
TYPE Original Research

PUBLISHED 20 November 2024

DOI 10.3389/fcomp.2024.1441879

OPEN ACCESS

EDITED BY

Kamil Khadiev,

Kazan Federal University, Russia

REVIEWED BY

Mingxing Luo,

Southwest Jiaotong University, China

Iskender Yalcinkaya,

Czech Technical University in Prague, Czechia

*CORRESPONDENCE

Ajinkya Borle

aborle1@umbc.edu

RECEIVED 31 May 2024

ACCEPTED 09 October 2024

PUBLISHED 20 November 2024

CITATION

Borle A and Bhave A (2024) Biclustering a

dataset using photonic quantum computing.

Front. Comput. Sci. 6:1441879.

doi: 10.3389/fcomp.2024.1441879

COPYRIGHT

© 2024 Borle and Bhave. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Biclustering a dataset using
photonic quantum computing

Ajinkya Borle* and Ameya Bhave

CSEE Department, University of Maryland Baltimore County, Baltimore, MD, United States

Biclustering is a problem inmachine learning and datamining that seeks to group

together rows and columns of a dataset according to certain criteria. In this work,

we highlight the natural relation that quantum computingmodels like boson and

Gaussian boson sampling (GBS) have to this problem. We first explore the use

of boson sampling to identify biclusters based on matrix permanents. We then

propose a heuristic that finds clusters in a dataset using Gaussian boson sampling

by (i) converting the dataset into a bipartite graph and then (ii) running GBS to

find the densest sub-graph(s) within the larger bipartite graph. Our simulations

for the above proposed heuristics show promising results for future exploration

in this area.

KEYWORDS

biclustering, quantum computing, boson sampling, Gaussian boson sampling, block

clustering, co-clustering, two mode clustering, data mining

1 Introduction

Quantum machine learning is an emerging field of study that is at the intersection

of quantum physics and machine learning. It contains research problems that span from

leveraging quantum computing for machine learning, to the use of machine learning

methods to model quantum physics. Broadly speaking, our work is in the former set of

problems. We study the use of computational models enabled by photonics, specifically

boson sampling and Gaussian boson sampling (GBS), for an unsupervised learning

problem: biclustering.

Biclustering or Co-clustering is the selection of rows and columns of a matrix based

on a given criteria (largest values, similar values, constant values, etc.) (Mirkin, 1997).

It currently has applications in (but not limited to) bioinformatics (Pontes Balanza

et al., 2015; Xie et al., 2019; Castanho et al., 2022), text mining (de Castro et al., 2007;

Orzechowski and Boryczko, 2016), recommender systems (Choi et al., 2018; Sun and

Zhang, 2022), and even fields like malware analysis (Raff et al., 2020). While the time

complexity of biclustering depends on the exact formulation of the problem (i.e., the

criteria for the biclusters), the problems of particular interest are the ones for which the

decision problems that are NP-complete in nature; e.g., does this matrix have a bicluster of

size b1×b2? An answer to such a question can be verified in polynomial time, but not found

in polynomial time (Cormen et al., 2022). Therefore, meta-heuristics are often used for this

task (José-García et al., 2022), to get good solutions fast, but without theoretical guarantees.

Among the many models of quantum computing, certain metaheuristic based models

have also been proposed on which relevant machine learning and data mining problems

can be mapped onto (Adachi and Henderson, 2015; Kumar et al., 2018; Schuld et al., 2020;

Bonaldi et al., 2023). These include quantum annealing (Kadowaki and Nishimori, 1998),

Boson sampling (Aaronson and Arkhipov, 2011), and GBS (Hamilton et al., 2017). While

a method to apply quantum annealing to the task of biclustering already exists (Bottarelli

et al., 2018), our work, to the best of our knowledge, is the first one that applies boson

sampling and GBS to this problem.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1441879
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1441879&domain=pdf&date_stamp=2024-11-20
mailto:aborle1@umbc.edu
https://doi.org/10.3389/fcomp.2024.1441879
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1441879/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

Boson Sampling is a restricted model of quantum computing

most easily implemented with photonic quantum computing, in

particular, with linear optics (Aaronson and Arkhipov, 2011). GBS

is a variant of the above that generates photons by squeezing

light (Hamilton et al., 2017). Both models solve #P-hard problems1

with proposed applications in the fields of graph theory (Mezher

et al., 2023), machine learning (Schuld et al., 2020; Bonaldi et al.,

2023), and optimization (Arrazola et al., 2018) among others. These

are quantum computing models that when applied with photonic

quantum computing, are feasible right in the NISQ era of quantum

computing but can have utility even beyond it (Madsen et al., 2022;

Deshpande et al., 2022).

The contributions of this paper are as follows:

1. We propose and explore the application of boson sampling (and

Gaussian boson sampling) to the problem of biclustering in

machine learning. To the best of our knowledge, this is the first

work to do so.

2. For boson sampling, we applied the unitary dilation theorem

(Halmos, 1950; Mezher et al., 2023) to embed our dataset in a

unitary matrix.

3. We propose a simulated annealing (SA) technique that uses

boson sampling as a subroutine for finding biclusters.

4. For GBS, we show how to embed a dataset as a unitary matrix.

This is done by first considering the dataset as a bipartite

graph (Karim et al., 2019) and then using the Autonne-Takagi

decomposition (Takagi, 1924) on it.

5. We performed preliminary simulations to study the basic

characteristics of both boson sampling and GBS for the task of

detecting biclusters in a dataset.

Since our work is the first one for this topic, our focus was

on establishing the basics that would be crucial for any follow-up

research done in the field. Our results show conditions for when

boson sampling and GBS do well (e.g., for binary datasets) and

certain situations to watch out for (some problems may need lot

more samples than others). We believe that our results can give

useful insights for future work in this direction.

2 Background

In this section, we will cover the topics and notations that will

be used in this work.

2.1 Permanent

A Permanent of an N × N matrix A is an operation that can

mathematically be defined as:

Per(A) =
∑

σ∈SN

N
∏

i=1

Ai,σ (i) (1)

Where σ is a permutation of the symmetric group SN . In

other words, a permanent is the summation of the products of

1 A complexity class which has problems that are at least as hard as the

hardest problems in NP.

all the possible elements with all permutations of index values for

rows and columns.2 This is similar to calculating the determinant

using the Leibinz’s rule (Miller, 1930) except that the sign of each

summand is positive.

Calculating the permanent is a #P-hard problem that takes

exponential time even for the best classical algorithms (Ryser, 1963;

Glynn, 2013). It is an important component in the analysis of the

probabilities from boson sampling.

2.2 Boson sampling

Boson sampling is a non-universal model of quantum

computation, pioneered by Aaronson and Arkhipov (2011) on

the observations of Troyansky and Tishby (1996). A boson is a

subatomic particle that has an integer spin number (e.g., Higgs

boson, photon, gluon, etc). More importantly for us, the most

popular and feasible approach for its realization is by the use

of photons. For the remainder of the paper, we would be using

terminology from quantum optics for this process.

Unlike other models of quantum computing, instead of using

qubits as the building blocks of quantum information, we use linear

optical modes (through which photons can traverse) for carrying

and manipulating information. Here, we assumemmodes carrying

n photons (wherem > n), are plugged into a linear-optical network

made up of beamsplitters and phaseshifters. The linear-optical

network can be represented as a Unitary matrix U ∈ C
m×m. Here

we define the input state as

|ψ0〉 = |n1, n2, n3, ..., nm〉 (2)

such that n =

m
∑

i=1

ni (3)

and ni ≥ 0 (4)

Where Equation 2 is a Fock state that denotes the number

of photons in the input state for each of the modes involved.

After passing through the linear-optical network, we measure the

number of photons in each mode. Let us denote this state3 by
∣

∣ψ ′
〉

∣

∣ψ ′
〉

=
∣

∣n′1, n
′
2, n
′
3, ..., n

′
m

〉

(5)

such that n =

m
∑

i=1

n′i (6)

and n′i ≥ 0 (7)

Meaning that the number of photons in each mode may have

changed at the end of the computation. The probability of a

particular Fock state to be measured at the end of a single run (or

sample) of this process (given an input state) is denoted by

P(ψ ′|ψ0) =
|Per(Uψ ′ ,ψ0)|

2

n1!n2!n3!...nm!n
′
1!n
′
2!n
′
3!...n

′
m!

(8)

Where Uψ ′ ,ψ0 is an n × n sub-matrix constructed from U by

taking ni times the ith column on U, and n′j times the jth row of U,

∀ 1 ≤ i, j ≤ m (Aaronson and Arkhipov, 2011; Mezher et al., 2023).

2 In any given product, no row or column can be repeated.

3 Assuming there is no photon loss.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

Sub-matrices that have larger permanents will have a higher

probability of being measured. While for a mode, any number of

photons larger than 1 will have an adverse effect on the probability.

With enough sampling, we get the probability distribution

described by Equation 8. Typically for boson sampling, it is often

assumed that our starting state |ψ0〉 has 1 photon at maximum per

mode. And for a variety of problems, it is also expected that the

states we are interested in have 1 photon at maximum for a mode

in the output (Aaronson and Arkhipov, 2011). Thus, in order for us

to apply boson sampling to real world problems, we need to encode

them as unitary matrices where the solutions can be decoded from

sub-matrices with the largest permanent values.

2.3 Hafnian

Related to the permanent, the Hafnian (Termini, 2006) of a

symmetric matrix A ∈ C
N×N is a value that is calculated by the

following equation

Haf(A) =
∑

ρ∈P

∏

{i,j}∈ρ

Ai,j (9)

Where P is the set of perfect matchings for a fully-connected

graph of N vertices.4 The permanent of a matrix C and its hafnian

are connected by the following relationship

Per(C) = Haf

((

0 C

CT 0

))

(10)

2.4 Gaussian boson sampling

One of the biggest challenges in the implementation of boson

sampling is the production of synchronized single-photons on a

large scale. Different schemes of producing photons have been

suggested in order to address this, such as Gaussian boson sampling

(Hamilton et al., 2017).

In the physical setup for GBS (implemented using photonics),

the linear interferometer for m modes is prefixed with squeezing

operators on all the modes individually. This does not produce

an exact number of photons but depending on the squeezing

parameter, can produce photons with an average count per mode

from a Gaussian distribution5 (henceforth known as mean number

of photons n per mode). The unitary matrix that defines the linear

interferometer is typically constructed from a symmetric matrix

A ∈ C
N×N (where m = N)6 after using a process known as

Autonne-Takagi decomposition (Takagi, 1924).

At the end of the computation, the number of photons that

appear at each mode are read out
∣

∣ψ ′
〉

=
∣

∣n′1n
′
2...n
′
m

〉

. The

4 This does not mean that A is fully-connected, it just means that the

number of matchings considered for the calculation of the Hafnian are from

a fully connected graph (that has the same number of vertices as A does).

5 To be considered as an hyperparameter.

6 Not considering any hardware restrictions.

probability of reading a particular
∣

∣ψ ′
〉

is proportional to

P(ψ ′) ∝ cn
Haf(Aψ ′)

n′1!n
′
2!...n

′
m!

(11)

Where c is a scaling parameter from squeezing and n is the sum

of all observed photons (Equation 6). The matrix Aψ ′ is an n × n

matrix constructed by taking ni times the ith column and ith row

of A, for 1 ≤ i ≤ m. For many computational problems however,

as a simplified heuristic, the submatrix at the end is constructed

from the unique rows and columns indicated by the ith mode for

which ni > 0. This is typically done with threshold detectors for

measurement and the exact probability distribution for such a setup

depends on a matrix function called torontonian (Quesada et al.,

2018; Deng et al., 2023a) (a function that is analogous to hafnian).

The task then becomes to encode real world problems for which the

submatrix with a high hafnian (or torontonian to be more specific)

value would yield us the solution.

Readers who want to learn about GBS in depth are

recommended to read the original paper (Hamilton et al., 2017).

2.5 The biclustering problem

Like previously mentioned, the problem of biclustering is one

where the rows and columns of a matrix are clustered together

(called biclusters) depending on a criteria. Biclusters can be formed

by different criteria (Hochreiter et al., 2010), some of the popular

ones are :

1. Biclusters with a constant value populating all the cells, constant

value for each row or constant value for each column.

2. Biclusters where values are unusually high or low (with respect

to the rest of the matrix).

3. Biclusters that have low variance.

4. Biclusters that have correlated rows and columns.

The exact time complexity of the biclustering problem is

dependent on the biclustering criteria. Many versions of the

biclustering problem are NP-Hard in nature. And while polynomial

approximation algorithms exist; most of them being quadratic or

cubic in their time and space complexity (Cheng and Church, 2000;

Prelić et al., 2006), heuristic based methods have been gaining

popularity (Maâtouk et al., 2021; Cui et al., 2020; José-García et al.,

2022). These approaches attempt to get optimal (or near-optimal)

solutions but it is hard to do theoretical analysis for time and

space complexities. Our boson and Gaussian boson sampling based

methods are in the latter category.

For our work, we will focus on biclusters for two criteria

(i) biclusters that have high values and (ii) biclusters that have

maximum number of ones in a binary matrix (see “Figure 1”

for an example of each).7 We choose these since they are quite

relevant to problems in machine learning and bioinformatics

(Wang et al., 2016; Castanho et al., 2024; Prelić et al., 2006). All

7 Assuming all values lie in the range [0, 1], we can also potentially find (iii)

biclusters with low values and (iv) biclusters with majority zeros for a binary

matrix. We can do this by subtracting current value of each cell in the matrix

from 1.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

matrices (representing datasets) and sub-matrices (representing

biclusters) considered in our simulations are square shaped, but we

also comment on how our work can be extended for rectangular

datasets and biclusters (in the following sections).

2.5.1 Biclustering example on a machine learning
dataset

Figure 2 shows a hypothetical example of how biclustering

might be used to gain insights from a dataset, such as the ones

relevant to machine learning. For this example, consider a dataset

from an ecommerce website that shows the dollar amount spent by

various customers on products of six categories for a given month.

Here the customers (from C1 to C8) are the records of the dataset

and the categories (from Electronics to Beauty) are the features.

We want to analyze the buying patterns of users with respect to

categories. This example does not have any explicitly stated target

feature/variable since the primary task is to extract correlations

between features and records (i.e unsupervised learning).

If we consider biclusters based on high values, we can see

that customers C1, C2, C5, and C7 and categories Electronics and

Books form a 4 × 2 bicluster β1. While customers C3, C4, C6,

and C8 spent a lot on Clothing, Home and Garden, Sports and

Beauty. This forms the second bicluster β2 of size 4 × 4. From

these biclusters we can infer things like (i) β1 indicates tech-savy

customers who spend more times on electronics and books, (ii)

β2 may represent customers who are lifestyle-oriented and spend

more on personal and home items. Using insights like these, the

ecommerce company may be able to do targeted advertisements of

products to particular customers, and also make recommendations

to customers to products of other categories (e.g., customers who

like books may also like electronics).

Here, if we had used ordinary (traditional) clustering on

customers, we may have grouped C1, C2, C5, and C7 together

based on their similar general spending patterns, but it wouldn’t

necessarily have highlighted the fact that their similarity is

primarily in Electronics and Books. Likewise, traditional column

clustering may group Electronics and Books together based on

overall spending across all customers, but it wouldn’t capture that

this relationship is strongest for a specific subset of customers.

While the problems we consider for simulations in the current

work are synthetic and simple in nature (without being non-

trivial). We believe it forms the foundation for future work(s) that

would ultimately be able to solve problems with photonic quantum

computing like the one mentioned above at scale8 better than

classical computing.

2.6 Simulated annealing

Simulated annealing (SA) is a family of heuristics that aim to

optimize a cost function by randomly sampling from the solution

space of an objective function and then accepting or rejecting a new

sample based on the current sample and a temperature parameter

(Bertsimas and Tsitsiklis, 1993). In the context of our work, we

8 Assuming the hardware scales as well.

use it as a black box optimization method with boson sampling as

a subroutine for finding the best columns for a bicluster. Section

6.1 and Algorithm 1 (lines 16, 21 and 24 in particular) describe

how SA is implemented in our work. For the readers who want to

know more about the fundamentals of the original technique, we

recommend the original paper by Kirkpatrick et al. (1983).

3 Related work

The field of biclustering has been well-studied from the

perspective of classical computing. A lot of progress that has

been made in creating or improving biclustering algorithms has

come from the field of bioinformatics (Madeira and Oliveira, 2004;

Ayadi et al., 2009; Castanho et al., 2022). While the most well-

known algorithms for finding biclustering are based on spectral

decomposition of matrices (Dhillon, 2001; Kluger et al., 2003),

plenty of other heuristics have also been explored for this task

(Hochreiter et al., 2010; José-García et al., 2022).

Previously, the application of quantum annealing to the

problem of biclustering was proposed (Bottarelli et al., 2018) where

the problem of finding biclusters was encoded in the quadratic

unconstrained binary optimization (QUBO) form and then solved

on a D-waveTM 2X annealer.9 The authors performed experiments

on datasets of size 100 × 50 but with a focus on a 10 × 10 moving

window with biclusters upto 6× 6 in size.

As far as photonic quantum computing is concerned, our work

is the first that attempts to apply boson sampling and GBS to

this problem. At the time of writing this paper, photonic quantum

computing is still in its nascent stage,10 and our primary aim is to

gain preliminary insights about the relationship between photonic

quantum computing and biclustering. For this, we worked with

dataset of size 12× 12 and biclusters of sizes 4× 4 and 6× 6.

The other work that is related to ours is the work done on

using GBS for clustering (Bonaldi et al., 2023), where the authors

showed promising results (on simulators) when compared to

results produced by classical methods. In their work, Bonaldi et al.

created a graph for GBS whose edges represented inverse distances

between datapoints (vertices) and found clusters by setting the

weight of the edge to 0 or 1 according to a threshold. In our work,

we do not use inverse distances as a concept and have a different

method for encoding the datasets into linear interferometers.

4 Boson sampling for biclustering

4.1 Introduction

Let us consider a dataset represented by a matrixD ∈ R
d1×d2 in

which we need to find k biclusters B = {β1,β2, ...,βk} of size
11 b×b

each. Like mentioned in Section 2.5, we are looking for biclusters

with large values. Our method is based on the conjecture that large

9 Technically, QUBO problems are first converted to their Ising model

(Cipra, 1987) equivalents and then run on a quantum annealer.

10 But with the potential of scaling up in a noise-resistant manner.

11 We will mention how to embed rectangular matrices and search for

rectangular biclusters later in this work.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

FIGURE 1

Examples of square biclusters in a larger square matrix, representing a dataset. (Left) Is an example of a dataset that has elements in the range [0, 1]

and (Right) is an example of a dataset that has binary elements. In each dataset, there exist two biclusters that are distingushable by di�erent colors.

FIGURE 2

Example of a dataset of customers and the amount of money (in dollars in a month) they spent on an ecommerce website on di�erent categories of

products. Here we show two biclusters that shows (i) a subset of customers who spend a lot on Electronics and Books and (ii) another subset that

spends on Clothing, Home and Garden, Sports and Beauty. For details, refer Section 2.5.1.

values in a bicluster would imply that the bicluster has a large

permanent.

We use boson sampling as a subroutine to find out which b

rows would give the highest permanent value for a given set of b

columns. We do this over many different sets of columns to finally

end up with a bicluster matrix that has the largest permanent. We

can then set all the values of that bicluster to 0 (in the dataset) and

repeat the process again for new biclusters (up until a termination

criteria is met12).

12 The termination criteria can be anything: from a maximum number of

biclusters to a threshold value of the bicluster’s norm.

4.2 Approach

In order to use boson sampling, we first need to embed our

matrix D as a unitary operator. For simplification, we assume that

all of the elements are real values scaled to the interval of [0, 1].

We first scale this matrix by s = σmax(D), the largest singular

value of D to produce Ds =
1
sD. We then embed this matrix in

a greater unitary matrix by the unitary dilation theorem (Halmos,

1951; Mezher et al., 2023).

UD =





Ds

√

Id1×d1 − Ds(Ds)†
√

Id2×d2 − (Ds)†Ds −(Ds)
†



 (12)

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

UD ∈ C
(d1+d2)×(d1+d2) is a unitary matrix that can

now be converted into a linear interferometer using efficient

methods13 (Reck et al., 1994; Clements et al., 2016). Since we

know the rows and columns where Ds has been embedded,

we can directly focus on those rows and columns for this

computation (namely, the first d2 modes). After the computation,

we can do a procedure called post selection, where we filter out

unwanted samples based on some criteria E, to then calculate the

conditional probability of ψ ′: P(ψ ′|ψ0,E). For our case, E can be

denoted by

E = E1 ∧ E2 (13)

where E1 =

d1
∧

i=1

(n′i ≤ τ) (14)

and E2 =

d1+d2
∧

i=d1+1

(n′i = 0) (15)

In other words, at the end of boson sampling, each of the first

d1 modes can have upto τ photons14 but the next d2 modes must

have exactly 0 photons in them. This is because the first d1 modes

would represent the rows of Ds.

Let M = {1, 2, ..., (d1 + d2) − 1, d1 + d2} be a set of index

positions from 1 to d1 + d2. C
′ ⊂ M, |C′| = b is a set of the column

index positions of our choice (from the first d2 index positions).

Essentially, C′ is the set of columns of a submatrix β ′ that serves as

a candidate for a potential bicluster.

Thus, our starting state can be described as |ψ0〉 = |N 〉 where

N = {ni|(ni = 1 ∧ i ∈ C
′) ∨ (ni = 0 ∧ i ∈M− C

′)} (16)

In other words, we generate a photon in the modes specified

by C′. After boson sampling, we extract the set of selected

rows R′ from the samples of the state with the highest

probability P(ψ ′|ψ0,E).

Once we have R′ and C′, we can construct our candidate

bicluster β ′. We can then evaluate the quality of this

candidate by a cost function f () like the permanent15 or the

matrix norm of β ′. Figure 3 represents a visual version of

this workflow.

Repeating this process for different choices of C′ may give

us different choices of R′. And at the end, the candidate β ′

with the best cost function score (largest permanent or norm)

would be considered as a bicluster β with columns C and R.

The process of figuring out the best choice of C can be viewed

as a blackbox optimization process. In our work, we use SA for

this task.

Once a bicluster β is chosen and added to the set B, we

make the values corresponding to its rows and columns equal

to 0 in Ds and repeat the entire process again. We can do this

13 This is unlike the challenge of decomposing unitary matrices into

quantum gates for the gate-model.

14 Traditionally, τ = 1 in some versions of boson sampling.

15 Since calculating the permanent is #P-Hard, the use of boson sampling

(Mezher et al., 2023) is suggested for this task as well.

1: procedure MAIN(D, num_samples, b, k, ε, f (), E,T) ⊲ f ():cost

function, k:no. of biclusters, ε: termination

criteria (satisfiability expression), E :

postselection criteria, T: annealing temperature

schedule

2: Create Ds ←
1
s D where s = σmax(D)

3: Initialize i← 0, set B← ∅ and a set I ← ∅

4: while i < k and ε 6= True do

5: Get β ,C,R ←

FINDBICLUSTER_SA(Ds, b, num_samples, f (), E,T)

6: Add bicluster β to the set of all biclusters,

B← B ∪ β

7: Append I ← I ∪R× C ⊲ Here, ×: cartesian

product

8: Set all elements in Ds to 0 for positions

described in R× C

9: i← i+ 1

10: end while

11: return B,I

12: end procedure

13: procedure FINDBICLUSTER_SA(Ds, b, num_samples, f (), E,T)

14: Randomly select b columns and create a set C′.

Intialize cost← 0

15: repeat

16: Get next t from annealing schedule T

17: Get R′ ← GETROWS(Ds, b, num_samples,C′,E)

18: Create candidate bicluster β ′ by taking

elements from Ds indexed by R′ × C′

19: Evaluate cost′ ← f (β ′)

20: 1cost← cost′ − cost

21: if 1cost > 0 or U(0, 1) < exp(1cost
t) then

22: β ← β ′, cost← cost′, C ← C′ and R←R′

23: end if

24: Generate a new C′ based on the neighborhood

of C

25: until all ts in T are covered

26: return β ,C,R

27: end procedure

28: procedure GETROWS(Ds, b, num_samples,C′,E)

29: Create unitary matrix UD using Ds by

Equation 12

30: Prepare state |ψ0〉 = |N 〉 by using C′ and

Equation 16

31: Do boson sampling for num_samples times

32: Get the state
∣

∣ψ ′
〉

with the highest observed

P(ψ ′|ψ0,E) where E is defined by Equation 13

33: Extract the set of rows R′ from
∣

∣ψ ′
〉

34: return R′

35: end procedure

Algorithm 1. Boson sampling for finding biclusters of size b×b (simulated

annealing for col. selection).

for k times (if the goal is to get k biclusters) or use some other

criteria for stoppage. This heuristic is encapsulated in Algorithm 1

in detail.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

FIGURE 3

Workflow of the boson sampling approach for biclustering. Here, the user chooses the columns and boson sampling returns corresponding rows;

from which the candidate bicluster is constructed. By Equation 8, it is expected that the bicluster that has the highest permanent value would also

have the highest probability of being obtained (for the initial choice of columns). This figure is for illustrative purposes only.

4.2.1 An example of a linear optical circuit for
boson sampling

Here we will present an example of a linear optical circuit as

it relates to boson sampling (and the application of biclustering).

While this example cannot go into all the details of such a circuit,

we hope that it is still informative for the readers of this paper.

Consider the following non-unitary matrix

D =

(

5 6

7 8

)

(17)

While such a small matrix is trivial for an actual biclustering

problem (or for boson sampling), the focus of this section is to

show how an arbitrarymatrixD gets translated into a optical circuit.

Using Equation 12 we embedD into the unitary matrixU, which in

this case is:

U =











0.38 0.45 0.65 −0.47

0.53 0.60 −0.48 0.35

0.57 −0.49 −0.38 −0.53

−0.49 0.42 −0.45 −0.61











(18)

and s = 13.19 (19)

Like mentioned before, unlike gate-model quantum computers,

it is fairly efficent to convert an arbitrary unitarymatrix into a linear

optical circuit (Reck et al., 1994). The resultant circuit is known

as a Reck’s type circuit and has been implemented for Python

in packages such as Perceval. The implementation typically

involves using RX beamsplitters with phase shifters eiφ where

RX =

(

exp(i(φtl + φtr)) cos θ/2 iexp(i(φbl + φtr)) sin θ/2

iexp(i(φtl + φbr)) sin θ/2 exp(i(φbl + φbr)) cos θ/2

)

(20)

with θ = π/2, Each RX operation acts on two modes (depicted

in Figure 4 as the “X” intersection with a rectangle overlay). The

phaseshift operations are depicted as diagonal bars and can be

included inside the nearestRX matrix by proximity. Here, φtl,φtr ,φbl
and φbr are the top-left, top-right, bottom-left and bottom-right

phase shift angles with respect to a RX operation (see “Beamsplitter

+ Phase Shifter” in Figure 4). For further details we recommend the

paper on Perceval package by the team at QuandelaTM (Heurtel

et al., 2023). For the rest of the paper, we will assume that if you

have an arbitrary dataset matrix D, it is possible to convert it into a

linear optical circuit for boson sampling.

4.3 Dealing with rectangular biclusters

While this work is primarily concerned with square

biclusters, rectangular biclusters can also be preprocessed to

be accommodated in this scheme. This step would essentially

involve padding the matrix with columns of 1s.

We begin here with the precursor to matrix D; the matrix

D′ ∈ R
d′1×d

′
2 with each value in the interval [0, 1]. We will describe

a scheme that would allow us to find a bicluster β ∈ R
b1×b2

with b1 > b2. This preprocessing method is restricted to finding

biclusters where number of columns are fewer than the number of

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

FIGURE 4

Example of a matrix D being embedded inside a unitary matrix UD that is converted into a linear optical circuit using the methodology in Reck’s

seminal work (Reck et al., 1994) (and implemented in Perceval). Each line indicates a mode (not a qubit), the diagonal bars indicates phase shifters

and the “X” intersection of modes are beamsplitters. The table denotes the phase shift angles for the circuit (φij is the ith mode’s jth phase shift angle).

rows.16 So if our desired rectangular bicluster has b2 > b1, then we

would need to start with (D′)T such that we would be searching for

βT ∈ R
b2×b1 .

The general approach is to pad matrixD′ with1b columns17 of

all 1s to create matrix D. This is done to have “anchored” columns

Canchor , |Canchor| = 1b where we send 1 photon each in their

corresponding modes. The rest of the columns Cchoice, |Cchoice| = b2
would be the actual choices for the columns of our bicluster (picked

from the first d2 modes). Together they would make C′ (where

C′ ← Cchoice ∪ Canchor)

By sending photons through modes of “anchored” columns, we

can make them available for row selection (after the computation)

while still keeping track of a smaller number of columns for our

actual bicluster. Since the anchored columns all have 1s, they

would have a constant effect on the value of the permanent (even

after scaling down by s) and can be ignored in the final creation

of the bicluster. Algorithm 2 describes this preprocessing process

in detail.

5 Gaussian boson sampling for
biclustering

The process of using GBS for the task of biclustering is fairly

straightforward. Additional preprocessing and post processing can

be added to this method to make it more efficient, but we are going

to focus on the basics of this application in our work.

Here, we will first convert our dataset D ∈ R
d1×d2 (assumed

to have values in the range [0, 1]) into an adjacency matrix Dadj ∈

16 D′ can have dimensions where d1 = d2 or d2 > d1 or d1 > d2.

17 1b = |b1 − b2|.

1: procedure MAIN(D′, d′1, d
′
2, b1, b2)

2: Initialize variable transpose_flag = False

3: if b2 > b1 then

4: Take its transpose D′ ← (D′)T

5: Swap values in b1 and b2

6: Set transpose_flag ← True ⊲ This lets users know

if they should transpose their biclusters

7: end if

8: Compute 1b← b1 − b2

9: Create matrix A1 of all 1s of size d1 × 1b,

Create D←
(

D′ A1

)

, where D ∈ R
d1×d2 with d1 ← d′1 and

d2 ← d′2 +1b

10: return D, d1, d2, transpose_flag

11: end procedure

Algorithm 2. Preprocessing data for finding rectangular biclusters (boson

sampling).

R
(d1+d2)×(d1+d2) by the following transformation

Dadj =

(

0 D

DT 0

)

(21)

This is done to prepare the matrix for the Autonne-Takagi

decomposition18 from which we will get the unitary matrix UDadj

Dadj = UDadj
diag(λ1, λ2, ..., λd1+d2)U

T
Dadj

(22)

18 This process only works on symmetric matrices and Dadj is one.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

FIGURE 5

Workflow of the Gaussian boson sampling (GBS) approach for biclustering. Here, GBS returns the rows as well as the columns of potential biclusters

(ideally with large hafnian or torontonian values). This figure is for illustrative purposes only.

The λis are used in the calculation of the squeezed states.
19 Here

it is assumed that the matrixDadj is scaled with the parameter c > 0

to make sure that 0 ≤ λi ≤ 1. Together c and λis are used in

calculating the squeezing parameters ri = tanh−1(cλi). They are

also related to the mean number of photons to be generated by the

following equation

n =

d1+d2
∑

i=1

(cλi)
2

1− (cλi)2
(23)

The unitary matrix UDadj
would then be converted to a linear

interferometer and the squeezing parameters ri would be applied to

their respective modes. After the computation, the columns C′ and

rows R′ can be extracted from their corresponding modes in
∣

∣ψ ′
〉

where one or more photons were detected.

Each GBS sample gives back a candidate bicluster β ′. These

candidate biclusters can be evaluated by a function f () such as a

matrix norm, based on which (and a threshold value) it can be

accepted or rejected. The values inD corresponding to the accepted

bicluster are then set to zero.20 The process can then repeat k times

or until a termination criteria ε is reached.

Finding biclusters can be represented as the process of locating

dense sub-graphs in a bipartite graph (Karim et al., 2019). Searching

for N-dense subgraphs using GBS is a topic that is being actively

explored (Arrazola and Bromley, 2018; Solomons et al., 2023). The

19 Here, λs are not to be taken as the eigenvalues of Dadj.

20 In this work, we only deal with non-overlapping biclusters. For getting

overlapping clusters, wewould need amore refined approach that includes (i)

not setting the values to 0 after extracting a bicluster and (ii) a larger number

of samples.

major restriction is that the sub-graphs (or biclusters) that GBS

finds will have a even numbered dimension (N is even). In order

to find biclusters for an odd numbered N, and for biclusters where

specific dimensions b1 × b2 are needed, you would need to post-

process the results.21 Figure 5 illustrates a general idea of how GBS

can be used to find biclusters and Algorithm 3 details this heuristic

more formally.

6 Simulations and results

In order to do preliminary validation of our ideas, we

performed a few simulations to get an initial estimate of our

proposed approaches. All our simulations were done on classical

computers with most of them being done on a high performance

server with a AMD Ryzen Threadripper 3970X 32-Core

processor with a memory size of∼256.7 GB. The programs were

written in the Python programming language and the simulation

packages used were Perceval for boson sampling (Heurtel et al.,

2023) and Strawberry Fields for GBS (Killoran et al., 2019;

Bromley et al., 2020). All our simulations were noiseless.

The method for simulation that was used for boson sampling

(implemented in Perceval) is Clifford and Clifford algorithm

(Clifford and Clifford, 2018). This is an exact algorithm which is

one of the fastest methods to simulate boson sampling classically,

the time complexity for which is exponential in nature at

O(n2n + mn2) (where m is the number of modes and n are

the number of photons). For Gaussian boson sampling, although

the exact method for its simulation is exponential at O(mN32N)

21 Since in GBS, both the rows and columns are observed after the

computation.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

1: procedure MAIN(D, num_samples, ε, n, k, f ())

2: Initialize B← ∅, I ← ∅ and i← 0

3: while i < k and ε 6= True do

4: Create Dadj ←

(

0 D

DT 0

)

5: Figure out scaling parameter c based on Dadj

and n

6: Scale the matrix Dadj ← cDadj

7: Do Autonne-Takagi decomposition to get UDadj

and 3 = {λ1, λ2, ..., λ(d1+d2)}

8: Get a set of squeezing parameters R =

{r1, r2, ..., r(d1+d2)} by ri ← tanh−1(cλi), ∀ri ∈ R

9: Do GBS using UDadj
, R to get num_samples number

of samples

10: while samples remain to be processed do

11: Get the candidate rows R′ and columns C′

from the current sample.

12: Get the corresponding bicluster candidate

β ′ and

13: if β ′ has a good value of f () then

14: β ← β ′, R←R′ and C ← C′

15: Store it in B← B∪β and append I ←R×C

16: Set all elements in D to 0 for positions

described in R× C

17: i← i+ 1

18: end if

19: end while

20: end while

21: return B,I

22: end procedure

Algorithm 3. Gaussian boson sampling for finding biclusters (non-

overlapping).

(N is the number of total photons), non-negative matrices can

be approximately simulated in polynomial time with the time

complexity of O(mMN3) (M being the number of approximate

matrices used for approximation). We recommend the work of

Quesada and Arrazola for readers interested in more information

(Quesada and Arrazola, 2020).

We also wanted to experiment on real photonic quantum

processing units (QPU) but at the time of the project, there were

no publicly available QPUs that could handle problems of a large

enough size. With the preliminary simulations, our aim was to

select problems that are not intractable to simulate,22 but are also

non-trivial in nature.

We took a total of four problems : two for boson sampling and

two for GBS with 12×12 sized datasets. The reason for choosing the

above dimensions was to have a matrix in which biclusters of non-

trivial sizes23 could be embedded in. In other words, like mentioned

above, because this is the first work of its kind, the chosen problems

were designed to have a balance of simplicity and non-triviality.

Another thing to note is that our simulations were based on a

22 While not being impossible, the simulation process was still slow for the

resources we had.

23 4× 4 and 6× 6.

simplified version of the proposed heuristics in Algorithms 1, 3.

This was done (i) partially due to the nature of these problems being

simple and straightforward but also because of (ii) the simulation

times involved. The exact details are mentioned in the following

sections. We hope that the insights from these simulations would

be useful for future implementation on real photonic hardware.

6.1 Boson sampling-problem 1

6.1.1 Setup
In our first simulation, we are going to have the following

assumptions:

1. There is only one bicluster β in our dataset D.

2. We know the set of columns C for the β .

Our task here is to use boson sampling with input created from

C to calculate the probability of observing the correct set of rows

R. For this, we created a 6 × 6 matrix that will act as our bicluster

β that has values randomly sampled from {0.7, 0.8, 0.9}. Then we

created D(1),D(2), ...,D(5) datasets of size 12 × 12 where we embed

β at C,R = {4, 5, 6, 7, 8, 9}. All other elements in the datasets have

values from 0 to 0.1× α:

D
(α)
ij
i/∈R,j/∈C

∈ {(0.1)h|0 ≤ h ≤ α, h ∈ Z} (24)

We created one more matrix D(6) in which we embed a 6 × 6

bicluster of all 1s (for the same R and C). The rest of the values

are all 0s. This is done to study boson sampling’s performance for

binary matrices, albeit a very simple one in this case.

For each dataset and our fixed C we performed boson sampling

with 105 and 106 samples. We then analyzed the success probability

P of getting our ideal bicluster for three different conditions:

1. No postselection (raw results)

2. Postselection as defined by Equation 13 with τ = 1.

3. Postselection as defined by Equation 13 with τ = 3.

For points 1 and 2 in the list above, in order to estimate P , a

success is to observe if the modes corresponding to R receive 1

photon each. Here, the success probability P is based on finding

(single) photons in all rows described in R and no others. For #3,

we are fine with up to three photons in the same mode, but we

only count each unique row once. Since the number of photons are

limited, in this case, success is defined as finding photons in a subset

of the rowsR of the ideal bicluster, but no others.

6.1.2 Results and discussion
The results of the simulations on our first problem can be best

described by Table 1. This table shows us the results for cases where

1 million samples were taken. It should be noted that our results

for 100k samples were comparable, but we chose to publish the

former since the calculated probabilities would be closer to their

exact values (due to the larger sample size).

The first observation we can make is the effect that the values in

(D
(α)
ij)i/∈R,j/∈C can have on finding the bicluster β . As the values in

the other parts of the dataset go up (even if its lower than the values

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

TABLE 1 Success probabilitiesP for boson sampling-problem 1 of datasets D(1) to D
(6), when calculated for 1 million samples.

Dataset Heatmap No-postselect Postselect τ = 1 Postselect τ = 3

Num. Den. P Num. Den. P Num. Den. P

D(1) 219 106 2.1×10−4 219 245 0.893 13, 269 13, 593 0.976

D(2) 185 106 1.8×10−4 185 262 0.706 11, 323 12, 289 0.921

D(3) 152 106 1.5×10−4 152 366 0.415 9, 101 11, 277 0.807

D(4) 101 106 1× 10−4 101 514 0.196 5, 909 9, 130 0.647

D(5) 49 106 4.9×10−5 49 559 0.087 3, 007 6, 618 0.454

D(6) 255 106 2.5×10−4 255 255 1.0 14, 686 14, 686 1.0

The heatmaps depicts the areas of the table where the values are the highest (dark blue) and lowest (white or very light blue). For each of the three settings (no-postselection, postselection

with τ = 1, and postselection with τ = 3), the numerator (no. of samples containing the ideal result), denominator (no. of samples filtered through the postselection criteria E), and P

(numerator/denominator) is listed.

in the rows of β), the probability of those rows to be sampled also

goes up (even if the probability of finding the rows of β may still

be the highest). For example, for the data of postselect τ = 1, we

can see how the results degrade when going from 0.89 for D(1) to

0.087 for D(5). This seems to suggest that such a technique would

do better if there is enough difference in the magnitude of the

values of the bicluster and the rest of the dataset. This is similar

to how in quantum annealing, finding the ground state solutions

becomes worse when there are plenty of other good solutions in

the landscape (in other words, when a landscape is not “rugged”)

(King et al., 2019). Similarly, the equivalent of a lot of ruggedness

in boson sampling terms would seem to be a larger difference in the

magnitude of β and (D
(α)
ij)i/∈R,j/∈C .

The other important observation to make is the role

postselection plays for this task. In themillion samples, themajority

of them have photons that may be (i) incident on modes > d1
and/or (ii) aggregate in modes in quantities > 1. After applying

our strictest postselection criteria (postselect τ = 1 column), the

samples that remain are only in the hundreds. The situation is

somewhat better for our other postselection criteria (postselec τ =

3) where the samples that remain are in the thousands. Regardless,

based on these simulations, it would appear that in order to even

conduct meaningful postselection, we need a very large number of

samples. Depending on the hardware equipment being used, the

time taken to get one sample in a linear interferometer for boson

sampling and GBS can be very fast (Madsen et al., 2022; Deng et al.,

2023b).

Like mentioned before, the success probability for when

postselection is done with τ = 3 is altered to be the probability

of samples where one or more photons are received on a mode in

R.24 Therefore, not only are we working with a higher denominator

when τ = 3, but also a comparitively high numerator value.

And while P does decrease from D(1) to D(5), it is higher than

its τ = 1 counterpart. Essentially it indicates that, the traditional

way to run boson sampling (with single photons in the input mode

and a requirement of only allowing one photon in a mode at the

output) may not be best suited for practical applications. Indeed,

24 And also like mentioned before, if we were to extract rows from such a

sample (to construct β ′), we would only take the unique ones.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

along with the lower probability, this stringent approach will face

issues with noise once we would try and implement it on an actual

photonic device (Brod et al., 2019) (photon loss being a major

concern among them).

Finally, the results for D(6) shows us how boson sampling

may behave for a bicluster of all 1s with all other parts of the

dataset containing zeros. Here we can see that the postselected P

is observed to be 1. The success probabilities of a realistic binary

dataset however, may not be expected to be so high as there would

most likely be presence of 1s outside of the actual biclusters. While

typical binary datasets would probably not have such a simple

spread of values across the entire matrix, the value of our simple

simulation is to show how extreme contrast in values can affect

the probabilities.

6.2 Boson sampling-problem 2

6.2.1 Setup
For our second simulation, we use dataset D(2) from the first

problem25 but shuffle its rows and columns randomly to make it

into a slightly more challenging problem. The objective is to find a

β ∈ R
6×6 where we do not know itsR or C. Here, our assumption

is that there is one and only one 6× 6 bicluster in the dataset.

In order to do this, we use Algorithm 1 with the following

parameters:

1. D = PR(D
(2)PC) where PR and PC are the randomly generated

row and column permutation matrices, respectively.

2. num_samples = 105, b = 6 and k = 1

3. ε = ∅, essentially we don’t have any separate termination critera.

4. f () is the permanent

5. T is an exponential decay annealing schedule: by T = {ti|ti =

t0
(tf
t0

)i/p
, 0 ≤ i ≤ b− 1, i ∈ Z} with t0 = 100 and tf = 0.01

In each iteration of the SA process, the rows are chosen from

the sample that appears the most after postselection. We use the

postselection criteria E as mentioned in Equation 13 with initial

τ = 1. If we do not find any samples that satisfy this criteria, we

iteratively increase τ upto b − 1. If no samples are selected even

after this, we assign R′ ← ∅ and cost′ = −1000. This means that

the selection of C′ was very bad and should not be accepted. For

samples where τ > 1, it means that |R′| ≤ 6. For these simulations,

whenever |R′| < 6, we chose to reduce the |C′| to match |R′| by

dropping the columns in C′ with the lowest individual L2 norms,26

which will give us β ′, our bicluster candidate. Essentially, for these

simulations on problem 2, our bicluster can potentially be smaller

than 6 × 6 (but not rectangular) if a bicluster of the original size

cannot be found.

For SA, the neighborhood of C is defined as any column’s index

position in D outside of C which can be swapped for a index

position inside C. In other words, the process of generating new

candidate C′ is as follows:

25 D(2) was chosen over the others for a decent contrast of values in the

dataset (useful for a good P) while still being challenging enough for boson

sampling.

26 Higher elements in a column would correlate with higher (vector) norm

values.

TABLE 2 Approximate success probabilitiesP for problem 2 of boson

sampling for corresponding number of steps that simulated annealing

(SA) was run for (boson sampling being used as a subroutine).

Anneal steps p 20 50 100 150 200

Success probabilityP 0.17 0.34 0.85 0.95 0.99

1. Copy C′ ← C

2. Randomly select a column index position i of D where i ∈ C′

3. Randomly select a column index position j of D where j /∈ C′

4. Delete i from C′ : C′ ← C′ − {i}

5. Add j to C′: C′ ← C′ ∪ j

We ran our simulations for p steps that span over the entire

annealing schedule T for p ∈ {20, 50, 100, 150, 200} for a hundred

trials per p (500 total). Each SA step only involves one Monte Carlo

sweep (i.e., only one iteration per temperature value in T).

6.2.2 Results and discussion
The results for the simulation of problem 2 as encapsulated by

Table 2 do show a favorable scaling of finding a square bicluster for

the number of SA steps p involved. Of course, since we have just

considered one problem over here, a more thorough study in the

future is warranted.

One of the most glaring challenges is the number of samples

that we had to do for this process to work. Asmentioned previously,

we ran boson sampling for 105 times per each anneal step. This

also constrained us in limiting the number of times we run

the simulation per p. However, it should also be kept in mind

that actual devices are going to be way faster than the simulation

work we did. A different black box technique to SA could also be

considered.

6.3 Gaussian boson sampling-problem 1

6.3.1 Setup
Since the approach of finding biclusters using GBS yields us

both the rows and columns of the bicluster simultaneously, for

our first experiment, we consider the same dataset D as the one

for boson sampling-problem 2 (see Figure 6). We also consider a

binary version Dbin that makes all values ≥ 0.7 from the original

equal to one and zero if otherwise. Our goal is to find the same 6×6

bicluster as the one in Section 6.2.

In GBS, because we cannot control the exact number of photons

we send through the circuit, the mean number of photons n per

mode (or just n per mode) is an important hyperparameter for the

GBS process. As we can see from Equation 11, having either too low

or too high a value of n per modemay affect the results in a negative

way.27

Our simulations were done with 1, 2, 4, 6, and 10 mean

photons per mode. We took 104 samples for each setting of n per

mode. The primary reason for taking fewer samples than boson

sampling is that the GBS approach seems to require a smaller

27 Too low : photons may not be generated and/or lost to photon loss. Too

high: the probability of finding good biclusters will go down factorially.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

FIGURE 6

(Right) Heatmap of the dataset used in boson sampling-problem 2. This problem was generated by taking D(2) from boson sampling-problem 1

whose heatmap is on the (Left) and then performing a random permutation on its rows and columns.

TABLE 3 Approximate success probabilitiesP for problem 1 of Gaussian

boson sampling (GBS) for corresponding mean number of photons (n) per

mode.

n per mode 1 2 4 6 10

No. of correct samples 735 1, 038 1, 099 945 701

Success probabilityP 0.0735 0.1038 0.1099 0.0945 0.0701

This is for the real valued dataset D.

TABLE 4 Approximate success probabilitiesP for problem 1 of Gaussian

boson sampling (GBS) for corresponding mean number of photons (n) per

mode.

n per mode 1 2 4 6 10

No. of correct samples 1, 949 4, 125 6, 180 7, 305 8, 234

Success probabilityP 0.1949 0.4125 0.6180 0.7305 0.8234

This is for the binary dataset Dbin .

number of samples for other applications (Arrazola and Bromley,

2018; Bonaldi et al., 2023). The secondary reason is that the cost

of simulating a GBS process is far larger for a 24-mode linear

interfermetor than for a boson sampling circuit of the same size.

This is because a classical process has to keep track of squeezed light

states across a large number of modes in GBS.

After the process, photons in the first d1 modes would represent

the rows that have been selected for a candidate bicluster and

the next d2 modes would represent the selected columns for the

same. For measurement, we used the threshold detection process

as implemented in the strawberryfields package. So even

if we had more than one photon in a mode, we would still count

that row/column only once. Finally, once we decipher the proposed

biclusters from the samples, we then compare them against the

correct result in order to calculate the success probability P .

6.3.2 Results and discussion
From Tables 3, 4, the very first thing the data seems to suggest,

is that GBS, like boson sampling, seems more effective at the task

of finding binary biclusters. But we don’t need success probabilities

≥ 2/3 in order for GBS to be useful. As long as we have samples

from which the part or whole of a bicluster can be extracted,28 there

may be some utility of GBS for this application. Another thing to

note is that the success probability of a random sampling procedure

to find the correct bicluster is in the order of.29 10−6, which is

lower than the success probabilities from GBS. It should also be

mentioned that except in one case (real valued dataset, n per mode

= 1), the correct samples were in the majority (i.e., the statistical

mode).

The other important observations with GBS are that (i) we

figure the rows and columns of the bicluster simultaneously and

(ii) we may be able to get meaningful results with fewer number

of samples when compared to our approach with boson sampling.

Of course, further studies and a thorough comparison with classical

methods is needed to make stronger claims.

The final observation for this problem is how the different

datasets performed for different values of n per mode. For D, 4

mean photons per mode gave us the best success probability and for

Dbin it was 10 (from the limited information we have). Regardless,

the initial data indicates that the best value for n per mode could be

different from problem to problem.

28 This may be done by evaluating the candidate bicluster of each sample

using a cost metric f () like a matrix norm, and selecting the bicluster with the

highest cost value.

29 There are a total of 24 modes. For simplifying the calculation, consider

the values the modes can take to be either 0 or 1 (photons are either there

or not). Total number of possible solutions (for a 6×6 bicluster):
(

26
6

)

= 134596

and probability of sampling the best solution (assuming there is only one)

becomes 1/134, 596 ≈ 7.43× 10−6.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

FIGURE 7

(Right) Heatmap of the dataset with three biclusters used in GBS-problem 2. This problem was generated by first creating the dataset whose

heatmap is on the (Left) and then performing a random permutation on its rows and columns. For further details, refer Section 6.4.1.

6.4 Gaussian boson sampling-problem 2

6.4.1 Setup
For the second simulation of GBS, we chose a problem that has

three biclusters β1,β2,β3 ∈ R
4×4 that has values in the interval

[0.7, 0.9]. These three biclusters are placed along the diagonal

of a 12 × 12 dataset D, the rest of which has values ≤ 0.2.

After this, a random permutation was applied on the rows and

columns of the dataset to make the problem more challenging and

realistic.30 Figure 7, shows the heatmaps of the dataset during its

initial and final creation phases (Left and Right parts of the figure,

respectively). Finally a binary dataset Dbin was created by the same

criterion as mentioned in Section 6.3.1.

The aim of this simulation was to see how effective GBS would

be for detecting multiple biclusters. We chose 2 as the n per

mode value after doing some preliminary simulations of different

values (for small number of samples). Here, we applied a simplified

version of the heuristic from Algorithm 3 to reduce the number of

simulations we need to do while still being able to extract useful

results. Essentially, after performing GBS once for 104 samples,

we remove two of the correct biclusters that have the highest

counts in all the samples by replacing their values with 0s in D

(or Dbin). The GBS process is then done once more for the same

number of samples (104) to see the change in measuring the last

remaining bicluster.

6.4.2 Results and discussion
After applying GBS to our 12 × 12 datasets, we notice that the

number of times the correct biclusters were successfully observed

were in single digits for the real-valued dataset and in the low

double-digits for the binary one (see Table 5). At first glance, these

results look very underwhelming. But we would like to bring to

30 Since one may not expect to find an ideal bicluster located entirely

continuosly across the dataset.

attention two points: firstly, even for the real-valued dataset, these

results are still orders of magnitude better than results we may

expect from random sampling.31 This is corroborated by the 2013

theoretical work32 by Aaronson and Arkhipov (2013).

Secondly, the standard way that the GBS process is set up is as

a fixed circuit that runs in constant time (for a given size), unlike

a gate-model quantum algorithm or a quantum annealing process.

Thus, to an extent, taking more samples for GBS is more tolerable

than taking more samples in the other types of models.33

Table 6 shows the results of GBS once the two most observed

biclusters (from the previous run) were removed from the datasets.

Here, we see a significant increase of observing the remaining

bicluster, with the largest rise seen for the binary dataset. This

suggests that a full-fledged GBS heuristic that detects and removes

biclusters iteratively may improve its chances for finding one or

more biclusters in the ith iteration than in the (i − 1)th iteration.

Though further studies are needed before we can saymore, we hope

that the insight from this result is useful to the research community

at large.

6.5 A short summary of the results

Following is the summary of the results from our simulations:

31 As mentioned in Section 6.3.2, random sampling has a probability in the

order of 10−6, the worst of our GBS results suggest probabilities in the order

of 10−4.

32 While that work is based on traditional boson sampling, it would also

broadly apply for the comparison in question.

33 Of course, in order to make a stronger case for GBS to be used for

this application, it would still have to yield meaningful results that have to

be better than the alternatives in some way(s). What we are suggesting is

that our results do not take GBS out of contention for being a candidate for

biclustering.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

1. Both boson sampling and GBS can be applied to real-valued and

binary datasets to detect biclusters within larger datasets.

2. Both boson sampling and GBS perform better when the contrast

between the values that are inside and outside the bicluster is

large.

3. The GBS approach seems to produce comparable or better

results for fewer number of samples (against our current way

of performing boson sampling).

4. The GBS approach provides us with both the rows and columns

of the bicluster simultaneously.

5. If multiple biclusters are present within a dataset, then their

chances of being detected goes down. We hope this can be

somewhat alleviated in the future by the use of preprocessing

and postprocessing methods34 to extract meaningful results.

7 Future work

Based on the outcomes of Section 6, we can now comment on

the potential future work that would help to better understand the

utility of these restricted models of quantum computation (enabled

by photonics) for the problems of biclustering.

1. Better method for boson sampling: In our simulations, GBS

outperformed boson sampling in terms of the number of

samples that it needed to work effectively. But since both

methods use mostly similar components (beamsplitters and

phaseshifters), the difference may be more to do with how we

encode the problems for boson sampling. One naive solution

could be to use the same technique to make unitary matrices

that GBS uses, but by using single photon sources rather

than squeezing light. However, this suggestion would probably

need further refinement since (i) producing synchronized single

photons at scale is a major engineering hurdle and (ii) it ignores

the possibility of photon loss.

2. Implementation on real photonic hardware:Another potential

future work that can be done is a comparison on real photonic

hardware for boson sampling and GBS. At the time of writing,

there was no publicly available hardware that would support

problems of the sizes like the ones in this work.

3. Experimentation on real-world datasets: With better

simulation software and hardware, it would be useful to test

these photonic methods on datasets representing non-synthetic

data that come from domains where biclustering is the most

relevant.

4. Comparison against classical methods: Like we mentioned

in the section before, comparison against industry-standard

classical methods is also part of the work that needs to be done

for making stronger claims.

5. Develop hybrid quantum-classical techniques: This is a

direction of research that we believe will make a significant

impact for this application. It is quite possible that classical

methods can outperform a direct application of restricted

34 For example, for preprocessing, you can use a threshold value to

generate a binary version of a real-valued dataset (Bonaldi et al., 2023).

Similarly, postprocessing methods that build on the raw solutions in order

to produce better solutions can also be considered (Arrazola and Bromley,

2018).

TABLE 5 Results of GBS-problem 2 for 104 samples for real-valued and

binary datasets (D and Dbin, respectively).

Dataset
No. of correct samples

Bicluster β1 Bicluster β2 Bicluster β3

D 3 5 6

Dbin 41 34 24

We can see that GBS performs better for Dbin than for D.

TABLE 6 Results on GBS-problem 2 datasets after the top two results in

each category were removed (see Table 5).

Dataset
No. of correct samples

Bicluster β1 Bicluster β2 Bicluster β3

D 1,030 0 0

Dbin 0 0 5,966

For D, it was β2 and β3 and for Dbin it was β1 and β2 .

models of quantum computing (like boson sampling and

GBS), at least in the short term, when the latter has to be

moderately adapted to an application problem. This is because

classical methods can often exploit their Turing completeness

to implement a range of solutions rather than be restricted

to just one type. For example, currently, it is still challenging

for quantum annealing (another restricted model of quantum

computing) to solve k-SAT problems better than classical

methods (Gabor et al., 2019).

Another reason for investigating hybrid quantum-classical

techniques is the fact that quantum circuits in the short to

medium term (even for photonic-based hardware) will remain

relatively small. Taking these two points together, we believe

that in the best case scenario, boson sampling or GBS may be

best used as a smaller (but effective) sub-routine inside a larger

method for solving problems in biclustering. This is essentially

to counter disadvantages of either approaches.

8 Conclusion

In this work, we proposed the use of two computational models

from photonics: namely boson sampling and Gaussian boson

sampling (GBS), for the problem of biclustering. Being the first

work in this research direction, we conducted four preliminary tests

where we simulated the application of these quantum computing

models on synthetic datasets for biclustering. We found that these

models are best suited for binary datasets and datasets where

the contrast in the values is very high. We also found that the

direct application of GBS has two main advantages over the

direct application of boson sampling: (i) fewer number of samples

needed and (ii) the ability two locate both rows and columns of

a bicluster simultaneously. Based on our findings, we recommend

a list of future work, primarily to do with (a) better encoding

of biclustering problems in boson sampling, (b) experiments on

photonic hardware and on (c) non-synthetic data, (d) comparison

with classical methods and (e) the development of hybrid quantum-

classical methods. We hope that the results of our preliminary

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

simulations are useful to the research community for all future

work in this domain.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) are found here: https://github.com/aborle1/

Photonic_bicluster.

Author contributions

ABo: Conceptualization, Data curation, Investigation,

Methodology, Software, Writing – original draft, Writing – review

& editing. ABh: Conceptualization, Data curation, Software,

Visualization, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to thank Dr Charles Nicholas and

the DREAM Laboratory in the University of Maryland Baltimore

County (UMBC), for providing access to their high performance

compute servers for our simulations. The initial ideas for the

example for application of biclustering in machine learning for

Section 2.5.1 and Figure 2 were generated by the Claude Sonnet

3.5 large language model (LLM). The final text in Section 2.5.1 and

the illustration in Figure 2 were written and drawn respectively by

the authors (manually) based on suggestions provided by the above

mentioned AI model.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Aaronson, S., and Arkhipov, A. (2011). “The computational complexity of linear
optics,” in Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing (New York, NY: ACM), 333–342.

Aaronson, S., and Arkhipov, A. (2013). Bosonsampling is far from uniform. arXiv
[preprint]. doi: 10.48550/arXiv.1309.7460

Adachi, S. H., and Henderson, M. P. (2015). Application of quantum annealing to
training of deep neural networks. arXiv [preprint]. doi: 10.48550/arXiv.1510.06356

Arrazola, J. M., and Bromley, T. R. (2018). Using gaussian boson sampling to find
dense subgraphs. Phys. Rev. Lett. 121:030503. doi: 10.1103/PhysRevLett.121.030503

Arrazola, J. M., Bromley, T. R., and Rebentrost, P. (2018). Quantum
approximate optimization with gaussian boson sampling. Phys. Rev. A 98:012322.
doi: 10.1103/PhysRevA.98.012322

Ayadi, W., Elloumi, M., and Hao, J.-K. (2009). A biclustering algorithm based on a
bicluster enumeration tree: application to dna microarray data. BioData Min. 2, 1–16.
doi: 10.1186/1756-0381-2-9

Bertsimas, D., and Tsitsiklis, J. (1993). Simulated annealing. Stat. Sci. 8, 10–15.
doi: 10.1214/ss/1177011077

Bonaldi, N., Rossi, M., Mattioli, D., Grapulin, M., Fernández, B. S., Caputo, D., et al.
(2023). Boost clustering with gaussian boson sampling: a full quantum approach. arXiv
[preprint]. doi: 10.1007/s42484-024-00185-w

Bottarelli, L., Bicego, M., Denitto, M., Di Pierro, A., Farinelli, A., and Mengoni,
R. (2018). Biclustering with a quantum annealer. Soft Comp. 22, 6247–6260.
doi: 10.1007/s00500-018-3034-z

Brod, D. J., Galvão, E. F., Crespi, A., Osellame, R., Spagnolo, N., and Sciarrino,
F. (2019). Photonic implementation of boson sampling: a review. Adv. Phot. 1,
034001–034001. doi: 10.1117/1.ap.1.3.034001

Bromley, T. R., Arrazola, J. M., Jahangiri, S., Izaac, J., Quesada, N., Gran, A. D.,
et al. (2020). Applications of near-term photonic quantum computers: software and
algorithms. Quant. Sci. Technol. 5:034010. doi: 10.1088/2058-9565/ab8504

Castanho, E. N., Aidos, H., and Madeira, S. C. (2022). Biclustering fMRI time
series: a comparative study. BMC Bioinformatics 23, 1–30. doi: 10.1186/s12859-022-0
4733-8

Castanho, E. N., Aidos, H., and Madeira, S. C. (2024). Biclustering data analysis: a
comprehensive survey. Brief. Bioinform. 25:bbae342. doi: 10.1093/bib/bbae342

Cheng, Y., and Church, G. M. (2000). Biclustering of expression data. Intell. Syst.
Mol. Biol. 8, 93–103.

Choi, S., Ha, H., Hwang, U., Kim, C., Ha, J.-W., and Yoon, S. (2018). Reinforcement
learning based recommender system using biclustering technique. arXiv [preprint].
doi: 10.48550/arXiv.1801.05532

Cipra, B. A. (1987). An introduction to the ising model. Am. Math. Monthly 94,
937–959. doi: 10.1080/00029890.1987.12000742

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., and
Walmsley, I. A. (2016). Optimal design for universal multiport interferometers. Optica
3, 1460–1465. doi: 10.1364/OPTICA.3.001460

Clifford, P., and Clifford, R. (2018). “The classical complexity of boson sampling,”
in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (Philadelphia, PA: SIAM), 146–155.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to
Algorithms. Cambridge, MA: MIT Press.

Cui, L., Acharya, S., Mishra, S., Pan, Y., and Huang, J. Z. (2020). Mmco-clus-an
evolutionary co-clustering algorithm for gene selection. IEEE Trans. Knowl. Data Eng.
34, 4371–4384. doi: 10.1109/TKDE.2020.3035695

de Castro, P. A., de França, F. O., Ferreira, H. M., and Von Zuben, F. J. (2007).
“Applying biclustering to text mining: an immune-inspired approach,” in Artificial
Immune Systems: 6th International Conference, ICARIS 2007, Santos, Brazil, August
26-29, 2007. Proceedings (Berlin; Heidelberg: Springer), 83–94.

Deng, Y.-H., Gong, S.-Q., Gu, Y.-C., Zhang, Z.-J., Liu, H.-L., Su, H., et al. (2023a).
Solving graph problems using gaussian boson sampling. Phys. Rev. Lett. 130:190601.
doi: 10.1103/PhysRevLett.130.190601

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://github.com/aborle1/Photonic_bicluster
https://github.com/aborle1/Photonic_bicluster
https://doi.org/10.48550/arXiv.1309.7460
https://doi.org/10.48550/arXiv.1510.06356
https://doi.org/10.1103/PhysRevLett.121.030503
https://doi.org/10.1103/PhysRevA.98.012322
https://doi.org/10.1186/1756-0381-2-9
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1007/s42484-024-00185-w
https://doi.org/10.1007/s00500-018-3034-z
https://doi.org/10.1117/1.ap.1.3.034001
https://doi.org/10.1088/2058-9565/ab8504
https://doi.org/10.1186/s12859-022-04733-8
https://doi.org/10.1093/bib/bbae342
https://doi.org/10.48550/arXiv.1801.05532
https://doi.org/10.1080/00029890.1987.12000742
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1109/TKDE.2020.3035695
https://doi.org/10.1103/PhysRevLett.130.190601
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Borle and Bhave 10.3389/fcomp.2024.1441879

Deng, Y.-H., Gu, Y.-C., Liu, H.-L., Gong, S.-Q., Su, H., Zhang, Z.-J.,
et al. (2023b). Gaussian boson sampling with pseudo-photon-number-resolving
detectors and quantum computational advantage. Phys. Rev. Lett. 131:150601.
doi: 10.1103/PhysRevLett.131.150601

Deshpande, A., Mehta, A., Vincent, T., Quesada, N., Hinsche, M., Ioannou, M.,
et al. (2022). Quantum computational advantage via high-dimensional gaussian boson
sampling. Sci. Adv. 8:eabi7894. doi: 10.1126/sciadv.abi7894

Dhillon, I. S. (2001). “Co-clustering documents and words using bipartite spectral
graph partitioning,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (New York, NY: ACM),
269–274.

Gabor, T., Zielinski, S., Feld, S., Roch, C., Seidel, C., Neukart, F., et al. (2019).
“Assessing solution quality of 3sat on a quantum annealing platform,” in Quantum
Technology and Optimization Problems: First International Workshop, QTOP 2019,
Munich, Germany, March 18, 2019, Proceedings 1 (Berlin; Heidelberg: Springer),
23–35.

Glynn, D. G. (2013). Permanent formulae from the veronesean. Designs Codes
Cryptogr. 68, 39–47. doi: 10.1007/s10623-012-9618-1

Halmos, P. (1950). Summa. brasil. math. Norm. Dilat. Extens. Operat. 2, 125–134.

Halmos, P. R. (1951). Normal dilations and extensions of operators. Bull. Am.Math.
Soc. 57, 294.

Hamilton, C. S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C.,
and Jex, I. (2017). Gaussian boson sampling. Phys. Rev. Lett. 119:170501.
doi: 10.1103/PhysRevLett.119.170501

Heurtel, N., Fyrillas, A., De Gliniasty, G., Le Bihan, R., Malherbe, S., Pailhas, M.,
et al. (2023). Perceval: a software platform for discrete variable photonic quantum
computing. Quantum 7:931. doi: 10.22331/q-2023-02-21-931

Hochreiter, S., Bodenhofer, U., Heusel, M.,Mayr, A.,Mitterecker, A., Kasim, A., et al.
(2010). Fabia: factor analysis for bicluster acquisition. Bioinformatics 26, 1520–1527.
doi: 10.1093/bioinformatics/btq227

José-García, A., Jacques, J., Sobanski, V., and Dhaenens, C. (2022). Biclustering
algorithms based on metaheuristics: a review. Metaheurist. Mach. Learn. 39–71.
doi: 10.1007/978-981-19-3888-7_2

Kadowaki, T., and Nishimori, H. (1998). Quantum annealing in the transverse ising
model. Phys. Rev. E 58:5355. doi: 10.1103/PhysRevE.58.5355

Karim, M. B., Huang, M., Ono, N., Kanaya, S., and Altaf-Ul-Amin, M.
(2019). Bicluso: a novel biclustering approach and its application to species-
voc relational data. IEEE/ACM Transact. Comp. Biol. Bioinf. 17, 1955–1965.
doi: 10.1109/TCBB.2019.2914901

Killoran, N., Izaac, J., Quesada, N., Bergholm, V., Amy, M., and Weedbrook,
C. (2019). Strawberry fields: a software platform for photonic quantum computing.
Quantum 3:129. doi: 10.22331/q-2019-03-11-129

King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A. D., Nevisi, M. M., et al.
(2019). Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc.
Jpn. 88:061007. doi: 10.7566/JPSJ.88.061007

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science 220, 671–680. doi: 10.1126/science.220.4598.671

Kluger, Y., Basri, R., Chang, J. T., and Gerstein, M. (2003). Spectral biclustering
of microarray data: coclustering genes and conditions. Genome Res. 13, 703–716.
doi: 10.1101/gr.648603

Kumar, V., Bass, G., Tomlin, C., and Dulny, J. (2018). Quantum annealing
for combinatorial clustering. Quant. Inf. Process. 17:1–14. doi: 10.1007/s11128-017-
1809-2

Maâtouk, O., Ayadi, W., Bouziri, H., and Duval, B. (2021). Evolutionary local search
algorithm for the biclustering of gene expression data based on biological knowledge.
Appl. Soft Comput. 104:107177. doi: 10.1016/j.asoc.2021.107177

Madeira, S. C., and Oliveira, A. L. (2004). Biclustering algorithms for biological
data analysis: a survey. IEEE/ACM Transact. Comp. Biol. Bioinf. 1, 24–45.
doi: 10.1109/TCBB.2004.2

Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J.
F., et al. (2022). Quantum computational advantage with a programmable photonic
processor. Nature 606, 75–81. doi: 10.1038/s41586-022-04725-x

Mezher, R., Carvalho, A. F., and Mansfield, S. (2023). Solving graph problems with
single-photons and linear optics. arXiv [preprint]. doi: 10.1103/PhysRevA.108.032405

Miller, G. (1930). On the history of determinants. Am. Math. Monthly 37, 216–219.
doi: 10.1080/00029890.1930.11987058

Mirkin, B. (1997). Mathematical classification and clustering. J. Operat. Res. Soc. 48,
852–852. doi: 10.1057/palgrave.jors.2600836

Orzechowski, P., and Boryczko, K. (2016). “Text mining with hybrid biclustering
algorithms,” in International Conference on Artificial Intelligence and Soft Computing
(Berlin; Heidelberg: Springer), 102–113.

Pontes Balanza, B., Giráldez, R., and Aguilar Ruiz, J. S. (2015). Biclustering on
expression data: a review. J. Biomed. Inf. 57, 163–180. doi: 10.1016/j.jbi.2015.06.028

Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W.,
et al. (2006). A systematic comparison and evaluation of biclustering methods for gene
expression data. Bioinformatics 22, 1122–1129. doi: 10.1093/bioinformatics/btl060

Quesada, N., and Arrazola, J. M. (2020). Exact simulation of gaussian boson
sampling in polynomial space and exponential time. Phys. Rev. Res. 2:023005.
doi: 10.1103/PhysRevResearch.2.023005

Quesada, N., Arrazola, J. M., and Killoran, N. (2018). Gaussian boson sampling
using threshold detectors. Phys. Rev. A 98:062322. doi: 10.1103/PhysRevA.98.062322

Raff, E., Zak, R., Lopez Munoz, G., Fleming, W., Anderson, H. S., Filar, B., et al.
(2020). “Automatic yara rule generation using biclustering,” in Proceedings of the 13th
ACMWorkshop on Artificial Intelligence and Security (New York, NY: ACM), 71–82.

Reck, M., Zeilinger, A., Bernstein, H. J., and Bertani, P. (1994).
Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73:58.
doi: 10.1103/PhysRevLett.73.58

Ryser, H. J. (1963). Combinatorial mathematics. Am. Math. Soc. 14:147.
doi: 10.5948/UPO9781614440147

Schuld, M., Brádler, K., Israel, R., Su, D., and Gupt, B. (2020). Measuring
the similarity of graphs with a gaussian boson sampler. Phys. Rev. A 101:032314.
doi: 10.1103/PhysRevA.101.032314

Solomons, N. R., Thomas, O. F., and McCutcheon, D. P. (2023). Effect of photonic
errors on quantum enhanced dense-subgraph finding. Phys. Rev. Appl. 20:054043.
doi: 10.1103/PhysRevApplied.20.054043

Sun, J., and Zhang, Y. (2022). Recommendation system with biclustering. Big Data
Mining Anal. 5, 282–293. doi: 10.26599/BDMA.2022.9020012

Takagi, T. (1924). On an algebraic problem reluted to an analytic theorem of
carathéodory and fejér and on an allied theorem of landau. Jpn. J. Math. 1, 83–93.
doi: 10.4099/jjm1924.1.0_83

Termini, S. (2006). Imagination and Rigor: Their Interaction Along the Way to
Measuring Fuzziness and Doing Other Strange Things. Berlin; Heidelberg: Springer-
Verlag.

Troyansky, L., and Tishby, N. (1996). On the quantum evaluation of the
determinant and the permanent of a matrix. Proc. Phys. Comput. 96.

Wang, B., Miao, Y., Zhao, H., Jin, J., and Chen, Y. (2016). A biclustering-based
method for market segmentation using customer pain points. Eng. Appl. Artif. Intell.
47, 101–109. doi: 10.1016/j.engappai.2015.06.005

Xie, J., Ma, A., Fennell, A., Ma, Q., and Zhao, J. (2019). It is time to apply
biclustering: a comprehensive review of biclustering applications in biological and
biomedical data. Brief. Bioinf. 20, 1450–1465. doi: 10.1093/bib/bby014

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1441879
https://doi.org/10.1103/PhysRevLett.131.150601
https://doi.org/10.1126/sciadv.abi7894
https://doi.org/10.1007/s10623-012-9618-1
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.1093/bioinformatics/btq227
https://doi.org/10.1007/978-981-19-3888-7_2
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1109/TCBB.2019.2914901
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.7566/JPSJ.88.061007
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1101/gr.648603
https://doi.org/10.1007/s11128-017-1809-2
https://doi.org/10.1016/j.asoc.2021.107177
https://doi.org/10.1109/TCBB.2004.2
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1103/PhysRevA.108.032405
https://doi.org/10.1080/00029890.1930.11987058
https://doi.org/10.1057/palgrave.jors.2600836
https://doi.org/10.1016/j.jbi.2015.06.028
https://doi.org/10.1093/bioinformatics/btl060
https://doi.org/10.1103/PhysRevResearch.2.023005
https://doi.org/10.1103/PhysRevA.98.062322
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.5948/UPO9781614440147
https://doi.org/10.1103/PhysRevA.101.032314
https://doi.org/10.1103/PhysRevApplied.20.054043
https://doi.org/10.26599/BDMA.2022.9020012
https://doi.org/10.4099/jjm1924.1.0_83
https://doi.org/10.1016/j.engappai.2015.06.005
https://doi.org/10.1093/bib/bby014
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Biclustering a dataset using photonic quantum computing
	1 Introduction
	2 Background
	2.1 Permanent
	2.2 Boson sampling
	2.3 Hafnian
	2.4 Gaussian boson sampling
	2.5 The biclustering problem
	2.5.1 Biclustering example on a machine learning dataset

	2.6 Simulated annealing

	3 Related work
	4 Boson sampling for biclustering
	4.1 Introduction
	4.2 Approach
	4.2.1 An example of a linear optical circuit for boson sampling

	4.3 Dealing with rectangular biclusters

	5 Gaussian boson sampling for biclustering
	6 Simulations and results
	6.1 Boson sampling-problem 1
	6.1.1 Setup
	6.1.2 Results and discussion

	6.2 Boson sampling-problem 2
	6.2.1 Setup
	6.2.2 Results and discussion

	6.3 Gaussian boson sampling-problem 1
	6.3.1 Setup
	6.3.2 Results and discussion

	6.4 Gaussian boson sampling-problem 2
	6.4.1 Setup
	6.4.2 Results and discussion

	6.5 A short summary of the results

	7 Future work
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

