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A new mathematical model to
improve encryption process
based on Split-Radix Fast Fourier
Transform algorithm

Abdulle Hassan Mohamud*

Department of Computer Science, Simad University, Mogadishu, Somalia

This paper introduces a new encryption method aimed at improving the

cryptography process through the use of splitting radix Fourier Transform

technique called Split-Radix Fast Fourier Transforms (SRFFT). The proposed

method is based on splitting the FFT radix-2 and radix-4 algorithms to achieve

improved information assurance by SRFFT two phases. The first phase applies

direct computation of SRFFT algorithm on input plaintext to produce a ciphertext

and the second phase applies the reversing SRFFT algorithm to decipher.

Several types of cryptoanalysis attacks such as brute-forcing, autocorrelation

and dictionary attacks are comparatively evaluated and the end result of SRFFT

evaluation indicates that SRFFT is preferable in many practical encryption

applications since SRFFT complexity increases with the range of split-radix

computations thus eliminating the potential chances of cryptanalysis attacks.
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1 Introduction

In a time where preserving the interests in end-to-end encrypted communications

via secure channels is vital, the cryptography proves as a stimulating foundation that

upholds the purity of confidentiality that serves as the conduit through which information

can be shielded from the prying eyes of unauthorized intruders (Manikandaprabhu and

Samreetha, 2024).

Since secure communication channels have become pervasive in everyday arena with

the increased intensity and sophistication of security-related attacks on the other side,

there is apparently an imminent need for individuals and as well as organizations alike

to embrace bridging that gap for achieving a comprehensive information security strategy

backed up by use of specialized hardware and software and trained personnel (Shi et al.,

2023).

Futher, in the age of ubiquitous digital information, ensuring data security turns out

to be a pressing concern due to ithe available innovative mehods that can add farther

fortifications to data security through hybridization techniques of encryption, involving

the Length-Based Rewriting Systems and Advanced Encryption Standard (AES) and RSA,

with the integration of kernel-based key storage (Srivastava and Kuma, 2023; Hughes and

Tannenbaum, 2002).

To furnish this gap, numerous cryptography algorithms such as, covert channels,

anonymity, and watermarking techniques projected on hidden and secret communication

algorithms have been studied. Out of all these algorithms, due to reasons of popularities

and versatilities, digital signal/image processing methods have been heavily applied
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by researchers for the purpose of secret communication and

information assurance development during recent decades (Tan,

2008).

In digital image methods, Fourier transforms generally used

to introduce the discrete domains of frequency representation

for absolutely summable sequences with other transforms of

generalized frequency-domain representation such as z-transforms.

For arbitrary sequences, these transfer several properties to further

improve the level of security of the hidden information (Proakis

and Manolakis, 2008).

2 Related works

Due to pervasive need for data security and confidentiality,

cryptosystem methods have emerged as popular encryption

standards during recent decades andmany researchers have worked

in this filed to unveil number of such algorithms (Proakis and

Manolakis, 2008; Diniz et al., 2010) proposed the most primitive

and powerful method in this category and pioneered an approach

that substantially reduces the amount of computations involved

in the Discrete Fourier Transform (DFT) algorithms. This led to

the explosion of other security applications under DFT and other

development of security-efficient algorithms collectively known as

Fast Fourier Transform (FFT) algorithms. The journey later led by

Duhamel and disclosed application of FFT radix during 1986 and

had been followed and redefined by several researchers during last

two decades giving rise to several interesting encryption techniques

(Hatem Majeed, 2021; Al-din Abed and Noaman, 2019).

Mishra et al. in 2012 developed a cryptosystem using the

Fibonacci-Lucas Transformation (Kaur and Kumar, 2020) in which

recursive sequence technique was applied. A paper on geometric

series for encryption/decryption was proposed by Hatem Majeed

(2021). Mathematical encryption model based on Taylor and

McLaurin series was outlined as a new proposed methods by Al-

din Abed and Noaman (2019), Noaman et al. (2020), and Gupta

et al. (2020). Hughes made a study on Length-Based Attacks for

Certain Group Based Encryption Rewriting Systems in which a

probabilistic attack on public key cryptosystems that is based on

the word/conjugacy problems (Hughes and Tannenbaum, 2002).

In all such above schemes, Other encryption studies on properties

of word problems while the conjugacy problem has no known

polynomial solution was done by Wang et al. (2019), Hou et al.

(2020), Abdalla et al. (2018), Belazi et al. (2018), Li et al. (2020), Wu

et al. (2023), Ye et al. (2018), Özkaynak (2018), Song et al. (2021),

Damrudi and Ithnin (2013), Hai et al. (2018), Zhang et al. (2021),

and Kamara et al. (2012).

To achieve smarter encryption, extensive investigation was

conducted on image processing encryption by Mishra et al. (2012),

Kaur and Kumar (2020), Sher and Ahmad (2019), Ghafari (2024),

Iqbal (2024), Li et al. (2017), and Gao et al. (2022) either on

Fibonacci-Lucas Transformation techniques or non-dominated

sorting genetic algorithm-based chaotic maps in order to review the

comprehensive Encryption Techniques on computational Methods

by Chaos based efficient selective image encryption properties by

Gupta et al. (2020), Mishra et al. (2012), Kaur and Kumar (2020),

Sher and Ahmad (2019), Ghafari (2024), Li et al. (2020), Wu et al.

(2023), Ye et al. (2018), Özkaynak (2018), Iqbal (2024), and Lauter

et al. (2011).

Since it is essential to ensure data security whether on transit

or rest, the safety of the transferred and shared data remains

predominantly in demand in today’s comamercial worlds. Hence,

some cryptography approaches employ different mathematical

structural operations in substituting, replacing or permuting the

input plaintext to achieve security mechanisms (Noaman et al.,

2020; Gupta et al., 2020; Mishra et al., 2012; Kaur and Kumar, 2020;

Sher and Ahmad, 2019; Wang et al., 2019; Hou et al., 2020; Belazi

et al., 2018; Ghafari, 2024; Li et al., 2020; Wu et al., 2023; Ye et al.,

2018; Özkaynak, 2018; Song et al., 2021; Oleksandr et al., 2022;

Kamara et al., 2012).

In essence, encryption schemes employ security algorithms to

deal with computer-related security incidents on assets that are

subject to a variety of threats with varying time and space for

which individuals and institutions have taken various measures to

protect them, many of these security algorithms and applications

were developed only to cover the trivial management aspects and

other architectures of security mechanisms that inevitably proves

core to prevent all sorts of vulnerabilities against the future chosen-

plaintext and the chosen-ciphertext attacks. So, in a nutshell,

single/dual key sensitivity is the bottom-line security feature while

developing any cryptography algorithms (Stallings, 2018; Chillotti

et al., 2019; Cash et al., 2015; Andreeva et al., 2024; Sakzad et al.,

2018; Chen et al., 2021; Fan et al., 2022).

3 Properties of the Fast Fourier
Transform

This section sketches out the theoretical background of FFT and

their holistic contextual parameters as cryptography development

process together with Split-Radix FFT algorithm.

Part A introduces the fundamental concepts of Fourier

Transform properties geared toward enctyption process starting

out with change variables of z-transform properties. Part B

describes DFT Model. Part C discusses the configuration of FFT

algorithm and finally part D presents the Proposed SRFFT Model.

3.1 Z-transforms parameters

The general z transform of a sequence x(n) is defined as

X (z) = Z{x (n)} =

∞
∑

k=−∞

x (n) z−n

Where z is a complex variable whose function X(z) is only

defined for the regions of the complex plane in which the

summation on the right converges. Likewise, any discrete-time

signal x(n) can become expressible as

x (n) =

∞
∑

k=−∞

x(k)δ(n− k) (1)
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Whose output function can be again defined as:

y (n) =

∞
∑

k=−∞

x
(

k
)

h
(

n− k
)

(2)

Provided with ordinary unit step of (n) =

{

1, n ≥ 0

0, n < 0
, the unit

step can be expressed as:

u (n) =

∞
∑

k=0

δ(n− k)

According to Hughes and Tannenbaum and Proakis and

Manolakis (Hughes and Tannenbaum, 2002; Proakis and

Manolakis, 2008), the change variable l = n − k can be embedded

into Equation 1 and rewritten as:

y (n) =

∞
∑

k=−∞

x
(

n− l
)

h(l)

y(n) can now be interpreted as the result of the convolution

of the excitation x(n) and the system impulse response h(n).

The entire convolution operation shorthand notation, as given in

Equations 1, 2 can be redefined as:

y(n) = x(n) ∗h(n) = h(n) ∗x(n)

Suppose now that the output y(n) of the system with impulse

response h(n) becomes the new excitation for the system with

impulse response h (́n). In this case, the response outputs:

y(n) =
∞
∑

k=−∞

x(k)h(n− k)

ý(n) =
∞
∑

k=−∞

y(l)h́(n− l)

Obviously, substituting the impulse response output with the

excitation, the following equation is generated.

ý(n) =
∞
∑

k=−∞





∞
∑

k=−∞

x(k)h(l− k)



 h́(n− l)

=

∞
∑

k=−∞

x(k)





∞
∑

k=−∞

h(l− k)h́(n− l)





In the end, by performing the change variable again of l =

n − r, the above equation becomes the new convolution law of the

combined two subsystems.

ý(n) =
∞
∑

k=−∞

x(n− k)(h(k)∗h́(k))

3.2 The fourier transforms

Based on Tan (2008), Diniz et al. (2010), and Kamara et al.

(2012), different fields apply different Fourier transform laws to

different paradigms. As was the case with z-transform, the Fourier

transform X(ejω) of a sequence x(n) equals to its z-transform X(z)

at z = ejω. Therefore, most properties of the Fourier transforms

derive their applications from those of the z-transform with simple

substitution of the z by ẽjω.

DFT corresponds to samples of the general Fourier transforms,

its properties are closely related to those of the Fourier transform.

However, one major difference being that N samples from the

Fourier transform corresponding to the periodic repetition of the

signal x(n) with period N can be reversibly recovered as shown by

the following DFT and IDFT equations, respectively.

X(k) =
∞
∑

k=−∞

x(n)Wkn
N , for 0 ≤ k ≤ N − 1 (3)

x(n) =
1

N

∞
∑

k=−∞

X(k)W−kn
N , for 0 ≤ n ≤ N − 1 (4)

From Equations 3, 4 observations, it becomes apparent that

N2 complex multiplications whose complexities grow with the

square of the signal length might unavoidably be needed. This

severely limits the application of DFT in practical sense particularly

for lengthy computations. Fortunately, Cooley and Tukey (1965)

proposed an efficient algorithm to compute the DFT, which

requires lesser number of complex multiplications on the order

of Nlog2N called Fast Fourier Transform (FFT) that splits the N

into N = 2i summation of two mutual parts, one part handling

the even-indexed x(n) and the other dealing with the odd-

indexed x (n) part. Based on Proakis and Manolakis (Proakis and

Manolakis, 2008), the summation on the even/odd combination,

each summation represents size N/2 of the distinct FFT size N and

can be computed through the addition of two FFTs of size N/2 as

elucidated by the following summation:

X(k) =
N−1
∑

n=0

x(n)Wkn
N

=

(N/2)−1
∑

k=0

x(2n)W2nk
N +

(N/2)−1
∑

k=0

x (2n+ 1)W(2n+1)k
N

Therefore, the overall FFT computation complexity of the DFT

requires 2(N2 )
2
+ N complex multiplications only. Since FFT’s

N
2
2
+ N is smaller thanN2 for N> 2 the FFT provides a decrease in

complexity when compared with the usual DFT computations and

preferable in practical applications.

3.3 Proposed Split Radix FFT algorithm

According to Diniz et al., Hatem Majeed, and Al-din Abed and

Noaman (Diniz et al., 2010; Hatem Majeed, 2021; Al-din Abed

and Noaman, 2019), the Split Radix FFT (SRFFT) algorithm finds

its way from the inspection of FFT with radix-2 decimation-in-

frequency of accepting even-numbered data points of the FFT and
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can be computed independently of the odd-numbered data points.

The SRFFT algorithm extends use of FFT radix-2 and FFT radix-

4 by exploiting the idea of splitting them into a decomposition

that allows to interleave in the same FFT radix-length algorithm.

In radix-4 FFT, sampleN = 22i is used to acheive more space than

radix-2 algorithms, radix-4 FFT algorithms can save us additional

time economy in the required number of complex computations.

The derivation of the radix-4 length-N sequence can also be divided

into four sequences of length N/4 to be a parallel with those of the

radix-2 algorithms.

The radix-2, radix-4 merged as split-radix for even

and odd-numbered points of sample N can be given by

Equations 5–7, respectively:

X
(

k
)

=

N−1
∑

n=0

x (n)Wkn
N = X

(

2k
)

+ X
(

4k+ 1
)

(5)

X
(

2k
)

=

N
2 −1
∑

n=0

[

x (n) + x+

(

n+
N

2

)]

Wnk
N
2

(6)

for k = 0, 1, . . .
N

2
− 1

The odd-numbered samples X
(

2k+ 1
)

of the DFT requires the

pre-calculations of phase factors of Wn
N on radix-4 ofN point of the

DFT is given by:

X
(

4k+ 1
)

=

N
4 −1
∑

n=0

{

[

x (n) − x

(

n+
N

2

)]

−j

[

x

(

n+ x+
N

2

)

− x

(

n+
3N

4

)]

}

Wn
NW

kn
N/4 (7)

Based on Oleksandr et al. and Hsue (Dobraunig et al., 2020;

Oleksandr et al., 2022; Hsue, 2020), The technology of cryptography

obtains signal spectrum components in detail, therefore, it has

been theoretically and experimentally proven that the FFT provides

sufficient guarantee for most practical applications since it is

possible to reconstruct real signals of any data transmitted from the

cloud or the other way round.

4 Data ciphering

Cipher is a method of securing data so that only a legitimate

sender can cipher message through the encryption algorithm.

A legitimate person, can on the other hand, decipher the

message using the provided key, while illegal person, can’t

(Manikandaprabhu and Samreetha, 2024; Shi et al., 2023; Srivastava

and Kuma, 2023; Tan, 2008). Most techniques to accomplish

ciphering and deciphering fall into symmetrical and asymmetrical

key cipher groupings. In the symmetrical key cipher system, one

key is used for both to cipher and decipher the process. In

asymmetrical key, two keys called public and private kays are

used for in such a way that the first key is used for ciphering

and the second key which is mathematically correlated is used for

deciphering (Hughes and Tannenbaum, 2002; Diniz et al., 2010; Al-

din Abed and Noaman, 2019). The proposed method utilizes the

block cipher since SRFFT algorithm handle N block data size.

4.1 Calculation of SRFFT algorithm

SRFFT algorithm can be calculated via forward and backward

computations to yield encryption/decryption process with

arbitrarily N block plaintext. In some cases, SRFFT is derived

repeatedly applying integration by parts or conveniently by use of

algebraic systems to calculate encryption/decryption through the

summations of the following Equation 8.

X
(

k
)

=

N−1
∑

n=0

x (n)Wkn
N , 0 ≤ k ≤ N − 1 (8)

The summation can be expanded into matrix form with Polar

coordination as follows:











X (0)

X (1)

X (2)

X (3)











=











W0
4 W0

4 W0
4 W0

4

W0
4 W1

4 W2
4 W3

4

W0
4 W2

4 W4
4 W6

4

W0
4 W3

4 W6
4 W9

4











=















x (0)

x (1)

x (2)

x (3)















Substituting the Polar coordination periodicity directly into

Euler theory:











X (0)

X (1)

X (2)

X (3)











=











1 1 1 1

1 − j − 1 j

1 − 1 1 − 1

1 j − 1 − j











=















x (0)

x (1)

x (2)

x (3)















Proposed SRFF algorithm can exhibit efficient speed of

encryption/decryption process on ordinary computer time and

space resources and can better protect against unauthorized access

to signals transferred to such computer systems (Oleksandr et al.,

2022; Gao et al., 2022).

5 SRFFT algorithm description

5.1 Key generation phase

1. Choose first number N as a first key whose size is as large as the

plaintext file.

2. Choose second numberM as a second key whose size is as large

as the ciphertext.

3. Send key M only without the SRFFT equation to the

legitimate recipients.

5.2 Encryption phase

1. Generate first key N f rom the plaintext size.

2. Check the ASCII size of the plain text P (n) = N for 0 ≤ n ≤

N − 1.

3. Apply encryption equation of SRFFT algorithm.

C
(

k
)

=

(

N−1
∑

n=0

P (n)Wkn
N

)

mod 128
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4. Compute kth cipher of the plaintext.

C
(

k
)

=

(

N−1
∑

n=0

P (n) ejk = P (0)e

jk

+ P (1) ejk

+ . . . + P(N − 1)ejk
)

mod 128

5. Substitute the real and imaginary part of the complex quantities

into equivalent ASCII code of cipher function C(k).

6. Repeat steps 1–5 until the end of the plain text message.

5.3 Decryption phase

1. Let the second key=M.

2. Check ASCII size of the cipher text.

3. Check ASCII code of the cipher text C
(

k
)

= M, for 0 ≤ k ≤

M − 1.

4. Apply decryption of SRFFT of the inverse equation formula.

P (n) =

(

1

M

M−1
∑

k=0

C
(

k
)

W−kn
M

)

mod 128

5. Compute plaintext of the nth ciphertext.

P (n) =

(

1

M

M−1
∑

n=0

C
(

k
)

e−jk = C (0)e−jk

+C (1) e−jk + C (2) e−jk + . . . + C(N − 1)e−jk

)

mod 128

6. Substitute the real and imaginary parts of the complex quantities

into equivalentt ASCII code of plain function P(n).

7. Repeat steps 1–5 until the end of the plain text message.

6 Examples

6.1 Generating keys

1. Choose first number N as a first key whose size is as large as the

plaintext file.

2. Choose second numberM as a second key whose size is as large

as the ciphertext.

3. Send key M only without the SRFFT equation to

the legitimate recipients.

6.2 Encryption phase

1. Let plaintext be “Information Security.”

2. Check ASCII values of all plaintext characters from I to y as: 73

110 102 111 114 109 97 116 105 1111̃10 28 115 101 99 117 114

105 116 121 and check the key N = 20.

3. Compute the cipher using SRFFT equation starting from the first

plain in the message.

4. Let n = 0 for 0 ≤ n ≤ N − 1 and

C (0) =

(

19
∑

n=0

P (n) ej0

)

mod 128

=
(

P(0) ej0 + P (1) ej0 + P (2) ej0+

. . . + P (19) e−j0) mod 128

= P (0) + P (1) + P (2) + . . . + P (19)

= (73+ 110+ 102+ . . . + 121)mod 128

= 26

5. Compute ASCII of cipher c(0)=”SUB.”

6. Repeating steps 1-5 until end result of ciphertext

message becomes:

26, 58.2 - 15.2i, 85.2 + 66.4i,−7.2 - 51.1i,−50.3 + 88.4i,−3.0

- 43.i,−30.4 + 79.9i,−117.3 - 94.4i, +35.8 + 61.2i,−115.6 - 47.2i,

+ 16.0,−115.6 + 47.2i, +35.8 - 61.2i,−117.3 + 94.4i,−30.4 -

79.9i,−3.0 + 43.i,−50.3 - 88.4i,−7.2 + 51.1i,−85.1 - 66.4i, + 58.2

+ 15.2i.

6.3 Decryption phase

1. Let ciphertext be:

“SUB : U BEL 2 ETX RS u # s DLE t # u RS ETX 2 BEL U :” and

set the keyM = 20.

2. Set the the real and imaginary parts be equivalent numerically to

the ciphertext strings from ASCII as:

26, 58.2 - 15.2i, 85.2 + 66.4i,−7.2 - 51.1i,−50.3 + 88.4i,−3.0 -

43.i,−30.4 + 79.9i,−117.3 - 94.4i, +35.8 + 61.2i,−115.6 - 47.2i,

+ 16.0,−115.6 + 47.2i, +35.8 - 61.2i,−117.3 + 94.4i,−30.4 -

79.9i,−3.0 + 43.i,−50.3 - 88.4i,−7.2 + 51.1i,−85.1 - 66.4i, +

58.2+ 15.2i.

3. Compute the first cipher using inverse SRFFT equation starting

from the first cipher in the message.

4. Let k = 0 for 0 ≤ k ≤ N − 1 and

P (0) =

(

1

M

19
∑

n=0

C
(

k
)

e−j0

)

mod 128

=
(

C (0) e−j0 + C (1) e−j0 + C (2) e−j0+

. . . + C (19) e−j0)mod 128

= C (0) + C (1) + C (2) + . . . + C (19)

= (26+ 58.2− 15.2i+ 85.2+ 66.4i, + . . . + 58.2

+ 15.2i)mod 128

= 73

5. Compute ASCII of plain p(0)=”i.”

6. Repeating steps 1-5 until end result of plaintext message:

“information security.”

7 Simulation results and performance
evaluation

With regards to the standard cryptography technologies, the

proposed method was simulated against majority cryptoanalysis
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FIGURE 1

Frequency attacks.

attack techniques. Figure 1 aims to display simulated test possibility

of breaking a SRFFT cipher code via the attacks of frequency of

characters in the encrypted text. Through traces ran on comparative

analysis with SRFFT encrypted text, the standard character

frequency of the English language characters proves immaculate.

Since polyalphabetic cipher worlds, the degree of improvement

is measured on the size of the possible fixed keys, this

mothod demonstrates that key to be used varies dynamically

with input plain/cipher data sizes. Further, to appreciate both

confidentiality and authentication under SRFFT, one can encrypt

the plain message with N sized-key as private key which

provides the complex quantities of intermediate real and imaginary

numbers result as hashed digital signature output, and then use

recipient’s M sized-key to decrypt the cipher as public key for

confidentiality purposes.

The design objective of SRFFT method, in fact, depends on

the main SRFFT’s permutation with sinusoidal waves as preferable

over other cipher schemes. Figure 2 shows numerous traces of

runs on SRFFT algorithm for encryption simulation showcasts, and

as results, the plaintext along with variant key lengths produces

remarkable cipher outputs of SRFFT computations with varied

rounds of radix-lengths. In this way, SRFFT method becomes

proven secure provided that the embedded complex hash functions

of FFT algorithm bring with themselves some higher level of

reasonable cryptographic strengths.

Therefore, for Radix-2 complexity, the total number of

multiplication and addition achieved becomes
(

N
2

)

log2 N and

Nlog2 N, respectively. While for Radix-4′s total complexity, in

terms of number of multiplication and addition achieved becomes
(

N
4

)

log4 N and Nlog4 N while finally, the complexity of Split-Radix

FFT total number of multiplication and addition achieved becomes
(

N
2

)

log2 N−N+1 and (3N-4)log2 N+4, respectively (Proakis and

Manolakis, 2008; Diniz et al., 2010; Hatem Majeed, 2021; Al-din

Abed and Noaman, 2019).

Likewise, numerious decryption traces run is displayed by

Figure 3 and as results, the output plain of the decryption traces

proves remarkable decryption.

FIGURE 2

SRFFT algorithm encryption traces.

FIGURE 3

SRFFT algotithm decryption traces.

TABLE 1 Number of main real multiplications and additions for N point

FFT algorithm.

Real multiplications Real additions

N Radix Radix Split Radix Radix Split

2 4 Radix 2 4 Radix

16 32 8 17 64 32 92

32 88 - 49 160 - 464

64 256 48 129 384 192 1,132

128 448 - 321 896 - 2,664

256 1,024 256 769 2,048 1,024 5,352

512 2,304 - 1,793 4,608 - 13,792

1,024 5,120 2,560 4,097 10,240 4,096 30,680

While for Radix-4′s total complexity, in terms of number

of multiplication and addition achieved becomes
(

N
4

)

log4 N

and Nlog4 N while finally, the complexity of Split-Radix FFT

total number of multiplication and addition achieved becomes
(

N
2

)

log2 N − N + 1 and (3N-4)log2 N + 4, respectively (Proakis

andManolakis, 2008; Diniz et al., 2010; HatemMajeed, 2021; Al-din

Abed and Noaman, 2019).

Table 1 presents main real part multiplications and additions

output for N − Point FFT algorithms with complex valued

data using Radix-2, Radix-4, and Split-Radix FFT comparisons.

It is worth noting that of all algorithms, the Split-Radix FFT

proves safer and smarter in producing the lowest numbers
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of multiplications/additions and preferable in many practical

applications over the literature (Oleksandr et al., 2022; Gao et al.,

2022).

8 Conclusion

This study introduces the splitting technique of two radix-

methods through swapping mechanism for the sake of the

enhancement of cryptography process. Based on SRFFT algorithm,

as a hybridized method whose properties are drawn from Radix-

2 and Radix-4FFT, the performance investigation achieves reliable

encryption process with security traits of accuracy and efficiency

as well as the practicality of the proposed algorithms are explored

through analysis of comparative evaluations with other methods on

engineering applications. Additionally, the following conclusions

are summarized: (1) To demonstrate the use of key dynamically

variant with input plain/cipher data sizes. (2) To appreciate SRFFT

one can encrypt the plain message with M keys as a private key,

which contains the complex quantities of intermediate real and

imaginary numbers result hashed as digital signature output which

the recipient can use sender’sM key to decrypt the cipher as public

key for confidentiality purposes.
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