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Driver drowsiness or fatigue is among the most important factors that cause

tra�c accidents; therefore, a monitoring system is necessary to detect the state

of a driver drowsiness or fatigue. In this paper, an automated vision-based

system for real-time prediction of driver drowsiness or fatigue is presented, in

which multiple visual ocular features such as eye closure, eyebrow shape, eye

blinking, and other perfectly defined geometric facial features are employed as

robust cues for driver’s drowsiness. In addition, an e�cient scheme is applied

to extract local Gabor features of driver images based on Fisher’s quantum

information. A novel Fisher-Gabor descriptor (FGD) is then constructed from the

extracted features, which is invariant to scale and rotation and also robust to

changes in illumination, noise, and minor changes in viewpoint. The normalized

FGDs are ultimately fed to a Latent Dynamic Conditional Random Field (LDCRF)

classification model to predict whether the driver is drowsy/fatigued and a

warning signal is thus issued (if required). A series of intensive experiments

conducted on the benchmark NTHU-DDD video dataset show that the proposed

system can predict driver drowsiness or fatigue e�ectively and e�ciently,

exceeding several state-of-the art alternatives by achieving a competitive

detection accuracy of 97.6%, while still preserving stringent real-time guarantees.

KEYWORDS

drowsy driving prediction, fisher-Gabor facial features, LDCRF classification, NTHU-

DDD dataset, intelligent transportation systems

1 Introduction

The recent tremendous technological advancements in computing and

telecommunications over the course of past few decades have continuously given

assistance to vehicular drivers, particularly in the form of various modern Intelligent

Transportation Systems (ITS). Research in drowsy-driver monitoring reveals that driver

fatigue is a leading contributory factor in up to approximately 20% of road accidents,

and roughly up to one-fourth of total serious and fatal accidents (Beles et al., 2024).

Therefore, the automated detection and recognition of driver fatigue or drowsiness has

emerged as a high potential and increasingly attractive area of research with numerous

applications (Bakheet and Al-Hamadi, 2021). Globally, an average of 3200 persons die
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each day around the world due to road traffic crashes (RTCs). It

is anticipated that the great majority of these collisions (i.e., 95%–

99%) (Hendricks et al., 2001) are caused by driver-related risky

behaviors, such as sleepiness, drug and alcohol usage, psychological

stress, inexperience, etc. For instance, the National Highway Traffic

Safety Administration (NHTSA) in the USA indicates that sleepy

driving contributed to an estimated 72,000 collisions, resulting in

44,000 injuries and nearly 800 deaths (Rep, 2017).

Numerous studies have looked closely at the connection

between driver tiredness and collision risk in an effort to

pinpoint and measure the elevated risk. For example, Williamson

et al. clearly demonstrate in Williamson et al. (2011) how sleep

homeostatic effects lead to decreased performance and accidents.

According to another study in (Klauer et al., 2006), taking your

eye off the road for just two seconds, for example when using

a mobile phone or even texting while driving, can significantly

increase the chance of a crash up to 24 times. Furthermore, it has

also been stated that drivers who are sleep deprived are around

4–6 times more likely than alert drivers to be involved in sleep-

related collisions or near-crash incidents (Alajlan and Ibrahim,

2023). Recent research by Stevenson et al. (2014) in a case-control

study of heavy-vehicle drivers has revealed that chronic sleep debt

or deprivation can also raise the risk of a catastrophic collision.

Additionally, in Bouchner et al. (2006), Bouchner et al. argued that

drowsy drivers not only show more fast corrective steering wheel

movements and larger deviations from the desired trajectory, but

also they are even less likely to comply with the speed limit.

Over the last two decades or so, several methods and strategies

have emerged that greatly aid in reducing the trauma caused by

traffic accidents, such as, teaching drivers how to manage their

exhaustion by taking the necessary breaks (Çivik and Yüzgeç,

2023). Subjective measurements, including self-assessment of one’s

own state of exhaustion, are necessary for this. Drivers can identify

when they are feeling sleepy and when they are likely to fall

asleep, according to a study (Williamson et al., 2014). While

self-assessment of sleepiness is a moderately effective first coping

strategy, it is insufficient to completely eradicate sleepiness-related

road trauma; as such, further safety and warning systems must

be established immediately. By warning drivers of their sleepiness

before accidents happen, technological advancements have the

potential to dramatically lower the number of injuries and fatalities

related to traffic accidents (Albadawi et al., 2023).

For instance, a study by Blommer et al. (2006) found that a

warning signal considerably increases the driver’s lane departure

reaction time. The authors also came to the conclusion that there

is no hard-and-fast rule regarding how these warning signals are

issued. In other words, visual, audible, and tactile warnings are all

equally effective. The state of the art approaches for driver fatigue

detection fall mainly into three broad categories: i.e., physiological

measures, vehicular measurements and computer vision methods.

Steering wheel movements (Sayed and Eskandarian, 2001) and

deviations from lane position (Lawoyin, 2014) are two examples of

driving behavior metrics that are calculated in traditional vehicle-

based measurement methods (Hegde et al., 2020) to identify

abrupt or abrupt changes in driving direction. Another method

for identifying shifts in a driver’s level of awareness is to keep

an eye on and measure certain internal indicators, like heart rate

variability (Tsuchida et al., 2010), or brain activity (King et al.,

2006).

Physiological measurement techniques, however, are frequently

less practical in practice than vehicle-based and computer vision

approaches because they require multiple sensors (Bakheet and

Al-Hamadi, 2021). In this context, it is significant to remember

that the primary drawback of physiological sensors is that they

are invasive, which means that they are never suitable for use

in a production vehicle. Artificial neural network (ANN) based

image processing methods have been (and are) successfully used

to address a variety of traffic safety issues [such as traffic safety

analysis of toll booths (Abdelwahab and Abdel-Aty, 2002) and

driver behavior changes (Wijnands et al., 2018)]. Additionally,

these methods have shown to be the best architectures for a variety

of visual recognition tasks (Abd El-Mageed et al., 2024). The

detection of driver drowsiness has garnered significant attention

in computer vision and pattern recognition in recent years. An

automated system for detecting fatigued driving was introduced

by Park et al. (2017). The system recognizes each frame in

a captured driver video sequence as drowsy or not by using

three pre-trained deep networks (i.e., AlexNet, FlowImageNet, and

VGG-FaceNet) and two ensemble strategies (both independently

averaged and feature-fused architectures). Similarly, the authors

of Huynh et al. (2017) proposed a method to detect driver

drowsiness by enhancing supervised learning by utilizing deep 3D

neural networks in conjunction with a boosting framework for

semi-supervised learning.

Jabbar et al. (2018) present a deep learning technique for

identifying fatigue driver in real-time. The technique can be

conveniently articulated into Android apps and with a high

accuracy. The compression of a heavy base model into a light one is

the main contribution of this work. Furthermore, this method uses

facial feature detection (key points) to create a minimized network

structure that determines whether the driver is sleepy. In Lenskiy

and Lee (2012), a novel color and texture segmentation algorithm

was employed to present an eye blink detection technique that

extracts facial features using an ANN-based face segmentation

algorithm. The extracted features are then used to perform iris

tracking and eye blink detection. In this method, an eye closure

lasting more than 220 milliseconds is classified as sleepy or drowsy.

Moreover, Harada et al. (2013) provide an assessment model for

cognitive distraction state that mainly makes use of eye-tracking

data and recurrent neural networks. To predict a driver’s state of

distraction, eye-tracking data are used to automatically compute

the pupil diameter which is then fed into a recurrent neural network

model.

In Pauly and Sankar (2015), the authors presented a technique

for detecting drowsy drivers that relies on blink detection with

the use of a typical HOG feature and an SVM classifier. Through

evaluation on their own dataset, the technique achieved a total

accuracy of 91.62% by comparing the prediction of the developed

system with that of a human observer. In addition, in Moujahid

et al. (2021), a facial monitoring based framework for fatigued

driver detection uses a succinct facial texture description to

discover highly discriminative sleepiness traits. In a similar vein,

Singh et al. (2018) demonstrate the application of linear SVM

classification and HOG feature extraction to identify impending
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FIGURE 1

Block diagram of the proposed drowsy driving prediction

methodology.

driver fatigue and provide enough time for an accident to be

avoided. The remainder of the paper is structured as follows.

Section 2 details the architecture of the proposed methodology

for driver drowsiness prediction. In Section 3, the experimental

setup is presented and the evaluation results are fully reported

and discussed. Finally, in Section 4, the paper closes with a short

conclusion as well as a discussion of limitations and directions for

future research.

2 The proposed methodology

This section presents in details the methodology of the

proposed system for drowsy driving prediction. The main system

steps are shown by a functional block diagram in Figure 1. The

following key steps gives a quick description of the technique used

in the suggested approach to identify driver drowsiness. Initially,

the adaptive contrast-limited histogram equalization technique is

applied to preprocess the diver’s image taken with a dashboard

mounted camera. This would help in the illumination intensity

fluctuations and then improves the image’s overall brightness and

contrast. An adaBoost classifier depending on Haar-like basic

features is then employed to identify the driver’s face region (Viola

and Jones, 2001). In addition, a simple but efficient technique

utilizing an enhanced Active Shape Model (ASM) is applied to

automatically locate the facial regions of interest. An effective

feature extraction scheme based on Fisher’s quantum information

is then applied for extracting a set of potentially discriminative

local Gabor facial features from the detected driver facial regions.

FIGURE 2

Basic Haar-like features: (a) edge feature, (b) linear feature, and (c)

surrounded feature.

An invariant Fisher-Gabor feature descriptor that is most robust

to scale, rotation, and illumination invariance is thus built from

the extracted facial features. Finally, the Fisher-Gabor descriptor

is fed to a latent-dynamic conditional random field (LDCRF)

classification model to predict the driver status (i.e., fatigued or

not). The following subsections include further details about each

module of the architecture of the proposed driver drowsiness

prediction system.

2.1 Image preprocessing

The input image that is originally captured by a car dashboard

camera is first smoothed using, e.g., a 2DGaussian blur filter (a 5×5

pixel neighborhood, standard deviation of 0.5) in order to eliminate

(or reduce) distracting noises and undesired dark spots while

maintaining original image spatial structures. An adapted contrast-

limited histogram equalization technique (Bakheet and Al-Hamadi,

2017; Gomaa et al., 2022; Bakheet and Al-Hamadi, 2020a) is

then applied, where each of the color channels is independently

equalized, resulting in an even more lighting-compensated image

which eventually acts as an input to the subsequent face detection

model. One can argue that significantly reducing the resolution

of the light-compensated image following the light compensation

procedure is one technique to increase the computing speed of the

detection framework (Bakheet and Al-Hamadi, 2020b).

2.2 Facial landmark localization

As previously mentioned, facial landmark detection and

localization (also well-known as region of interest–ROI) that seek

to pinpoint the location of the driver facial features represent the

first and most important step in creating and putting into practice

an effective framework for drowsy driving prediction. In this work,

a rapid facial landmark localization technique is applied, whereby

the driver facial landmarks are located using a collection of Haar

like features to train an improved adaBoost classifier (see Figure 2).
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FIGURE 3

Cascaded structure of AdaBoost classifier for facial landmark

identification.

In this detection technique, the corrected image is first divided

into several rectangular regions, since a driver’s face can be found

in the image at any position and scale. As shown in Figure 2,

the features that are being used are characterized by various

configurations of bright and dark areas. The difference between

the total intensity of pixels in the bright and dark sections for

each instance determines the feature value. Due to their quick

training time, Haar-like features hold great potential for real-time

facial landmark identification. In essence, a cascaded adaBoost

classifier is a strong (non-linear) classifier built from an ensemble of

multiple weak (linear) classifiers, each of which based on adaBoost

training framework. A face landmark region is found when an

eligible sample goes through the cascaded adaBoost classifier.

While samples from non-facial landmarks are rejected, nearly all

samples from the facial landmark regions are accepted. Figure 3

below illustrates waterfall-type classification for facial landmark

identification using the adaBoost algorithm.

An enhanced Active Shape Model (ASM) technique based on

statistical learning models has the ability to quickly and effectively

extract pertinent facial characteristics for eye-mouse area detection.

The ultimate purpose of active forms in this technique is to match

the model to each fresh image. This is achieved by training the ASM

on a set of precise points that reflect contours of facial features, that

are manually annotated with the points of interest related to those

features. Next, the primary components of the training dataset

are identified using Principal Component Analysis (PCA). Figure 4

illustrates the detection and localization process of the eye-mouse

areas in the image following the establishment of the ASM. Models

can be iteratively matched using a cost function in an iterative

strategy to the disparity between the actual contour and the model.

2.3 Feature extraction

Information is frequently taken from images using Gabor

wavelets, which are extracted at various frequencies and

orientations (Grigorescu et al., 2002). This section explains

the process of detecting distinctive key points or features in

an image for facial landmark representation and constructing

an invariant texture descriptor [i.e., Fisher-Gabor descriptor

(FGD)] that is robust to changes in scale, rotation, and affine

transformations.

2.3.1 2-D Gabor filters
Gabor wavelet-based texture features have been applied

extensively and successfully in many different fields, such as signal

processing, object recognition, and data clustering, because of

their incredibly unique qualities. In the frequency and spatial

domains, Gabor kernels (Lades et al., 1993; Jeon et al., 2021)

are optimally localized and they show favorable properties of

capturing orientation selectivity and spatial localization. As a result,

they are able to offer target object discriminative characteristics

in images. The representation of a 2-D Gabor filter is a shifted

Gaussian in the frequency domain and a Gaussian modulated

sinusoid in the spatial domain. In order to preserve information

regarding spatial relations and spatial frequency structure, digital

images can be correctly characterized using the Gabor wavelet

representation (Malik and Perona, 1990). The expression for a

family of Gabor wavelets (also called filters or kernels), can be

potentially described as the product of a complex plane wave with

an elliptical Gaussian envelope:

ψj(z) =
|kj|

2

σ 2
e
−

|kj |
2 |z|2

2σ2

[

e−ikjz − e−
σ2

2

]

(1)

where | · | represents the norm operator. This yields the wave

vector kj:

kj = kve
−iφµ , kv = 2−

v+2
2 π ,φµ = µ

π

8
(2)

where, the direction and scale of Gabor kernels are denoted by

µ and v of the index j = µ + 8v, respectively. Two-dimensional

plots for the real parts of a collection of 40 Gabor kernels with eight

orientations and five frequencies are displayed in Figure 5.

2.3.2 Local fisher-Gabor features
A group of Gabor kernel coefficients with different frequencies

and orientations is called a jet at each pixel. Using a wavelet

transform, the jet holding the Gabor convolution responses at each

z pixel in an image I may be represented as follows:

Jj(z) =

∫

I(ź)ψj(z − ź)d2ź (3)

Equation 5 above illustrates how to obtain Gabor features by

convolving an image with a set of suitable Gabor filters, or kernels of

Gaussian functions modulated by sinusoidal plane waves, applied

at different points in the image. For the purpose of extracting local

features from facial regions (also known as regions of interest, or

ROIs), we start by using a filter bank consisting of 40 log-Gabor

filters (eight orientations and five scales):

φu =
π

8
u, u = 0, . . . , 7

kv = 2−
v+2
2 π , v = 0, . . . , 4 (4)
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FIGURE 4

An exemplar snapshot of facial region localization in the drowsy driving detection system.

Formally, the produced Gabor features at (x, y) location are

obtained by convoluting the bank of all 40 Gabor filters with a pixel

at (x, y) in the facial region:

s = {9u,v(x, y) : u ∈ {0, . . . , 7}, v ∈ {0, . . . , 4}} (5)

Figure 6 shows the convolution results of a sample face area

with two Gabor filters with two orientation angles of π4 and π
2 . In

general, 5× 8×m× n = 40mn features will be obtained by using a

set of 40 Gabor filters in the final convolution of a patch picture of

sizem× n.

Since Gabor filter settings are usually chosen by

experimentation, a significant portion of the resulting features

(such as strongly correlated features) probably include a significant

amount of duplicated/irrelevant information. Reduced influence

of redundant information transmitted among features may

be achieved by de-correlating the derived Gabor features and

efficiently reducing their dimension while maintaining good

detection performance using an efficient feature selection

procedure (Gjoreski et al., 2020). In many object identification and

classification tasks, most relevant statistical features (e.g., mean,

standard deviation, or energy) are commonly used to be extracted

from the Gabor filtered image. In this work, however, we take

a new strategy that proves to be highly beneficial for our goals

of selecting the most important features as well as reducing the

number of features. In achieving this goal, the outputs of Gabor

filters are first normalized in order to enhance the convolved image

with spatially dispersed maxima. Next, for each normalized Gabor

filter output, the non-extensive entropies and Fisher information

are calculated as follows,

H1(P) =
1

1− α
lg

[

∑

i

pαi

]

, α ≥ 0,α 6= 1

H2(P) =
1

α − 1

[

1−
∑

i

pαi

]

, α ≥ 0,α 6= 1 (6)

F(P) =
∑

i

(pi+1 − pi)
2

pi

where P is an estimate of the probability distribution obtained

from the Gabor response histograms, H1 and H2 are the Rényi

and Tsallis generalized formalisms of non-extensive entropies,

respectively, F is the Fisher information measure (Bakheet and Al-

Hamadi, 2017). It is crucial to note at this point that achieving

relatively acceptable detection performance is the primary driving

force for the use of such a method for feature selection, in addition

to the reduction of computational costs associated with the feature

extraction task. Furthermore, there is general consensus that in

many computer vision applications, local features offer significantly

more stability than global features because of their resilience

to geometrical transformations and occlusion. As a result, local
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FIGURE 5

Real part of 40 di�erent Gabor kernels.

features are commonly regarded as a surprisingly powerful tool for

representing objects.

2.4 Feature classification

The feature classification module of the proposed driver

drowsiness prediction system which differentiates between a fully

awake and mildly drowsy driver, is described in detail in this

section. Broadly speaking, in the proposed system, the classification

module’s main objective is to use the retrieved Fisher-Gabor

features to classify each driver image into one of two states—

drowsy or awake. The classification module primarily relies on

the availability of a set of instances (e.g., facial images) that

may serve as examples for the machine learning algorithm,

enabling it to learn how to accomplish the intended classification

task. Traditionally, this collection of previously identified (or

labeled) facial images is called the “training set” and then the

applied learning method is called “supervised learning.” Several

machine learning (ML) models, such as Artificial Neural Networks

(ANN), Bayesian Networks (BN), Support Vector Machines

(SVM), k-Nearest Neighbors (k-NN), and Conditional Random

Fields (CRF), are available in the literature for the current

task of classifying facial expressions. In this work, we decide

to carry out the classification task using the latent-dynamical

CRF (LDCRF) model. The LDCRF model is characterized as a
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FIGURE 6

Gabor filter responses for a facial region at orientations of (a) π
4
and (b) π

2
.

typical discriminative probabilistic latent variable model that can

successfully and consistently learn dynamics between class labels

and represent the sub-structure of a class label, based on its

inherent dependence on CRFs. Moreover, it’s been shown that the

LDCRF model performs substantially better in several large-scale

object recognition applications when compared to several machine

learning models, such as naive Bayes, hidden Markov models, and

hidden Semi-Markov models (Deufemia et al., 2014). Additionally,

it could do a better job of assimilating pertinent background and

successfully fusing it with visual observations.

The LDCRFmodels were essentially introduced as an extension

of conventional CRF models to discover the hidden interactions
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FIGURE 7

Graphical representation of LDCRF model, where hj denotes the

hidden state assigned to the j-th observation xj, and yj is the class

label of xj. The filled gray nodes correspond to the observed model

variables.

between features. These models are powerful in classifying and

segmenting sequential data; they are conceptualized as undirected

probabilistic graphical models. As a result, windowing the signal is

not necessary because they are immediately relevant to sequential

data. Every label (or state) in this way points to a particular

facial instance. With a class label assigned to every observation,

LDCRF models may effectively learn and categorize facial patterns

in unsegmented face pictures. Additionally, during training and

testing, the LDCRF models are able to accurately infer facial

patterns.

In formal terms, the main goal of the LDCRF model. Morency

et al. (2007) is to discover a direct mapping between a series of

observations (or raw features) x = 〈x1, x2, . . . , xm〉 and a series

of class labels y = 〈y1, y2, . . . , ym〉, where each label yj for the j-th

observation indicates a member in a class label set Y and a feature

vector φ(xj) ∈ R
d represents each image observation xj. Now, let h

= 〈h1, h2, . . . , hm〉 for each sequence represent a collection of latent

substructure variables that will be “hidden” in the created model,

since they aren’t observed in the training data, as shown in the

following Figure 7.

In light of the aforementioned definitions, the formulation of a

latent-conditional model is given by

p(y|x, θ) =
∑

h

p(y|h, x, θ)p(h|x, θ) (7)

where the set θ denotes the ideal model parameters. Now,

assuming a set of training examples, each has its appropriate

class value {(xi, yi), i = 1 . . . n}, the training technique aims

at learning the optimal model parameters θ from the objective

function (Lafferty et al., 2001) defined as:

L(θ) =

n
∑

i=1

log p(yi|xi, θ)−
1

2σ 2
‖θ‖2 (8)

where n is the number of training samples in this case. It is

important to note that the above Equation 8 has two terms on the

right-hand side: the log-likelihood of the training data is the first

term, and the log of a Gaussian prior with variance σ 2 is the second

one that can be written as follows,

p(θ) ∼ exp(
1

2σ 2
‖θ‖2) (9)

The optimal model parameters can be estimated by maximizing the

objective function iteratively using a gradient ascent technique:

θ∗ = argmax
θ

L(θ). (10)

The trained model can subsequently apply inductive inference to

predict unknown (test) data after the parameters θ∗ are learnt:

y∗ = argmax
y

p(y|x, θ∗) (11)

where y∗ is a predicted label for a new sample x that has not

been observed.

3 Experimental results

In order to validate the superior performance of the proposed

framework for driver drowsiness detection over competing state-

of-the-art techniques in the literature, a variety of experimental data

are shown and analyzed in this section. As per many previously

published methods (Khushaba et al., 2011; Vu et al., 2019), there

are currently relatively few publicly available datasets for thorough

performance evaluation of various methods for predicting driver

sleepiness, especially those that include information on driver

concentration in realistic driving circumstances (Ramzan et al.,

2019). However, establishing a meaningful dataset for realistic

driver drowsiness detection that can be utilized to fully train the

proposed system is very challenging and risky. The only dataset

that is made accessible to the public and includes annotations

for driver fatigue, head, eye-pair, and mouth states is the NTHU

dataset for drowsy driving detection (NTHU-DDD). For this

reason, we conduct a set of extensive experiments on this dataset to

confirm the efficacy of the proposed framework for drowsy driving

detection.

The academic NTHU-DDD dataset (Weng et al., 2016)

collected by the NTHU Computer Vision Lab at National Tsing

Hua University was first published in the 2016 Asian conference

on computer vision (ACCV) on driver drowsiness detection from

video. The video sequences in the NTHU-DDD dataset were

captured in AVI format at a spatial resolution of 640 × 480 pixels,

using a high-speed camera operating under active infrared (IR)

light. Approximately nine and a half hours is the total duration

of all video streams in the NTHU-DDD dataset. The dataset

comprises 36 subjects of different ethnic backgrounds who were

twice filmed (both with and without spectacles/sunglasses) in a

range of challenging simulated driving settings, including slow

blinking, normal driving, yawning, laughing uncontrollably, falling

aslzeep, etc., in both daytime and nighttime illuminations. While

being filmed, the participants were instructed to make specific

facial expressions while playing a racing game with a mimicked

steering wheel and pedals while seated in a vehicle chair. In

addition, five scenario variations, i.e., BareFace, Glasses, Sunglasses,

Night-BareFace and Night-Glasses were used to record the dataset
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TABLE 1 Comprehensive results for the detection system’s performance

on the NTHU dataset.

Scenario Drowsiness Non-drowsiness

F1-score (%) F1-score (%) AC (%)

Bareface 98.61 95.17 97.69

Glasses 97.49 86.52 96.87

Sunglasses 96.98 84.11 94.92

Night-BareFace 98.72 90.57 98.82

Night-Glasses 99.36 98.86 99.83

Average 98.23 91.05 97.63

streams in a simulated setting. The dataset streams of the first three

situations were recorded at a frame rate of 30fps, while the other

dataset streams were recorded at a frame rate of 15fps. Sample

snapshots of the NTHU-DDD dataset are displayed in Figure 8.

For the purpose of assessing the proposed detection framework,

we divide the complete NTHU dataset in our experiments into

two separate subsets, i.e., test set and training set. There are 20

video stream samples from four participants in the test set and

356 video sequences from 18 subjects in the training set. The

training set is further divided into streams from four participants

(used for validation) and the other 14 subjects (used for training).

To statistically guarantee the consistency between training and

test data, all chosen test clips are re-sampled to 15 frames

per second. The evaluation process of the performance of the

suggested detection model is quantified using two conclusive

metrics: Accuracy and F1-score (namely, the harmonic mean of

both precision and recall scores) that are computed for all simulated

driving scenarios. These metrics are given as follows,

AC =
TP + TN

TP + FP + FN + TN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1− score = 2×
precision× recall

precision+ recall
(12)

where true positive (TP) and true negative (TN) represent

the number of correct drowsiness and correct non-drowsiness

predictions, respectively. Likewise, false positive (FP) and false

negative (FN) refer to the number of incorrect drowsy driver

predictions (type-I errors) and incorrect awake driver predictions

(type-II errors), respectively. Table 1 provides the accuracy and F1-

score metrics of the proposed drowsy driving detection framework

for all driving scenarios in the NTHU-DDD dataset.

Results in the above table reveal a series of interesting

observations First, the suggested framework obtains an overall

accuracy of 97.63% for drowsy driving prediction which is quite

promising and competitive with that obtained by other state-of-

the-art methods proposed in the literature. This is possibly the

most amazing statistics that stands out from the table. Furthermore,

based on these findings, it is plausible to infer that the viability

and resilience of the suggested framework for real-time traffic

monitoring would be considerably enhanced by a high degree of

TABLE 2 Quantitative comparison with various state-of-the-art methods.

Method AC (%)

Proposed method 97.63

Alajlan and Ibrahim, 2023 96.67

Albadawi et al., 2023 96.00

Gomaa et al., 2022 97.31

Jeon et al., 2021 94.20

Gjoreski et al., 2020 94.00

Vu et al., 2019 84.81

accuracy in the sleepiness detection job in addition to noticeably

low processing costs.

Furthermore, we offer performance comparison of the

suggested detection technique against a number of cutting-edge

techniques (Alajlan and Ibrahim, 2023; Albadawi et al., 2023;

Gomaa et al., 2022; Jeon et al., 2021; Gjoreski et al., 2020; Vu

et al., 2019) in terms of detection accuracy in order to evaluate the

competitive performance of the applied methodology. A summary

of this comparison is given in Table 2. It is argued, based on the

comparison, that the suggested detection system is able to offer the

real-time traffic monitoring guarantees, while demonstrating better

performance than other cutting-edge methods. It is noteworthy to

emphasize that the approaches compared (below in Table 2) were

all based on essentially identical experimental settings and the same

dataset. Consequently, it is most likely that the comparison is highly

reliable and insightful.

We can thus draw the conclusion that, while maintaining its

real-time guarantees, the proposed prediction framework has the

potential to enhance the performance of driver sleepiness detection

systems, as demonstrated by the given experimental findings.

Finally, it is worth to point out that all programs/procedures

for implementing the proposed technique were coded and run

usingMicrosoft Visual Studio 2019 and OpenCV version 4.5 (Open

Source Computer Vision Library: http://opencv.org).

The above results illustrate that the detection system can

function with high reliability and efficiency, achieving real-

time performance. This can be attributed to the combination

of custom C++ functions and highly efficient algorithmic

implementations found in the OpenCV library. A PC with Intel

(R) Core(TM) i7-8750 U CPU 2.8GHz, 8GB RAM, running

Windows 10 Pro 64-bit OS was used for carrying out all

experiments involving extensive training, validating and testing the

prediction model.

4 Conclusions

This paper has presented an automated vision-based system

for real-time driver fatigue prediction, where several visual ocular

parameters, such as eyebrow shape, eye blinking, eye closure,

and other precisely constructed facial are used as robust fatigue

indicators. Furthermore, local Gabor facial features are extracted

from a driver image using Fisher’s quantum information From

the extracted features, a Fisher-Gabor feature descriptor that

is quite robust to changes in illumination and invariant to
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FIGURE 8

Sample frames of the public NTHU-DDD dataset videos (Weng et al., 2016).

rotation and scaling is constructed. The Fisher-Gabor feature

descriptor is then fed to an LDCRF classification model to

predict whether the driver is fatigued or drowsy. When evaluated

on the benchmark NTHU dataset incorporating a large and

diverse collection of driver facial images, the presented system

delivers promising detection results that compare favorably with

those previously reported in the literature, without sacrificing

computational guarantees. The proposed system offers real-

time monitoring capabilities and can be integrated into various

applications, such as in-vehicle driver assistance systems or

workplace safety monitoring. It can thus play a crucial role in

enhancing safety and reducing the risk of accidents caused by

drowsy or fatigued individuals.
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