
TYPE Original Research

PUBLISHED 21 October 2024

DOI 10.3389/fcomp.2024.1465352

OPEN ACCESS

EDITED BY

Hui Dou,

Anhui University, China

REVIEWED BY

Shitharth Selvarajan,

Leeds Beckett University, United Kingdom

Qin Jiang,

Nanjing University of Science and Technology,

China

*CORRESPONDENCE

Sean Choi

sean.choi@scu.edu

RECEIVED 16 July 2024

ACCEPTED 27 September 2024

PUBLISHED 21 October 2024

CITATION

Choi S, Patel D, Zad Tootaghaj D, Cao L,

Ahmed F and Sharma P (2024) FedNIC:

enhancing privacy-preserving federated

learning via homomorphic encryption o	oad

on SmartNIC. Front. Comput. Sci. 6:1465352.

doi: 10.3389/fcomp.2024.1465352

COPYRIGHT

© 2024 Choi, Patel, Zad Tootaghaj, Cao,

Ahmed and Sharma. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

FedNIC: enhancing
privacy-preserving federated
learning via homomorphic
encryption o	oad on SmartNIC

Sean Choi1*, Disha Patel1, Diman Zad Tootaghaj2, Lianjie Cao2,

Faraz Ahmed2 and Puneet Sharma2

1Cloud Laboratory, Department of Computer Science and Engineering, Santa Clara University, Santa

Clara, CA, United States, 2Networking and Distributed Systems Lab, Hewlett Packard Labs, Hewlett

Packard Enterprises, San Jose, CA, United States

Federated learning (FL) has emerged as a promising paradigm for secure

distributed machine learning model training across multiple clients or devices,

enablingmodel trainingwithout having to share data across the clients. However,

recent studies revealed that FL could be vulnerable to data leakage and

reconstruction attacks even if the data itself are never shared with another

client. Thus, to resolve such vulnerability and improve the privacy of all clients,

a class of techniques, called privacy-preserving FL, incorporates encryption

techniques, such as homomorphic encryption (HE), to encrypt and fully protect

model information from being exposed to other parties. A downside to this

approach is that encryption schemes like HE are very compute-intensive, often

causing ine�cient and excessive use of client CPU resources that can be used

for other uses. To alleviate this issue, this study introduces a novel approach

by leveraging smart network interface cards (SmartNICs) to o	oad compute-

intensive HE operations of privacy-preserving FL. By employing SmartNICs as

hardware accelerators, we enable e�cient computation of HE while saving CPU

cycles and other server resources formore critical tasks. In addition, by o	oading

encryption from the host to another device, the details of encryption remain

secure even if the host is compromised, ultimately improving the security of the

entire FL system. Given such benefits, this paper presents an FL system named

FedNIC that implements the above approach, with an in-depth description of the

architecture, implementation, and performance evaluations. Our experimental

results demonstrate a more secure FL system with no loss in model accuracy

and up to 25% in reduced host CPU cycle, but with a roughly 46% increase in

total training time, showing the feasibility and tradeo�s of utilizing SmartNICs

as an encryption o	oad device in federated learning scenarios. Finally, we

illustrate promising future study and potential optimizations for a more secure

and privacy-preserving federated learning system.

KEYWORDS

privacy-preserving machine learning, federated learning, homomorphic encryption,

SmartNIC, network o	oad

1 Introduction

Federated learning (FL) has emerged as a distributed machine learning model training

technique that is aimed at preserving the privacy of each client, including privacy in data

and model weights, by having decentralized clients train a model on each of their own

private data and sending the localized weight to a centralized aggregator for aggregated

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1465352
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1465352&domain=pdf&date_stamp=2024-10-21
mailto:sean.choi@scu.edu
https://doi.org/10.3389/fcomp.2024.1465352
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1465352/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

model weights. However, recent study has shown that despite

its initial understanding of the benefits, privacy concerns persist

due to potential attacks that malicious parties can perform.

Traditional FL can still be vulnerable to various threats that are

specially designed for ML models, i.e., inference attacks and data

leakage/reconstruction (Geiping et al., 2020; Wang et al., 2018;

Zhu et al., 2019; Bhowmick et al., 2019; Hatamizadeh et al., 2022),

severely compromising the usefulness of FL in preventing privacy

leakage. For example, Zhu et al. (2019) shows how to obtain the

private training data from gradients during training, and Geiping

et al. (2020) analyze the possibility of reconstructing inputs by

inverting gradients in FL systems.

To overcome such issues, researchers have introduced a notion

of privacy preservation to ensure that data and model weights

are not fully disclosed to another party. To do so, multiple

methods have been proposed as follows: multi-party computation

(MPC) (Bonawitz et al., 2017; So et al., 2022), which utilizes

specialized multi-party protocols to compute a function across

multiple private inputs or differential privacy that adds a small

amount of statistically insignificant noise to the data (Truex et al.,

2019; Choudhury et al., 2019). While the proposed methods are

promising in theory, they incur high overheads to the client,

often making them infeasible to use in practice. In addition, these

methods are designed to work with specific types of adversaries

and threat models and may not be generic enough. Furthermore,

offloading complex and highly specialized protocols and algorithms

like MPC to hardware and custom chips is not well supported,

further jeopardizing their uses in production at a large scale.

Unlike the above complex solutions for privacy preservation,

there is a classic set of methods that are already widely used for

data privacy, which is encryption using cryptography. Encryption

is already widely used in modern computing systems at large

scale to ensure privacy, especially in communication and storage.

For example, most network packets already are encrypted to

stop eavesdroppers from capturing and reading network traffic

and storage of sensitive data requires encryption of the data

to stop the data from being read by unauthorized parties.

Due to such high demand for encryption, there is already a

sizeable amount of software and hardware support in using

highly optimized encryption algorithms, meaning that using

encryption for FL is one of the most feasible methods to bring FL

to production.

One of the popular methods of encryption used for encryption-

based FL is homomorphic encryption (HE), which, at a high

level, enables operations on the encrypted data without having

to decrypt the data first. The basic assumption behind using this

encryption method is that the aggregator can be compromised,

thus leaking information regarding the model weights from

each client, which, in turn, can be used for model and data

reconstruction. By using HE, the aggregator can only see

the encrypted weights and perform operations directly on the

encrypted weights without decryption, eliminating the need to

worry about the raw model information being compromised.

However, the major issue with HE is that it is very CPU, disk,

and network intensive. Some of the popular HE algorithms

increase the size of data to the order of 1,000× (Jin et al.,

2023). Therefore, this makes the entire FL with HE process very

resource-intensive, making it infeasible for the FL clients, which

often are CPU and energy-limited machines, in the real-world

FL settings.

To address this problem, this study introduces a system called

FedNIC that offloads the resource-intensive portion of FL with HE

onto a device called smart network interface cards (SmartNICs).

The approach that FedNIC takes does not require clients to

provision additional compute resources, but rather the extraneous

work that is required by FL with HE, which essentially is the

encryption, decryption, and transfer of larger ciphertext, to be

performed by separate hardware. One obvious benefit of this

approach is saving host compute resources, as HE algorithms are

very compute heavy and are known to spend up to 25% CPU

cycles and 250 MB of RAM (Reddy et al., 2022). Freeing host

resources allows the host to focus on more important tasks that

cannot be performed by the NIC, such as ML model updates.

Furthermore, by having SmartNICs be the point of all encryption

and decryption, we can have a more secure location to store the

method and required keys for encryption. This means that even

if the host is compromised, the method of encryption and the

encryption key are not exposed to the adversary. In addition,

SmartNICs can easily change the method of encryption and/or the

encryption keys without the host knowing, making it harder to

decode the encrypted text. Finally, SmartNICs often are equipped

with specialized chips that are optimized for fast cryptography

operations, which shows better performance and efficiency of HE

vs. when running the same operations on CPUs. To address the

challenges of applying homomorphic encryption with FL systems,

we propose offloading homomorphic encryption to SmartNICs to

reduce clients’ hardware and resource requirements for the FL

training process while maintaining robust data privacy. This main

focus of FedNIC is aimed at enhancing the security and feasibility

of FL with HE in real-world settings, by greatly reducing client

resource requirements. Given this, the following summarizes the

set of key contributions of this study.

Key contributions

• A high-level system design that is the first-ever to utilize

SmartNICs for storing and distributing encryption keys and

encrypting model weights using Homomorphic Encryption in a

federated learning setting.

• An implementation of the proposed system, called FedNIC,

which is a privacy-preserving FL framework that utilizes

homomorphic encryption offload onto SmartNICs. FedNIC

guarantees higher levels of privacy due to limited attack

surface and separate security domain, while also reducing

client resource requirements than other FL frameworks that

utilize HE.

• Experimental evaluation results of FedNIC that show

significant resource overhead reduction with no loss in

accuracy or no significant increase in training time, while

ensuring privacy against state-of-the-art ML privacy attacks.

Given the high-level introduction, the structure of this paper

is as follows: We begin the paper by providing the background

(Section 2) of the current state of privacy-preserving federated

learning and usage of SmartNICs within cloud data centers. Then,

we discuss the overview (Section 3) of the system framework

followed by an evaluation (Section 4) of FedNIC performance.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

Finally, we discuss some related studies that motivate FedNIC

(Section 5) and establish the scope for potential future extension

of this study (Section 6).

2 Background

We first delve into the fundamentals of Federated Learning,

Homomorphic Encryption in Federated Learning and SmartNICs,

which are the topics that are crucial tenets of FedNIC.

2.1 Federated learning

Federated learning is a learning task that is solved by a loose

federation of participating devices (also referred to as clients) that

are coordinated by a central coordinator (also referred to as the

aggregator) (McMahan et al., 2017). More specifically, federated

learning assumes that each client has a local training data set,

which is assumed to be private and is not shared with any other

party including the aggregator, that each client uses to train a set

of local model weights. Once the local training is completed, it is

shared with the central aggregator. Once receiving the set of model

weights from multiple clients, the aggregator updates the global

model weights by aggregating all of the weights it has received, and

then, the aggregator passes back the updated global weight to the

clients for the clients to perform the next iteration.

There are two main advantages of FL that arise from not having

to share the training data. First is that the communication and

energy overhead is reduced due to not having to transfer data from

the clients to a centralized model training framework, which allows

the clients to be small and energy-efficient devices. Second and the

most important aspect is that the privacy of data is preserved as it

never leaves the client.

There are many popular frameworks that implement federated

learning:

• FedML (He et al., 2020): FedML is a framework that aims

to be an open research library and benchmark to facilitate

FL algorithm development and fair performance comparison.

It offers a machine learning toolkit featuring APIs that

facilitate federated learning and distributed training across

varying scales. The toolkit supports cross-silo and cross-device

federated learning, along with simulated federated learning.

It incorporates diverse communication backends, including

MPI, gRPC, and PyTorch RPC, for efficient distributed

computing.

• IBM Federated Learning (Ludwig et al., 2020): IBM Federated

Learning is a Python framework that aims to provide

infrastructure and coordination for federated learning. It

is particularly well-suited for enterprise and hybrid-Cloud

settings. It has broad machine-learning model support

including but not limited to neural networks, decision tree,

linear regression, etc.

• TensorFlow Federated (Inc., 2020): Tensorflow Federated is

an open-source framework based on Tensorflow, a popular

machine learning library, for performing machine learning,

simulations and other computations on decentralized data.

The framework of choice for FedNIC is FedML due to its open-

source nature, allowing flexibility in modifying the underlying code

as needed, and also due to its benchmarks widely available in the

research community. Yet, even with these frameworks, the main

issue with traditional FL settings is that it is possible to breach

the privacy of data via the attacks mentioned in Section 1, such as

inference attacks and data leakage/reconstruction.

To avoid such issues, multiple techniques have been used

to improve privacy preservation in FL settings. Table 1 lists the

potential techniques for privacy preservation. Out of multiple

techniques, many researchers are focused on utilizing encryption-

based methods, mainly due to the simplicity of implementation

along with a multitude of hardware support for encryption.

However, as mentioned in Table 1, encryption-based methods

require a secure key exchange or have to cope with high

computational and network overheads, making it infeasible for

compute and energy-limited devices often used for FL. Therefore,

FedNIC is a work that complements such efforts to further increase

their efficiencies.

2.2 Homomorphic encryption

Homomorphic encryption (HE) is a form of encryption that

allows mathematical operations to be performed on the encrypted

data without needing to decrypt it first, leaving the outcome of

the operation in encrypted format. A highly desirable property of

HE is that the resulting output between performing the operations

on encrypted data is identical to the output had the operations

been performed on the unencrypted data. Thus, HE has become

popular in systems where privacy-preserving properties must be

ensured for in aggregation operations across multiple entities,

such as aggregating model weight across multiple clients on a

centralized server.

Most HE algorithms generally consist of four functions:

• KeyGen(λ) → (pk, sk): Given a security parameter λ, this

function generates a pair of public and secret key (pk, sk).

• Encrypt(pk,mi) → ci: This function takes the public key

and a message mn and encrypts the message to generate the

encrypted ciphertext cn.

• Evaluate(ci, cj, f) → c′i,j = Encrypt(pk, f (mi,mj)): The

evaluate function takes two ciphertext and applies a target

function f . f is generally either addition or multiplication. To

ensure that the homomorphic properties are preserved, the

output of Evaluate on two encrypted ciphertext ci, cj generated

from two messagesmi,mj are guaranteed to be the same as the

result of Encrypt applied on the result of f onmi,mj.

• Decrypt(sk, ci) → mi: Finally, the decrypt function allows the

parties with the secret key to decrypt the ciphertext back to the

original message.

Out of these functions, FedNIC focuses on utilizing SmartNICs

to participate mainly in encryption and decryption of the data.

There are four classes of HE algorithms: partially HE, somewhat

HE and fully HE. Partially HE algorithms support evaluation

with one type of operation, either addition or multiplication,

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

TABLE 1 Overview of privacy-preserving techniques for FL.

Technique type Method Advantage Disadvantages

Encryption Cryptographic method that encrypt model weights
to disable any parties from compromising the
weights

Able to offload to hardware. Strong
privacy, even when aggregator is
compromised

High compute overhead, especially
for homomorphic encryption.
Secure key exchange often needed

Multi-party computation (MPC) Protocol to require two or more clients to perform
joint computation when viewing any data

Single party has no control High network overhead. Prone to
client dropouts. Hard to offload

Differential privacy (DP) Adding small noise to data Privacy is achieved without
background knowledge

Unwanted noise can jeopardize the
DP and/or model quality

where as somewhat HE algorithms support both addition and

multiplication, but for a limited number of equations, finally fully

HE algorithms allow for an infinite number of evaluations for

both types of operations. Each class of HE algorithm has benefits

and disadvantages, which we compare in this study. Particularly,

FedNIC focuses on the following set of HE algorithms:

• Paillier (Paillier, 1999): Paillier is the partially homomorphic

encryption scheme in which encrypted numbers demonstrate

the ability to undergo multiplication with non-encrypted

scalars, addition among themselves, and addition with non-

encrypted scalars.

• TenSEAL (Benaissa et al., 2021): TenSEAL, a fully

homomorphic open-source encryption library based on

Microsoft SEAL, is specifically designed for conducting

homomorphic encryption operations on tensors. This library

delves into vector encryption/decryption methodologies

utilizing both the BFV (Brakerski, 2012) and CKKS (Cheon

et al., 2017) schemes. The spectrum of operations includes

element-wise addition, subtraction, and multiplication

for both encrypted–encrypted and encrypted–plain

vectors, incorporating functionalities like dot product

and vector–matrix multiplication.

• Palisade (Badawi et al., 2022): Palisade, currently part

of OpenFHE, is a cryptography library proficient in

implementing fully homomorphic encryption and multi-

party extensions of fully homomorphic encryption. It

offers support for a diverse range of schemes such as BFV,

BGV (Brakerski et al., 2012), CKKS and FHEW (Ducas

and Micciancio, 2015). This library also facilitates seamless

integration into hardware accelerators.

• Pyfhel (Ibarrondo and Viand, 2021): Pyfhel, an acronym

for Python for Homomorphic Encryption Libraries, serves

as a framework supporting SEAL and Palisade as backends,

accommodating BFV, BGV, and CKKS schemes for various

operations including addition, subtraction, multiplication,

and scalar product.

FedNIC provides some insights into the performance of the

algorithms by comparing Paillier and TenSEAL in Section 4.

There are few FL frameworks that attempt to incorporate HE

into FL. Some notable studies include:

• Python-Paillier (Lao et al., 2021): This library is a python3

implementation of the paillier homomorphic encryption

library. It also provides a federated learning simulation

framework that utilizes the paillier algorithm.

TABLE 2 A comparison of various types of SmartNICs.

FPGA-based ASIC-
based

SoC-based

Programmability Hard Limited Easy

of cores 10+ cores 200+ cores 50+ cores

Accelerator support Varies Low High

Secure key storage Varies Hard Easy

Hardware cost High Low Medium

• FedML-HE (Jin et al., 2023): FedML-HE is a research effort

to extend FedML’s privacy-preserving capabilities by adding

methods for homomorphic encryption on clients.

FedNIC compares the performance of both of these

frameworks to provide deeper insights into the benefits that

FedNIC can provide.

2.3 SmartNICs

SmartNICs are a new class of network interface cards (NIC)

that are built to run tasks that the CPU normally handles (e.g.,

checksum computation, TCP offload, and more) in addition to

handling basic networking tasks. At the core of the SmartNICs

are the main processing units that are tasked with processing

the ingress packets and emitting them out on the egress. These

processing units are often programmable to execute custom

programs directly on the data plane, which ensures fast execution

of the custom programs at the packet level. In addition to

the processing unit, most SmartNICs are equipped with various

accelerators that can be leveraged to further expedite widely

used computing operations, such as encryption operations. For

example, NVIDIA’s popular BlueField (NVIDIA, 2024) SmartNIC

incorporates accelerators for hardware root-of-trust for Secure

boot, True random number generator (TRNG), compression and

decompression acceleration, and more. They also allow for features

like RDMA access to GPUs, showing huge potential for future uses

in applications over multiple domains.

SmartNICs can be categorized into three different types based

on the architecture of the processing unit and its processing

capabilities: FPGA-, ASIC-, and SoC-based (Firestone et al., 2018).

Table 2 highlights the difference between the types of SmartNICs.

The first choice of SmartNIC for FedNIC is SoC-based SmartNICs,

as shaded by gray in Table 2, mainly due to ease of programming

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

and extensive support for cryptographic operations. In addition,

given that SoC-based SmartNICs are built to run a complete

operating system, it is able to perform secure boot, enabling

capabilities to distribute and store encryption keys securely.

Some examples of SoC-based SmartNICs are NVIDIA Bluefield

series (NVIDIA, 2024) and AMD 400-G (Dastidar et al., 2023). This

feature allows FedNIC’s computation, such as the HE calculation,

and the threat model to easily be incorporated as a system; thus,

this study mainly utilizes SoC-based SmartNIC for evaluation. Yet,

the design of FedNIC is not limited just to SoC-based SmartNIC, as

other types of SmartNICs can be built to support the minimum set

of functionalities that are needed for FedNIC.

3 FedNIC overview

In this section, we discuss a high-level overview of the

components that make up FedNIC and the threat model that it

assumes and the workflow.

3.1 FedNIC design overview

3.1.1 Adversary definition with threat model
We currently define the set of clients and roles required in

FedNIC, the assumptions FedNIC makes about the threat model.

Figure 1 illustrates the clients, interactions between clients, and the

overall threat model of our proposed solution.

First, the main assumption is that both the clients, who are

responsible for running the FL agent to train the local model

with local private data, and the aggregator, who is responsible for

collecting all local model weights and aggregating them, can be

compromised. FedNIC assumes a semi-honest adversary A, where

semi-honest means that the adversary cannot deviate from the

protocol, that can corrupt the aggregation server or any subset of

local clients with local data. To elaborate, whenA corrupts a client,

the private information in local models and data are compromised

by A, but when A corrupts the aggregation server, A can try to,

but cannot compromise private information from local models nor

globalmodels due to encryption. In other words, we assume a threat

model where the participating clients are honest but curious (HBC),

whereas the model aggregator can be compromised and dishonest.

Second, each client communicates with either a local or remote

encryption engine to transfer the model weights, which then are

encrypted by the encryption engine. The communication between

the clients and the encryption engine is assumed to be encrypted.

While there can be attacks like man-in-the-middle to compromise

the local weight between the client and the encryption engine, the

assumption is that it has the same effect as having a compromised

client. The threat model assumes that the encryption engine is in

a set of devices that are in a different security domain, booted

securely, and thus can be trusted. The main difference of FedNIC

is that it utilizes SmartNICs as the encryption engine, thereby

enabling this assumption to hold due to their hardware capabilities.

Along with the clients, SmartNICs, and the aggregator, FedNIC

assumes the existence of a trusted authenticator that cannot be

compromised. The authenticator is an independent party that is

trusted by participating devices and the aggregator. The main

role of the authenticator is to generate and propagate a set of

secure encryption keys for the encryption engine to use. We

assume that communication channels between devices and the

aggregator may be compromised; hence, attacks like man-in-the-

middle and snooping can happen. However, the key provisioning

and key distribution procedures, as well as the connections between

the authenticator and the SmartNICs of the authenticator are

considered secure.

3.1.2 Client placement
The participating client devices are assumed to be located at

edge locations and can be any device that can run an FL agent on the

host CPU. The SmartNICs can be local to clients or can be installed

on edge servers that directly talk to the clients. The aggregator can

either be situated at a specific edge location or deployed within

the cloud infrastructure. Finally, the authenticator is situated at a

predetermined secure server that can be deployed in a private or

public cloud setting.

3.1.3 Workflow
Devices may join and leave the system at any given time.

Upon joining, the HE Engine on a device needs to authenticate

with the authenticator first before receiving the current key for

homomorphic encryption and decryption. The FL agent that runs

on the host CPU/GPU is a lightweight wrapper that works with

a set of existing machine learning or deep learning frameworks

[e.g., Scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi

et al., 2015), and PyTorch (Paszke et al., 2019)], and no

additional modifications are required to the existing model training

code. Once the FL Agent completes one training iteration, the

updated model parameters are sent to the encryption engine for

encryption. Once encrypted, the encrypted model parameters are

then sent to the aggregator. After receiving the encrypted model

parameters from all participating devices, the model aggregator

merges all updated parameters without decrypting them. Under

this assumption, we require that the encryption be performed

using one of the homomorphic encryption methods and to

clarify the aggregator doesn’t own the key for homomorphic

encryption/decryption as it can also be compromised. For this

study, the workflow does not consider the straggling clients and

the client dropout problems in this abstract as there are several

proposals in the existing literature to handle this issue (Park et al.,

2021; Chai et al., 2020). After the model parameters are merged, the

aggregated model parameters are returned to the encryption engine

for decryption and then sent back to the FL agent on each client

for the next set of training iterations. Finally, to further improve

the security of FedNIC, the authenticator periodically examines

the identity of each device and issues a new encryption key for

homomorphic encryption/decryption. The overall algorithm for

the workflow can be found in Algorithm 1.

4 Evaluation

In this section, we thoroughly evaluate performance of FedNIC

in terms of communication time, encryption/decryption time, and

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

FIGURE 1

Clients and threat model of FedNIC.

aggregation latency with respect to the non-homomorphic solution

(Raw), and without utilizing the SmartNIC (FedML-HE). We

start by discussing the experimental methodology, implementation

details, the testbed setup, and the results of the evaluation.

4.1 Evaluation methodology

4.1.1 Choice of federated learning framework
Different federated learning frameworks like Python-Paillier

and IBM-FL were considered before going ahead with FedML-

HE. Python-Paillier was unsatisfactorily slow, as the underlying

FE algorithm, Paillier, is implemented in Python without extensive

optimization for speed. The purpose of Python-Paillier is more

focused on the simulation and testing of the Paillier algorithm,

rather than having a production-ready FL system, thus Python-

Paillier was not chosen as the base framework for FedNIC Another

framework in consideration was the FL framework by IBM

called IBMFL. This framework, even though it supported fully

homomorphic encryption algorithms, it supported only ×86 and

IBM Z architecture. This was a blocker for FedNIC, since Bluefields

that are used in our experiments are equipped with ARM cores,

thus runs the aarch64 version of Linux (NVIDIA, 2024). A future

study can be done to utilize IBM FL with SmartNICs or networking

devices that are ×86 or IBM Z based. The final framework that

was evaluated was the FedML and the FedML-HE framework,

which is a research study to enable HE on FedML. This framework

integrates nicely with Palisade and TenSEAL HE algorithms and

is built for scale to multiple clients. It also provided numerous

communication protocols like gRPC, MPI, and MQTT that give

FedNIC more flexibility on which protocols to use. Finally, FedML

is open-sourced and written in Python, which makes it quite easy

to add and modify modules of interest. Therefore, given the broad

sets of benefits, we chose FedML framework as the base framework

for FedNIC.

4.1.2 Choice of HE libraries
In the selection of homomorphic encryption

algorithms/libraries, we considered a diverse set of tools to

ensure a comprehensive evaluation of cryptographic techniques.

The set of candidates, namely, Paillier, TenSEAL, Pyfhel, and

Palisade, were chosen and evaluated to address the requirements

of our FedNIC objectives. Each algorithm had its advantages

and disadvantages, but the final choice of algorithm was Palisade

due to the following reasons. While Paillier encryption is

known for its additive homomorphic properties, particularly

suited for scenarios requiring aggregated computations, the

encryption performance was very low, often resulting in large

weights and 40× slower encryption/decryption times. Pyfhel

is recognized for its user-friendly interface and robust support

for arithmetic operations in homomorphic encryption, but

the encryption/decryption performance was 3× slower than

Palisade. TenSEAL is designed to support polynomial-based

encryption schemes, offering a flexible framework for polynomial

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

• S: Aggregator

• Ci: Client

• Ei′: Encryption engine paired with Ci

• N: Number of clients

• M: Number of encryption agent

• Di: Local private data for Client Ci

• Wi: Unencrypted model weights

• [Wi]: Encrypted model weights

// Authenticator Generates Key

(pk, sk)← HE.KeyGen()

for each j ∈ [M] do

Send (pk, sk) to Ej

end

// Local FL Training on the Client

for t = 1,2,..., T do in parallel

for each Client i ∈ [N] do

if t = 1 then

Wi ← Init(W)

end

if t > 1 then

Receive Wglob from Ei′

Wi ←Wglob

end

Wi ← Train(Wi,Di)

Send Wi to Ei′

end

end

// SmartNIC Operation

for each SmartNIC i′ ∈ [M] do in parallel

// Encryption Operation

if Wi received from Ci then

[Wi]← HE.Enc(pk,Wi)

Send [Wi] to S

end

// Decryption Operation

if [Wglob] received from S then

Wi ← HE.Dec(sk, [Wglob])

Send Wi to Ci

end

end

// Aggregation on S

[Wglob]←
∑n

i=1[Wi]

Send Wglob to all Ej where j ∈ M

Algorithm 1. HE-based federated machine learning.

evaluation and manipulation, but the encryption/decryption

performance was 2× slower than Palisade. Palisade is known for

its scalability and comprehensive support for lattice-based

homomorphic encryption schemes and showed the best

encryption/decryption performance in our evaluation. Given

all the choices, the final choice of algorithm is Palisade due to its

superior performance. The results of this evaluation can be found

in Section 4.4.1

4.1.3 Dataset and model
The dataset used for the evaluation is the FEMNIST

dataset (Caldas et al., 2019). It is a variation of the popular

MNIST dataset, a widely used dataset for image recognition

tasks, which is built by partitioning the MNIST data based on

the writer of the digit/character. The FEMNIST dataset consists

of 805,263 samples of images of size 28 by 28 pixels, obtained

from 3,550 users. The images are categorized into one of 62

classes (10 numbers, 26 lowercase, and 26 uppercase letters);

thus, it is widely used to train image classification models that

classify the handwritten image to one of the 62 classes. For

easier comparison between clients, the training dataset has been

sampled to 1,600 images for each client, and for each FL round,

each client trains on 32 images before sending the weights

for encryption.

The machine learning model that was built as part of the

evaluation is convolutional neural network (CNN) with two

layers (Krizhevsky et al., 2012) and dropout. CNN is also a widely

used model for many classification task and is often coupled with

the MNIST dataset to compare model training performance on

different model and dataset configurations (Reddi et al., 2021). This

model has 1,206,590 parameters trained in total, and each client

trains the same number of parameters but on each of its local train

dataset. For the evaluation, the client trains the given model for 100

epochs per FL training round, and the evaluation is run across 50 FL

rounds. Given that the hyperparameters of the models and the type

of HE algorithm stayed constant across different privacy-preserving

FL systems (FedML vs. FedNIC), the model performance stayed

constant across these systems. Table 3 provides an overview of the

set of evaluations.

4.2 Implementation

The implementation of FedNIC is as follows. FedNIC

is implemented as an extension to FedML-HE, where the

homomorphic encryption part of the implementation has been

replaced with FedNIC’s encryption and decryption library. The

FedNIC’s encryption and decryption library works as follows.

The encryption and decryption are performed via the Palisade

homomorphic encryption library written in C++. The library

uses gRPC as the communication mechanism between the client,

SmartNICs, and the aggregation server to pass the encrypted

weights. The CNN training logic that runs on each of the clients

is written in Python using the PyTorch library. In summary,

the process inside the SmartNIC, which is responsible for the

encryption and decryption of model weights, utilizes gRPC to

retrieve model weights from the clients and the aggregation server

and calls the C++ Palisade library to perform the necessary

crypto operations. The clients receive decrypted weights from

the SmartNIC to continue on to the next iteration of the

FL training.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

TABLE 3 Overview of experimental methodology.

Type Encry. alg. Num params. Weights (B) Encry. weights (B) FL rounds Epochs

Raw N/A 1,206,590 28,958,160 N/A 50 100

FedML Palisade 1,206,590 28,958,160 78,764,304 50 100

FedNIC Palisade 1,206,590 28,958,160 78,764,304 50 100

4.3 Testbed setup

The evaluation testbed setup shown in Figure 2 consists of

two clients and one aggregator server. Both the clients and the

aggregator are deployed on 3× HPE ProLiant DL385 servers with

dual AMD EYPC 7F52 16-core, 32 threads CPUs running at 3.5

GHz. One of the clients is equipped with NVIDIA BlueField-

2 (NVIDIA, 2024), which consists of 8× ARMv8 A72 running

at 2.5 GHz, and 16 GB of RAM and the other is equipped with

BlueField-3 (NVIDIA, 2024) SmartNIC, which consists of 16×

ARMv8.2 A78 CPU running at 3.3GHz and 16 GB of RAM. The

authenticator is running alongside the aggregator. Both the clients

and the aggregator are configured with the Ubuntu 22.04 operating

system and all Bluefields were configured with Ubuntu 22.04 Linux

operating system.

4.4 Evaluation results

4.4.1 Comparison of di�erent HE libraries
To understand the performance of homomorphic operations,

we compared the averaged encryption and decryption time on two

SoC-based SmartNICs, BlueField-2 (NVIDIA, 2024) and Bluefield-

3 (NVIDIA, 2024), and AMD EPYC 7F52 CPU (AMD, 2024) using

the four most popular homomorphic libraries: Paillier, TenSEAL,

Pyfhel, and Palisade. Figure 3 shows our experimental results. First

of all, regardless of the algorithm, homomorphic encryption is very

time-consuming; thus, the majority of the end-to-end processing

time on FedNIC is spent on this specific operation. It is reasonable

to predict that this overhead will be much larger when training

bigger language or computer vision models. This further highlights

our motivation for offloading the homomorphic operations from

the CPU to SmartNICs is to save the CPU for other critical business

operations. Second, Paillier shows a much higher overhead than

TenSEAL in all scenarios, demonstrating that the implementation

of TenSEAL is more efficient. TenSEAL can be further fine-

tuned by tweaking the values of several parameters including

poly_modulus_degree, coeff_mod_bit_sizes, and

global_scale. With fine-tuning, the results show that the

decryption and encryption time of TenSEAL on BlueField-3

slightly outperforms the AMD EYPC 7F52 CPUs, indicating

a very promising potential. Third, although in most cases the

performance of SmartNICs yields a longer execution time of

homomorphic operations, the improvement of BlueField-3

over BlueField-2 is significant. Lastly, Palisade encryption and

decryption on Bluefield-3 provides huge improvements over AMD

CPU. This result is exciting as this result does not take crypto

accelerators into consideration and we expect the gap between

SmartNICs and CPU to be wider when crypto accelerators are

in place.

4.4.2 Communication time latency
In this set of experiments shown in Figure 4, we compared

the communication time of the two clients and Bluefield-2 (if

using FedNIC) on each client host when using non-homomorphic

encryption (Raw), running homomorphic encryption on the

clients (FedML-HE), and running homomorphic encryption on

the Bluefield2 nodes (FedNIC). The communication time is

obtained by summing all of the time spent on the network

between the clients, SmartNICs (if exists), and the aggregator,

across all FL rounds. Given that FedNIC adds an additional

layer of communication between the client and the SmartNIC,

whereas traditional FL with HE implementations do not need

such communication, Figure 4 shows the impact of the overhead

of adding such a layer. The total communication time added on

FedNIC is about 54% higher vs. FedML-HE, due to the large

overhead caused by increased ciphertext size. Further optimizations

need to be done to improve this time, such as a better networking

stack for each participant, using different transfer protocols,

selective parameter encryption, and more.

4.4.3 Training time
Figure 5 shows the total training time taken in seconds

on the clients using non-homomorphic encryption, running

homomorphic encryption on clients and when running

homomorphic encryption on the SmartNIC, averaged across

50 different experiment runs. Our experiments show a negligible

increase in the total training time when running the FedNIC,

when compared to no encryption solution or encryption directly

on the clients. This is expected as FedNIC is designed to make

near-minimal changes to the training algorithm on the clients.

4.4.4 Aggregation time
In the set of evaluations shown in Figure 6, we evaluate the

aggregation time taken on the aggregation server using non-

homomorphic encryption, running homomorphic encryption on

the clients, and when running homomorphic encryption on the

SmartNIC. Notice that the aggregation time increases greatly on

both systems using homomorphic encryption due to the increased

size of the ciphertext and the complexity of adding larger sets of

model weights. In addition, given that the effect of an increase in

ciphertext is seen on each client and is aggregated across every

client, so as more clients are added to the total workflow, we expect

the difference to increase. However, FedNIC does not exhibit any

increase in aggregation time when comparing between running

homomorphic encryption on the client or on the SmartNIC. This

result is as expected as FedNIC is designed to make minimal

changes to the aggregation server as well.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

FIGURE 2

Overall experimental platform architecture.

FIGURE 3

Encryption and decryption time of model weights on BlueField-2, BlueField-3, and AMD CPU using Paillier, TenSEAL, Pyfhel, and Palisade.

4.4.5 Total workflow time
We then compare the total time taken on each client,

Bluefield-2 and aggregation server when running non-

homomorphic, running homomorphic on clients, and running

homomorphic encryption on the Bluefild-2, averaged across 50

different experiment runs. Figure 7 shows that the total time

using the FedNIC-HE approach is 46% higher than the FedML-

HE and 76% higher than the case where we do not use any

encryption at all. The main reason for performance degradation

is due to the added latency in sending the ciphertext to the

SmartNIC, which adds a communication overhead between the

host and the SmartNIC. Although, this added latency may not

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

FIGURE 4

Communication time on the clients and BlueField-2, using non-homomorphic (Raw), running homomorphic encryption on clients (FedML-HE), and

running homomorphic encryption on the Bluefield-2 (FedNIC).

FIGURE 5

Total training time taken on the clients, using non-homomorphic, running homomorphic encryption on clients, and running homomorphic

encryption on the Bluefield-2.

be desirable, we argue that such added latency allows a more

secure federated machine learning framework to be achieved.

As mentioned earlier, we believe that the optimizations on the

networking stack and the aggregation methods can bring this gap

even smaller. Furthermore, if the crypto accelerator is used, it is

possible to offset the added communication latency with faster

encryption/decryption operations.

5 Related studies

We review related research that explores privacy-enhancing

techniques in FL and the utilization of hardware accelerators

like SmartNICs.

5.1 Privacy-preserving methods

Existing privacy-preserving solutions for FL are mainly multi-

party computation (MPC) secure aggregation protocols (Bonawitz

et al., 2017; So et al., 2022), noise-based differential privacy

(DP) solutions (Truex et al., 2019; Choudhury et al., 2019), and

federated averaging with local randomization (McMahan et al.,

2017). MPC protocols require extra steps to mask private inputs,

and it does not work well with client dropouts. DP solutions

add privacy noise to original inputs to prevent the reconstruction

of individual data points. This may cause model performance

degradation or convergence problems. In Federated Averaging

with a local randomization approach, participants add random

noise to their local model updates before sharing them with

the central server. The noise addition introduces an element

of privacy without relying on homomorphic encryption. The

introduction of local randomization by adding noise to local

model updates can adversely affect the convergence and accuracy

of the federated learning model. The random perturbations may

hinder the learning process, leading to slower convergence or

reduced model performance, especially when the noise added is

significant. There are works that employ a mixture of two or

more of these methods. For example, FedML-HE (Jin et al., 2023)

employ DP on top of HE that add noise to the encrypted weights

for additional privacy. FedNIC can also implement such methods

as encryption/decryption and model weight modification happens

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

FIGURE 6

Aggregation time taken on the aggregation server, using non-homomorphic, running homomorphic encryption on clients, and running

homomorphic encryption on the Bluefield-2.

entirely on the SmartNIC. The benefit of performing these privacy-

preserving operation is that the entire operation can be completely

hidden from the client, increasing the total security of the system.

Finally, there are more recent studies that are relevant to

privacy preservation that can show the feasibility of FedNIC being

deployed to real-world scenarios. First of all, Shitharth et al. (2023)

utilize blockchain to enhance security for federated learning, which

increases privacy for IoT use cases. A small change in FedNIC’s

architecture can easily support Shitharth et al. (2023) to offload

the blockchain operations onto SmartNIC, which can be seen in

studies by Patel and Choi (2023) and Kapoor et al. (2023). Another

notable work is Yoosuf et al. (2022), which utilizes HE for data

deduplication in cloud workloads. Yoosuf et al. (2022) shows that

HE can be used in a real-world manner that supports the feasibility

of FedNIC.

5.2 Homomorphic-based FL solutions

Existing homomorphic-based solutions adopt existing

homomorphic libraries directly on the host leading to significant

resource utilization overhead and may become the performance

bottleneck of the FL system (Fang and Qian, 2021; Jiang et al., 2021;

Zhang et al., 2020; Jin et al., 2023). BatchCrypt (Zhang et al., 2020)

discusses the significant computation and communication costs

incurred by homomorphic encryption and proposes a solution

using batch encryption, for cross-silo federated learning to reduce

the encryption and communication overhead of homomorphic

encryption. FedNIC complements these efforts by providing a

method to offload the HE operations that are currently run on

the clients.

5.3 ML acceleration with programmable
network devices

SmartNICs have been adopted to assist the FL system in

aggregating ML model updates and mitigating communication

overheads. A DPDK-based, lightweight communication protocol is

introduced for the FL aggregation server in Shibahara et al. (2023)

to accelerate model aggregation by leveraging the multi-core ARM

processor on BlueField-2. Similarly, a new aggregation solution

is proposed by Zang et al. (2022), achieving better performance

and privacy of FL systems by offloading the key functions to

FPGA-based SmartNICs.

More generally, recent studies have endorsed the utilization

of in-network aggregation as a strategy to enhance the efficiency

of distributed machine learning training (Sapio et al., 2021;

Lao et al., 2021; Gebara et al., 2021). ATP delves into the

concept of distributing aggregation functionality between a

switch for enhanced performance and a server for increased

capacity, aiming to seamlessly accommodate multi-job scenarios

(Lao et al., 2021). However, the practical feasibility of these

approaches is constrained by the absence of effective aggregation

hardware, making them impractical for shared federated learning

environments. To the best of our knowledge, none of the

prior studies leverage SmartNICs/DPUs to offload and accelerate

homomorphic operations to fortify the privacy-preserving aspect

of federated learning systems.

5.4 Methods for e�ciency improvement

A similar line of related studies is to enhance the efficiency of

security-enhancing methods. A notable example is Gajarla et al.

(2021), which enhances encryption efficiency by creating a sanitizer

that is used to sanitize the block that contains the sensitive

information of the file, instead of having to encrypt the entire file.

This technique can be considered to be part of FedNIC to increase

the efficiency of HE, since we can reduce the amount of data to

be encrypted. Another example is the study by Karthikeyan et al.

(2023) where it aims to improve the energy efficiency of cloud data

center workloads by providing intelligent placement of workers.

This is quite relevant to FedNIC, as it would allow FedNIC to

reduce energy usage by placing the aggregation servers where it can

provide the most energy efficiency.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

FIGURE 7

Total time taken on the clients, BlueField-2, and the aggregation server using non-homomorphic (Raw), running homomorphic encryption on clients

(FedML-HE), and running homomorphic encryption on the Bluefield-2 (FedNIC).

6 Discussion and future studies

6.1 Future studies

6.1.1 Utilizing hardware crypto accelerators
The surge in SmartNIC adoption within large-scale data

centers has led to the integration of various hardware acceleration

engines. Notable examples include the utilization of hardware

crypto engines in NVIDIA BlueField (NVIDIA, 2024) devices

and dedicated compression/decompression engines. However, the

current DOCA (NVIDIA, 2023) acceleration engine has limited

support for a handful number of cryptographic algorithms such

as RSA, DH, DSA, ECDSA, and ECDH; thus, it does not

currently fully support homomorphic encryption. Thus, the once-

homomorphic encryption is integrated into the DOCA framework,

FedNIC can easily be enhanced by the hardware accelerator

support, providing a significant potential for enhancing the overall

efficiency, cost, and security. In addition, there is a series of

Bluefield cards called Bluefield X that houses both a GPU and

an NPU. While these cards are very limited in supply and hard

to obtain, their architecture is very promising for accelerating

FedNIC, since there is already active research around utilizing GPU

to accelerate HE algorithms (Morshed et al., 2020; Özcan et al.,

2023). Thus, FedNIC can easily utilize these methods to accelerate

HE on SmartNIC.

The other possible future study direction is to leverage the

existing compression/decompression engine on SmartNICs [e.g.,

BlueField-2 (NVIDIA, 2024)] to accelerate certain parts of the

federated machine learning process. For example, previous study,

by Bitar (Liu et al., 2022), shows promising results by leveraging

the compression engine on NVIDIA BlueField-2 to accelerate the

partitioning process of the datasets. Utilizing hardware acceleration

offload method, Bitar is able to achieve 4.6 − 8.6× higher

throughput than software-based solutions for serialization. Given

such success, a future study planned is to explore the possibility

of leveraging the compression/decompression engine to accelerate

corresponding steps of HE operations.

6.1.2 Data plane-assisted federated machine
learning

Aside from processing the encryption and decryption using an

SoC-based SmartNIC like Bluefield, there is potential to simply

offload the entire operation onto a programmable data plane

device like FPGA or ASIC-based SmartNICs or switches. Given

that FPGA-based SmartNICs can be programmed to perform

HE (Agrawal et al., 2023), a research area of interest is to build an

FPGA or ASIC-based SmartNICs that already have HE acceleration

features built into the data plane.With such features, it is possible to

easily encrypt weights that are sent to the aggregation server, which

can improve the performance of FedNIC greatly.

6.1.3 Selective encryption
One of the major issues with HE is the significant increase in

the size of ciphertext. In order to reduce this impact, there are

studies that employ selective encryption, which encrypts a subset

of the model weights (Jin et al., 2023) to reduce the computational

overhead in encryption. Employing this technique will allow the

discrepancy between the total time taken for FedNIC vs raw to

reduce significantly, further increasing the feasibility of FedNIC

in production.

6.2 Discussion

6.2.1 Industry standards and shortcomings
Current industry standards in attacks and defenses for

federated ML system is well discussed in Han et al. (2024). There

are multiple types of attacks that are present, such as data/model

poisoning attacks, backdoor attacks, and Byzantine attacks, and it

is an active ongoing research to provide defenses for each type of

attack. While algorithms such as Krum (Blanchard et al., 2017)

can provide a way for trusted aggregation servers to perform

trusted model updates in the presences of compromised clients,

these algorithms are not effective when the aggregation server

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

is compromised. FedNIC is an orthogonal method that allows

for a compromised network and aggregation server to have zero

information about what is sent by the client. In addition, FedNIC

addresses short-comings when a client is compromised, as the

SmartNIC is in a different security domain. The design of FedNIC

prevents the client from knowing what happens to their data after

it is sent. Thus, FedNIC can easily verify the validity of the data, as

well as the current state of the client by investigating the data before

encrypting it and sending it to the aggregation server. In summary,

FedNIC enables a trusted authenticator that can improve the

security of the entire system, while easily allowing the integration

of algorithmic techniques as defined by Han et al. (2024).

6.2.2 Cost analysis
While it is difficult to perform a detailed cost analysis to

understand what it costs to offset HE using SmartNICs, we provide

a rough cost analysis based on the amount of CPU used vs. the cost

of SmartNICs. Given that HE operations alone can use up to 25%

of the CPU, this implies that adding HE to an existing federatedML

system requires provisioning of 33% more CPUs. The AMD EPYC

CPU that we have utilized for the evaluation testbed costs ∼$3,000

each, which means that adding HE capabilities alone would cost

roughly ∼$1,000. A Bluefield-3 SmartNIC cost highly depends on

the configuration and the speed of the port, but on average it is

∼$2,500 for a 100G version. A typical data center 100G NIC can

cost roughly $1,000; thus, the added cost for adding a Bluefield

would be $1,500 per server. We can see that adding a Bluefield costs

∼$500 more than just increasing the CPU, but with this is when

ignoring added benefits by installing the Bluefield over a typical

NIC. For example, Bluefields come with more RAM than a typical

NIC and can improve the security of the system as mentioned by

FedNIC. In addition, HE operations utilize ∼50% of the Bluefield’s

CPU; thus, there is processing power left for other operations.

Therefore, we can see that the cost between adding more CPU to

support HE operations vs. adding a Bluefield SmartNIC instead of

a typical NIC is comparable.

7 Conclusion

In this paper, we present FedNIC, a privacy-preserving FL

framework that offloads HE to SmartNICs to improve the security

and feasibility of privacy-preserving FL via HE. Acknowledging

the compute-intensive nature of HE and its potential impact

on client CPU resources, leveraging the SmartNICs as hardware

accelerators, to effectively offload HE operations, significantly

improving computational efficiency and frees up valuable host

resources. In addition, the FedNIC system design allows for a more

secure exchange of keys and encryption, stopping adversaries from

obtaining any information about the encryption process.

Experimental results show no model accuracy with a small

increase in total training time, while conserving valuable host CPU

cycles used for encryption and decryption. This research shows

the feasibility and advantages of employing SmartNICs for HE

in federated learning scenarios, contributing to the realization

of more secure and privacy-preserving AI models. Furthermore,

future studies show potential in improving the performance further

by utilizing newer hardware that can perform HE computation

far more efficiently with dedicated ASICs. As mentioned, FedNIC

design is not only limited to HE but also can be applied to other,

more efficient and well-supported, types of encryption algorithms.

Thus, as the field of privacy-preserving FL continues to evolve,

FedNIC emerges as a promising solution to address computational

challenges and foster the widespread adoption of secure machine

learning practices.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SC: Writing – review & editing, Writing – original draft,

Visualization, Validation, Supervision, Software, Resources, Project

administration, Methodology, Investigation, Funding acquisition,

Formal analysis, Data curation, Conceptualization. DP: Writing –

review & editing, Writing – original draft, Visualization, Software,

Data curation. DZ: Writing – review & editing, Writing –

original draft, Visualization, Resources, Project administration,

Investigation, Data curation, Conceptualization. LC: Writing

– review & editing, Writing – original draft, Supervision,

Resources, Methodology, Investigation, Conceptualization. FA:

Writing – review & editing, Writing – original draft, Resources,

Conceptualization. PS: Writing – review & editing, Writing –

original draft, Supervision, Resources, Project administration,

Methodology, Funding acquisition, Conceptualization.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This project

has been funded with the support Hewlett-Packard Enterprises

and NSF CRII 2245352. The funder was not involved in the study

design, collection, analysis, interpretation of data, the writing of this

article, or the decision to submit it for publication.

Conflict of interest

DZ, LC, FA, and PS were employed at Hewlett Packard

Enterprises.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Available at:
tensorflow.org (accessed January 13, 2023).

Agrawal, R., de Castro, L., Yang, G., Juvekar, C., Yazicigil, R., Chandrakasan, V.,
et al. (2023). “Fab: an fpga-based accelerator for bootstrappable fully homomorphic
encryption,” in 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA) (Los Alamitos, CA: IEEE Computer Society), 882–895.
doi: 10.1109/HPCA56546.2023.10070953

AMD (2024). Server Processor Specifications. Available at: https://www.amd.com/en/
products/specifications/server-processor.html (accessed January 13, 2023).

Badawi, A. A., Bates, J., Bergamaschi, F., Cousins, D. B., Erabelli, S., Genise, N.,
et al. (2022). Openfhe: Open-source fully homomorphic encryption library. Cryptology
ePrint Archive, Paper 2022/915. Available at: https://eprint.iacr.org/2022/915 (accessed
January 13, 2023).

Benaissa, A., Retiat, B., Cebere, B., and Belfedhal, A. E. (2021). Tenseal: a library
for encrypted tensor operations using homomorphic encryption. arXiv [Preprint].
arXiv:2104.0315. doi: 10.48550/arXiv.2104.0315

Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., and Rogers, R. (2019). Protection
against reconstruction and its applications in private federated learning. ArXiv.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer, J. (2017). “Machine
learning with adversaries: byzantine tolerant gradient descent,” in Advances in Neural
Information Processing Systems, Vol. 30, eds. I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, et al. (Red Hook, NY: Curran Associates, Inc).

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S.,
et al. (2017). “Practical secure aggregation for privacy-preserving machine learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY: ACM), 1175–1191. doi: 10.1145/3133956.3133982

Brakerski, Z. (2012). “Fully homomorphic encryption without modulus switching
from classical gapsvp,” in Proceedings of the 32nd Annual Cryptology Conference on
Advances in Cryptology – CRYPTO 2012 - Vol. 7417 (Berlin, Heidelberg: Springer-
Verlag), 868–886. doi: 10.1007/978-3-642-32009-5_50

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012). “(leveled) fully
homomorphic encryption without bootstrapping,” in Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12 (New York, NY: Association for
Computing Machinery), 309–325. doi: 10.1145/2090236.2090262

Caldas, S., Duddu, S.M. K.,Wu, P., Li, T., Konecný, J., McMahan, H. B., et al. (2019).
Leaf: A benchmark for federated settings. ArXiv.

Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Baracaldo, N., et al. (2020).
“Tifl: a tier-based federated learning system,” in Proceedings of the 29th international
symposium on high-performance parallel and distributed computing (New York, NY:
ACM), 125–136. doi: 10.1145/3369583.3392686

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology-ASIACRYPT 2017:
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23
(Cham: Springer), 409–437. doi: 10.1007/978-3-319-70694-8_15

Choudhury, O., Gkoulalas-Divanis, A., Salonidis, T., Sylla, I., Park, Y., Hsu, G., et al.
(2019). Differential privacy-enabled federated learning for sensitive health data. arXiv
[Preprint]. arXiv:1910.02578. doi: 10.48550/arXiv.1910.02578

Dastidar, J., Riddoch, D., Moore, J., Pope, S., andWesselkamper, J. (2023). The amd
400-g adaptive smartnic system on chip: a technology preview. IEEE Micro 43, 40–49.
doi: 10.1109/MM.2023.3260186

Ducas, L., and Micciancio, D. (2015). “Fhew: bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology-EUROCRYPT 2015, eds.
E. Oswald, and M. Fischlin (Berlin, Heidelberg: Springer Berlin Heidelberg), 617–640.
doi: 10.1007/978-3-662-46800-5_24

Fang, H., and Qian, Q. (2021). Privacy preserving machine learning with
homomorphic encryption and federated learning. Future Internet 13:94.
doi: 10.3390/fi13040094

Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha,
M., et al. (2018). “Azure accelerated networking: smartnics in the public
cloud,” in Proceedings of the 15th USENIX Conference on Networked Systems
Design and Implementation, NSDI’18 (Berkeley, CA: USENIX Association),
51–64.

Gajarla, B., Rebba, A., Kakathota, K., Kummari, M., and Shitharth, S. (2021).
“Handling tactful data in cloud using pkg encryption technique,” in 4th Smart Cities
Symposium (SCS 2021), Vol. 2021 (Bahrain), 338–343. doi: 10.1049/icp.2022.0366

Gebara, N., Ghobadi, M., and Costa, P. (2021). In-network aggregation for shared
machine learning clusters. Proc. Mach. Learn. Syst. 3, 829–844.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M. (2020). “Inverting
gradients - how easy is it to break privacy in federated learning?” in Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS’20 (Red
Hook, NY: Curran Associates Inc), 16937–16947.

Han, S., Buyukates, B., Hu, Z., Jin, H., Jin, W., Sun, L., et al. (2024). Fedsecurity:
Benchmarking attacks and defenses in federated learning and federated llms. ArXiv.
doi: 10.1145/3637528.3671545

Hatamizadeh, A., Yin, H., Roth, H., Li, W., Kautz, J., Xu, D., et al. (2022).
“Gradvit: gradient inversion of vision transformersm,” in 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (New Orleans, LA, IEEE),
10011–10020. doi: 10.1109/CVPR52688.2022.00978

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., et al. (2020). Fedml: A research
library and benchmark for federated machine learning. ArXiv.

Ibarrondo, A., and Viand, A. (2021). “Pyfhel: python for homomorphic encryption
libraries,” in Proceedings of the 9th on Workshop on Encrypted Computing Applied
Homomorphic Cryptography, WAHC ’21 (New York, NY: Association for Computing
Machinery), 11–16. doi: 10.1145/3474366.3486923

Inc., G. (2020). Tensorflow federated. Available at: https://www.tensorflow.org/
federated (accessed January 13, 2023).

Jiang, Z., Wang, W., and Liu, Y. (2021). Flashe: additively symmetric homomorphic
encryption for cross-silo federated learning. arXiv [Preprint]. arXiv:2109.00675.
doi: 10.48550/arXiv.2109.00675

Jin, W., Yao, Y., Han, S., Joe-Wong, C., Ravi, S., Avestimehr, S., et al. (2023). Fedml-
he: An efficient homomorphic-encryption-based privacy-preserving federated learning
system. ArXiv.

Kapoor, E., Jampani, G., and Choi, S. (2023). “Blocknic: smartnic assisted
blockchain,” in 2023 Silicon Valley Cybersecurity Conference (SVCC) (San Jose, CA:
IEEE), 1–8. doi: 10.1109/SVCC56964.2023.10165427

Karthikeyan, R., Sundaravadivazhagan, B., Cyriac, R., Balachandran, P. K., and
Shitharth, S. (2023). Preserving resource handiness and exigency-based migration
algorithm (PRH-EM) for energy efficient federated cloud management systems. Mob.
Inf. Syst. 2023:7754765. doi: 10.1155/2023/7754765

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems, Vol. 25, eds. F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Red Hook,
NY: Curran Associates, Inc), 1097–1105.

Lao, C., Le, Y., Mahajan, K., Chen, Y., Wu, W., Akella, A., et al. (2021). “ATP:
in-network aggregation for multi-tenant learning,” in 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21) (USENIX Association),
741–761.

Liu, J., Maltzahn, C., Curry, M. L., and Ulmer, C. (2022). “Processing particle
data flows with smartnics,” in 2022 IEEE High Performance Extreme Computing
Conference (HPEC) (Waltham, MA: IEEE), 1–8. doi: 10.1109/HPEC55821.2022.99
26325

Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar, A., Rajamoni, S., et al.
(2020). Ibm federated learning: an enterprise framework white paper v0.1. ArXiv.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. (2017).
“Communication-efficient learning of deep networks from decentralized data,” in
Artificial intelligence and statistics (Proceedings of Machine Learning Research
(PMLR)), 1273–1282.

Morshed, T., Aziz, M. M. A., and Mohammed, N. (2020). “CPU and GPU
accelerated fully homomorphic encryption,” in 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST) (San Jose, CA: IEEE), 142–153.
doi: 10.1109/HOST45689.2020.9300288

NVIDIA (2023). Nvidia doca software framework. Available at: https://developer.
nvidia.com/networking/doca (accessed January 13, 2023).

NVIDIA (2024). NVDIA Bluefield Networking Platform. Available at: https://www.
nvidia.com/en-us/networking/products/data-processing-unit/ (accessed January 13,
2023).

Özcan, A. A., Ayduman, C., Türkoğlu, E. R., and Savaş, E. (2023). Homomorphic
encryption on gpu. IEEE Access 11, 84168–84186. doi: 10.1109/ACCESS.2023.326
5583

Paillier, P. (1999). “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology – EUROCRYPT ’99, ed. J. Stern (Berlin, Heidelberg:
Springer Berlin Heidelberg), 223–238. doi: 10.1007/3-540-48910-X_16

Park, J., Han, D.-J., Choi, M., and Moon, J. (2021). Sageflow: robust federated
learning against both stragglers and adversaries. Adv. Neural Inf. Process. Syst. 34,
840–851. doi: 10.5555/3540261.3540326

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An imperative style, high-performance deep learning library. ArXiv.

Patel, D., and Choi, S. (2023). “Smartnic-powered multi-threaded proof of
work,” in 2023 Fifth International Conference on Blockchain Computing and
Applications (BCCA) (Kuwait: IEEE), 200–207. doi: 10.1109/BCCA58897.2023.103
38942

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://tensorflow.org
https://doi.org/10.1109/HPCA56546.2023.10070953
https://www.amd.com/en/products/specifications/server-processor.html
https://www.amd.com/en/products/specifications/server-processor.html
https://eprint.iacr.org/2022/915
https://doi.org/10.48550/arXiv.2104.0315
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/3369583.3392686
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.48550/arXiv.1910.02578
https://doi.org/10.1109/MM.2023.3260186
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.3390/fi13040094
https://doi.org/10.1049/icp.2022.0366
https://doi.org/10.1145/3637528.3671545
https://doi.org/10.1109/CVPR52688.2022.00978
https://doi.org/10.1145/3474366.3486923
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://doi.org/10.48550/arXiv.2109.00675
https://doi.org/10.1109/SVCC56964.2023.10165427
https://doi.org/10.1155/2023/7754765
https://doi.org/10.1109/HPEC55821.2022.9926325
https://doi.org/10.1109/HOST45689.2020.9300288
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://doi.org/10.1109/ACCESS.2023.3265583
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.5555/3540261.3540326
https://doi.org/10.1109/BCCA58897.2023.10338942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Choi et al. 10.3389/fcomp.2024.1465352

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný, J., et al. (2021).
Adaptive federated optimization. ArXiv.

Reddy, H. M., Sajimon, P. C., and Sankaran, S. (2022). “On the feasibility
of homomorphic encryption for internet of things,” in 2022 IEEE 8th
World Forum on Internet of Things (WF-IoT) (Yokohama: IEEE), 1–6.
doi: 10.1109/WF-IoT54382.2022.10152214

Sapio, A., Canini, M., Ho, C.-Y., Nelson, J., Kalnis, P., Kim, C., et al. (2021).
“Scaling distributedmachine learning with {In-Network} aggregation,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21) (USENIX
Association), 785–808.

Shibahara, N., Koibuchi, M., and Matsutani, H. (2023). Performance
improvement of federated learning server using smart NIC. ArXiv.
doi: 10.1109/CANDARW60564.2023.00035

Shitharth, S., Manoharan, H., Shankar, A., Alsowail, R. A., Pandiaraj, S.,
Edalatpanah, S. A., et al. (2023). Federated learning optimization: a computational
blockchain process with offloading analysis to enhance security. Egypt. Inf. J. 24:100406.
doi: 10.1016/j.eij.2023.100406

So, J., He, C., Yang, C.-S., Li, S., Yu, Q., Ali, E., et al. (2022). Lightsecagg: a
lightweight and versatile design for secure aggregation in federated learning. Proc.
Mach. Learn. Syst. 4, 694–720. doi: 10.48550/arXiv.2109.14236

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R., et al. (2019).
“A hybrid approach to privacy-preserving federated learning,” in Proceedings of the
12th ACM workshop on artificial intelligence and security (New York, NY: ACM), 1–11.
doi: 10.1145/3338501.3357370

Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H., et al. (2018). Beyond
inferring class representatives: user-level privacy leakage from federated learning. arXiv
[Preprint]. arXiv:1812.00535. doi: 10.48550/arXiv.1812.00535

Yoosuf, M. S., Muralidharan, C., Shitharth, S., Alghamdi, M., Maray, M., and Rabie,
O. B. J. (2022). Fogdedupe: a fog-centric deduplication approach using multi-key
homomorphic encryption technique. J. Sens. 2022, 1–16. doi: 10.1155/2022/6759875

Zang, S., Fei, J., Ren, X., Wang, Y., Cao, Z., Wu, J., et al. (2022). “A smartnic-based
secure aggregation scheme for federated learning,” in The 3rd International Conference
on Computer Engineering and Intelligent Control (CEUR-WS), 81–89.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y., et al. (2020). “{BatchCrypt}:
efficient homomorphic encryption for {Cross-Silo} federated learning,” in 2020
USENIX annual technical conference (USENIX ATC 20) (IEEE), 493–506.

Zhu, L., Liu, Z., and Han, S. (2019). “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems, Vol. 32, eds. H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (Berkely, CA: Curran Associates,
Inc), 14774–14784.

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1465352
https://doi.org/10.1109/WF-IoT54382.2022.10152214
https://doi.org/10.1109/CANDARW60564.2023.00035
https://doi.org/10.1016/j.eij.2023.100406
https://doi.org/10.48550/arXiv.2109.14236
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.48550/arXiv.1812.00535
https://doi.org/10.1155/2022/6759875
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	FedNIC: enhancing privacy-preserving federated learning via homomorphic encryption offload on SmartNIC
	1 Introduction
	2 Background
	2.1 Federated learning
	2.2 Homomorphic encryption
	2.3 SmartNICs

	3 FedNIC overview
	3.1 FedNIC design overview
	3.1.1 Adversary definition with threat model
	3.1.2 Client placement
	3.1.3 Workflow

	4 Evaluation
	4.1 Evaluation methodology
	4.1.1 Choice of federated learning framework
	4.1.2 Choice of HE libraries
	4.1.3 Dataset and model

	4.2 Implementation
	4.3 Testbed setup
	4.4 Evaluation results
	4.4.1 Comparison of different HE libraries
	4.4.2 Communication time latency
	4.4.3 Training time
	4.4.4 Aggregation time
	4.4.5 Total workflow time

	5 Related studies
	5.1 Privacy-preserving methods
	5.2 Homomorphic-based FL solutions
	5.3 ML acceleration with programmable network devices
	5.4 Methods for efficiency improvement

	6 Discussion and future studies
	6.1 Future studies
	6.1.1 Utilizing hardware crypto accelerators
	6.1.2 Data plane-assisted federated machine learning
	6.1.3 Selective encryption

	6.2 Discussion
	6.2.1 Industry standards and shortcomings
	6.2.2 Cost analysis

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

