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Low-latency inference for machine learning models is increasingly becoming a

necessary requirement, as these models are used in mission-critical applications

such as autonomous driving, military defense (e.g., target recognition), and

network tra�c analysis. A widely studied and used technique to overcome this

challenge is to o	oad some or all parts of the inference tasks onto specialized

hardware such as graphic processing units. More recently, o	oading machine

learning inference onto programmable network devices, such as programmable

network interface cards or a programmable switch, is gaining interest from

both industry and academia, especially due to the latency reduction and

computational benefits of performing inference directly on the data plane where

the network packets are processed. Yet, current approaches are relatively limited

in scope, and there is a need to develop more general approaches for mapping

o	oading machine learning models onto programmable network devices. To

fulfill such a need, this work introduces a novel framework, called ML-NIC,

for deploying trained machine learning models onto programmable network

devices’ data planes. ML-NIC deploys models directly into the computational

cores of the devices to e�ciently leverage the inherent parallelism capabilities

of network devices, thus providing huge latency and throughput gains. Our

experiments show that ML-NIC reduced inference latency by at least 6× on

average and in the 99th percentile and increased throughput by at least 16x with

little to no degradation in model e�ectiveness compared to the existing CPU

solutions. In addition, ML-NIC can provide tighter guaranteed latency bounds

in the presence of other network tra�c with shorter tail latencies. Furthermore,

ML-NIC reduces CPU and host server RAM utilization by 6.65% and 320.80 MB.

Finally, ML-NIC can handle machine learning models that are 2.25× larger than

the current state-of-the-art network device o	oading approaches.
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1 Introduction

Machine learning (ML) permeates a vast amount of everyday life, from personalized

recommendations to stock market analysis and novel drug synthesis. While the machine

learning models created to solve problems in these various fields are proven to be highly

effective, these models often need large amount of time to make predictions (also referred

to as model inference) on data instances. Often times, such limitation becomes a huge

limiting factor for deploying ML models for latency critical applications. For example,

applications such as high-frequency trading, military target recognition, pilots traveling

at aircraft speeds (i.e., at least 621 mph) need to perform ML inference with the tight
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latency budget of at most 50ms.Making things worse, it is often not

computationally and physically feasible to host large, effective ML

models on directly on the devices like military aircraft. Thus, the

ML model computations are often offloaded onto ground stations

or edge devices, where data transmission can significantly add to

the latency to execute model inference.

While many different types of machine learning accelerators

have been developed, such as Graphical Processing Units

(GPU) (Choquette et al., 2018), Field Programmable Gate Arrays

(FPGA) (Fowers et al., 2018; He et al., 2018; Tong et al., 2017), and

specialized application-specific integrated circuits (ASIC) (Chen

et al., 2014; Jouppi et al., 2017), their efficiency is lowered by the

data transfer time over the PCIe bus from the host system’s network

interface card (NIC). To overcome this challenge, we investigated

methods to perform ML inference at the edge of the network

to reduce the need and the overhead of transferring data from

the edge to these accelerators. To achieve this, we note that the

emergence of programmable data planes makes network devices

(i.e., programmable switches and NICs) potential candidates for

accelerating ML inference, especially given that programmable

network devices have already been shown to be significantly power

efficient while also providing high throughput and low latency in

a variety of in-network computing tasks such as caching (Jin et al.,

2017), consensus (Dang et al., 2020), and networkmonitoring (Kim

et al., 2015). However, leveraging programmable data planes for

machine learning inference still is an ongoing area of research with

room for improvement.

Much of the prior works in this area has shown that network

devices with programmable data planes, primarily programmable

switches, demonstrate superior latency performance with minor

degradation in model effectiveness (Zhang et al., 2023). While the

line rate performance of programmable switches is beneficial for

model inference, their limitation to match+action logic, memory

size, cost, and the placement in the network restrict the feasibility

and accuracy of models that can be mapped onto them. For

example, since many modern machine learning algorithms rely

on operations such as multiplication during inference, finite-sized

match+action tables cannot support every possible combination of

multiplied values. Even though prior methods have found ways

around this, it was not without loss in model effectiveness. And

as machine learning models continue to grow, additional losses in

model effectiveness seem likely. In addition, prior methods focused

on general models that may not be used in the real-world for

low-latency applications.

To compensate for this limitation, we propose the Smart

Network Interface Cards (SmartNICs) as a viable alternative.

SmartNICs possess additional computational resources and

several packet processing accelerators that can be adapted to

mimic essential machine learning inference operations, such

as multiplication and logarithm functions, more accurately.

Furthermore, SmartNICs are much more cost and power efficient,

are more easier to deploy and test.

Therefore, in this paper, we present ML-NIC, a framework

for compiling and deploying trained machine learning models

onto SmartNICs by providing intelligent model mapping methods.

This current work mainly focuses on mapping tree-based models

onto SmartNICs due to it’s wide usage of low-latency applications,

but we have proposals for future work with proposed methods

to support inference for other types machine learning models as

well. Compared to many prior works that implement machine

learning algorithms onto programmable network devices, ML-

NIC implementation uses more device parallelism in the inference

process. Finally, our Python implementation of ML-NIC is made

publicly available upon publication of the manuscript.

Our contributions include:

1. We present an algorithm to extract logic learned by a generic

decision tree to facilitate parallelized feature analysis during

inference.

2. We present a method to map and compile trained decision

trees onto a SmartNIC in a manner that leverages its parallelism

capabilities.

3. We demonstrate our framework’s potential for accelerating the

inference of decision trees for different tasks compared to

conventional CPU and current state-of-the-art SmartNICmodel

deployment strategies.

4. We created an open-source project that contains all of ML-NIC’s

implementation and experimentation.1

The rest of this paper is organized as follows. Section 2

presents some background information on SmartNICs relevant

to our work. Section 3 explains our approach toward deploying

machine learning models onto a SmartNIC. Sections 4, 5, and 6

describe our experimental setup and discuss our results. Section 7

presents an overview of recent work that utilizes programmable

data planes to accelerate the inference time for various machine

learning algorithms on different problems. Section 8 points out

future directions, and Section 9 ends with concluding remarks.

2 Background

In this section, we provide the background for ML-NIC and

some underlying motivations.

2.1 SmartNIC

Smart Network Interface Cards (SmartNICs) possess additional

computational resources and memory storage compared to

traditional network interface cards. These resources enable

SmartNICs to perform deep packet inspection, network function

virtualization, and zero-trust security (Netronome Systems, 2024).

As a result, offloading such operations to the SmartNIC frees a host

system’s CPU from conducting them. Compared to programmable

switches, SmartNICs have more computational resources that

can be leveraged. This motivates our choice to use SmartNICs

for machine learning inference, since this process can be quite

computationally intensive. For the rest of the section, we will

focus on one particular type of SmartNIC: ASIC-Based Netronome

SmartNICs supporting the NFP4000 architecture.

1 The project can be found on https://github.com/The-Cloud-Lab/ML-

NIC.
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FIGURE 1

In this figure, we present a high-level overview of the NFP4000 architecture, focusing on the components most pertinent to ML-NIC.

2.1.1 ASIC-based Netronome SmartNIC
ASIC-based SmartNIC represents a type of SmartNIC where

the ASIC is custom built to support programmability using a

set of custom languages. One notable example of an ASIC-

based SmartNIC is a Netromome SmartNIC that can be

programmed using langauged called P4 and Micro-C. This

project utilizes a specific subset of the Netromome SmartNICs,

which support the NFP4000 architecture. To elaborate further,

Netronome SmartNICs support the NFP4000 architecture feature

48 packet processing cores and 60 programmable flow processing

cores (Corigine, 2020). In much of the literature and technical

documentation, the flow-processing cores are referred to as

microengines (ME), which we denote as purple squares in Figure 1.

Each microengine acts as an independent 32-bit processor with

its own code store and local memory to run different programs

in parallel with the other microengines. The microengines can be

programmed using a low-level language like Micro-C, an extended

subset of C89, or a high-level language like P4. A key difference

between Micro-C and P4 is that Micro-C provides the flexibility

to program each microengine differently, whereas P4 defaults to

loading the same program onto all microengines. However, both

languages lack floating-point number support. We provide a high-

level illustration of the NFP4000 architecture in Figure 1.

Each microengine supports 8 threads, where each thread runs

the same program and has its own block of memory/registers. The

following memory in a microengine is evenly partitioned among

the 8 threads in a microengine:

• 256, 32-bit General-Purpose Registers—used for general per-

packet computations.

• 256, 32-bit Transfer Registers—used for transferring data

between memory regions.

• 128, 32-bit Next-Neighbor Registers—used for

communicating between neighboring microengines in

the same island.

• 4kB of Local Memory—used for additional data storage as

needed.

• 120 Signal Registers—used to notify threads that a certain

hardware event has occurred.

The partitioning of memory among the 8 threads facilitates

fast context switching between them, so they can process different

packets efficiently (Siracusano et al., 2022).

The microengines are organized into islands. While these

islands can vary in number of microengines and specialized

functionality, standard islands, shown in Figure 1, contain 12

microengines with two regions of memory shared between all

the microengines in the island: Cluster Local Scratch (CLS) and

Cluster Target Memory (CTM). CLS, denoted in green in Figure 1,

commonly stores small forwarding tables shared between the

microengines (Wray, 2014). CTM, denoted in cyan in Figure 1,

holds packet headers and coordinates between the microengines

and other subsystems on the card (Wray, 2014). As CTM is larger

than CLS, more clock cycles are required to read/write to CTM.

Outside of the islands, the Netronome SmartNICs have

three additional memory units, as shown in Figure 1, shared

with all microengines: one Internal Memory Unit (IMEM) and

two External Memory Units (EMEM) (Langlet, 2019). IMEM is

used for storing packet payloads and medium-sized match-action

tables (Wray, 2014). EMEM is used to store larger match-action

tables and other flow statistics (Wray, 2014). As these threememory

units are the largest of those mentioned prior, with EMEM being

larger than IMEM, they require a greater number of clock cycles

to read/write to them. Microengines can access data in all these
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FIGURE 2

This figure shows the big picture of the ML-NIC architecture.

memory regions using the Command Push Pull (CPP) bus, denoted

in turquoise in Figure 1.

Based on our knowledge of data access times for the different

memory regions, hardware signals, and transfer registers, we design

ML-NIC to efficiently leverage these resources to ensure a high

degree of performance from a SmartNIC.

3 ML-NIC architecture

ML-NIC comprises three components: machine learningmodel

training, model mapping, and model deployment, as shown in

Figure 2. We explain the details of each component below.

3.1 Model training

In the machine learning model training component, we

consider a labeled dataset (X, y), where X ∈ R
mxn represents

our data matrix (m data points, n features) and y ∈ {1 . . . q}m

represents our class labels (q possible classes). We make no

assumptions on whether X consists of only continuous features,

only categorical features, or a mix. We assume the continuous

features are normalized within the range [0, 1].We do so to simplify

the range of numerical representation that the first iteration of

ML-NIC needs to account for. We find that this assumption is

reasonable, since data normalization is a common technique in

machine learning to prevent certain features from dominating over

other features due to differences in scaling. For the categorical

features, we assume that they are one-hot encoded (Liu, 2017) (i.e.,

a feature with three categories is expanded to three features with

values 0 or 1). This dataset is used to learn the parameters of a

particular machine learning model.

In this first iteration ofML-NIC, we choose to focus on decision

trees for three reasons. First, we cite the relative computational

simplicity of tree traversal compared to floating-point operations

in hardware without a Floating-Point Unit (FPU) like a SmartNIC

that was designed for fast computations at network line rates.

Second, in comparison to other classical supervised machine

learning models, such as Naive Bayes, k-nearest neighbor, and

support vector machine, we find that the decision tree is the more

suitable choice for offloading. With Naive Bayes, it is known that

the algorithm perform poorly when the features used for training

are not conditionally independent. However, in practice, decision

trees can perform well even if the features are correlated. For

k-nearest neighbor, we find that the required storage of every

training instance to be an obstacle for offloading onto network

devices, especially given the size of modern datasets. Even if only

a selection of the training set was used to make offloading feasible,

this could result in more significant performance degradation

in certain machine learning problems. With respect to support

vector machines for multiclass classification, the model may not be

optimal for offloading with a large number of features and number

of classes. For this explanation, we temporarily denote m to be the

number of features, q as the number of classes (greater than 2 for

multiclass classification), and z as the number of support vectors.

First, assume the support vectors for the support vector machine

can be stored and there exists suitable means of multiplication

and a kernel on an off-the-shelf programmable network device

that are at least as expensive as a comparison operation. Since off-

the-shelf programmable network device are optimized for match

+ action, we expect the device architecture to have an efficient

compare operation. Then, we see that the support vector machine

requires at least m× z × qmultiplications, whereas a decision tree

would require at mostm compare operations for a single inference.

Therefore, based on instruction count, the decision tree model

has a better chance of yielding inference latency reduction when

offloaded onto an off-the-shelf programmable network device.

Third, we note that tree-like machine learning models, such as

XGBoost (Chen and Guestrin, 2016), are commonly used to learn
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Require: S is a valid subset of the training dataset

D, R is a set of stopping criteria for the

algorithm, M is a valid impurity metric to locally

optimize, split_node is a valid function for a

splitting S at a node

1: function train_tree(S,R,split_node)

2: c = majority_label(S)

3: tree_node = Node(label = c)

4: if not_satisfied(R) then

5: ms = list()

6: splits = split_node(S)

7: for each split ∈ splits do

8: ms.append(M(split))

9: end for

10: best_split = splits[arg_optimal(ms,M)]

11: for each s ∈ best_split do

12: tree_node.insert_branch(train_tree(s,R,

split_node))

13: end for

14: end if

15: return tree_node

16: end function

Algorithm 1. Decision tree training algorithm.

tasks from structured tabular data over neural networks given faster

training time, potential performance gain, andmodel transparency.

We use the decision tree model to show that our framework

can be used in real-world applications and offloading a machine

learning model onto a SmartNIC can reduce model inference

latency significantly. While our focus is currently on decision tree

inference, we provide a discussion on how our framework can be

augmented to account for additional machine learning models in

Section 6.

To train a decision tree, we consider the high-level algorithm

outlined in Algorithm 1. Since finding the globally-optimal tree

structure for a learning task is computationally challenging, locally-

optimal heuristic algorithms are used such as ID3 (Quinlan, 1986),

C4.5 (Quinlan, 1986), and CART (Breiman et al., 1984). In practice,

metric M is commonly Information Gain in the case of ID3 and

C4.5 or Gini Impurity for CART. Formulations for thesemetrics are

provided in Equations 1, 2. In Equations 1, 2, we further define C as

the number of classes, P as the number of splits, Sc as the number

of examples in the training dataset subset with class label c, and Sp,c
as the number of examples in the pth split of the training dataset

subset with class label c.

Gini(S) =

C
∑

c=1

|Sc|

|S|

(

1−
|Sc|

|S|

)

(1)

Info(S) =

C
∑

c=1

(

−
|Sc|

|S|
log2

(

|Sc|

|S|

))

−

P
∑

p=1

|Sp|

|S|

C
∑

c=1

(

−
|Sp,c|

|Sp|
log2

(

|Sp,c|

|Sp|

))

(2)

3.2 Model mapping

Before discussing the technical details of decision tree mapping

onto a SmartNIC, we discuss our mapping approach at a high-level.

To run inference, we find the disjunctive normal form (Roth, 2016)

of a decision tree. In the disjunctive normal form, the logic for

assigning a class label to a data instance is expressed as a disjunction

of conjunctions [i.e., (condition 1 and condition 2 and ...) or

(condition 3 and condition 1 and ...) or ...]. Each conjunction in

the disjunction (i.e., condition 1 and condition 2 and ...) represents

a path from the root node to a leaf node in a decision tree. We

prefer the disjunctive norm form over the typical tree structure of a

decision tree for inference, since it makes executing inference in a

parallelized manner more convenient. To parallelize the inference

process from the disjunctive normal form, we take the conditions

from all the conjunctions that correspond to a particular feature,

noting which path in the decision tree the condition corresponds

to. To run inference on a data instance then, the conditions for each

feature can be evaluated in parallel, where the result of each feature

evaluation yields a set of paths in the decision tree that are possible

for the data instance to take. Then, by aggregating the all possible

paths and taking the intersection among them, a single path can be

found. By matching the path to its corresponding class label, the

decision tree inference process is complete.

To map a decision tree onto a SmartNIC, we take the output

of the machine learning model training process (i.e., a pickle file)

and proceed to generate an implementation of the SmartNIC data

plane. Currently, we support SmartNICs that are programmable

in Micro-C, primarily SoC-based Netronome SmartNICs. In the

current iteration of our framework, we consider a trained decision

tree classifierCwith l leaf nodes, where l is at most 256.Wemake no

additional assumptions on the number of splits per non-leaf node

or the training algorithm used. Based on the number of leaf nodes l

in model C and number of features n in X, there are three possible

scenarios for mapping C onto the SmartNIC:

• The model can fit on one island of the SmartNIC. Each island

is then programmed with its own set of feature computation,

result aggregation, and packet collection microengines (i.e.,

inference for model C is run on all the islands).

• The model can fit on the entire SmartNIC with one feature

assigned per feature microengine and one packet collection

microengine.

• The model can fit on the entire SmartNIC with multiple

features assigned per feature microengine and one packet

collection microengine.

After selecting one of the three above mapping schemes, the

next step is to extract the logic (i.e., find disjunctive normal form

and extract the conditions that match to a particular feature)

learned by model C. To do so, we iterate through all the n features

in X and perform a depth-first search through the decision tree.

We record the operation for those nodes that run a comparison

operation on our feature of interest and continue the depth-first

search until all the leaf nodes have been reached. Formally,

Algorithm 2 illustrates our logic extraction approach.
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Require: node points to valid node in decision tree,

ftre is feature seen by decision tree during

training, clt has enough space to store decision

tree logic for ftre

1: function get_logic(node,ftre,clt)

2: if is_leaf(node) then

3: clt.insert(node.prediction)

4: else

5: if node.ftre = ftre then

6: clt.insert(node.logic)

7: end if

8: for each child ∈ node.children do

9: clt.insert(get_logic(child,ftre,clt))

10: end for

11: end if

12: return clt

13: end function

Algorithm 2. Decision tree logic extraction algorithm.

We also assign the each of microengines on the SmartNIC

as one of three types: packet collection, feature computation,

and result aggregation. The packet collection microengine(s) are

programmed to signal the CTM packet engine that they are ready

to receive packets. Once a packet is received, the packet collection

microengine(s) will verify that packet is a model input packet,

extract the features from the packet payload, and asynchronously

signal all the feature computation microengines of the inference

request and transmit the corresponding feature to each via

transfer registers.

The feature computation microengines are responsible for

evaluating the conditions on a feature for a given data instance

and determine which paths in the decision tree are possible. Since

each feature computation microengine is responsible for different

features and run simulatenously, all the features can be evaluated

and all the possible paths in the decision tree can be determined in

parallel. To implement the conditions and determine the possible

paths per feature on the SmartNIC, we use Micro-C if-statements

to evaluate the conditions and update an array of integers to reflect

which paths are possible. For the update, we treat the array of

integers as a single bit string, where most significant bit in the

integer at the last index in the array corresponds to path 1. We

assign paths based on the order in which the nodes are encountered

by Algorithm 2. Since the values for comparison in the conditions

for evaluating each feature in the decision tree and the features

themselves can be floating-point, and the SmartNIC does have an

FPU, we consider an alternative floating-point representation. We

represent floating-point numbers on the SmartNIC using a fixed-

point representation that consists of 16 bits, where the last 13 bits

represent the non-integer portion of a floating-point number. As

each feature computation microengine completes its evaluation

of its correponding feature, they notify the result aggregation

microengine(s) of the decision tree paths that are possible based

on the feature they each evaluation.

Once all the feature computation microengines finish their

evaluation, the result aggregation microengine(s) finds the

intersecting path the decision tree between all the possible paths,

matches the path to the corresponding class label, and sends

an asynchronous signal to the packet collection microengine(s)

along with the class label via transfer register(s). Once the packet

collection microengine(s) receives the signal from the result

aggregation microengine(s), it edits the original packet payload

with the class label for the data instance and notified the CTM

packet engine that the packet needs to be transmitted. Also note

that during the time the feature computation and result aggregation

microengines are completing their tasks, the packet collection

microengine(s) are editing the model input packet’s header in

preparation for transmission as a model output packet.

To program all the packet collection, feature computation, and

result aggregation microengines, separate Micro-C code is written

to program each microengine to complete their specific task for

model inference, whereas prior methods often program all the

microengines with one piece of P4 code to perform the same

tasks for the model inference and do not fully leverage the parallel

operating capacity of the SmartNIC. Example Micro-C code for

packet collection, feature computation, and result aggregation can

be found in Appendix Listings 1–3.

3.3 Model deployment

Once all the Micro-C code files are created, they are all

compiled and linked to generate the device firmware to run on

the data plane in the model deployment component. Then, the

firmware file output is loaded onto the SmartNIC. An example of

the full process is shown in Appendix Listing 4. Each microengine

assumes a specified behavior based on one of the three microengine

assignments specified above. The SmartNIC can now ingress

packets with features in the packet payload, run machine learning

inference in a parallelized manner, and egress packets with the

classification result as the packet payload.

4 Experimental setup

4.1 Testbed

Our testbed consists of two Dell PowerEdge Rack Servers.

Server 1 hosts an NVIDIA Mellanox Bluefield-2 DPU 25 GbE

SmartNIC for packet transmission and data collection. Server 2

hosts a Netronome AgilioCX 2× 25 GbE SmartNIC, on which

our decision tree models are deployed. Both systems are directly

connected via qsfp cable between the Mellanox and Netronome

SmartNICs. We illustrate our setup in Figure 3.

4.2 Datasets and models

Our evaluation considers four tasks: land mine detection,

satellite image pixel classification, gas sensor drift compensation,

and network traffic classification. The main characteristics of

the datasets used for each task can be found in Table 1. We
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FIGURE 3

The testbed setup used for evaluation. The left server hosts the Netronome AgilioCX 2× 25 GbE. The right server hosts the NVIDIA Mellanox

Bluefield-2 DPU 25 GbE.

TABLE 1 Summary of datasets used (refer to dataset subsections for class

label abbreviations).

Attribute Mine Landsat Gas CICIDS

# of features 3 36 128 7

# of data instances 338 6,435 13,910 22,887,218

# of classes 5 6 6 7

# of training data 270 4,435 11,128 500,000

# of test data 68 2,000 2,782 6,957,375

TABLE 2 Summary of decision tree models created.

Parameter Mine Landsat Gas CICIDS

# of leaves 114 256 256 89

Depth 17 15 24 15

# of nodes 227 511 511 177

Min samples leaf 1 1 1 2

Min samples split 2 2 2 2

Min impurity decrease 0 0 0 0.00001

Max leaf nodes None 256 256 None

train a decision tree model for each task using the scikit-

learn library (Pedregosa et al., 2011). We summarize the

hyperparameters used for each tree in Table 2.

For hyperparameters not explicitly mentioned in the table that

can be tuned for the decision tree models (i.e., criterion, splitter,

max features, etc.), we resort to the default values provided by

scikit-learn.

4.2.1 Dataset preprocessing
As mentioned in Section 3, we assume the continuous features

are in the range [0, 1] and categorical features are one-hot-encoded.

To achieve this, we apply min-max normalization to scale the

continuous features of each dataset to range between 0 and 1 using

the training set. Test features that lie outside the range [0, 1] after

min-max normalization has been applied are clipped to the closest

endpoint. We also one-hot-encode the categorical features for each

dataset based on the values observed from the training set. If the

categorical features in the test set take on values not observed in

the training set, the one-hot-encoded feature is represented as a bit

string of zeros.

4.2.2 Land mine detection
We use the LandMines dataset (Yilmaz et al., 2018) for the land

mine detection task. The authors propose three features to classify

a mine into five types, Null, Anti-Tank, Anti-Personnel, Booby-

Trapped Anti-Personnel, and M14 Anti-Personnel, with 65 − 71

samples per class. Our motivation for choosing this dataset is based

on the number of features (8 after data preprocessing), where we

can evaluate the first SmartNIC mapping scenario (fitting on one

island) as described in Section 3. In later sections, we will refer to

this dataset as Mine.

4.2.3 Satellite image pixel classification
We use the Statlog (Landsat Satellite) dataset (Srinivasan, 1993)

for the satellite image pixel classification task. The goal of this task

is to examine multispectral values from a 3 × 3 neighborhood

of a satellite image and classify the central pixel as one of five

classes: Red Soil, Cotton Crop, Gray Soil, Damp Gray Soil, Soil

with Vegetation Stubble, Mixture, or Very Damp Gray Soil. There

are 626 − 1,533 samples per class. Our motivation for choosing

this dataset is based on the number of features (36), where we can

evaluate the second mapping scenario (fitting on whole SmartNIC,

one feature per microengine) as described in Section 3. In later

sections, we will refer to this dataset as Landsat.

4.2.4 Gas sensor drift compensation
We use the Gas Sensor Array Drift dataset (Rodríguez-Luján

et al., 2014) for the gas sensor drift compensation tasks. This dataset

consists of measurements from 16 chemical sensors to identify six

gases, Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol, and
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Toluene, with 1, 508 − 3,009 samples per class. Our motivation

for choosing this dataset is based on the number of features (128),

where we can evaluate the third mapping scenario (fitting on

whole SmartNIC, multiple features per microengine) as described

in Section 3. In later sections, we will refer to this dataset as Gas.

4.2.5 Network tra�c classification
Weuse the CICIDS2017 dataset (Sharafaldin et al., 2018) for the

network traffic classification use case. This use case’s purpose is to

identify network flows as benign or malicious (brute force attack,

heartbleed attack, botnet, DoS attack, DDoS attack, web attack,

infiltration attack). However, we follow the approach used by

Xavier et al. (2021) to generate the dataset for classifying individual

network packets rather than network flows and the training and

tests sets based on the network flows instead of the conventional

stratified 80/20 split used for the above datasets above. In the

dataset, the packets were labeled as benign, DoS GoldenEye, DoS

Hulk, DoS Slowhttptest, DoS Slowloris, Web Brute Force, or Port

Scan. Each class has 30,059 − 20,121,944 samples. Our motivation

for choosing this dataset is based on its use in the work by Xavier

et al. (2021), which is similar to our approach. Our evaluation on

this dataset clearly compares our approach and Xavier et al. (2021)’s

approach. In later sections, we will refer to this dataset as CICIDS.

4.3 Baselines

We compare our approach against the following two baselines.

First, we implement a traditional CPU baseline, which uses socket

programming to receive incoming packets, extract the payload,

run inference with the trained scikit-learn decision tree, and build

and send a model output packet with the model prediction in the

packet payload.

Second, we implement the approach developed by Xavier et al.

(2021) using P4-16. Like our approach, Xavier et al. (2021)’s

approach traverses through the scikit-learn decision tree structure,

extracts the model’s logic, and rebuilds the tree in P4 using Python.

Note that the original implementation was solely created for the

CICIDS dataset, and the authors did not provide a method to

handle floating-point features. In evaluating this method on the

other datasets, we modified it slightly to use our fixed-point

representation of floating-point numbers. Also, due to limitations

with Xavier et al. (2021)’s approach, we could not evaluate it on

larger decision trees, such as those generated with the Landsat and

Gas Datasets.

4.4 Evaluation metrics

In our experiments, we measure the effectiveness, (average

and tail) latency, throughput, and hardware utilization of ML-NIC

against the baselines.

For effectiveness, we measured the accuracy, F1 score, recall,

and precision metrics on each dataset’s test set. Given that our

datasets are for multiclass classification tasks, we take the macro-

average (i.e., unweighted mean) of the per-class scores for the F1

score, recall, and precision measurements.

For latency, we collected the time between model input packet

transmission and model output packet reception on server 1

in microseconds for 1, 000 packets. In addition to our vanilla

latency experiments (i.e., no CPU load or network link utilization),

we conduct latency experiments with background traffic on the

network link and CPU load. We generate random network traffic

at different speeds using Tcpreplay for latency experiments with

background traffic to achieve 25%, 50%, and 99% network link

utilization. We use stress-ng for latency experiments with CPU

load and generate CPU loads of 25%, 50%, and 99%. To ensure

an apples-to-apples comparison with the CPU baseline, we append

zero padding to the model input packets for our approach and the

P4 baseline. Hence, they are the same size as the CPU model input

packets. Note that, when collecting the data for the CPU baseline,

we remove the time taken to decode the data features and encode

the model’s prediction.

For throughput, we use Tcpreplay to loop through the PCAP

files containing the test set packets for each dataset at top speed.

Simultaneously, we also run Tshark to filter and collect the model

prediction packets for 60 seconds.

Lastly, for hardware utilization, we run Tcpreplay for 60

seconds like we did for the throughput experiment and measure

CPU, server host RAM, and SmartNICmemory utilization.We also

measure CPU, server host RAM, and SmartNICmemory utilization

30 seconds before and after running Tcpreplay for reference. We

do not explicitly measure SmartNIC microengine utilization in

this experiment. Instead, we use the results from our network

link utilization and CPU load latency experiments as a proxy for

SmartNIC microengine utilization.

5 Results

From our experimental results, we demonstrate the

following:

1. Our approach achieves effectiveness scores similar to those of

the CPU baseline and identical to the P4 baseline.

2. Our approach has better a latency guarantee than the CPU and

P4 baselines in various network link utilization and CPU load

scenarios.

3. The throughput of our approach is significantly greater

compared to the CPU baseline and on par with the P4 baseline.

4. Our approach uses fewer server host resources (i.e., CPU and

server RAM) compared to the CPU and P4 baselines.

5.1 E�ectiveness scores

As shown in Table 3, the effectiveness scores between our

approach and the CPU baselines are similar with minor

degradation. For conciseness, we only show the plots of accuracy

and F1 score of the models, since the precision and recall results

follow a similar pattern.
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TABLE 3 E�ectiveness measurements on all datasets.

Dataset Measure CPU Xavier et al.
(2021)

ML-NIC

Mine Accuracy (%) 58.82 57.35 57.35

F1 score (%) 58.22 56.92 56.92

Landsat Accuracy 85.65 N/A 85.55

F1 score (%) 83.93 N/A 83.76

Gas Accuracy (%) 97.41 N/A 95.15

F1 score (%) 97.26 N/A 94.78

CICIDS Accuracy (%) 95.12 95.12 95.12

F1 score (%) 47.04 47.04 47.04

Bold values indicates best values found for given metric during experiments.

For the Mine dataset, we note differences of 1.47%, 1.30%,

1.35%, and 1.54% across the accuracy, F1 score, precision, and recall

metrics. For the Landsat dataset, we note differences of 0.100%,

0.17%, 0.14%, and 0.20% across the accuracy, F1 score, precision,

and recall metrics. For the Gas dataset, we note differences of 2.26%,

2.49%, 2.00%, and 2.66% across the accuracy, F1 score, precision,

and recall metrics. For the CICIDS dataset, our approach and the

CPU baseline do not differ in accuracy, F1 score, precision, or recall.

This is because all the features used to train the scikit-learn decision

tree are integers, so no quantized representation of features is

needed as with the previous three datasets. Our approach achieves

identical effectiveness scores as the P4 baseline on the Mine and

CICIDS datasets.

5.2 Latency

From the latency data we collected, we provide zoomed-

in empirical cumulative distribution functions (eCDF) for each

dataset, network link utilization, and CPU load in Figure 4. We

also provide more concrete numbers on the 50th, 99th, and 99.9th

percentiles across each dataset, link utilization, and CPU load

in Tables 4, 5. From our experiments, we make the following

observations. We generally see a significant gap in the latency

measurements between ML-NIC and the CPU baseline and a very

small gap between ML-NIC and Xavier et al. (2021)’s approach.

Specifically, we found that ML-NIC’s latency can be at least 132.62

µs faster than the CPU baseline and 1.35 µs faster than Xavier

et al. (2021)’s approach in the 50th percentile. However, there is

a significant difference in the tails between ML-NIC and Xavier

et al. (2021)’s approach, suggesting that ML-NIC has a stronger

latency guarantee. Based on the 99.9th percentiles, we see that the

tail latency of Xavier et al. (2021)’s approach can be at least 1.53×

larger than ML-NIC’s tail.

Looking at impact of high network link utilization and CPU

load, we observe very minimal fluctuation in the eCDFs of the

ML-NIC and Xavier et al. (2021)’s approach. This suggests that

both approaches are robust against high network link utilization

and CPU load on these datasets. But, there is a more noticeable

impact of high network link utilization and CPU load on the CPU

baseline. As the network link utilization increases, we tend to see

more probability mass shift toward the higher latency in the eCDF.

With respect to the 99.9th latency percentile, we see an increase

of at least 1.82× from 0% link utilization to 99% link utilization.

Concerning the increases in CPU load, there is a more significant

shift in the eCDF curves toward higher latencies. Referring to the

99.9th percentile, there is a latency increase of at least 20.27× from

0% CPU load to 99% CPU load.

5.3 Throughput

As seen in Figure 5, there is a significant improvement in

throughput with our approach compared to the CPU baseline. In

our approach, we note 24.80×, 19.30×, 16.95×, and 20.11× more

packets per minute compared to the CPU baseline across the Mine,

Landsat, Gas, and CICIDS datasets. Furthermore, our approach

yields moderately higher throughput than the P4 baseline in the

Mine and CICIDS dataset. In our approach, we observe 1.26× and

1.11×more packets per minute compared to the P4 baseline for the

Mine and CICIDS datasets.

5.4 Hardware utilization

From our hardware utilization experiment, we report the

minimum, maximum, and average CPU and server host RAM

utilization in Table 6. We also report the SmartNIC memory

utilization as a constant, since dynamic memory allocation is not

available on the AgilioCX 2× 25 GbE SmartNIC. Since we are

not able to directly measure the SmartNIC RAM used for the

CPU baselines, we approximate it. Our approximation takes an

unweighted average of the ratio of size of SmartNIC firmware for

the CPU baselines over the size of the SmartNIC firmware for the

P4 baselines and our approach multiplied by the SmartNIC RAM

used by those models for each of the datasets.

From Table 6, we see that ML-NIC consistently uses lower

resources for average and maximum host system’s CPU, host

system’s RAM, and SmartNIC’s RAM usage compared to the CPU

baseline and Xavier et al. (2021)’s method. In the case where

there the CPU baseline has slightly lower minimum CPU usage

than the ML-NIC on the CICIDS dataset, this measurement likely

corresponds to some degree of randomness in the measurement,

since ML-NIC also achieved the same minimum CPU usage on

the Gas dataset. In addition to the CPU baseline having a higher

maximum CPU usage than ML-NIC by at least 7.91×, we also

observe that Xavier et al. (2021)’s method can achieve similar

or higher levels of maximum CPU usage. We attribute this to

the runtime environment (RTE) server that is running on our

host system, which is needed to run P4 code. We believe this

also accounts for slightly higher host system RAM usage. For

the SmartNIC’s RAM usage, we observe our proxy for the CPU

baseline to be lower than Xavier et al. (2021)’s method. Since the

firmware running on the SmartNIC for the CPU baseline runs as a

regular NIC, the SmartNIC would not require additional memory

beyond storing extracting packet headers into local memory or

general purpose registers. Furthermore, the larger SmartNIC RAM

usage from Xavier et al. (2021)’s method likely occurs because their
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a. b.

c. d.

e. f.

g. h.

FIGURE 4

(A, C, E, G) Depict the eCDFs for the latency experiments conducted using Tcpreplay to saturate the network link on all the datasets. (B, D, F, H)

Depict the eCDFs for the latency experiments conducted using stress-ng to generate a CPU load on all the datasets. (A) Mine Tcpreplay. (B) Mine

stress-ng. (C) Landsat Tcpreplay. (D) Landsat stress-ng. (E) Gas Tcpreplay. (F) Gas stress-ng. (G) CICIDS Tcpreplay. (H) CICIDS stress-ng.
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TABLE 4 Latency measurements using tcpreplay (µs).

Dataset Link util
(%)

Percentile CPU Xavier
et al.
(2021)

ML-
NIC

Mine 0 50 184.77 21.55 18.00

99 197.39 25.41 23.60

99.9 202.94 71.26 35.54

25 50 156.93 21.30 17.73

99 243.95 27.35 23.63

99.9 285.89 65.31 36.11

50 50 156.96 20.41 18.15

99 267.83 27.33 21.53

99.9 364.59 60.37 31.05

99 50 152.32 21.55 17.24

99 230.96 31.10 24.45

99.9 454.20 70.65 36.48

Landsat 0 50 185.61 N/A 19.99

99 200.27 N/A 24.88

99.9 260.64 N/A 39.63

25 50 162.39 N/A 18.27

99 247.78 N/A 22.70

99.9 365.45 N/A 36.65

50 50 191.58 N/A 19.82

99 258.51 N/A 23.87

99.9 458.64 N/A 42.08

99 50 209.91 N/A 20.63

99 247.88 N/A 24.96

99.9 503.92 N/A 37.40

Gas 0 50 185.99 N/A 18.91

99 198.86 N/A 26.57

99.9 287.77 N/A 48.31

25 50 153.22 N/A 20.60

99 255.51 N/A 27.00

99.9 367.69 N/A 41.65

50 50 159.18 N/A 20.13

99 251.86 N/A 28.91

99.9 410.64 N/A 45.20

99 50 161.33 N/A 22.11

99 244.74 N/A 25.35

99.9 523.63 N/A 43.98

CICIDS 0 50 179.30 19.58 17.21

99 189.71 23.86 21.66

99.9 198.83 54.91 31.70

25 50 154.72 20.00 15.97

99 224.22 26.66 19.76

(Continued)

TABLE 4 (Continued)

Dataset Link util
(%)

Percentile CPU Xavier
et al.
(2021)

ML-
NIC

99.9 277.53 55.06 29.29

50 50 155.85 18.94 17.55

99 225.52 23.11 20.68

99.9 442.80 55.48 33.41

99 50 154.81 21.91 15.99

99 226.99 28.21 20.39

99.9 483.02 51.85 33.80

Bold values indicates best values found for given metric during experiments.

approach involves running packet collect, feature computation,

and result aggregation on every microengine. Since ML-NIC

distributes these operations across multiple microengines, the

resulting SmartNIC RAM usage would be lower by at least 46.05×.

6 Discussion

6.1 Generalization

The work focuses on converting trained scikit-learn decision

trees into Micro-C for deployment onto a SmartNIC. We focused

on the Netronome AgilioCX 2× 25 GbE. Deployment across

different SmartNICs (assuming Micro-C support) may require

significant code changes to accommodate the resources available on

the card compared to the baselines.

6.2 Benefits

Despite their resource constraints compared to a host system’s

CPU, SmartNICs show potential as alternative hardware for

deploying appropriately sized decision tree models. Deploying the

decision tree model onto the SmartNIC, which brings it closer

to the network edge, saves latency time by removing the need to

transfer data over the PCIe bus from the NIC to the CPU without

additional hardware. Furthermore, the lower-level programming

used in our approach compared to the P4 baseline allows us to

leverage device parallelism to deploy larger decision trees.

6.3 Scope

Our work only considers deploying decision tree models

trained for various tasks onto a SmartNIC. Improvements in any

specific use case are beyond the scope of our work.

6.4 Limitations

Our method’s limitations depend on the SmartNIC’s memory,

computational, asynchronous I/O, and data rate constraints.
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TABLE 5 Latency measurements using stress-ng (µs).

Dataset CPU
load
(%)

Percentile CPU Xavier
et al.
(2021)

ML-
NIC

Mine 25 50 186.16 20.16 16.45

99 221.97 31.82 20.43

99.9 343.53 74.56 32.35

50 50 200.85 20.12 17.69

99 222.64 31.16 20.96

99.9 535.06 67.87 34.50

99 50 213.40 22.12 18.84

99 332.46 27.96 22.66

99.9 7,979.24 76.50 36.86

Landsat 25 50 192.30 N/A 20.69

99 295.65 N/A 24.48

99.9 405.26 N/A 41.19

50 50 202.55 N/A 20.23

99 215.20 N/A 24.12

99.9 7,582.86 N/A 38.09

99 50 214.34 N/A 21.54

99 260.63 N/A 25.80

99.9 9,008.55 N/A 40.27

Gas 25 50 183.90 N/A 19.17

99 201.89 N/A 27.42

99.9 469.44 N/A 45.69

50 50 203.31 N/A 23.01

99 238.13 N/A 26.94

99.9 8,852.89 N/A 46.95

99 50 218.32 N/A 19.40

99 251.67 N/A 25.54

99.9 16,182.94 N/A 46.74

CICIDS 25 50 155.58 20.13 18.17

99 201.23 23.99 21.31

99.9 357.74 51.48 31.69

50 50 167.66 19.88 18.18

99 184.74 24.39 22.68

99.9 481.76 50.01 30.33

99 50 175.56 20.15 17.16

99 198.38 24.00 21.83

99.9 4,030.55 59.39 32.74

Bold values indicates best values found for given metric during experiments.

Within the Netronome AgilioCX 2× 25 GbE, the primary limits

are the number of microengines (60), data rate (25 GbE), and

number of hardware signals (15 per thread). While the constraint

on microengines can be mitigated by assigning multiple features to

a microengine, the memory (i.e., number of transfer registers) and

FIGURE 5

This figure provides a bar graph of the throughputs observed with

our approach and two baselines.

asynchronous I/O (i.e., number of hardware signals) constraints

limit the depth of the trained decision tree to 480 leaf nodes.

Our current implementation is limited to decision trees with 256

leaf nodes, since more complex firmware is required to assign a

hardware signal to a greater number of transfer registers.

6.5 O	oading more models

6.5.1 Decision tree
In addition to the decision tree models we have deployed

in this work, we provide some more insights on other decision

trees that our current work can offload onto a SmartNIC via an

ablation study. In our ablation study, we use the CICIDS datasets

to construct 10 decision trees with a constraint on the maximum

number of leaf nodes between 16 and 256, based on the leaf node

limit we mentioned in Section 3. For each decision tree, we look

at the depth, number of nodes, number of leaf nodes, size of the

pickle file, size of the firmware file, and SmartNIC RAM usage. We

present our findings in Figure 6. Note that we scaled some of the

measurements by a factor of 10, so the trends in the some of the

decision tree parameters would be more clear.

From Figure 6, we observe the following. First, we note the

slow inclination, followed by a brief declination, then continued

inclination in the usage of SmartNIC RAM. We also observe a

similar pattern of inclination, declination, then inclination again in

the trend for the model firmware size. We attribute this to how we

compiled two instances of the model 1 and 2 per island tomaximize

our usage of the computation resources on the SmartNIC. For the

remaining models, we only compiled one instance per island. Since

models 1 and 2 have two instances compiled per island, more RAM

and instruction memory would be needed to store the labels for the

leaf nodes and decision tree logic. Based on the rate of inclination

between firmware size and SmartNIC RAM usage, we see that a

primary concern for offloading larger models is the amount of

instruction memory available per microengine. After model 2, we

see that the (scaled) trend for firmware size grows slower than that

of the size of model pickle file and number of nodes by 1.64 and

1.53 and grows faster than the trend for decision tree depth by 4.07

and number of leaf nodes by 1.30.
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TABLE 6 Hardware utilization measurements.

Dataset Measure CPU Xavier
et al.
(2021)

ML-
NIC

Mine Min CPU (%) 0.25 0.25 0.25

Avg CPU (%) 3.82 0.77 0.52

Max CPU (%) 7.56 7.75 0.94

Min Host RAM (MB) 2,226.76 2,147.76 1,908.97

Avg Host RAM (MB) 2,228.43 2,150.75 1,910.71

Max Host RAM (MB) 2,230.56 2,153.44 1,911.81

SmartNIC RAM

(MB)

96.15 973.00 21.13

Landsat Min CPU (%) 0.25 N/A 0.25

Avg CPU (%) 3.81 N/A 0.51

Max CPU (%) 7.53 N/A 0.88

Min Host RAM (MB) 2,226.50 N/A 1,909.86

Avg Host RAM (MB) 2,229.00 N/A 1,910.69

Max Host RAM (MB) 2,231.77 N/A 1,911.70

SmartNIC RAM

(MB)

96.15 N/A 21.12

Gas Min CPU (%) 0.25 N/A 0.19

Avg CPU (%) 3.78 N/A 0.51

Max CPU (%) 7.46 N/A 0.88

Min Host RAM (MB) 2,223.59 N/A 1,908.86

Avg Host RAM (MB) 2,226.08 N/A 1,909.83

Max Host RAM (MB) 2,228.07 N/A 1,910.98

SmartNIC RAM

(MB)

96.15 N/A 21.122

CICIDS Min CPU (%) 0.19 0.25 0.25

Avg CPU (%) 3.68 0.80 0.52

Max CPU (%) 7.20 9.09 0.81

Min Host RAM (MB) 2,225.02 2,077.43 1,907.22

Avg Host RAM (MB) 2,227.38 2,078.88 1,908.36

Max Host RAM (MB) 2,230.01 2,080.04 1,909.21

SmartNIC RAM

(MB)

96.15 973.00 21.12

Bold values indicates best values found for given metric during experiments.

6.5.2 Other machine learning models
Besides decision trees, we also consider approaches for

executing inference with other machine learning models. Since

inference for many popular machine learning models relies heavily

on the matrix-vector multiplication operation, we look into

techniques for efficient and effective matrix-vector multiplication

that can be performed by a SmartNIC. In addition to conducting

inference on models such as neural network and support vector

machines for supervised tasks, we find an implementing a suitable

matrix-vector multiplication method necessary for unsupervised

learning, such as with implementing k-means using cosine

similarity as the similarity measure instead of Euclidean distance.

First, a naive approach that we consider is creating a lookup table

per weight to match a feature value with the multiplication of

that feature with the specific weight. In this approach, the feature

computation microengines would be responsible for doing the

multiplication lookup based on the weight and feature value, and

the result aggregation microengines would sum up the multiplied

weight-feature values to obtain the final result. However, this

approach may not be feasible for problems that require a large

number of weights due to memory constraints on the SmartNIC.

An alternative approach would be to consider using natural

logarithm and the exponent function (i.e., ex). Instead of storing

a lookup table per feature, two lookup tables can be stored to

approximately compute the natural logarithm and exponent of the

feature values based on their fixed range (i.e., we assume each

feature is in the range [0, 1] in Section 3). Then, each feature

computation microengine would be operate on a specific feature by

conducting a lookup for the natural logarithm of the feature, taking

the sum of the natural logarithms of the weights and the feature

value, and conduct a lookup of the exponent of the sum of the

natural logarithm values. While this approach may resolve issues

with the memory constraint, a large number of features requires

multiple lookups to the memory region holding the tables (i.e.,

CLS or IMEM) that can congest the CPP bus. So, to avoid this

issue, the lookup tables could be replaced with first-order taylor

approximations of the natural logarithm and exponent functions

for a specific number of reference points in the range [0, 1], where

the taylor approximations can be represented using additions and

bit shifts. At the same time though, the use of first-order taylor

approximations can result in more erroneous model predictions.

More recently though, work by Blalock and Guttag (2021)

proposed a novel technique for matrix-matrix multiplication that

used locality-sensitive hashing to determine suitable functions

[denote as g(A)] that can be executed efficiently using balanced

binary regression trees. Based on their findings and our current

implementation for decision tree inference, we believe their

approach to be a more promising direction for executing matrix-

vector multiplication on a SmartNIC.

6.6 Productionization and scaling

When deploying decision tree models in the real world, we

consider factors such as model updates and scaling. Concerning

model updates (i.e., models retrained on larger datasets), we still

limit the number of leaf nodes to 256, which may or may not

be helpful as a regularization technique to prevent decision tree

overfitting. In order to deploy a new decision tree, the original

decision tree (i.e., the model firmware file) needs to be unloaded

from the SmartNIC, and then the firmware for the new decision

tree can be loaded onto the SmartNIC. This means that SmartNIC

would be inactive while unloading the old decision tree and loading

the new decision tree. So, inference requests can not be handled by

a SmartNIC during that time.

For scaling, we primarily focus on the first model deployment

scenario (model fits on an island). We do not believe much scaling

of SmartNIC resources can be done as the entire card is required

for one instantiation of the model. In the first deployment scenario,
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FIGURE 6

This figures shows how ML-NIC scales with respect to di�erent decision tree parameters.

though, based on the amount of network traffic, firmware can be

developed to set aside some islands for the decision tree model and

others for other tasks. However, like the model update case, old

firmware would need to be unloaded and new firmware loaded.

So, inference requests can not be handled by a SmartNIC while

unloading old and loading new firmware.

6.7 Hardware improvements

Considering SmartNICs with Micro-C support that possess

additional hardware capabilities, we first note SmartNICs with

additional programmable flow-processing microengines. A

SmartNIC can include more programmable microengines in

two ways: additional islands or microengines per island. With

additional microengines per island, we expect a further reduction

in latency for all three model deployment scenarios. This would

happen because more models would be able to fit on an island,

which would remove the need for communication between the

microengines on different islands. Communication between

microengines on different islands is more expensive than between

microengines on the same island. With additional islands, we

expect a further increase in throughput for model deployment

scenario one (the model can fit on one island). More islands

mean more instances of the model that can be instantiated on the

SmartNIC, which would allow it to meet more inference requests.

In either scenario, we expect larger trees (with respect to the

number of features) to be more easily deployed, given that each

microengine would be responsible for analyzing fewer features.

Next, we consider a SmartNIC with additional transfer

registers per microengine. More transfer registers means that fewer

microengines would be needed to perform result aggregation based

on the feature analysis conducted by the feature computation

microengines. With greater availability of microengines, we could

likely deploy larger trees on the SmartNIC.

Lastly, another hardware improvement we consider is the

addition of one or more FPUs. Adding FPUs resolves the issue with

minor effectiveness degradation that we observe with the current

iteration of our work while likely maintaining similar latency and

throughput performance that we’ve observed in this work.

7 Related work

Recently, several works have leveraged programmable data

planes to make aspects of machine learning more efficient.

These works can be split into two categories: model training

and model inference. We focus on the latter. Within model

inference, research efforts are focused on leveraging how entire

or portions of the machine learning model inference process can

be offloaded onto programmable data planes while maintaining

adequate model performance. These implementations are most

commonly conducted on programmable switches and SmartNICs.

7.1 Programmable switch

For works that map machine learning models onto

programmable switches, we generally observe a focus on

specific models used to address certain tasks. We first note

Net2Net (Siracusano and Bifulco, 2018) that proposed quantizing

neural networks into binary neural networks, since they require

operations that are readily available on modern switching chips.

Rather than quantizing a trained neural network into a binary

neural network, Qin et al. (2020) directly trained binary neural

networks and mapped them onto the data planes of programmable

switches using P4 to handle the network intrusion detection use

case. As an alternative to binary neural network quantization,

Dao et al. (2021) used neuron pruning to map neural networks

onto programmable switches for the network intrusion use case.

While the above neural network works solely considered a single
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programmable switch for deployment, Saquetti et al. (2021)

implemented a neural network neuron distribution method across

multiple programmable switches and coordinated inference of the

model between the switches to optimize resource usage. Similarly,

JointNIDS (Dao and Lee, 2022) also employed a distributed neural

network inference approach. But, the neural network intrusion

detection models were split into two sequential sub-models with

overlapping hidden units and mapped the sub-models onto two

programmable switches. The authors assigned one programmable

switch to detect major network attacks, while the second handled

the more subtle aspects of network traffic classification. Rather

than staying within the constraints of off-the-shelf programmable

network devices, Taurus (Swamy et al., 2022) extended the

PISA architecture of programmable switches by adding custom

hardware to support parallelism and additional operations (i.e.,

multiplication, nonlinear operations) needed to run neural

network inference without any quantization.

Regarding tree-based models, pForest (Busse-Grawitz et al.,

2019) developed a optimization technique to map a random

forest classifier to a programmable switch in P4 for network

flow classification. Furthermore, this approach adaptively switches

out the current classifier with others based on the network

flows observed. In addition to mapping a random forest

classifier, Planter (Zheng and Zilberman, 2021) mapped a

xgboost and isolation forest classifier to programmable switches

using overlapping trees to overcome some of the inefficiencies

observed in pForest (Busse-Grawitz et al., 2019). Similar to

pForest (Busse-Grawitz et al., 2019) and SMASH (Kamath and

Sivalingam, 2021) also focused on the network flow classification

task and used an improved hash-and-store algorithm with a

decision tree model for early flow classification. Also working

with decision trees, pHeavy (Zhang et al., 2021) implemented

trained decision trees on the data plane to reduce the overhead

involved with communicating to the control plane in Software-

Defined Networking (SDN) when classifying highly-congested

network flows. In contrast to the other tree-based model

offloading approaches that focus on network-related use cases,

NetPixel (Siddique et al., 2021) implemented decision trees on P4

programmable switches to handle image classification. To address

some of the issues with deployment of decision trees and other

machine learning algorithms onto programmable data planes,

Mousika (Xie et al., 2022) introduced a teacher-student knowledge

distillation approach to translate machine learning models to

binary decision trees, which are more suitable for mapping onto

the data plane.

On top of supervised machine learning, the deployment of

unsupervised learning algorithms onto programmable switches has

also been explored. Clustreams (Friedman et al., 2021) used a

combination of the quadtree data structure and a match+action

table stored in Ternary Content Addressable Memory (TCAM) to

cluster network traffic efficiently. In addition, ACC-Turbo (Alcoz

et al., 2022) redesigned the original Aggregate-based Congestion

Control (ACC) approach using online clustering and a scheduling

algorithm to mitigate pulse-wave DDoS attacks.

Unlike the works above that focus on a specific machine

learning algorithm type (i.e., neural networks, tree-based models,

clustering, etc.), IIsy (Xiong and Zilberman, 2019) introduced

mapping schemes for several machine learning algorithms, such as

decision trees, k-means, naive bayes, and support vector machines,

to the data plane using the match-action pipeline in programmable

switches. Also, Hong et al. (2024) developed a feature engineering

andmodel deployment strategy for tree-basedmodels (i.e., decision

trees, random forests, xgboost), k-nearest neighbor, and k-means to

handle the high-frequency stock market trading task.

7.2 SmartNIC

Similar to the works that address deployment of machine

learning model inference onto programmable switches, we see

works about model inference onto SmartNICs that also consider

neural networks and decision trees used for particular applications.

Using the approach proposed by Net2Net (Siracusano and

Bifulco, 2018), BaNaNa split (Sanvito et al., 2018) accelerated the

inference of neural networks by splitting a neural network at its

fully-connected layers, sending all prior layers to the host system’s

CPU for inference, and quantizing the fully-connected layers

to run portion of the inference on the host system’s SmartNIC.

Different from the other works that primarily look into P4

implementations, N3IC (Siracusano et al., 2022) used Micro-C

and P4 to map binary neural networks onto a greater variety of

targets (i.e., SmartNICs) for traffic analysis use cases. Regarding

tree-based models, Xavier et al. (2021) presented a framework

for deploying decision tree models onto SmartNICs in P4. The

authors demonstrated that their framework can achieve high

accuracy (above 95%) in a network intrusion detection use case.

While similar to our work, we note that ML-NIC works on a

greater variety of use cases outside of network traffic analysis.

Furthermore, ML-NIC’s Micro-C implementations can parallelize

the model inference process, which is not possible with P4. While

the works on machine learning inference offloading for SmartNICs

do not cover unsupervised learning to our knowledge, they do

address traditional reinforcement learning. Opal (Simpson

and Pezaros, 2022) implemented online reinforcement

learning onto a SmartNIC data plane, relying on classical

reinforcement algorithms such as Sarsa (Sutton, 2018) and avoiding

neural networks.

8 Future directions

8.1 Implementing additional models

As mentioned in Section 6, our next step is to expand our

framework to other machine learning algorithms, such as support

vector machines and neural networks. We find that implementing

the approximate matrix-matrix multiplication approach developed

by Blalock and Guttag (2021) to be means of achieving this

goal. In addition to matrix-matrix multiplication, there are

floating point operations that are often performed for various

models such as neural networks. Thus, in order to implement

such models, future work may involve, either adding hardware

support for these operations or using quantized operations as

a default. We discuss the potential future work in this area

in Section 8.2.
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8.2 Improving the floating-point
representation

While our current approach leverages fixed-point 16-bit

features and produces comparable model effectiveness scores to

the baselines, it is possible that the proposed float-representation

scheme can be improved without adding more hardware. One

potential future direction to be explored is to look into the

posit representation (Gustafson and Yonemoto, 2017) as a

potential alternative, since it resolves the issue of NaN quantities

observed in the standard floating-point representation. Also,

while implementing the standard floating-point representation

on the SmartNIC may seem like a viable solutions, we believe

that the float-pointing representation standard would introduce

additional latency due to the additional computation spent

managing mantissa bits, exponent bits, and NaN quantities.

In addition, adding any additional hardware support may

cause added cost and energy consumption of SmartNIC,

which defeats the purpose of using the SmartNIC in the first

place. Thus, a software/algorithmic based approaches for

performing floating point operations will be a great direction for

future work.

8.3 Automating the model deployment

Furthermore, despite automating the process of decision tree

logic extraction, the process of building the model mapping

still mostly requires the developer to manually allocate cores

as one of packet collection, feature computation, or result

aggregation. We think the model mapping component can be

made more efficient with additional code that considers the

computation constraints of the SmartNIC and presents a mapping

scheme to remove some of the tedious work in deploying

a model onto the SmartNIC. Thus, a direction for future

work may involve building a more sophisticated system that

can perform model compilation, optimization and deployment

automatically to the SmartNIC. This work can be further

strengthened by adding a notion of distributed deployment

and model inference across multiple SmartNICs located on

multiple server.

8.4 Utilizing di�erent types of SmartNICs

While this work primarily utilizes ASIC-based SmartNIC,

it is possible to implement similar work on other ASIC-

based and other types of SmartNICs, such as FPGA-based

SmartNICs. While the optimizations we performed in this

paper is specific to Netronome SmartNIC, the overall idea

of mapping memory into different SmartNIC region is

quite generic. Thus, a potential valuable future work is to

perform similar optimization strategies across different types of

hardware implementations to understand the similarities and

differences in the effectiveness of the proposed optimization and

compilation strategies.

9 Conclusion

Low-latency model inference is a necessity for many time-

sensitive machine learning applications. This paper demonstrates

that ML-NIC is a suitable framework for performing machine

learning model inference. Our evaluation of the first iteration of

ML-NIC shows that it can deploy larger models than the state-

of-the-art SmartNIC approach, can produce predictions at faster

speeds with a minor loss in model effectiveness compared to

the CPU solution, and is robust to high network utilization and

CPU loads.
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