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The Hybrid Intelligence Technology Acceptance Model (HI-TAM) presented

in this paper o�ers a novel framework for training and adopting generative

design (GD) assistants, facilitating co-creation between human experts and

AI systems. Despite the promising outcomes of GD, such as augmented

human cognition and highly creative design products, challenges remain in the

perception, adoption, and sustained collaboration with AI, especially in creative

design industries where personalized and specialized assistance is crucial for

individual style and expression. In this two-study paper, we present a holistic

hybrid intelligence (HI) approach for individual experts to train and personalize

their GD assistants on-the-fly. Culminating in the HI-TAM, our contribution to

human-AI interaction is 4-fold including (i) domain-specific suitability of the

HI approach for real-world application design, (ii) a programmable common

language that facilitates the clear communication of expert design goals

to the generative algorithm, (iii) a human-centered continual training loop

that seamlessly integrates AI training into the expert’s workflow, (iv) a hybrid

intelligence narrative that encourages the psychological willingness to invest

time and e�ort in training a virtual assistant. This approach facilitates individuals’

direct communication of design objectives to AI and fosters a psychologically

safe environment for adopting, training, and improving AI systems without the

fear of job-replacement. To demonstrate the suitability of HI-TAM, in Study 1 we

surveyed 41 architectural professionals to identify the most preferred workflow

scenario for an HI approach. In Study 2, we used mixed methods to empirically

evaluate this approach with 8 architectural professionals, who individually co-

created floor plan layouts of o�ce buildings with a GD assistant through the

lens of HI-TAM. Our results suggest that the HI-TAM enables professionals, even

non-technical ones, to adopt and trust AI-enhanced co-creative tools.

KEYWORDS

generative design, co-creativity, hybrid intelligence, human-centered AI, architecture

1 Introduction

Generative Design (GD) has rapidly emerged as a powerful Artificial Intelligence (AI)

enhanced design paradigm enabling human experts (e.g., architects) to augment their

creativity and accelerate the design processes by suggesting new ideas and improving

design quality in co-creation (Kazi et al., 2017; Keshavarzi et al., 2021; Demirel et al., 2023).

However, the adoption and integration of AI-support technologies

into creative industries face significant challenges including the potential
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for job displacement, deskilling, concerns over the transparency

and accountability of AI systems, and the need for highly

personalized assistance (Rafner et al., 2022b; Inie et al., 2023;

Rafner et al., 2023). Additionally, up to 90% of AI-related

projects fail to some extent in the real-world implementation

stage (Boston Consulting Group, 2020) and in general only 10%

of organizations are achieving significant financial benefits with

AI (Boston Consulting Group, 2020). Given the specialized skills

involved in GD, introducing AI into professional workflows in the

creative design field is likely to create tension.

These challenges can be divided into two areas to

conquer: (1) continually evolving human-centered interaction

with AI and (2) holistic development and deployment

frameworks taking into account domain-specific and

organizational aspects of the introduction of the technology

in professional work settings. The former can be addressed by

incorporating principles from human-centered AI (HCAI)

such as an emphasis on user control (Shneiderman and

Maes, 1997; Shneiderman, 2020), mutual learning from

the field of Hybrid intelligence (HI) (Dellermann et al.,

2019), and active learning and feedback loops from the

field of Interactive Machine Learning (IML) (Amershi

et al., 2014). The latter is addressed particularly well by

the HI framework which presents an integrated way of

deploying human-centered AI solutions with appropriate

information system management methodologies to optimize

business, societal and human values for specific expert

knowledge domains (Rafner et al., 2022a; Sherson et al.,

2023).

In this paper, we present two studies investigating how

the HI approach could be designed and helps human experts

build a partnership with a GD personal assistant in design co-

creation. We define partnership as a human expert’s willingness

to contribute to the co-creative tool during and after co-

creation. Culminating in the presentation of the Hybrid

Intelligence Technology Acceptance Model (HI-TAM), our

contribution to human-AI interaction is 4-fold. First, we

demonstrate the suitability of the HI approach in a specific

knowledge domain by considering professionals’ expectations

and preferences for GD assistant across a broad range of

workflow scenarios. This forms the basis for applying the HI

approach to real-world HI application design as a starting

point. Second, we have developed a novel grammar-based

method for constructing a common language between human

and algorithm allowing for the explicitation of individual

experts’ “design goals” and a method for feeding these in

real-time into the generative algorithm. Third, we apply the

human-centered AI interaction design principles to seamlessly

integrate AI training into the expert’s task workflow. These two

algorithmic and human-computer interaction advances enable

individuals to directly communicate design preferences and

goals to AI and gradually grow an accumulated and personalized

design knowledge library. Finally, we address the willingness

to spend time and effort training such a virtual assistant by

embedding the process in an HI narrative designed to create

a psychologically safe space for co-creation without the fear of

job-replacement that is so often an underlying perception of

rapidly advancing AI.

2 Related work

2.1 Generative design tools—the
technology

Generative Design (GD) (Shea et al., 2005) is a process where

designers leverage AI to explore a broad array of options, achieving

high-quality results that balance multiple objectives.

Various technologies can be used for implementing GD

including simulation, optimization (e.g., genetic algorithm), deep

learning models and a combination of those (e.g., Shea et al.,

2005; Oh et al., 2019). GD has been applied in many domains,

especially architecture design (Caetano et al., 2020; Nagy et al.,

2018) and product design (Alcaide-Marzal et al., 2020). Tools

have been developed to support GD processes, including the GD

toolset for Autodesk Revit,1 the Refinery toolkit for Dynamo,2 and

Grasshopper for Rhinoceros 3D.3

A GD process allows for computational expression of design

goals through a parametric model and automatic generation

of numerous design options, in contrast to traditional design

processes where designers must internalize all design goals and

constraints to create a single solution. The GD process is human-AI

collaborative in nature as the algorithm can report back to the user

promising design options for further analysis and refinement; the

user can also revise their input parameters. Research along this line

has so far been mostly focused on the representation of the design

space, generation and evaluation of solutions, search algorithms

and visualization of design options, with little discussion on the

human-AI collaboration and user personalization.

In Study 1, we discuss GD broadly in different workflow

scenarios of the architectural building lifecycle and gather

information on individuals’ expectations and preferences for using

the technology.

In Study 2, we implemented a prototype system demonstrating

a preferred GD workflow from Study 1 in a simplified design

problem, with the intention to study human-AI co-creation

behavior in a controllable research setting and discover useful

insights that can be translated to improve workflows in practical

GD software.

2.2 Virtual assistants—the application

Broadly, the goal of a virtual personal assistant is to provide

support to users in a personalized and context-aware manner,

thereby enhancing their productivity, satisfaction, and overall

wellbeing (Kepuska and Bohouta, 2018; Dubiel et al., 2018). As an

early example, the Microsoft Paperclip, also known as Clippy, was

a virtual assistant introduced in the late 1990s to assist with tasks

such as creating and formatting documents in Microsoft Office. It

could be accessed by clicking on a small paperclip icon in the Office

application window. However, its implementation was widely

criticized for being intrusive, annoying, and unprofessional due to

1 http://www.autodesk.com/products/revit/overview

2 dynamobim.org/refinery-toolkit/

3 http://www.rhino3d.com/6/new/grasshopper/
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unsolicited messages and its cartoonish appearance and behavior

(Maedche et al., 2016). With the advancement of automated

test and voice recognition and processing (Yuan et al., 2018),

virtual assistants and chatbots have proliferated recently in both

the commercial and private spheres providing helpful input and

innovative interactions but always within quite restricted domains.

In contrast, ChatGPT seems to provide human-like

conversation and assistance as a virtual assistant. However,

in terms of output credibility there are still significant pitfalls

(Borji, 2023) and in terms of user personalization, in its own words

“As an AI language model, I do not have the ability to adjust to

individual preferences in the way that humans do... I can be trained

on large datasets of text to learn how people typically communicate,

which can inform my responses to some extent.” This lack of

information about individual users’ preferences, needs, or domains

and contexts can lead to generic or irrelevant responses that do

not address the user’s specific concerns or objectives (Sherson and

Vinchon, 2024). Furthermore, because ChatGPT does not have a

memory of previous interactions with a particular user beyond

the current session (“I do not store or transmit any personally

identifiable information unless specifically instructed to do so by

the user”), it may not be able to provide a consistent and coherent

conversation or maintain a sense of continuity in interaction

over time.

The importance of user feedback and preferences in designing

virtual assistants, as well as the need for more advanced techniques

such as personalized recommendation systems and user modeling,

is highlighted by the limitations of ChatGPT. ChatGPT’s inability

to communicate residual uncertainty in its responses creates

algorithmic overconfidence and a lack of transparency for the

user. The study defines a GD virtual assistant as an AI system

trained to assist human experts by generating design solutions

based on their inputs and preferences. In both Study 1 and

Study 2, the HI narrative is introduced as part of our HI

approach to clarify that the AI in question is fallible in the

beginning and can only improve with the user’s continual training

and feedback.

2.3 Hybrid intelligence

Hybrid Intelligence (HI) is often defined in broad terms (Akata

et al., 2020; Prakash and Mathewson, 2020), though a clearer

formulation was proposed by Dellermann et al. (2019), focusing

on three key criteria: collectiveness, solution superiority, and

mutual human-AI learning. Despite this, practical implementation

guidelines and distinction from other forms of human-AI

interaction remains challenging. Recent efforts have shifted HI

from a conceptual term toward a holistic, interdisciplinary

framework that supports both development and deployment,

integrating the organizational strategies like deskilling and

upskilling resulting from AI system implementation (Rafner et al.,

2022b). Additionally, HI blends interface design considerations

with established principles of information systems and human

resource management, such as business process re-engineering

and psychological safety and employee co-creation, forming twelve

distinct design and deployment dimensions (Sherson et al., 2023).

As HI extends into the creation of generative AI virtual

assistants, a change management framework to HI has emerged

(Sherson, 2024) emphasizing systematic end-user empowerment

through a series of expert rated microinnovations. Finally,

preliminary design guidelines (Sherson et al., 2024) separate

HI at the interface, the organizational and the societal/impact

levels. These guidelines emphasize incorporating human-

centered goals into both the narrative and visual aspects of AI

applications, fostering psychological safety and encouraging

user engagement in the co-creation process. This approach

supports continuous adaptation and innovation post-deployment

(Sherson et al., 2024).

2.4 HI-TAM—the analysis method

Researchers in the field of information systems management

have developed models to understand factors influencing

technology acceptance, including the widely used Technology

Acceptance Model (TAM) which links user acceptance of

technology to perceived usefulness and ease of use (Davis,

1989). The TAM has been applied to various contexts such

as mobile apps and e-commerce systems. An extension of

TAM, the AI-TAM, has been proposed to evaluate user

acceptance and collaborative intention in human-in-the-loop

AI applications (Baroni et al., 2022). Human-in-the-loop AI

involves integrating human input and feedback into AI systems

to improve their accuracy and efficiency (Zanzotto, 2019). The

AI-TAM includes constructs related to human-AI interaction

such as functioning, quality, trust, familiarity, and collaborative

intention. Despite adding the collaborative variable, the scenario

investigated in the AI-TAM development work involved single-

shot interactions with a fully developed product, which is far

from the continuous mutual learning relationship with an

HI system.

Although originally perceived as a useful framework for

understanding the early stages of product design, the existing

TAM approach has been heavily criticized concerning product

design (Salovaara and Tamminen, 2009). Moreover, subsequent

literature such as the New Product Development TAM (NPD-

TAM) (Diamond et al., 2018) as well as case studies of

developing smart payment card and adopting virtual assistants

(Song et al., 2019; Gunadi et al., 2019) have added no new

variables to provide insight into the dynamic development

and training process. In order to capture the dynamic mutual

learning process of HI systems, we here introduce the HI-

TAM (see Figure 1 for an overview and Table 1 for detailed

variable definitions). Taking the AI-TAM as a point of departure,

we added the process variables of user control, AI output

transparency, perceived partnership and replaced the output

variables collaborative intention and behavioral intention with

willingness to train, willingness to co-develop and willingness to

adopt. These variables were inspired by fundamental principles of

HI (mutual learning), HCAI (pursuit of high levels of automation

and control simultaneously), and IML (continuous interactivity) as

well as the Co-Creative Framework for Interaction Design (COFI)

which emphasizes the importance of establishing a partnership

between end users and AI support tool (Rezwana and Maher,

2022).
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FIGURE 1

HI-TAM: Hybrid Intelligence Technology Acceptance Model adapted from the AI-TAM (Baroni et al., 2022) incorporating key aspects from HI

including AI transparency and user control, to support both virtual assistant training and general human-AI mutual learning. Qualitative

co-occurrences and quantitative correlations were based on N = 8 participants.

3 Research question and study design

The primary research question guiding this work is: How

can the HI approach be designed to help human experts build a

partnership with a GD personal assistant in design co-creation? This

question motivates both Study 1 and Study 2.

To evaluate the proposed HI approach and the underlying HI-

TAM framework, we conducted two studies using a descriptive

and correlational design with architectural professionals. Study 1

consisted of individual surveys and brainstorming to understand

architectural professionals’ expectations and preferences for

personalizing their GD assistants. The focus was on how GD

assistants and human experts divide and integrate their tasks

in various design-build scenarios, reflecting typical activities

throughout the architectural building lifecycle. Study 2 was a

case study (Creswell and Creswell, 2017) that explored an early

conceptual design scenario, where participants designed a floor

plan for a typical office building. They interacted with a GD

assistant prototype through an HI approach tailored to the

collaboration preferences identified in Study 1. Both qualitative

and quantitative data were collected to examine the HI-TAM

framework, with exploratory data analyses supporting the links

shown in Figure 1.

Given the multidisciplinary nature of human-AI co-creativity,

spanning cognitive science, psychology, and HCI, this research

adopts a mixed-methods approach (Van Turnhout et al.,

2014). The quantitative analysis in Study 2 involved seven

participants using a generative AI design tool. Although the small

sample limits statistical significance, it revealed valuable initial

usage trends.

The qualitative analysis is more extensive, drawing from both

studies. Study 1 explored various use cases for generative AI

in architecture, while Study 2 analyzed participants’ think-aloud

interviews during the task, along with pre- and post-task responses.

This qualitative data provides insights into their cognitive processes

and the impact of AI on their design methods. By synthesizing

qualitative observations with quantitative findings, this research

presents a comprehensive view of how generative AI is integrated

into architectural practice, highlighting both broad usage patterns

and individual creative interactions.

4 Study 1: professionals’ expectations
and preferences for personalizing GD
assistants

4.1 Materials and methods

Study 1 was conducted during a 60-min workshop at a major

architecture, engineering, and construction industry conference,

where professionals voluntarily participated in exploring the future

of generative AI in their workflows. The workshop consisted of

two integrated parts (see the detailed worksheets and questions in

Supplementary Figure S1). In part one, architectural professionals

were surveyed to choose their preferred level(s) of control for GD

assistants throughout the building lifecycle from the following four

options (Figure 2).

These four options were chosen specifically for their relevance

to GD assistants. However, they were inspired by literature which

differentiates relationships between human andmachine intelligent
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TABLE 1 Constructs with respective qualitative codes and quantitative measures.

Construct Qualitative codes Quantitative measures (data range)

Familiarity Both familiarity toward AI, and familiarity toward AI and

Generative Design tools.

I don’t use it—Expert (1–6)

• Proficiency with machine learning or artificial intelligence for

automated design.

• Proficiency with generative design tools such as Grasshopper or

Dynamo for automated design.

User control The level of control and autonomy the user feels they have over

the tool. It also includes comments about input features that the

user appreciates or feels are lacking. This code could be applied to

any mention of the user’s ability to direct or influence the tool’s

behavior or output.

Adapted from controllability (Shneiderman and Maes, 1997;

Hartmann, 2009; Oh et al., 2018) (1–5)

• I am able to let it do its work.

• I do not feel out of control in working with it.

AI output quality The system provides accurate and complete information. This

construct refers to subjective and objective evaluations of the

quality of concrete and identified outputs of the system.

Adapted from ability (Mayer and Davis, 1999) (1–5)

• It is very capable of performing its job.

• It has specialized capabilities that can increase our

performance.

AI output transparency The degree to which the output generated by an artificial

intelligence system is understandable and interpretable to the

human user. It pertains to the system’s ability to provide clear and

coherent feedback or explanations to the user on how it arrived at

a particular output

Adapted from comprehensibility (Shneiderman and Maes, 1997;

Jameson, 2009; Oh et al., 2018) (1–5)

• I understand its inputs and outputs.

• I’m familiar with it.

AI output trust The user finds it predictable and trustworthy, and takes the

assertions as valid and true.

Adapted from predictability (Shneiderman and Maes, 1997;

Jameson, 2009; Oh et al., 2018) (1–5)

• I am certain about how my interaction with it affects the

generated designs.

Adapted from integrity (Mayer and Davis, 1999)

• Sound principles seem to guide its behaviors.

Adapted from trust (Jian et al., 2000)

• It is reliable.

• I can trust it.

Perceived ease of use Using the system does not require a lot of mental effort, the

system is easy to use and understand.

Adapted from TAM - perceived ease of use (Mayer and Davis,

1999) (1–5)

• Working with it is easy for me.

• The interface is difficult to understand.

Perceived usefulness Using the system helps the user’s work, achieve tasks, and make

better choices. The user finds the system useful. This construct

refers to subjective evaluations of the system as a whole. This

includes when the tool provides a positive output which is

surprising, creative, or novel to the user.

Adapted from TAM—perceived usefulness (Mayer and Davis,

1999) (1–5)

• I feel more involved in the generative design process working

with it compared to other generative design tools.

• I feel responsible for markingmy likes and dislikes working with

it.

• It is clear to me why I need to work with it.

• Working with it makes me feel in control of the design process.

• I think it is useful.

• I think it is useless to train it with my likes, dislikes and reasons.

Perceived partnership The user’s subjective perception of the degree to which an AI is

perceived as a collaborative and cooperative partner in the

interaction. In other words, it describes how much the user feels

that the AI assistant is working with them, rather than just

functioning as a tool that responds to their commands.

• Overall, how much do you feel that you are building a

meaningful partnership i.e., task distribution and integration

and tool customization? (1–5)

Perceived AI learning The user’s perception of an AI’s ability to learn from their

interactions and adapt to their needs and preferences. It refers to

the degree to which the user believes the AI assistant is capable of

improving its performance over time by learning from the user’s

behavior, feedback, and input. This code covers anything that is

descriptive of the process over several inputs.

• To which extent did you feel that your interactions with the tool

yielded improved designs? (1–5)

• Please rate on a scale of 1–5, how much do you see your

contributed reasons are reflected in the newly generated designs

by the tool? [Subjective goal satisfaction (1–5)]

• Objective goal satisfaction: see details in Section 5.1.1 (0–1)

Willingness to train The user’s willingness and openness to invest time and effort in

training an AI tool to better understand their needs and

preferences. It refers to the degree to which the user is willing to

provide input and feedback to the AI tool, with the goal of

improving its performance and adapting it to their specific needs.

• Would you invest your time in training to use this tool in your

work practice? (1–5)

• The number of design goals.

Willingness to adopt The user’s intention and openness to use and incorporate the AI

tool into their workflow. This also includes alternative or future

uses of the tool.

• Would you use such a tool in your work practice? (1–5)

Willingness to

co-develop

The user’s willingness and openness to actively provide feedback

and input to help shape the development and improvement of the

AI tool. This also includes suggestions for feature improvements.

• Please list as many suggestions as possible to improve the tool

(the number of suggestions).
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FIGURE 2

The four options for the level of human vs. AI control participants were presented with.

systems (Rafner et al., 2022b; Berditchevskaia and Baeck, 2020)

such as human in the loop vs. human on the loop.

In part two, they were guided to brainstorm personalized GD

assistant solutions for their specific use cases and preferences. These

expectations, solutions and preferences are critical in designing for

training and adoption of GD assistants.

A total of 41 individuals participated in the study. All

of them completed part 1 and 26 completed part 2. The

participants included architects, CAD/BIM managers, engineers,

and managers/directors from relevant industry fields, with 1–33

years (mean = 15.7, median = 16), and varying levels of experience

with generative AI solutions at work: 26% did not use it, 43%

were just getting started, and 31% had some to intermediate to

expert experience. Most were from North America (80%), with the

remainder from South America, Europe, and Asia. All participants

provided informed consent before the workshop.

4.2 Analysis

We present participants’ preferred level of control for each

architectural lifecycle phase, using the raw count for each of the

four options (see bars in Figure 3). Furthermore, we distinguish

AI Co-Generates with You from AI Generates for You and AI

Advises You because the former represents a closely coupled,

integrated, and iterative collaboration process between AI and

humans, as advocated by the HI approach. In contrast, the latter

two options represent loosely coupled and clearly divided work

or responsibilities, resulting in task separation between humans

and AI.

To quantify this, we assign a score of 2 to AI Co-Generates

with You, a score of 1 to both AI Generates for You and AI

Advises You, and a score of 0 to No AI Involvement. For each

phase in the building lifecycle, we calculate the average score of all

participants’ choices as the human-AI integration score, along with

the standard deviation. Additionally, we computed a cumulative

human-AI integration score across the building lifecycle for each

participant and then performed Pearson’s correlation analysis to

investigate the relationships between this integration score and

participants’ years of industry experience, as well as their level of

familiarity with generative AI at work.

4.3 Results

With respect to Part 1 of Study 1, relatively higher human-

AI integration was observed in the early phases of the building

lifecycle, such as conceptual design and schematic design, whereas

integration was lower in later phases like design development &

refinement, procurement, and construction (see the dotted line

in Figure 3). Specifically, human-AI integration was significantly

higher in site analysis & feasibility study (p = 0.03 < 0.05∗),

conceptual design (p = 0.002 < 0.05∗∗), and schematic design

(p = 0.001 < 0.05∗∗∗) compared to that in construction.

These early stages involve more information gathering, problem

defining, divergent thinking and tightly coupled considerations

from different disciplines (e.g., aesthetic and technical), whereas

later stages tend to involve more well-defined tasks that fall into

more specialized expertise.

Additionally, we identified a significant correlation between

the human-AI integration score and participants’ familiarity with

generative AI at work (r = 0.39, p = 0.02 < 0.05∗).

However, no significant correlation was found between the human-

AI integration score and years of industry experience (p = 0.2 >

0.05). This suggests that professionals with greater familiarity with

generative AI tend to prefer more closely integrated collaboration

with AI, rather than loosely separated sequential task division.

With respect to Part 2 of Study 1, we delved into participants’

specific preferences regarding how they personalize the integration

of GD assistant within their selected workflow scenarios. Methods

preferred by participants for training and improving GD assistants
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FIGURE 3

Preferred AI involvement and mean human-AI integration score by workflow scenario.

over time include properties and requirements of the final

output (16, 62%), variations of output (16, 62%), examples

of the final output (14, 54%), design fine-tuning (11, 42%),

and interactive feedback (10, 38%). All 26 participants that

completed part 2 brainstorming also reported a preference for

maintaining and leveraging their past projects and outcomes as

proprietary inputs to personalize their GD assistants to better

align with their preferences. As measures of success in co-

creation with GD assistants, top priorities include accuracy

(24, 92%), efficiency (22, 85%), and time (20, 77%). These

preferences are well-exemplified by one participant’s approach in

an early design scenario (Figure 4), where project requirements

are imported, goals are specified, and interactions with the

GD assistant involve selecting from generated options and

providing feedback to refine and train the assistant to match

individual tastes.

5 Study 2: case study on HI-TAM with
a GD assistant prototype

In Study 2, we chose conceptual design as the workflow scenario

where participants showed the strongest preference for human-

AI integration observed from Study 1, allowing us to further

investigate and evaluate the HI Approach.

5.1 Hybrid intelligence design approach

We now describe the 3 components of the Hybrid Intelligence

(HI) Approach (see Figure 5 for an overview).

5.1.1 Programmable common language for
representing human experts’ design goals to GD
assistant

In the realm of building layout design, a significant portion

of the design requirements pertains to the types of spaces and

their respective spatial and topological relationships. Inspired by

knowledge representation languages used for ontology authoring

and graph database, such as Resource Description Framework

(RDF) (Arenas et al., 2009), we use sentences of the following syntax

to represent design goals:

design_goal → subject unary_relation | subject

binary_relation object

subject → space_type

object → space_type

Similar to RDF, this programmable language focuses

on characterizing relations between entities. In our case

the entities are types of spaces, and the relations are
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FIGURE 4

An example of a participant’s approach to personalizing GD assistant in co-creation.

FIGURE 5

Illustration of the three Hybrid Intelligence (HI) components: (i) programming a common language for humans and algorithms to interact, (ii)

designing the interface for continual learning loops, and (iii) presenting the adoption within a broader framing of HI creating a psychologically safe

space for co-development.

specifically spatial relations. For this study, unary_relation

includes at the center, on west, on east, on south,

on north and binary_relation includes are close to,

are away from, surrounded by, share the same door

orientation with. We also consider an office

building setting for the layout design task, so space_type
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include meeting room, office, open_desk_space,

lunch_space, etc.

We compute an objective goal satisfaction score (as opposed

to a subjective goal satisfaction score rated by participants) of each

design goal by mapping each unary_relation and binary_relation

to a hand-crafted heuristic function,4 which takes a layout

configuration as input and returns a real number in the range of

[0, 1] as output. The closer the value is to 1, the more satisfied

the design goal. The objective goal satisfaction GS of a layout

configurationL given a set of design goalsG is computed as follows

GSL(G) =
∏

g∈G

(1−
1− s(g)

|G|
)

where s(g) is the satisfaction score of design goal g, and |G| denotes

the number of design goals.

The language is easily extendable or customizable by

introducing more relations and space types. Each relation is

associated with a function that returns a value in [0, 1]—in the

sense the relations can be viewed as predicates under fuzzy logic

semantics (Novák, 1987). It is consequently possible to extend this

language with logical operators such as conjunction, disjunctions

and implications. We leave this to future work for simplicity.

5.1.2 Continual learning loops for training the GD
assistant with design goals

Leveraging the programmable design goals as a starting

common language between the GD assistant and a human user, we

created a training mechanism for users to iterate on their design

goals and the tool-generated designs in feedback loops through

the following steps (Figure 6): (i) A user reacts to a tool-generated

design by marking spatial objects their like or dislike. (ii) The

tool carries on the “conversation” by prompting the user with a

popup window to select reason(s) for their likes or dislikes. The

selected reasons are added into the tool as design goals following the

programmable language. If the provided list does not capture their

reason(s), they can choose “None of Them” and verbally describe

their reasons, which are not included as input for the tool in the

current task. (iii) The user repeatedly marks likes and dislikes and

select reasons until they feel satisfied. They can also revise any

added design goals if they detect any conflicts among them. (iv)

Upon user request, the tool is invited to generate another round

of designs, taking all the design goals including the updated ones

from the previous rounds into consideration. (v) The user selects

one preferred design and repeats steps (i) through (iv).

This training mechanism is based on two major sources

of inspiration. One is the typical design critique process that

architecture students would learn in their design studio and

professional architects would practice at their daily work (Oh et al.,

2013). The second is IML where the system is tightly coupled

with the human in the loop of model training and thus results

4 For example, the design goal T1 are close to T2 is associated with the

function
∏

x∈T1 ,y∈T2
IsCloseTo(x, y), where IsCloseTo(x, y) = 1−

distcenter (x,y)
DR

. x and y

are spatial objects. distcenter(x, y) is the Euclidean distance between the center

of the bounding boxes of x and y. DR is the largest possible distance between

two points in the bounded 2D space.

in “more rapid, focused, and incremental model updates than in

the traditional machine-learning process” (Fails and Olsen, 2003;

Amershi et al., 2014; Dudley and Kristensson, 2018). Here are a

few examples of how we translate these human-in-the-loop design

opportunities into the training mechanism design: defining new

constraints inspires expressing design goals, correcting errors in

the training data inspires marking dislikes on the design, fine

tuning parameters inspires adjusting previous design goals. These

design considerations are also in line with the principles outlined

in the Guidelines for Human-AI Interaction which seeks to guide

interaction over time beyond one shot usage, including learning

from user behavior, updating and adapting cautiously, encouraging

granular feedback and conveying the consequences of user actions

(Amershi et al., 2019).

5.1.3 HI narrative for nurturing partnership
between human experts and the GD assistant

According to Rafner et al. (2022a), one critical issue that limits

companies from successfully adopting AI solutions is employees’

fear toward job automation and replacement, and thus requires

a thoughtful deployment of these solutions into the professional

work context. In their case study (Rafner et al., 2022a), a HI

corporate narrative was created to onboard employees to an AI-

supported editing tool and facilitate their adoption willingness

through tool customization based on their preferences instead

of following a standardized rigid workflow. We created our HI

narrative (see the complete narrative in Supplementary Table S1) by

following the proposed HI-TAM as the guiding design principles

and taking inspirations from (Rafner et al., 2022a)’s narrative

design. Specifically, our narrative introduces the GD assistant as a

partner and emphasizes that the goal was to train the GD assistant

sufficiently toward building a partnership instead of achieving the

best quality design. Partnership was defined as “the distribution of

sub-tasks in an integrated and customizable workflow between you

and the tool”. Participants were instructed to keep customizing the

GD assistant “by telling it about your preferences until you feel that

you have trained it enough”.

5.2 System implementation

A prototype system is developed to implement the

programmable language of design goals, training mechanism,

and the expert’s task workflow, with a focus on the task of building

layout design. It is intended to represent a GD assistant that

facilitates human designers to explore the design space more

efficiently, and to iterate faster on both their design goals and the

design itself.

For simplification, the layout design task is viewed as arranging

a set of spatial objects (rooms, zones, etc.) within the building

interior to satisfy user-provided design goals concerning spatial

relationships between object types. Given the geometric definition

of each spatial object, the goal is to find a transform (i.e., position

and rotation) for each object within the space, maximizing the

overall satisfaction of the provided design goals. This process

adheres to a set of general constraints, including non-overlapping,

containment conditions, and circulation validity.
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FIGURE 6

A screenshot of the interface showing the continual learning loops where participants express design goals to train the assistant by marking spatial

object(s) and selecting reason(s).

To support a real-time interactive workflow enabling the

completion of the design task within 10–20 min, our study employs

a simple greedy search algorithm rather than more complex

alternatives such as genetic algorithms or machine learning-based

generative models. We emphasize that the technical method is not

the primary focus of this work; instead, the results from this study

can be generalized to similar systems that may utilize different

technical methods to reflect design goals in the generated artifacts.

The greedy method assigns transforms to each spatial object

based on the highest objective satisfaction score of relevant design

goals and randomized the placement order to generate diverse

design options. Our study confirmed the algorithm’s effectiveness

in generating layout configurations that fulfill the input design

goals. The following procedure describes a detailed implementation

of arranging each object on the floor plan (see more system

implementation details in Supplementary material S5).

1. Repeat for N times to generate N layout options:

(a) Generate a randomly ordered list L of all spatial objects

(b) For each spatial object obj in L:

(1) Use the architectural grid lines to obtain a finite set of possible transforms for

obj with regard to the current object arrangement in the space;

(2) if no candidate transform is available, put obj in a unfit list;

otherwise, choose the candidate transform tr which would result in the

highest goal satisfaction degree if assigned to obj (with the transform

assignment to all other objects unchanged);

(3) Assign tr to obj;

5.3 Materials and methods

For each HI-TAM construct, we included both a qualitative

code that describes the participants’ subjective experience and a

quantitative measure to evaluate the construct with a numerical

range, adapted from existing instruments (Table 1).

Study 2 took place online over Zoom and each participant

was compensated $60 for their one-hour participation. Figure 7

illustrates the key steps in the HI task workflow. During the task,

individual participants were encouraged to think aloud (Eccles and

Arsal, 2017) and evaluate iterated designs by providing a numerical

score of subjective design goal satisfaction. Additionally, the GD

assistant logged objective design goal satisfaction and the number

of design goals. Verbal and non-verbal behaviors were recorded

and transcribed. Participants also completed a pre-task survey

(e.g., demographics, design experience, AI experience and AI

replacement fear), a post-task survey based on various constructs

of the underlying model (e.g., willingness to adopt, willingness to

train, providing as many suggestions as possible to improve the GD

assistant) and a closing open-ended question probing AI’s agency

and role through visual characterization, adapted from Koch et al.

(2019). Data collected included pre- and post-task surveys, GD

assistant data logs, video recordings, and transcripts (see Table 1 for

full survey questions and log data).

A total of eight participants were recruited through e-mail,

with the following inclusion criteria: age between 18 and 65,

working professionals with at least 3 years of architectural design

experience, and fluency in English. They were between the ages
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of 31 and 38, with 3–16 years of architectural design experience

(mean = 8.6, median = 8), and three of them were female. All had

previous experience working with GD tools such as Grasshopper

or Dynamo and half of them had experience with machine learning

or artificial intelligence for automated design. Almost all of them

(seven out of eight) expressed that in 10 years from now, amoderate

amount of their current tasks in architectural design could be

done by a machine instead of themselves, such as designing room

layout, collaborative design review, and checking building code

compliance. All participants provided informed consent before the

experiment. This study was approved by the AarhusUniversity IRB.

5.4 Analysis

In general, we combine and compare all the qualitative

and quantitative results to seek complementary validation and

explanations. We used Reflexive Thematic Analysis to examine

user perceptions and interactions with the tool (Braun and Clarke,

2019). All authors participated in iterative coding rounds. Initial

codes were identified from the transcripts, including known codes

from survey questions such as “partnership” and “user control” and

five constructs from the AI-TAM (Baroni et al., 2022). Collaborative

and behavior intention codes were too vague to differentiate our

data so they were replaced with willingness to train, adopt, and co-

develop; codes for AI output trust, transparency, and perceived AI

learning were also added to account for key aspects of HI. Relevant

excerpts were coded with one or two of the most appropriate codes,

and co-occurrences were mapped to determine linked constructs.

Excerpts were labeled positive or negative. For example, P1 stated

“They are not quite consistent in a way I like” referring both to

the negative output quality of the output as well as negative AI

output trust.

For quantitative measures, we first evaluated the reliability

of any constructs with at least three questions using the same

scale using Cronbach’s alpha (Brown, 2002). We obtained a

minimum alpha value above (α > 0.7), indicating a high

internal consistency among items within the same construct

and thus the survey measurement can be considered reliable.

We also computed Pearson’s correlation (Freedman et al., 2007)

to explore relationships among these constructs in comparison

to the qualitative co-occurrences. Furthermore, we conducted a

hierarchical clustering (Yim and Ramdeen, 2015) of willingness

to adopt, train and co-develop to explore the overall types

of the resulted “partnership” profiles using Ward’s method

with square Euclidian distance as the distance or similarity

between participants.

5.5 Results

5.5.1 HI-TAM
In this section, we present our results on the qualitative

and quantitative links among constructs of the HI-TAM (see

summarized codes and examples ranked by times of co-occurrences

in Supplementary Table S2). In total, there were 106 relevant

excerpts from the transcripts, ranging from 7 to 21 per participant.

The coding frequency enabled the identification of the strongest ties

between the constructs. We report qualitative co-occurrences that

have at least two instances across two participants. The quantitative

results are based on significant statistical correlations.

5.5.1.1 Qualitative co-occurrences

The most common co-occurrence identified was between AI

output quality and perceived AI learning (24 instances), observed

by six out of eight participants. Co-occurrences between AI output

trust and AI output quality (six), perceived AI learning and

perceived usefulness (six), perceived usefulness and user control

(five), and perceived usefulness andwillingness to adopt (four) were

also identified. Positive constructs were nearly twice as frequent

as negative ones, with most co-occurrences being positive-positive

or negative-negative, meaning that when construct one had a

positive connotation, construct two also had a positive connotation.

Exceptions included willingness to co-develop co-occurrences

which were often positive-negative as negative comments were

linked to suggestions for improvement.

5.5.1.2 Quantitative correlations

From the quantitative analysis, all the statistical correlations

were positive, meaning one construct increased with another. For

example, user control was strongly associated with perceived AI

learning (r = 0.97, p < 0.001∗∗∗) and AI output trust (r = 0.76,

p = 0.031∗) suggesting users’ control over the tool might play an

important role in how they predict and trust the GD assistant and

how they assess it as capable to learn and adapt through interaction.

We also found correlations between previous constructs from AI-

TAM and new constructs from HI-TAM. In particular, greater ease

of use was associated with perceived partnership (r = 0.75, p =

0.033∗); the greater perceived usefulness was also associated with

greater AI output quality (r = 0.92, p = 0.001∗∗), greater perceived

AI learning (r = 0.74, p = 0.037∗), greater perceived partnership

(r = 0.74, p = 0.037∗) as well as more willingness to train (r =

0.81, p = 0.015∗). Additionally, AI output quality was associated

with willingness to train (r = 0.88, p = 0.004∗∗). Moreover, more

willingness to train was associated with more willingness (r =

0.72, p = 0.046∗) to adopt, indicating participants’ willingness to

train and their willingness to adopt might have influenced or even

reinforced each other when guided by the HI approach (asterisks

indicate significance level: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05).

Notably, quantitative and qualitative results supported links

between perceived usefulness and AI output quality, perceived AI

learning, and perceived partnership as well as user control and AI

output trust.

5.5.2 Design generation process
In the proposed HI-TAM model, we identified links between

participants’ willingness to train and AI output quality, perceived

usefulness, and perceived AI learning, respectively. To further

examine such relationships, we describe an example of the

design generation process and then present individual processes

contributing to participants’ rated willingness to train including

participants’ training efforts over time, underlying motivations to

train/stop training as well as the GD assistant’s learning curve in

response to user training.
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FIGURE 7

Overview of the interaction workflow with the three components of the HI approach through the eyes of a human expert vs. the GD assistant.

5.5.2.1 Individual participant process reflections

Table 2 and Figure 8 summarize the full design

generation process for P1. We list some interesting

observations below:

• P1 initially viewed the design generated in the first round as

“completely random”, but only provided three design goals,

possibly due to a lack of trust and familiarity with the GD

assistant. P1 chose to start with simpler feedback to gauge the

GD assistant’s response.

• In the second round, P1 noticed a small improvement - “I

see some offices are close to the windows now”, aligning with

their previous design goals. This significantly increased P1’s

engagement, leading to a substantial increase in the number of

design goals compared to the first round.

• In Round 3, P1 found the design mostly acceptable with

only a few minor issues, commenting “they definitely start

to make sense. I’m actually a bit impressed by how this

is going. Still have some weird things like office 6.” This

resulted in a decrease in the number of design goals for

this round.

• P1 stopped reviewing the design at round 4 due to the

perceived lack of significant improvement compared to the

previous round. They expressed a strong belief that additional

rounds would not make a substantial difference, stating, “It’s

kinda similar to the last round. It’s getting there but not perfect.

I don’t think it will get perfect. It’s getting there but never perfect.

That’s one reason why I don’t trust AI.”.

• When presented with a list of potential reasons for likes

and dislikes as design goals, P1 actively explored alternative

options to determine their validity, rather than simply

selecting the one that aligns with their initial thoughts. They

expressed this mindset by stating in the second round, “Let’s

see if there is any other option that makes sense”.

5.5.2.2 User e�orts in training the GD assistant

Figure 9 illustrates the progression of design goals over time

for each participant and indicates when they ceased training the

GD assistant, signifying the end of their involvement in the design

generation process.

We categorize the participants’ training efforts into three

categories, emphasizing their qualitative narratives regarding the

reasons for discontinuing the training process of the GD assistant:

5.5.2.2.1 AI output quality: reaching a sufficiently good design

P2 discovered a highly effective solution by the end of the third

round, expressing satisfaction with the outcome, stating, “This third

option is really strong...It’s a really good result.”

Both P4 and P8 expressed low expectations for the GD assistant.

P4 mentioned additional requirements regarding circulation

and building codes but did not attribute them to the GD

assistant’s responsibility. On the other hand, P8 simply desired

a design that served as a good starting point, stating, “I

think I’m pretty happy with it. I would take this layout and

massage it.”

5.5.2.2.2 Perceived AI learning: anticipating no further design

improvements

P1 expressed a high level of satisfaction with the last round

of design, acknowledging the unlikelihood of achieving perfection,

and considered it a good starting point for further refinement by

a human designer. In their comments, P1 stated, “It’s kinda similar

to last round”, and expressed, “This is a good starting point, and I

would assume if I keep generating new designs it’ll keep giving me

4.5”—referring to the same subjective satisfaction rating. “It could

get close, but never perfect...like 4.5 (out of 5).”
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TABLE 2 P1’s design generation process: each column represents a design generation round displaying the chosen design, participant quotes, and reasons for likes/dislikes submitted by participants as design goal

input for the GD assistant.

Round 1 Round 2 Round 3 Round 4

“Looks completely random.” “I see some offices are close to the windows now.” “They definitely start to make sense. I’m actually a bit

impressed by how this is going. Still have some weird

things like office 6.”

“It’s kinda similar to the last round. It’s getting

there but not perfect.”

(-) Office 4 is at the center
∗∗(−) The reception area is away from the entrance

(−) The archive room is at the center

(+) Office 1 is close to the window

(+) External meeting room 2 is close to some internal

meeting room

(+) The lunch space is close to some meeting room

(+) External meeting room 0 is close to internal

meeting room

(+) External meeting room 0 has the same door

orientation as the entrance

(−) Office 2 is on south

(−) Office 6 is on south

(−) Internal meeting room 1 is close to the entrance
∗∗(−) The reception area is away from the entrance

(−) Office 6 is at the center

(−) The archive room is close to the window

(+) Open desk space 2 is at the center

(−) The lunch space is away from the bathrooms

“+” and “−” indicate aspects of the design they like and dislike, respectively, while “**” represents additional reasons not listed in the popup window but recorded out side of the GD assistant.
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FIGURE 8

Participant P1’s design generation process: number of design goals (i) submitted by the participant (solid line) and (ii) satisfied by the GD assistant

(dashed line).

FIGURE 9

Cumulative number of design goals submitted by participant (including additional “None of Them” goals recorded outside of GD assistant training),

color coded by three types of training e�orts.

P3 believed that the egress design5 could be further improved,

but lacked a way to express their related design goals. However,

they found the design acceptable when disregarding the egress

design aspect.

P5 expressed that their design goals were being captured by

the GD assistant. However, they found the resulting layout to be

unsatisfactory, which led to their reluctance to add more design

goals to improve it. In their own words, “I feel like on the one hand,

it is following the things I’ve said, but the plans are all still crazy.”

P6 expressed satisfaction with the design in terms of adjacency,

but desired to improve circulation, although they faced difficulty in

5 “Egress design” refers to the arrangement of exit routes in a building.

expressing this particular design goal. They stated, “Function wise,

it works. But my comments on circulation cannot be reflected.”

5.5.2.2.3 Perceived usefulness: balancing precision and time

constraints

P7 indicated a strong desire to train the GD Assistant to

precisely replicate their specific plan. This resulted in numerous

iterations even after the layout was already deemed acceptable.

However, due to time constraints, they had to be stopped, “This was

pretty good. I just want the open desk space to be a little bit close to

the office but this is just because I had designed the office before (in

this way)... I’m biased... that background may not actually be helping

here. I think this could be workable.”
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5.5.2.3 Learning characteristics of the GD assistant

Figure 10 depicts the learning characteristics of the GD

Assistant, where steeper lines indicate a greater level of goal

satisfaction, with a maximum of 45 degrees from theX-axis. Several

participants (P5, P7, P8) show decreasing steepness toward the

end, suggesting varying degrees of saturation.6 Participant P8 even

exhibited a slight negative curvature, indicating conflicting design

goals. P1, P2, P3, P4, and P6 stopped before the lines flattened,

either due to finding a satisfactory design (P2 and P4) or feeling

that their remaining design goals couldn’t be adequately expressed

in the system (P1, P3 and P6).

5.5.2.3.1 Design goal conflicts restrict the GD assistant’s learning

P5 had a specific requirement to separate objects of the same

type, such as external meeting rooms not being close to each other.

However, finding suitable areas to satisfy this requirement within

the limited floor plan space proved challenging, as concentrating

objects in those areas could have violated the separation goal.

5.5.2.3.2 Divergent training enhances the GD assistant’s

longer-term learning compared to convergent training

As users addmore design goals, there is a tendency for a decline

in the GD assistant’s capacity to satisfy all goals due to an increased

likelihood of goal conflict within the limited floor plan space.

However, there are significant individual differences in participants’

training approaches. In particular, P2 and P7 achieved significantly

different overall design goal satisfaction by the GD assistant, with

P2 exhibiting much higher satisfaction compared to P7, despite

submitting a similar total number of design goals. Specifically, P2

had 70% of 27 goals satisfied while P7 had 57% of 30 goals satisfied.

P2 took an explorative, divergent approach to evaluating the

generated designs, which involved assessing their inherent quality

and providing specific comments on whether they were good or

bad. As evidence of this approach, P2 made a comment about

one of the designs, saying, “This one is interesting because it forces

you to go through the reception area, which is good,” indicating

a willingness to accept unexpected features and explore novel

directions. In the contrary, P7 seemed to compare the generated

designs with an ideal concept they had in mind. They provided

feedback based on how closely the designs matched their ideal,

stating, “This was pretty good. I just want the open desk space

to be a little bit closer to the office, but this is just because

I have designed an office before in this way... I’m biased...that

background may not actually be helping here. I think this could be

workable.” As a result, P7’s design goals were more specific and

more likely to exhibit early saturation and generate conflicts with

continued training. In contrast, the more explorative approach

of P2 resulted in many fewer signs of saturation and thus a

potential for further training or personalization. This demonstrates

the different design considerations and success criteria related

to training a virtual assistant in settings ranging from wanting

6 In the graphs, there were instances where the same number of design

goals submitted corresponded to multiple numbers of design goals satisfied

(e.g., P6, P7). This occurred when participants generated multiple rounds of

new designs without submitting additional design goals to explore di�erent

design options.

to realize preconceived ideas to engaging in more open-ended

problem and solution exploration.

5.5.3 Three types of partnership
The hierarchical clustering resulted in three distinct clusters

of participants, differentiated by four quantitative measures across

three partnership constructs with the GD assistant: (1) willingness

to adopt, measured by post-task willingness to use it in practice,

(2) willingness to train, measured by the number of design

goals contributed during interaction and the post-task willingness

to invest time in training, and (3) willingness to co-develop,

measured by the number of suggestions proposed to improve the

assistant. The hierarchical clustering resulted in 3 distinct clusters

of participants that vary according to four quantitative measures

of the three partnership constructs regarding GD assistant, (1)

willingness to adopt measured by the post-task willingness to use

it in work practice, (2) willingness to train measured by the number

of design goals participants contributed during interaction and the

post-task willingness to invest time in training to use it in work

practice, (3) willingness to co-develop measured by the number of

suggestions proposed to improve it after the task.

Figure 11 and Supplementary Table S3 display the average

statistics for each cluster profile contour. For each cluster,

we describe their profile statistics and the most common

qualitative code patterns shared across participants including their

suggestions to co-develop the GD assistant proposed after the

design generation process (Figure 12, see suggestion examples in

Supplementary Table S4). By relating qualitative and quantitative

results in this section, we explore and reason further hypotheses

about individual differences when experiencing the HI approach,

and point to future directions for researching and improving the

HI approach.

Cluster A (P5, P8) represents those who are the least willing to

adopt, the least willing to train but the most willing to co-develop

the tool. Both participants had notable occurrences of user control

(3, 5 times) and perceived usefulness (4, 7 times), mostly with a

negative sentiment. In particular, P8 who had the most mentions

of willingness to co-develop (6 times) and linked willingness to co-

develop with perceived usefulness and user control. He provided a

suggestion of how the system could be changed to increase control:

‘‘Have you used the feature in DALL-E where you can lock part of the

image and regenerate? Yeah, I think that would be useful. That way

you feel more in control of what you are doing.” They both found it

more pressing to improve user control of the GD assistant in their

suggestions before they could invest in training or adopting it.

Cluster B (P1, P2, P7) represents those who are most willing

to adopt, most willing to train and also highly interested in co-

developing the GD assistant. They shared the most of perceived

AI learning (10, 9, 9 times) with a strong positive sentiment

and AI output quality (18, 9, 3 times) with a mixed sentiment.

As an example, P7 held his conflicted input to the GD assistant

responsible for the resulting negative output and expressed his

duty to train the GD assistant with a strong belief in its learning

capability: “I don’t know if my rules are all following each other. Some

of them might be contradictory. But it seems like it is learning...So

I guess I should tell it. Tell the tool which one is my favorite even
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FIGURE 10

Cumulative number of design goals submitted by participant (not including additional “None of Them” goals recorded outside of the GD assistant

training) vs. satisfied by the GD assistant.

FIGURE 11

Mean of each partnership measure by cluster: using normalized measure values.

out of these.” All of them speculated GD assistant’s learning and

reflected on how their training input can be improved with more

user control and AI output transparency, and consequently such

training can improve the output quality, whichmight in return held

them optimistic and responsible for both adopting and improving

the tool.
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FIGURE 12

Numbers of di�erent types of suggestions: coded using HI-TAM and grouped by partnership cluster.

Cluster C (P3, P4, P6) represents those with a moderate level

of willingness to adopt or train with the least willingness to co-

develop. They shared the most mentions of perceived AI learning

(2, 5, 6 times) with a mostly positive sentiment and perceived

usefulness (4, 7, 2 times) with a mixed sentiment. Moreover, they

all hoped to appropriate GD assistant for alternative uses other than

creative design. In particular, P6 was mindful of how GD assistant

was learning from his behavioral input but expressed his concerns

about its artistic expression limitation: “There are two aspects in

architectural design: the scientific part also the functional part can

be definitely done with machine learning, with the program. It’s just

the artistic part...It’s kind of tricky because it’s just like a poem. It’s

so personal.” Therefore he suggested GD assistant could be better

used in its strength, “the scientific part also the functional part”, for

producing or checking designs in compliance with building code:

“So a lot of those rules can be applied to the master plan, and can

probably be used to generate like a basic layout without concept.

A messy analysis can all be done by a machine and you work on

the more artistic part”. In summary, all of them acknowledged

GD assistant’s learning capability to some extent but had strong

opinions on how human experts and AI should handle different

design tasks. To them, GD assistant can never design or learn

like humans do regardless of the amount of training investment.

Thus, it made sense to them to appropriate it for other contexts

rather than improving it further. Additionally, they suggested that

GD assistant could be improved in performance by incorporating

specialized architectural knowledge to have a built-in sense of

high-level design goals such as circulation, privacy, lighting and

building code.

5.5.4 User characterization of the GD assistant
Visual characterization and analogy have been utilized in

previous research to probe participants’ perception of AI agency

and role (e.g., Koch et al., 2019). Building upon this approach,

we employed visual characterizations (typically asking “If you have

to describe it in a visual image, how would you characterize the

role of the tool within the design generation process?”) to gain

deeper insights into how participants perceived the roles of the GD

assistant, particularly in terms of their varied senses of partnership.

Table 3 summarizes participants’ visual characterizations of the GD

assistant after completing the design generation task, covering a

wide range of animate (P1, P5, P8) and inanimate entities (P2, P4,

P6, P7, P8).

The analysis of these characterizations revealed several notable

results. Positive mentions were primarily related to AI output

transparency, perceived usefulness, and perceived AI learning.

Participants (P2, P7, P8) appreciated the transparency of the AI’s

output, finding it beneficial for understanding the design process.

Additionally, participants (P4, P5, P6) recognized the usefulness of

the GD assistant in performing specific tasks. On the other hand,

criticism revolved around the perceived ease of use, particularly

concerning the repetitiveness of communication, as expressed by

participants (P1, P2, P8).

Additionally, user control seems to have a mix of positive and

negative perceptions. Some participants (P6, P8) appreciated the

control they had over the design process. However, P2 expressed

negative perceptions of user control, indicating the need for further

exploration and improvement.

It is noteworthy that participants’ visual characterizations

highlighted the importance of Perceived AI learning, AI output

transparency and trust. Perceived AI learning is linked with both

AI output transparency and AI trust as seen in the HI-TAM

model (see Figure 1). P7 valued the consistency and predictability

of the GD assistant’s performance while acknowledging occasional

surprises in its capabilities. This suggests that a balance between

reliability and unexpected outcomes can contribute to a positive

user experience.
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TABLE 3 Participants’ visual characterizations of the GD assistant: summarized from original quotes.

Summarized characterizations HI-TAM codes
(+ positive, − negative)

P1 A curious child constantly asks for parents’ guidance in learning cooking. While improvement occurs over time, there are

concerns about the trustworthiness of the initial output quality and the burdens of repetitive questions.

•(−) AI output quality

•(−) Perceived ease of use

•(+) Perceived AI learning

P2 A regular dice creates a sense of partnership with some specialized patterns but lacks full control, requiring iteration and

frustration when communicating through obvious questions.

•(−) User control

•(+) AI output transparency

•(−) Perceived ease of use

•(+) Perceived partnership

P3 NA (P3 skipped this question.)

P4 A hairbrush simple in its capabilities but helpful in performing specific tasks such as improving blood flow on the skin

and grooming hair, serving multiple distinct functionalities.

•(+) Perceived usefulness

P5 A less annoying and unhelpful Microsoft paper clip that doesn’t pretend to have a personality or befriend the user. •(+) Perceived usefulness

P6 Magnetic blocks of physical models that users can move around and experiment collaboratively for early concept design. •(+)User control

•(+)Perceived usefulness

P7 A weighted dice that is consistent, predictable and capable of surprising by performing unexpected tasks. •(+) AI output transparency

•(+) AI output trust

P8 A young boy wearing a button-up shirt, intelligent but not straightforward or playful, lacking refinement, yet still reliable

and has the potential for significant value after prolonged training. A blocky Casio scientific calculator, lacking coolness

and sleekness while reliable and transparent, parallel to the control and precision offered by Revit software.

•(+) User control

•(+) AI output transparency

•(+) AI output trust

•(−) Perceived ease of use

•(+) Perceived AI Learning

6 Discussion

Firstly, it is important to underscore that in Study 1 no

more than four participants (10% of 41) expressed a preference

to exclude generative AI entirely at any phase of the building

lifecycle. In Study 2, seven out of eight participants expressed that

10 years from now, a moderate amount of their current tasks

in architectural design could be done by a machine instead of

themselves. These observations, consistent with recent studies of

generative AI-assisted writing (Noy and Zhang, 2023), underscore

the importance of investigating effective human-AI approaches

within GD. In this paper, we set out to investigate to what extent

the HI approach helps human experts build a sense of partnership

in design co-creation. We define the concept of partnership as

a human expert’s willingness to contribute to the creative tool,

a personal GD assistant, during and after co-creation. We here

discuss the results from our studies and implications for future

work. Given the small scale of our studies within one domain, the

generalizability of all results should be empirically tested further.

6.1 HI-TAM and the adoption of the GD
assistant

Study 1 highlighted professionals’ readiness to adopt the HI

approach, characterized by relatively higher human-AI integration,

and their preferences for personalizing the GD assistant. These

results shed light on the suitability of the HI approach as a

foundation for real-world application design. Notably, higher

human-AI integration was observed in the early phases of the

building lifecycle. For effective real-world application design, it is

crucial to break down processes or tasks into manageable stages.

This approach allows for understanding where end-users desire

integration of the GD assistant, ensuring alignment with their

workflow needs.

Given that the participants in Study 2 were asked to report

their goal satisfaction with the generated layouts after each round,

it is unsurprising that AI output quality and perceived AI learning

were the most frequently identified constructs. This co-occurrence

suggests that human experts in architectural design highly value the

ability of the GD assistant to generate high-quality design solutions

while also rapidly adapting to their personal preferences. The link

between AI output quality and AI output trust can be explained

by the fact that the participants were generally happier with the

outcome of AI output when it consistently reflected their design

goals. Future iterations of this GD assistant could allow users to

see the factors that are contributing to its output, such as the

specific design preferences and goals that have been learned over

time and which design goals it is weighting most when generating

the design. In an effort to combat algorithmic overconfidence

(Lacroux and Martin-Lacroux, 2022), future designs could display

the GD assistant’s level of confidence in the generated design

as a means of the algorithm communicating to the end user.

Bi-directional communication has also been shown to increase

perceived partnership (Rezwana and Maher, 2022).

From the quantitative analysis in Study 2, the high and positive

correlation found between willingness to train and willingness to

adopt in this study could be a promising indicator of a “pathway to

adoption”. In other words, positive experiences in training a virtual

GD assistant could lead to a greater likelihood of adoption.

Both our quantitative and qualitative results from Study 2

supported a link between perceived usefulness and AI output

quality, perceived AI learning, and perceived partnership. This is

supported by the AI-TAM (Baroni et al., 2022) which combined
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constructs of AI Output Trust and AI Output Quality into the

“super construct”, explainable AI (XAI), correlating with perceived

usefulness (0.74). While the link between AI output trust and

perceived usefulness was not supported in our analysis, perceived

usefulness was linked to AI output transparency and AI perceived

learning. As the addition of AI output quality and perceived AI

learning allowed the participants’ feedback to be more granular, it

is unsurprising that there were fewer instances of perceived AI trust

as the codes are conceptually related.

Our study’s results suggest that perceived ease of use, as

described in the AI-TAM, may have been absorbed into more

fine-grained constructs such as AI output quality, AI output

transparency, AI output trust, and perceived AI learning in our

HI-TAM. Similarly, perceived usefulness may be broken down into

more granular metrics to evaluate and inform AI design.

Perceived partnership is one of the new constructs we added to

the HI-TAM given its importance in human-AI co-creative systems

(Rezwana and Maher, 2022). Our HI-TAM shows quantitative

correlations and qualitative co-occurrences between perceived

partnership and perceived usefulness. Interestingly, there were no

significant correlations or strong co-occurrences between perceived

partnership and willingness to co-develop. We maintain that the

construct of partnership is important to the HI-TAM and postulate

the missing link between perceived partnership and willingness to

adopt may be due to the fact that the tool is still in prototype form

and may not exhibit enough qualities to warrant partnership. In

our analysis, we also identify three distinct clusters of participants

that vary according to 4 quantitative measures of the three

partnership constructs (willingness to adopt, willingness to train

and willingness to co-develop). While our sample is small, these

initial results shed light on the possibility that different modes of

training may be necessary for different types of users.

6.2 Training of the GD assistant

In Study 1, a majority of participants (62%) indicated that

they preferred using properties and requirements of their final

output, along with variations in output, as methods for training

and improving GD assistants. In contrast, none of the participants

in Study 2 trained the GD assistant long enough to reach the

saturation regime. This implies that by incorporating additional

design goals, the GD assistant’s outputs could have been further

enhanced. This highlights the potential of training the GD assistant

with a broader range of design goals, which can lead to a more

personalized GD assistant capable of better aligning with multiple

design objectives.

Additionally, motivating participants to submit design goals for

GD assistant training can be influenced by various factors such as

the expressivity of the common language used between the user

and the GD assistant, the positive correlation between the quality

of the output and the number of design goals submitted, and

the responsiveness of the GD assistant to the submitted design

goals. It is essential to understand these promoting factors as well

as those that act as detractors. One significant detractor is the

presence of design goal conflicts, where participants were unclear

if their design goals were “contradictory” and they “confused” the

assistant. P7 exemplifies this with the following excerpt “I have said

this before. That [design feature] should be closer to the window.

And now I’m saying...I think I’m contradicting myself.” This can

discourage participants from continuing the training. Participants

in our study suggested that future iterations of the GD assistant

could benefit from features that help users track and manage these

conflicts, thereby facilitating continuous training and improving

the perceived AI transparency. By considering these factors, we can

create an environment that fosters motivation and enables the GD

assistant to reach its full potential. Also, it would be interesting

to use gamification features to enhance willingness to engage in

long-term virtual assistant training (Afyouni et al., 2019).

Lastly, the training of a virtual assistant should be tailored

based on the desired outcome and the level of openness in

problem-solving. When users aim to realize preconceived ideas,

the training process should prioritize capturing and reproducing

those specific ideas effectively. On the other hand, when users

engage in open-ended exploration, the training approach should

emphasize adaptability, novelty, and the generation of diverse

solutions. Further research can explore ways to incorporate users’

goals, preferences and intentions into the training of AI systems,

enhancing their ability to align with individual user needs.

6.3 Design implications

The findings from this study have notable practical implications

for AI tool designers and developers. First, the participants’ overall

willingness to engage with and adopt generative AI assistants

underscores the importance of designing tools that are flexible,

user-friendly, and capable of learning from users’ inputs. One key

insight is the need for AI systems to not only deliver high-quality

output but also transparently communicate how they adapt to

user preferences over time. By offering features that allow users

to track the AI’s learning process and better understand how their

feedback influences the system’s decisions, developers can foster

trust and partnership between humans and AI, crucial for long-

term adoption.

Furthermore, the research highlights that a personalized,

adaptable AI assistant aligned with users’ evolving design goals

can significantly enhance workflow integration. Designers of AI

tools should focus on embedding customization features that

allow users to personalize their interaction with AI systems,

catering to specific phases of a task or lifecycle. Importantly,

this includes providing feedback mechanisms that display the

AI’s confidence and uncertainty, promoting transparency and

mitigating overconfidence, a common issue in AI systems.

Beyond the architectural domain, the implications of this

research extend to industries such as product design, engineering,

andmedia, where co-creative processes are central. The HI (Hybrid

Intelligence) approach offers a framework for developing AI

systems that complement human creativity rather than replace

it. The integration of AI in design and creative industries could

potentially reshape workflows, enabling professionals to focus on

more strategic, high-level tasks while delegating routine, repetitive

work to AI. This partnership model may also apply to other fields,

such as healthcare and education, where AI systems can serve

as collaborative agents, enhancing human expertise and decision-

making capabilities.
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6.4 Limitations and future research

The limited sample sizes in Study 1 (N = 41) and Study 2 (N =

8) from the architectural industry constrain the generalizability of

our findings. To strengthen the validity of these preliminary results,

future studies should involve larger, stratified samples, taking

into account participants’ varying levels of industry experience,

exposure to generative AI and their levels of psychological safety

with AI assistant tools at work. This would allow for a more

robust analysis of how these factors influence the effectiveness of

AI adoption in architectural design practices.

One key area to explore is whether positive experiences in

training AI assistants directly lead to higher adoption rates or

if this effect is skewed by selection bias - AI-enthusiasts who

are naturally more willing to engage with new tools. To further

investigate this, future studies could manipulate the training

experience (e.g., hybrid intelligence-induced positive experiences

vs. control conditions without such induction) and measure

adoption differences. Structural equation modeling (SEM) could

be applied to analyze the stepwise effects of hybrid intelligence

(HI) on user experience, leading to adoption. Hypotheses for this

approach could include: “HI interactions will result in improved user

experience and increased likelihood of long-term adoption compared

to non-HI interactions.” This approach would help isolate the causal

relationship between training experiences and adoption, providing

more robust insights into the mechanisms driving AI integration in

professional workflows.

Future research should also explore ways to further refine

the interaction between humans and AI by experimenting

with HI across different domains and investigating long-term

impacts of AI transparency and feedback mechanisms on

user trust and AI tool effectiveness. Combining quantitative

surveys with in-depth interviews could yield deeper insights into

users’ cognitive and emotional responses to working with AI,

further guiding the design of tools that promote productive

human-AI partnerships.

7 Conclusion and future work

In conclusion, our study sheds light on the potential of a

Hybrid Intelligence Technology Acceptance Model (HI-TAM) to

inform the design of generative design assistants that facilitate a

co-creative partnership between human experts and algorithms.

Opportunities for future work include improving the functionality,

user experience, and integration of the current GD assistant

prototype with existing design workflows and processes. Another

avenue is to validate the effectiveness of the HI narrative in

creating a psychologically safe learning and training environment

by comparing it to a control group with a more neutral algorithmic

description. The HI narrative could be further improved to

address human experts’ concerns about AI adoption and job

displacement. Furthermore, we plan to validate the HI-TAM

model on other HI systems to verify its applicability across

diverse contexts. Additionally, scalability and generalizability of

HI-empowered interactions with GD assistants and AI systems

in other domains and contexts represent a promising line of

future research.
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