE, DUT-OMRON in terms of MaxF (↑) and MAE (↓).

Model Dataset

ECSSD DUTS-TE DUT-OMRON

MaxF MAE MaxF MAE MaxF MAE

UNet (Base model) 0.7995 0.081 0.776 0.084 0.752 0.089

Encoder-Decoder network (Enhanced U-Net with out cGAN) 0.8135 0.068 0.821 0.062 0.826 0.075

Encoder-Decoder network (Without added spatial attention) 0.8014 0.072 0.801 0.069 0.793 0.082

Fusion of cGAN

+ Encoder-Decoder+ loss functions

+ (our proposed method)

0.9375 0.0292 0.866 0.033 0.8192 0.043
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TABLE 3 Quantitative comparison of the proposed method and ten

state-of-the-art methods on three benchmark datasets is conducted in

terms of MAE, Eξ , Sα , and Fβw .

Dataset Method MAE↓ Eξ ↑ Sα ↑ Fβw ↑

ECSSD Ours 0.0292 0.9459 0.9322 0.9182

DGRL 0.0415 0.9342 0.9065 0.8783

GCPANet 0.0335 0.9377 0.9264 0.8973

SCRN 0.0351 0.9356 0.9269 0.9014

RCSB 0.0342 0.944 0.9224 0.9171

BASNet 0.0362 0.9384 0.9163 0.9066

F3Net 0.033 0.9429 0.9245 0.9119

SCWSSOD 0.0498 0.9228 0.8836 0.8819

ICON 0.0313 0.9497 0.9292 0.913

U2Net 0.0315 0.9422 0.927 0.9113

DUTS-TE Ours 0.0331 0.9132 0.8878 0.828

DGRL 0.0504 0.8847 0.8467 0.7486

GCPANet 0.037 0.904 0.8897 0.8102

SCRN 0.0383 0.897 0.8847 0.8014

RCSB 0.0348 0.9141 0.8819 0.8429

BASNet 0.0468 0.8917 0.8661 0.7997

F3Net 0.0348 0.9153 0.889 0.8233

SCWSSOD 0.0487 0.8976 0.8426 0.7964

ICON 0.0366 0.9201 0.8891 0.8253

U2Net 0.0437 0.8931 0.8733 0.8007

DUT-OMRON Ours 0.0439 0.886 0.8674 0.7859

DGRL 0.0632 0.8449 0.8097 0.6835

GCPANet 0.0566 0.8468 0.8375 0.7194

SCRN 0.56 0.8482 0.8366 0.7139

RCSB 0.0492 0.8575 0.835 0.7506

BASNet 0.0565 0.8649 0.8362 0.743

F3Net 0.0526 0.861 0.8381 0.7326

SCWSSOD 0.0602 0.8563 0.812 0.7252

ICON 0.0569 0.875 0.8443 0.7431

U2Net 0.0544 0.867 0.8466 0.7486

The symbols ↑ and ↓ are used to indicate that a higher score and a lower score, respectively,

represent better results.

E-measure, S-measure, and MAE. Each evaluation parameter is

described below.

Sensitivity: Sensitivity, also known as the true positive rate or recall,

evaluates the model’s capability to correctly recognize positive

instances (foreground) from the ground truth. It measures the

fraction of positive pixels correctly classified as positive.

Recall =
TP

TP + FN
(10)

Specificity: Specificity measures the model’s ability to correctly

identify negative instances (background) from the ground truth.

It assesses the fraction of negative pixels correctly classified as

negative.

Precision =
TP

TP + FP
(11)

F-measure (Fan et al., 2018a): The F-measure rates for the

binarized saliency map are computed with a threshold range of

[0,255] and is given by

Fβ =

(

1+ β2
)

Precision× Recall

β2 × Precision+ Recall
(12)

Mean Absolute Error(MAE) (Perazzi et al., 2012): The Precision-

Recall curve does not include the fraction of pixels correctly

classified as non-salient. The presence of pixels mistakenly labeled

as salient leads the saliency map to perform worse, even though it

is smooth and has greater values allocated to salient pixels. Using

Mean Absolute Error (MAE) as suggested by Perazzi et al. (2012),

we can overcome the limitation of using precision and recall. We

analyse the mean absolute error (MAE) between the continuous

saliency map M and the binary ground truth GT for a more

fair comparison that considers these factors. The lower the MAE

score, the closer the model is to ground truth, and the better the

performance.

MAE =
1

H ×W

H
∑

i=1

W
∑

j=1

∣

∣

∣
Îij − Iij

∣

∣

∣
(13)

Where, H denotes the height andW denotes the width in the size of

groundtruth map, Îij and Iij denote the predicted and groundtruth

map respectively.

E-measure (Fan et al., 2018b): TheMean E-measure is a metric that

quantifies the likeness between the predicted map and the actual

ground-truth map. Its definition is as follows,

Eξ =
1

H ×W

H
∑

i=1

W
∑

j=1

ϕ
(

i, j
)

(14)

where ϕ(i, j) denote alignment matrix.

S-measure (Fan et al., 2017): The S-measure is a metric that

quantifies structural similarity by combining the similarity and

error measures of the area-conscious Sr and object-conscious

S0 methods. A higher Sα value indicates superior algorithm

performance. The computation formula is provided below:

Sα = (1− α)Sr + αS0 (15)

An open source implementations of PydenseCRF 1 and SOD

Evaluation metrics 2 are adopted in this paper. 1, 2

5 Results and discussion

The proposed enhanced U-Net model for salient object

detection has been tested qualitatively and quantitatively against

DGRL (Wang et al., 2018) (e) GCPANet (Chen et al., 2020) (f)

1 https://github.com/lucasb-eyer/pydensecrf.git

2 https://github.com/zyjwuyan/SOD_Evaluation_Metrics.git
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FIGURE 6

Qualitative analysis of our proposed approach with ten state-of-the-art methods. (A) Input image (B) Groundtruth (C) Ours (D) DGRL (Wang et al.,

2018) (E) GCPANet (Chen et al., 2020) (F) SCRN (Wu et al., 2019) (G) RCSB (Ke and Tsubono, 2022) (H) BASNet (Qin et al., 2019) (I) F3Net (Jun Wei,

2020) (J) SCWSSOD (Yu et al., 2021) (K) ICON (Zhuge et al., 2022) (L) U2Net (Qin et al., 2020).

SCRN Wu et al. (2019) (g) RCSB (Ke and Tsubono, 2022) (h)

BASNet (Qin et al., 2019) (i) F3Net (Jun Wei, 2020) (j) SCWSSOD

(Yu et al., 2021) (k) ICON (Zhuge et al., 2022) (l) U2Net (Qin

et al., 2020) methods. We conducted a fair comparison of each

method within our environment, utilizing the publicly available

source code provided by the authors for evaluation purposes.

Figure 5 illustrates the qualitative results. The proposed method

achieves good F-measure values even on complex image datasets

like DUT-OMRON, outperforming state-of-the-art methods.We

compare the performance of our method with other salient object

detection approaches in terms of MAE, E-measure, S-measure and

Max Fβ as shown in Table 3.

5.1 Qualitative results

To further emphasize the advantages of our proposed method,

we present visual examples showcasing its efficacy in addressing

various challenging scenarios. As depicted in Figure 6, our

method demonstrates robust performance in handling fine-grained

structures (2nd image), cluttered backgrounds (3rd and 4th

images), complex structures (5th image), object concurrency (first

row), and the presence of multiple salient objects. In comparison

with state-of-the-art methods, the saliency maps generated by our

approach exhibit enhanced completeness while maintains good

accuracy. It is noteworthy that our method excels in managing

background/foreground disturbances, as evidenced by the third

row, and effectively captures relationships among multiple objects,

as demonstrated in the second row. Most of the methods detect

two objects instead of a single salient object, as shown in the third

row and in the sixth row. However, in our method, the attention

mechanism effectively highlights the salient object, with the

prominent object focussed. The computational time for processing

a single image using our proposed method is about 6 seconds.

These results emphasize the effectiveness of our proposed method

in aggregating features and integrating global context information.

5.2 Quantitative results

Table 3 presents the numerical outcomes from three

conventional benchmark datasets. In this comparison, our

approach is evaluated against 10 cutting-edge algorithms using

metrics such as S-measure, weighted F-measure, E-measure, and

MAE. The results clearly indicate that our model outperforms the

other baseline methods.

In addition to the numerical comparisons in Table 3,

Figures 6a, 6b, 7a, 7b, 8a, 8b, visualizes the performance of

all compared methods using precision-recall and F-measure

curves on three datasets. The dotted red line, representing our

proposed method, consistently outperforms all others across most

decision thresholds. This is likely due to the proposed method’s

effective use of complementary spatial information, which leads

to more accurate localization, ultimately resulting in a superior

precision-recall curve.

6 Conclusion

In this study, we present an efficient framework for SOD in

images, effectively addressing the limitations of cGAN and U-Net

architectures. The experimental analysis reveals that the proposed

method performs well, with lower MAE values compared to other

state-of-the-art approaches. Although the proposed SOD model

outperformed all other baseline models, it required a substantial

training time of approximately one hour. However, the inference

time for most of the models is similar, taking around 6 seconds per

image. Faster convergence is observed while training the generator

with the introduction of enhanced U-Net model weights. With

increased computing power, the proposedmethod could potentially

yield faster results. Achieving high performance in low-contrast

environments or with data where the distinction between object

and background is unclear remains challenging. In future work,

we aim to apply transfer learning. This approach can significantly

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1420965
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Dhara and Kumar 10.3389/fcomp.2024.1420965

FIGURE 7

PR plot on DUR-OMRON dataset is shown in A and F-measure at

di�erent thresholds on ECSSD dataset is shown in B.

reduce the training time and computational resources required,

as the model has already learned useful features from a large

dataset. These improvements pave the way for enhanced visual

understanding and interpretation in complex scenes, ultimately

benefiting computer vision systems.
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