
TYPE Review

PUBLISHED 09 April 2025

DOI 10.3389/fcomp.2025.1437664

OPEN ACCESS

EDITED BY

Sokratis Makrogiannis,

Delaware State University, United States

REVIEWED BY

Aili Wang,

Harbin University of Science and Technology,

China

Manoj Kumar,

University of Wollongong in Dubai,

United Arab Emirates

*CORRESPONDENCE

Teerayut Horanont

teerayut@siit.tu.ac.th

RECEIVED 24 May 2024

ACCEPTED 03 March 2025

PUBLISHED 09 April 2025

CITATION

Lamichhane BR, Srijuntongsiri G and

Horanont T (2025) CNN based 2D object

detection techniques: a review.

Front. Comput. Sci. 7:1437664.

doi: 10.3389/fcomp.2025.1437664

COPYRIGHT

© 2025 Lamichhane, Srijuntongsiri and

Horanont. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

CNN based 2D object detection
techniques: a review

Badri Raj Lamichhane, Gun Srijuntongsiri and

Teerayut Horanont*

School of Information, Computer and Communication Technology, Sirindhorn International Institute

of Technology, Thammasat University, Bangkok, Thailand

Significant advancements in object detection have transformed our

understanding of everyday applications. These developments have been

successfully deployed in real-world scenarios, such as vision surveillance

systems and autonomous vehicles. Object recognition technologies have

evolved from traditional methods to sophisticated, modern approaches.

Contemporary object detection systems, leveraging high accuracy and

promising results, can identify objects of interest in images and videos. The

ability of Convolutional Neural Networks (CNNs) to emulate human-like vision

has garnered considerable attention. This study provides a comprehensive

review and evaluation of CNN-based object detection techniques, emphasizing

the advancements in deep learning that have significantly improved model

performance. It analyzes 1-stage, 2-stage, and hybrid approaches for object

recognition, localization, classification, and identification, focusing on CNN

architecture, backbone design, and loss functions. The findings reveal that while

2-stage and hybrid methods achieve superior accuracy and detection precision,

1-stage methods o�er faster processing and lower computational complexity,

making them advantageous in specific real-time applications.
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1 Introduction to object detection

Access to information occurs through a diverse array of channels, encompassing

both traditional and digital sources. Traditional sources include newspapers, magazines,

television, radio, books, libraries, and billboards, while digital sources comprise websites,

blogs, social media platforms, mobile applications, streaming services, and search engines.

When individuals encounter visual stimuli such as advertisements or traffic signs, the

ability to accurately identify the objects depicted and extract pertinent information is

crucial. Effective information extraction guides individuals along appropriate pathways

and mitigates the risks associated with confusion or misinformation that may lead to

erroneous conclusions. Consequently, meticulous and precise extraction of information

from images is of paramount importance in ensuring informed decision-making (Ardia

et al., 2020).

Image detection represents an advanced computational technology that processes

visual data to identify and locate specific objects within images. This methodology differs

from image classification, which categorizes entire images without delineating object

locations. Image detection focuses on recognizing the presence and spatial positioning of

objects, often utilizing bounding boxes to indicate their locations within a given frame.

The significance of image detection spans multiple domains due to its ability to automate

and enhance processes that previously relied on human visual assessment. For instance,
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image detection improves operational efficiency in manufacturing

quality control by enabling the rapid and accurate inspection

of numerous components. In autonomous driving applications,

it is essential for detecting pedestrians, traffic signs, and other

vehicles, thereby ensuring safety on roadways (Dong et al., 2018).

In healthcare settings, image detection is critical for identifying

tumors or abnormalities in medical imaging, leading to improved

diagnostic accuracy and timely interventions. Furthermore,

surveillance systems leverage image detection technologies to

monitor environments for unauthorized access or suspicious

activities, thereby enhancing security measures. Therefore, image

detection provides vital insights that enable systems to respond

appropriately to their visual contexts, thereby highlighting its

crucial role in contemporary technological applications and

societal functions (Hammoudeh et al., 2022). This technology

uses advanced machine learning and deep learning algorithms

to improve safety across various domains by accurately detecting

objects and their environments (Guan, 2017).

1.1 Object identification in image

For a comprehensive understanding of visual data, the

classification of images and object detection methodologies

constitute critical paradigms in computer vision. The precise

identification and spatial localization of objects within digital

images or video streams enable a nuanced understanding

of content across diverse computational applications. This

fundamental interpretive framework encompasses multifaceted

computational processes, including but not limited to object

trajectory analysis, pose estimation, instance-level object

segmentation, and sophisticated inventory management strategies

(Dong et al., 2018; Hammoudeh et al., 2022; Dundar et al., 2016).

Traditional object detection methodologies are characterized

by their ability to operate without necessary historical training

data, rendering them predominantly unsupervised. Seminal

approaches such as the Viola-Jones algorithm (Viola and Jones,

2001; Li et al., 2012), the Scale-Invariant Feature Transform (SIFT)

(Lowe, 1999), and histogram-based techniques (Freeman

and Roth, 1995; Dalal and Triggs, 2005) exemplify this

methodological category. Contemporary research, however,

demonstrates the exponential efficacy of supervised learning

paradigms leveraging sophisticated deep learning architectures,

which have become predominant in real-world computational

scenarios. Within this context, machine learning and advanced

artificial intelligence techniques are strategically deployed to

comprehend and interpret visual information (Hammoudeh

et al., 2022). These sophisticated computational tools enable

precise object localization and identification, finding critical

applications in multidimensional domains such as intelligent traffic

monitoring systems, comprehensive surveillance and navigation

frameworks, and advanced biometric recognition technologies

in smartphones and autonomous vehicular systems (Guan, 2017;

Tang et al., 2023; He et al., 2015a). Figure 1 provides a schematic

representation of the intricate object detection and classification

methodological landscape.

The paradigmatic evolution of object detection methodologies

is significantly driven by the sophisticated integration of advanced

deep learning architectures with supervised learning algorithmic

frameworks. This intricate symbiosis represents a pivotal

mechanism for optimizing object detection methodologies,

substantially augmenting the computational capacity to precisely

identify and spatially localize objects within digital imagery and

video streams. Contemporary deep learning neural networks,

exemplified by Convolutional Neural Networks (CNN) (Sun,

2024), Region-based Convolutional Neural Networks (R-CNN)

(Girshick et al., 2014a), You Only Look Once (YOLO) (Redmon

et al., 2016), and Residual Networks (ResNet) (He et al., 2016b,a),

have made transformative contributions to the field of computer

vision. These advanced computational models demonstrate

exceptional performance by strategically integrating multi-scale

feature representations (Zhang et al., 2019) and iteratively

refining candidate object bounding box delineations (Yao et al.,

2022) during object identification processes. Neural network

algorithmic frameworks, which systematically build upon

established architectural paradigms (Dundar et al., 2016) and

advanced learning systems, have initiated a global transformation

in computational object detection capabilities (Hammoudeh

et al., 2022; Guo et al., 2019). Despite these remarkable

advancements, significant computational challenges remain

in fully recognizing objects across heterogeneous imaging contexts,

which include varying illumination conditions, diminutive

object dimensions, partial occlusions, diverse viewing angles,

complex poses, and varying spatial configurations. Consequently,

the scholarly discourse has increasingly focused on object

localization methodologies, with researchers actively seeking

innovative solutions to address these inherent computational

complexities (Guan, 2017). The primary scholarly objective is to

achieve unprecedented accuracy in object identification through

cutting-edge computational tools. To enable a comprehensive

understanding, the conventional object detection framework can

be systematically outlined in three fundamental computational

stages: the strategic identification of salient informative regions,

sophisticated feature extraction mechanisms, and subsequent

probabilistic classification processes. This modular computational

architecture significantly enhances object recognition capabilities

by employing a rigorous, multi-stage approach to identifying and

taxonomically classifying objects within digital imagery (Girshick

et al., 2014b).

The computational process of object detection involves a

sophisticated, multi-staged methodological framework, with

each stage playing a crucial role in the precise identification and

spatial localization of objects in digital imagery. Informative

region selection represents the first computational phase,

strategically focusing on identifying spatially salient regions

with a high probabilistic likelihood of containing target objects.

This critical stage is enabled through advanced computational

methodologies such as selective search algorithms and Region

Proposal Networks (RPNs), which generate candidate regions

through a comprehensive analysis of image chromatic intensities,

textural characteristics, and spatial configurations (Girshick

et al., 2014a,b). Bounding box representations are systematically

employed to outline these potential object zones, providing

a precise cartographic representation of the object’s spatial

positioning within the digital image. The subsequent phase, feature

extraction, involves the sophisticated retrieval and transformation

of relevant computational data from the selected bounding box
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Object detection and classification.

regions. Convolutional Neural Networks (CNNs) function as

computational transformative mechanisms, converting raw image

features into standardized representational matrices that enable

the extraction of intricate spatial and hierarchical characteristics

essential for effective object detection. Established computational

techniques, including Scale-Invariant Feature Transform (SIFT)

(Lowe, 1999), HOG (Dalal and Triggs, 2005), and Haar-like

feature extraction methodologies (Cristianini and Shawe-Taylor,

2000), are strategically deployed during this computational

phase to enhance feature representation and discriminative

capabilities. The conclusive stage, Classification, involves the

probabilistic assignment of taxonomical class labels to candidate

object regions predicated upon the extracted computational

attributes. This process entails identifying specific object categories

such as anthropomorphic entities, vehicular structures, arboreal

organisms, and urban infrastructural elements. The classification

mechanism is realized through sophisticated classifiers embedded

within fully connected neural network architectures, which

leverage the extracted computational characteristics as input to

determine the most probable taxonomical designation for each

detected object. Canonical classification algorithms, including

Support Vector Machines (SVM) (Cristianini and Shawe-Taylor,

2000; Awad et al., 2015), AdaBoost ensemble learning frameworks

(Freund et al., 1999), and Deformable Part-based Model (DPM)

networks (Viola and Jones, 2001), represent pivotal computational

paradigms employed in this sophisticated classificatory process.

These meticulously orchestrated computational stages collectively

constitute a comprehensive and robust methodological

framework for executing sophisticated object detection

across diverse computational and visual analysis applications

(Chhabra et al., 2024).

This observation highlights the critical need for improvement

to increase the effectiveness of real-time object detection systems.

Solutions tailored for hardware compatibility rely on discriminant

feature descriptors that involve minimal computational overhead

and shallow, easily trainable architectures. This is achieved by

adopting a pragmatic methodology grounded in reality. However,

these techniques may become less reliable when recognizing

and predicting essential items is crucial. Finding the right

balance between accuracy and efficiency remains essential for

successfully using these methods. Deep learning approaches have

seen significant advancements through a result-driven focus. In this

study, we focus on object recognition methods using CNNs, which

are renowned for their ability to replicate human visual intelligence.

We examine one-stage, two-stage, and hybrid approaches to image

recognition, localization, classification, and identification to gain

a better understanding of the methodologies used by CNN-based

object detection systems.We illustrate the benefits of two-stage and

hybrid methods regarding accuracy and detection precision while

acknowledging the effectiveness of one-stage methods concerning

processing speed and computational simplicity. This analysis

considers the architecture, backbone structure, and performance

metrics of these approaches, emphasizing the need to strike a

balance between accuracy, efficiency, and resource usage. Our

review aims to facilitate informed decisions when designing and

implementing CNN-based object identification systems (Zhao

et al., 2024; Aggarwal and Kumar, 2021).

This study focuses on a brief discussion of object detection

techniques based on CNN. It begins with keymilestones illustrating

the developmental process, then dives into several deep-learning

object detection techniques utilizing a variety of benchmark

datasets. The study explores the hierarchical growth of CNN-based

detection strategies, focusing on the architecture of deep-learning

CNN models for both one-stage and two-stage object detection.

Additionally, it compares approaches based on computational cost,

time efficiency, accuracy, algorithmic adaptability, and significance

within and across detection stages for both CNN-based generic

and salient object detection architectures. The “Challenges and

Future Opportunities” section discusses potential ways to overcome

the existing obstacles in object detection, while the ’Conclusion

and Future Works’ section summarizes the study’s conclusions

and provides guidance for future research directions aimed at

advancing CNN-based object detection methodologies.

2 Key milestones in object detection
development

Detecting objects in images is a crucial step in the transition

from hand-crafted templates to advanced deep learning models.

Initially, there was a template-matching approach where image

patches were compared to predefined templates. Subsequently, the
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idea of designing manual features emerged, such as edges, colors,

and textures, which were developed for object identification. After

this period, the use of statistical methods for object recognition

gained popularity, which proved valuable in certain applications as

well (Zou et al., 2023). HOG (Dalal and Triggs, 2005), and SIFT

(Lowe, 1999) were prominent during this time. HOG divides an

image into blocks to calculate gradients, subsequently combining

these blocks with adjacent ones to produce gradient orientation

histograms that capture light and maintain invariance over broader

areas. While this method is effective for low-cost geometric

modifications and varying lighting, it is less effective in identifying

small objects or multiple objects within the same image. On the

other hand, SIFT examines an object’s surrounding areas and spatial

context, using edge detection or Laplacian filtering to identify

unique key points. The construction of SIFT descriptors relies on

histogram computation, with the Gaussian window defining core

regions, while key-point matching is performed using Euclidean

distance. SIFT provides robustness by carefully selecting key points

that generate descriptors, but it is susceptible to issues such as

occlusion and background clutter. Therefore, it must be used

with caution.

The early manual methods that relied on designed elements

such as colors and textures were constrained and rigid; therefore,

improvements were required. Furthermore, obstacles to accurate

object identification within images include overfitting, which

arises from issues with training data for algorithms, such as

large datasets and computational resources mentioned by Chen

et al. (2017). Deep learning became more famous for overcoming

these limitations after 2006 (Zou et al., 2023; Elgendy, 2020), as

it fully harnesses the extensive learning capacity of a network

structure. Thus, after 2010, there was a revolution in deep learning

methods, marking a pivotal shift toward robust convolutional

neural networks (CNNs). CNNs utilize deep learning-enabled

features to learn complex patterns from massive data, delivering

significant accuracy directly. The techniques employed, such as

AlexNet (Krizhevsky et al., 2017), GoogleNet (Szegedy et al.,

2016), and VGGNet (Simonyan and Zisserman, 2014), in the

two-stage detectors, such as R-CNN (Girshick et al., 2014a),

Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al.,

2015), were enhanced to improve accuracy and performance,

making them possible to work in real-time applications. The

milestone chart shown in Figure 2 presents the development

year alongside the corresponding architecture name. As deep

learning approaches expand their applicability in the real world,

they diversify techniques that address real challenges without

being constrained by their previous limitations. These diverse

fields include autonomous vehicles, robotics, medical imaging,

security, and more. Advanced deep learning methods revolutionize

object detection techniques, ushering in a new era of possibilities.

However, some challenges remain to unlock its full potential

(Elgendy, 2020).

3 Understanding deep neural
networks

Deep Neural Networks (DNNs) are computational models

inspired by the human brain, characterized by multiple

interconnected layers that excel at capturing complex data

patterns. These hidden layers enable hierarchical learning of

intricate relationships within data, making DNNs powerful tools

for addressing diverse and challenging tasks. Neurons in these

layers dynamically adjust weights and biases during training

to improve feature abstraction. Discrepancies between actual

and predicted values are minimized through gradient descent

optimization, ensuring improved performance (Krizhevsky et al.,

2012).

Various types of DNNs have been developed for specific

applications: Feedforward Neural Networks (FNN) are commonly

utilized for identification and recognition tasks (Ben Braiek and

Khomh, 2023); Convolutional Neural Networks (CNN) excel at

image processing tasks (Sun, 2024); Recurrent Neural Networks

(RNNs) are primarily used for time series data (Girshick et al.,

2014a); Long Short-TermMemory (LSTM) networks address issues

related to vanishing gradients in longer sequences (Hochreiter

and Schmidhuber, 1997); and Transformer Networks have gained

prominence in natural language processing tasks.

CNNs specifically target image recognition and processing. In

this context, models are trained using labeled datasets, enabling

them to effectively extract relevant information from test images.

The feature map technique highlights detected features and serves

as input for subsequent layers that progressively build a hierarchical

image representation. The fully connected layer then integrates

features from earlier layers, mapping them to specific classes and

playing a crucial role in image classification (Elgendy, 2020; Zou

et al., 2023).

Region-based CNNs (R-CNN) (Girshick et al., 2014a) combine

the strengths of CNNs with region-based approaches, significantly

enhancing object detection accuracy. Initially, R-CNN segments

an image into multiple proposals that may contain objects. A

CNN then processes these regions for feature extraction and

classification, further refining the final classification through

this process. Key variants include Fast R-CNN (Girshick, 2015),

which improves processing speed by sharing convolutional

features across regions, and Faster R-CNN (Ren et al., 2018),

which directly generates proposals to enhance both speed

and accuracy. Additionally, Mask R-CNN (He et al., 2017)

extends this framework to predict object masks for segmentation

tasks. LSTM networks (Hochreiter and Schmidhuber, 1997)

enhance learning dependencies within sequential data, thereby

improving performance on time series tasks through a network-

controlling mechanism that regulates information flow (Amjoud

and Amrouch, 2023).

In the realm of object detection, both generic object detection

(Girshick et al., 2014b) and salient object detection (Liu et al., 2015;

Vig et al., 2014) methodologies aim to identify and understand

objects within images. Generic object detection relies on deep

learning models to meticulously detect objects of varying sizes

when trained on labeled datasets; this includes applications such

as pedestrian and traffic sign recognition in autonomous vehicles.

Conversely, salient object detection mimics human attention

by prioritizing visually distinct objects based on contrast and

spatial arrangement attributes. This approach enhances tasks

such as robust vision, image compression, and segmentation by

emphasizing captivating elements within an image. Implementing

these complex algorithms requires extensive training on large
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FIGURE 2

Time-line of 2D focused object detection techniques.

datasets to continually improve object detection capabilities.

Consequently, deep learning methodologies have revolutionized

image editing techniques and significantly impacted various fields

reliant on image classification and object detection (Zhao et al.,

2019).

4 Exploring the architecture and
functionality of CNN

CNNs represent a powerful deep learning architecture

commonly used in various domains, including artificial

intelligence, natural language processing, computer vision,

and autonomous vehicles. As a dependable foundation for

image recognition and analysis, CNNs utilize a structured layer

arrangement that collaboratively processes and extracts meaningful

information from input data, particularly images. As illustrated in

Figure 3, the architecture encompasses several key components:

the input layer, pooling layers, convolutional layers, and fully

connected layers, each playing a role in extracting abstract features

from the image while facilitating sophisticated data interpretation

and analysis. This intricate interplay of layers enhances the model’s

capability to identify complex patterns, positioning CNNs at the

forefront of technological advancements in visual recognition

tasks.

4.1 Input layer

The input layer is the gateway that receives raw data,

establishing the foundation for subsequent network processing.

The input data can encompass various categories based on

availability and specific requirements. This may include image

data in a 3D map format with pixel values indicating width and

height, time series data such as stock market values in a 2D format

corresponding to time steps, or textual data fed into the network for

desired outputs. Pre-processing steps, including normalization, are

crucial for preparing the data to ensure it aligns with the network’s

processing capabilities. The primary role of the input layer is to

enable meaningful insights derived from the transfer of data during

the input stage.

4.2 Convolutional layers

The convolutional layer is a fundamental component where

most computations occur. It employs small grids, filters, or kernels

to detect specific patterns such as lines, curves, or shapes within

the receptive field. This multi-layered architecture of convolutional

layers progressively interprets the visual information embedded

in raw image data. To detect complex patterns and objects, each

successive layer extracts feature maps that inform the deeper layers

of the network.

4.3 Pooling layers

Pooling layers generate summary statistics for adjacent layers

by downsampling data while retaining essential information.

This process enhances object detection capabilities by providing

invariance to rotations and translations. Additionally, pooling

reduces memory consumption, manages computational costs and

weights, and mitigates overfitting. The most common pooling

methods include max pooling and average pooling. In max pooling,

the highest value within a specified region of the input feature

is selected as the output for that region, thereby emphasizing

prominent features. Conversely, average pooling calculates the

average value from a specific region of the input feature map to

produce a smoother representation of features within that region.

This approach aids in locating objects in images while considering

their overall appearance.
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Convolution neural network basic architecture (Buckner, 2019).

4.4 Activation layers

Activation layers are critical components that enable CNNs

to learn non-linear transformations of complex patterns for

object detection tasks. These layers capture subtle relationships

between features, leading to advanced models with enhanced

generalization capabilities. As illustrated in Table 1, popular

activation functions include ReLU (Fukushima, 1975), Tanh

(Hereman and Malfliet, 2005), Leaky ReLU (Bai, 2022), ELU

(Clevert et al., 2015), Sigmoid (Ramachandran et al., 2017),

and SELU (Zhu et al., 2023), each with unique characteristics

(Nwankpa et al., 2018). By leveraging diverse activation

functions, CNNs can effectively address more challenging

object detection tasks while retaining resilience and adaptability.

These activation layers are essential for enhancing the network’s

ability to recognize intricate patterns and generate accurate

predictions, ultimately improving performance in object detection

by modeling and interpreting complex relationships within

the data.

4.5 Fully connected layers

Fully Connected Layers (FCL) are integral components of

CNNs, designed to connect neurons across different layers.

Comprising neurons, weights, and biases, these dense layers serve

as essential mechanisms that transform extracted information

into a format that can be meaningfully interpreted. The FCL

facilitates complex information sharing by integrating features

according to the specific nature of the task, whether classification

or regression. Ultimately, a single neuron representing the expected

output emerges as the final result of a fully connected layer. The

structure and functionality of FCLs are illustrated in Figure 3.

Fully connected layers enhance the network’s ability to comprehend

intricate patterns by acting as a bridge between feature extraction

and decision-making. The close interconnectivity of neurons

within these layers enables CNNs to excel in object detection

tasks, effectively synthesizing information from various features to

inform predictions (Alzubaidi et al., 2021).

4.6 Architectural backbone network

The backbone architecture of a neural network is its

fundamental structure, forming the basis for models, particularly

in deep learning applications utilized for tasks such as image

processing. The core of CNNs is composed of layers designed

for hierarchical feature extraction. These layers may include

pooling, normalization, and convolutions. The backbone

architecture captures precise representations of incoming

data as it moves through the system, enhancing the network’s

capability to understand and handle complex information.

CNNs employ several well-known backbone networks, including

AlexNet (Krizhevsky et al., 2017), VGGNet (Simonyan and

Zisserman, 2014), ResNet (Residual Networks) (Choi et al., 2018),

InceptionNet(GoogLeNet) (Szegedy et al., 2016), MobileNet

(Sandler et al., 2018), and DenseNet (Huang et al., 2017).

4.7 VGGNet architecture

Simonyan and Zisserman (2014) proposed the VGG

architecture by significantly enhancing traditional CNN models.

This refined design achieved an impressive top-5 accuracy of

92.7% on the widely recognized ImageNet benchmark dataset,

demonstrating its effectiveness in large-scale image classification

tasks. A general diagram is shown in Figure 4. A key innovation

of the VGG architecture is the consistent use of 3x3 convolutional

filters throughout the network, reducing the overall parameter

count and ensuring architectural simplicity and coherence while

maintaining the ability to capture intricate features. The authors

presented two variants of this architecture, namely VGG16 and

VGG19, which comprise 16 and 19 layers of deep neural networks,

respectively (Nash et al., 2018).

4.8 InceptionNet (GoogLeNet)

A groundbreaking deep learning architecture, InceptionNet,

also known as GoogLeNet, was introduced by Szegedy et al. (2016).

This architecture addressed a critical bottleneck in traditional

models by allowing images of varying resolutions to be fed directly

into the network without extensive preprocessing. Designed

with computational efficiency in mind, InceptionNet achieves

superior performance in image classification tasks while optimizing

resource utilization. A defining feature of this architecture is

the introduction of inception modules, which integrate multi-

scale convolutions within a single layer and concatenate their

outputs. This approach facilitates the effective capture of local and

global features, enhancing the network’s ability to learn complex
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TABLE 1 Comparative analysis of activation functions in deep learning architectures.

Activation function Mathematical
representation

Benefits Limitations Optimal use cases

ReLU

(Fukushima, 1975)

f (x) = max(0, x) Computationally efficient,

Alleviates vanishing gradient issues

Susceptible to Dying ReLU

phenomenon

Widely adopted in various

architectures

Sigmoid

(Ramachandran et al., 2017)

f (x) = 1
1+e−x Produces binary-outputs (0 and 1) Vulnerable to vanishing

gradients, Saturation effects

Primarily for binary

classification tasks

Tanh

(Hereman and Malfliet, 2005)

f (x) = tanh(x) Outputs centered between -1 and 1,

Superior gradient behavior

compared to Sigmoid

Saturation effects at extremes Viable alternative to Sigmoid

function

Leaky ReLU

(Bai, 2022)

f (x) = max(λx, x) (λ is a

small positive constant)

Mitigates Dying ReLU issue,

Reduces vanishing gradient risk

More intricate than standard

ReLU

Effective in preventing

neuron inactivity

ELU

(Clevert et al., 2015)

f (x) ={
x if x ≥ 0

α(ex − 1) otherwise

(α is the leakiness parameter)

Produces smoother outputs

compared to ReLU, Prevents Dying

ReLU issue

Increased complexity relative

to ReLU

Suitable for deep neural

networks requiring robustness

SELU

(Zhu et al., 2023)

f (x) = λ · α · ex − α (λ and α

are constants)

Self-normalizing properties, Scaled

variant of ELU function

More complex

implementation than ELU

High gain scenarios (requires

careful tuning)

Swish

(Ramachandran et al., 2017)

f (x) = x · sigmoid(β · x) (β is

a tunable hyperparameter)

Facilitates smooth gradient

propagation, Non-monotonic

behavior enhances expressiveness

More computationally

intensive than ReLU

alternatives

Balances performance and

efficiency in various

applications

Mish

(Ramachandran et al., 2017)

f (x) = x · tanh(ln(1+ ex)) Provides smooth outputs akin to

ReLU, Enhances training stability

through improved gradients

Complex computational

overhead compared to

simpler functions

Optimal for scenarios

requiring superior

optimization performance
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FIGURE 4

Key components of deep learning architectures: (a) the VGG architecture (Grimaldi et al., 2018) and (b) Global Average Pooling (Zhang et al., 2020).

These architectures are fundamental to the design and implementation of deep neural networks in computer vision and image recognition,

balancing readability with the technical details essential for understanding their significance.

representations. Furthermore, compared to conventional deep

neural networks, InceptionNet significantly reduces the number of

parameters while maintaining state-of-the-art accuracy, making it

both innovative and efficient.

4.9 ResNet

The Residual Network (ResNet) architecture revolutionized

deep learning by addressing the challenges associated with

training complex neural networks. ResNet incorporates residual

connections, also known as skip connections, which allow

the direct flow of information and gradients between layers.

This innovative approach effectively mitigates the vanishing

gradient problem, a common issue in deep networks, and

facilitates training exceptionally deep architectures comprising

hundreds or even thousands of layers. ResNet models, such as

ResNet-50, ResNet-101, and ResNet-152, are available in varying

depths, with the numbers indicating the total layers in the

network. These architectures have demonstrated state-of-the-art

performance across various computer vision tasks, including image

classification, object detection, and segmentation, establishing

ResNet as a foundational model in deep learning research (Choi

et al., 2018).

4.10 Output layer

The output layer is the final decision-making component in

object detection with CNNs, providing results after thorough data
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processing and analysis. It adapts to the specific requirements of

regression or classification tasks. In classification scenarios,

for instance, the output layer may consist of individual

neurons corresponding to different classes, estimating the

probability that an input belongs to each category. Conversely,

in regression tasks, a single neuron may represent the predicted

value or utilize an activation function to convey the learned

prediction, with evaluation metrics such as mean squared error

or absolute error assessing accuracy. As a critical element of

the neural network architecture, the output layer embodies

the system’s capability to accurately detect and classify objects

based on predefined criteria, ensuring optimal performance

in object detection tasks and reflecting the complexity of the

problems addressed.

5 Generic object detection techniques

Generic object detection techniques are recognized for their

adaptability and versatility in the realm of CNN-based object

detection. These methods can detect and classify a wide range of

objects in images, including those that do not fit into predefined

categories. They effectively identify and classify objects in complex

visual environments by generating bounding boxes that outline

object locations and provide confidence scores for their detection.

A key feature of generic object detection is its ability to function

without prior knowledge of specific object categories, relying

instead on universal attributes such as color, shape, texture, and

edge patterns to facilitate detection. The field includes various

methodologies tailored to different requirements and scenarios,

integrating advanced strategies to address varying challenges. These

techniques achieve accurate and comprehensive object detection

through innovative algorithms and robust feature extraction

processes, even in intricate and unstructured visual data. As the

field evolves, researchers continue to explore novel approaches to

feature extraction and detection strategies, enhancing the efficiency,

accuracy, and applicability of generic object detection techniques in

real-world applications.

The One-Stage framework represents a regression-based

approach designed to prioritize speed by predicting object

attributes directly, eliminating the need for a separate region

proposal step. This architecture aims to simultaneously predict

object locations and bounding boxes in a single forward pass

through the network, making it particularly suitable for real-

time applications. However, the challenge of accurately detecting

objects in a single pass often hinders its ability to achieve

the same level of precision as more complex frameworks.

Prominent implementations of the One-Stage framework include

Single Shot Multibox Detectors (SSD) (Erhan et al., 2014;

Van de Sande et al., 2011), You Only Look Once (YOLO)

(Redmon et al., 2016), AttentionNet (Yoo et al., 2015), G-

CNN (Najibi et al., 2016), and Differentiable Single Shot

Detector (DSSD) (Fu et al., 2017). These models have garnered

widespread popularity due to their ability to streamline object

detection tasks and deliver rapid inference times, making

them ideal for scenarios where computational efficiency is

critical. Despite their speed advantages, substantial research

is underway to enhance their accuracy while maintaining

efficiency. As a result, the One-Stage framework remains an

active and significant area of exploration in CNN-based object

detection, offering both practical applications and opportunities for

further innovation.

The Two-Stage framework employs a region-based approach,

operating in two distinct stages, making it particularly effective

for accurately handling objects with complex shapes and varying

poses. In the first stage, the framework identifies potential

object regions within the image. The second stage refines the

bounding boxes and classifies the objects within these proposed

regions. Compared to the One-Stage framework, the Two-Stage

approach consistently achieves higher accuracy, although it comes

at the cost of increased computational complexity and longer

inference times. Prominent implementations of the Two-Stage

framework include R-CNN (Girshick et al., 2014a), SPPnet (He

et al., 2015a), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren

et al., 2015), R-FCN (Dai et al., 2016), and Mask R-CNN (He

et al., 2017). The evolution of this framework has been marked

by several key innovations. R-CNN introduced the concept of

a region proposal phase, enabling the detection of potential

object locations, while SPPnet incorporated spatial pyramid

pooling to effectively handle objects of varying scales. Faster

R-CNN enhanced this approach by introducing the Region

Proposal Network (RPN), which generates region proposals

more efficiently. Fast R-CNN improved upon R-CNN by sharing

convolutional features across proposals, which significantly

reduces computational overhead. R-FCN introduced position-

sensitive score maps, allowing for more precise localization

and classification, while Mask R-CNN extended Faster R-

CNN by adding instance segmentation capabilities. Despite its

superior accuracy, the Two-Stage framework’s computational

demands and extended processing time render it less suitable

for real-time applications. However, it remains a pivotal

area of research in object detection using CNNs. Ongoing

advancements aim to balance the framework’s high accuracy with

the need for improved computational efficiency, ensuring its

continued relevance in academic and applied settings (Shah and

Tembhurne, 2023). The simple classification diagram is shown

in Figure 5.

The goal of the hybrid approach is to balance speed,

computational complexity, and accuracy by combining elements of

both one-stage and two-stage frameworks. This strategy enables the

creation of object detection systems that leverage the advantages

of both methods, maximizing their respective strengths. NAS-

FPN (Ghiasi et al., 2019) is a well-known hybrid approach that

uses multi-scale representations to enhance object detection at

various scales. Other implementations of the hybrid approach

use the focal loss technique to address class imbalance issues

commonly encountered in object detection applications, such

as Mask R-CNN with attention and YOLO with FPN. Several

R-CNN variants also adopt a hybrid approach to enhance

performance, integrating components of both one-stage and

two-stage frameworks. The capability of hybrid approaches to

capitalize on the benefits of both frameworks while addressing their

limitations has contributed to their increasing popularity in recent

years.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1437664
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Lamichhane et al. 10.3389/fcomp.2025.1437664

FIGURE 5

Classification of object detection techniques. The chart o�ers a comprehensive overview of various object detection techniques in 2D computer

vision, detailing the di�erent algorithms and models within each category.

5.1 Comprehensive review of one-stage
(regression based) networks object
detection model

The objects in the image can be recognized quickly and

efficiently using single-stage object detection techniques. Single-

stage detection methods, such as SSD (Elgendy, 2020) and the

YOLO series, predict an object’s approximate bounding box in

a single neural network run, enabling quick and effective object

recognition. Although this comes at the expense of lower accuracy

rates, these methods demonstrate excellent reliability compared

to two-stage detectors. Typically, greater accuracy is achieved in

identifying larger items compared to smaller and closely spaced

objects. Later iterations of YOLO (Redmon et al., 2016), such as

YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon and

Farhadi, 2018), and others, have successfully incorporated deeper

neural networks to enhance performance. This modification has

yielded more effective results while maintaining strong accuracy

and low processing complexity. An in-depth examination of

the YOLO and SSD architectures, along with their comparative

outcomes across various datasets, will illuminate their advantages

and disadvantages. These investigations contribute to a better

understanding of the practical performance of these one-stage

detection methods. Single-stage detectionmethods hold promise in

applications requiring fast response times as they provide a trade-

off between speed and accuracy. Further improvements in these

methods will lead to even higher efficiency and accuracy.

5.2 You Only Look Once (YOLO)

Redmon et al. (2016) proposed a unique and improved

single-stage detector called YOLO for object detection and image

verification. YOLO enhances object recognition by combining

high-level feature mapping with a reliable evaluation of various

item categories, resulting in precise predictions represented in

bounding boxes, as shown in Figure 6a. This innovative design,

shown in Figure 6b, divides the input image into SxS cells

using a grid-based method, with each cell providing bounding

box features and essential confidence scores. The probability

of an object’s presence and the accuracy of the bounding

box location are carefully combined to yield the confidence

score. Pr (project)=1 indicates the target object’s presence, while

Pr(object)=0 indicates its absence. YOLO ensures substantial

accuracy in object localization evaluations using the Intersection

over Union (IoU) metric, a crucial measure of alignment between

the actual and predicted boxes. The method of calculating

confidence involves a rigorous multiplication of dimensions (x, y,

w, h), which represent the size and position of the bounding box.

This illustrates YOLO’s commitment to precision and effectiveness

in recognizing object tasks (Redmon et al., 2016).

Pr(Classi|Object)× Pr(Object|IOUtruth
pred ) = Pr(Classi)× IOUtruth

pred

(1)

5.3 YOLOv2

Redmon and Farhadi (2017) developed YOLOv2 in 2017 based

on the foundation of YOLOv1. The authors aim to enhance both

the speed and accuracy of object detection in a real-time system.

The concept of anchor boxes and predefined boxes of varying sizes

and aspect ratios is introduced to better estimate the location of

objects in the image. Additionally, it randomly resizes input images

during the training phase to improve the network’s capacity to

detect objects at different scales. In contrast to YOLOv1, which
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FIGURE 6

General block diagram of the one-stage (regression based) networks object detection model. It provides how detections are formed by merging

bounding box predictions with class probabilities. (a) Highlights the core modules of single-stage approach and (b) data flow of theYOLO V1 object

detection framework (Redmon et al., 2016).

relies solely on down-sampling to bolster the high-resolution

classifier for small object detection, YOLOv2 utilizes multiple layers

to transmit high-resolution features to the detector.

5.4 YOLOv3

With the release of YOLOv3 (Redmon and Farhadi, 2018),

real-time object identification has significantly advanced,

showcasing impressive improvements in both speed and accuracy.

To improve feature extraction performance and mitigate

deterioration in deeper neural networks, a robust Darknet-53

architecture is implemented, consisting of 53 convolutional

layers with residual connections. The multi-class probabilistic

classifier, featuring independent classes and pyramidal forecasts,

integrated into YOLOv3’s innovative design, revolutionizes object

recognition precision. It improves bounding box creation by

applying distance penalties using an aggregated intersection

over union technique, further improving the model’s ability

to accurately locate objects within images. Due to its speed

and accuracy, YOLOv3 is one of the top choices for real-time

object detection applications, such as detection systems and

automated vehicles. It can identify objects at large scales and

aspect ratios with minimal processing overhead, making it an

effective tool for resource-constrained object detection tasks. Its

versatile detection capabilities and economical approach enhance

its usability.

5.5 YOLOv4 and higher version

Several significant enhancements are included in YOLOv4

(Bochkovskiy et al., 2020) compared to the earlier version for

improving object detection performance. First, CSPDarknet53, a

more effective backbone, extracts rich features while maintaining

a lower computational load. Second, a smoother activation

function ensures improved gradient flow and training stability.

Thirdly, by focusing on key points and combining data from

different sizes, the Spatial Attention Module and Path Aggregation

Network improve feature representation. In addition, different

anchor boxes and optimized loss functions address variations in

object size and enhance localization; a focus method prioritizes

high-confidence objects during inference, improving real-time

performance. Figure 7 is the representation of DC-SPP in

YOLOv4. It highlights its use of spatial pyramid pooling with

dilated convolutions to enhance receptive fields and capture

multi-scale features for robust object detection. The main

enhancements of YOLOv5’s (Jocher et al., 2021) small object

detection are responsible for its success. Initially, prioritizing

areas with high feature values, the layer-focusing technique

enables the model to efficiently allocate processing power

and provide sharper, more accurate detection, especially for

smaller objects. Second, the model’s ability to identify and

locate small objects, which may appear dim or fuzzy at a

single scale, is improved by the "Multi-Scale Feature Fusion"

technique, which effectively merges information from various

feature maps generated at multiple scales. These improvements

highlight YOLOv5’s dedication to addressing the difficulties

related to recognizing small objects in the object detection

domain, significantly improving its overall accuracy, particularly

in small object identification. Figure 8a presents the PP-YOLO

object detection network, visually illustrating its architecture and

showcasing key components such as the backbone, feature pyramid,

detection head, and post-processing steps for efficient object

detection. Figure 8b presents the architecture of the YOLOv5 object

detection model.

The new versions of the object detection model, YOLOv6 (Li

et al., 2022) and YOLOv7 (Wang et al., 2023), not only predict

objects but also estimate their poses. One of the key features

of YOLOv6 and YOLOv7 is their ability to forecast an object’s

presence and pose. This means that the models provide detailed

information about the detected objects, making them essential for

applications that require a thorough understanding of the spatial

orientation of objects within an image. In particular, YOLOv7

incorporates advanced techniques such as position encoding, level

smoothing, and data augmentation. These improvements result

in more accurate and versatile object identification systems by

improving the models’ ability to manage real-world data, reducing

noise, and enhancing spatial understanding.
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FIGURE 7

Architectural components of the YOLOv4 object detection model (a) General representation of DC-SPP used in YOLOv4 Model (Huang et al., 2020)

and (b) Path aggregation network of YOLOv4 (Bochkovskiy et al., 2020).

FIGURE 8

Architecture of the YOLOv5 and higher object detection model (a) Graphical depiction of the PP-YOLO object detection network (Long et al., 2020)

and (b) Frameworks description of YOLOv5 (Jocher et al., 2021).

YOLOv8 (Reis et al., 2023) primarily focuses on pose estimation

through image segmentation. Higher versions of YOLO represent

a continual development process, offering improved accuracy,

better identification of small objects, enhanced pose detection,

and more accurate detection of cropped images. The table below

summarizes the different versions of YOLO, the architecture used,

the techniques implemented during development by the respective

authors, and their performance evaluated on various standard

datasets. Detection accuracy, computational time, and complexity

with resources are the key factors distinguishing the different

YOLO versions.

YOLOv9 (Wang and Liao, 2024) introduced feedback

initialization, attention-based modules, and improved feature

pyramids, enhancing the detection of small and distant objects

while optimizing multi-scale feature learning for faster, more

robust inference. Building on this foundation, YOLOv10 (Wang

et al., 2024) incorporated dynamic task prioritization and

transformer-based feature extraction, improving the management

of complex object interactions and strengthening robustness

in challenging scenarios such as occlusions. YOLOv11 (Jocher

and Qiu, 2024) further advanced the detection pipeline by

implementing cross-domain learning, refining loss functions for

better localization, and applying knowledge distillation techniques,

enabling efficient training with limited data. Additionally,

YOLOv11 achieved state-of-the-art performance with reduced

computational overhead, making it highly effective for edge

and real-time applications. Collectively, these developments

illustrate a trajectory of innovation focused on enhanced

feature extraction, robustness, and computational efficiency,

positioning YOLOv11 as a versatile model for diverse detection

tasks. Table 2 provides a comprehensive overview of various

YOLO versions, detailing their advancements in one-stage

object detection techniques. It highlights key aspects such

as backbone architecture, loss functions, datasets used, and
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TABLE 2 Understanding of di�erent YOLO versions of 1-stage object detection techniques.

YOLO version Researcher Backbone architecture Loss function Used dataset Accuracy (mAP) Detection head References

YOLOv1 Redmon et al. (2016) GoogleNet Square Error VOC 2012 57.90% Connected Layers,

Linear regression

Redmon et al., 2016

VOC 2007 63.40%

YOLOv2 Redmon et al. (2017) Darknet-19 Logistic regression COCO dataset 44.00% Multi scale prediction,

Connected Layers

Redmon and Farhadi,

2017VOC 2012 (0.5 IoU threshold) 78.60%
VOC 2007 78.80%

YOLOv3 Redmon et al. (2018) Darknet-53 Binary cross

Entropy

COCO 80.50% FPN Redmon and Farhadi,

2018VOC 2007 57.90%
COCO dataset 33.00%

YOLOv4 Bochkovskiy et al. (2020) CSPDarknet-53 Consolidated IoU COCO 40–61% 62.8% (Ap-50 at

over 96 FPS)

SPP PANet Bochkovskiy et al., 2020

YOLOv5 Glenn Jocher et al. Ultralytics

(2021)

CSPDarknet-53 CIOU COCO 55.8% (YOLO-v5s) SPPF, CSP-PAN Jocher et al., 2021

62.4% (YOLO-v5m)
65.4% (YOLO-v5l)

YOLOv6 Li et al. at Meituan (2022) Efficient REP CIOU COCO 43.5% (YOLO-v6-S) REPPAN Li et al., 2022
49.7% (YOLO-v6-M)
51.7%

(YOLO-v6-L-ReLU)

YOLOv7 Wang et al. (2023) Extended ELAN CIOU COCO 52.8% (YOLO-v7-tiny) PAN and SPPCSPC Wang et al., 2023
69.7% (YOLO-v7)
71.1% (YOLO-v7-X)
70-84.5%

YOLOv8 Reis et al. (2023) modified CSPDarknet53 CIOU with weight

loss calculation

COCO and VOC 53.98% (on COCO) PAN and SPP Reis et al., 2023

YOLOv9 Wang and Liao (2024) GELAN PGI COCO Improved accuracy to

SOTA

Anchor-free mechanism Wang and Liao, 2024

YOLOv10 Wang et al. (2024) Enhanced version of CSPNet Combines elements

of classification loss,

localization loss,

and objectness loss

COCO Improved accuracy to

SOTA

Adaptive anchor

assignment and dynamic

label assignment

Wang et al., 2024
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accuracy metrics across different iterations from YOLOv1

to YOLOv10.

5.5.1 Single Shot MultiBox Detector (SSD)
Liu et al. (2016) introduced the SSD concept in 2015, utilizing

a CNN as the backbone architecture for object detection. SSD

enables fast object classification and localization in a single forward

path. It employs a set of predefined boxes called “anchor boxes”

with different sizes and aspect ratios to detect objects at different

locations in an image. The network attempts to predict offsets

and adjusts these anchor boxes to accurately fix detected objects

according to their size and location using the deep learning

techniques. For each object class, the anchor box receives a

confidence score to indicate the likelihood of the presence of

an object within the box. SSD architecture is divided into two

major parts: firstly, the backbone model, a pre-trained classification

model, which is a feature map extractor, and secondly, the SSD

head, which is moved to the top of the backbone model. This SSD

head will provide the bounding box as output over any detected

object, resulting in a fast and efficient object detection model.

Compared to YOLO, where the object detection method is used

to run on different layers at different scales, SS and D run only on

the top layers. Similarly, relying on the COCO7 dataset, the tiny

SSD has performed better with reliability than the tiny SSD (Womg

et al., 2018).

5.5.2 RetinaNet
Lin et al. (2017b) revolutionized object detection by

introducing a groundbreaking concept that enhances both

accuracy and efficiency through a novel loss function. Rather

than using the traditional cross-entropy loss, they proposed the

Focal Loss function, which is specifically designed to address

the challenges associated with class imbalance during training

(Lin et al., 2017b). This innovation allows the single-stage

RetinaNet object detector to achieve exceptional accuracy,

particularly for small and densely packed objects in images.

The model employs a robust backbone network architecture

along with two specialized subnetworks, which operate

seamlessly at multiple scales to detect objects with precision.

The backbone processes input images of varying sizes to compute

convolutional feature maps, while the subnetworks manage

object classification: one is embedded within the backbone

for feature extraction, and the other focuses on the bounding

boxes of detected objects. Collectively, these components

synergistically improve detection performance within this

single-stage framework.

RetinaNet incorporates two pivotal upgrades: Focal Loss

and Feature Pyramid Networks (FPN), which redefine its

capabilities. Focal loss mitigates the impact of class imbalance

caused by the prevalence of background classes or numerous

anchor boxes, effectively diminishing the loss contributions

of easy-to-classify samples while focusing on more complex

cases. Meanwhile, by leveraging a multi-scale feature extraction

strategy, FPN enables RetinaNet to excel across varying object

scales. Constructing an image pyramid captures critical features

at different layers, allowing for precise detection of objects

regardless of size. However, the convolutional process within

the CNN architecture naturally reduces feature map sizes at

deeper layers, forming a hierarchical, pyramid-like structure that

is ideal for multi-scale detection. Figure 9 provides a detailed

illustration of the RetinaNet architecture, showcasing its innovative

design.

In addition to YOLO, SSD, and RetinaNet, other similar

one-stage architectures are used in object detection. Popular

examples include SqueezeDet (Wu et al., 2017), DSSD (Fu et al.,

2017), DenseNet (Huang et al., 2017), and CornerNet (Law

and Deng, 2018). SqueezeNet enhances accuracy in large object

detections with its fire module backbone architecture but is

limited on mobile platforms. Deconvolutional layer SSD (DSSD)

is more efficient for dense and smaller objects in images, utilizing

multi-scale predictions for higher accuracy results. However,

it consumes significant memory and has slower performance.

DenseNet SSD incorporates the feature reuse concept within

the SSD framework, serving as a balance between accuracy

and resource utilization. CornerNet represents a unique style of

object detection, identifying objects through keypoint estimation

techniques that can accommodate rotated objects in images;

nonetheless, its computational complexity is excessively high. PAA-

SSD is the latest model that focuses on one specific type of system,

integrating with various SSD model-based platforms to improve

accuracy through the probabilistic anchor assignment technique.

The results depend on the dataset used and the chosen backbone

architecture. Additionally, it may increase the computational

complexity of training based on the chosen platform, necessitating

careful assignment. Table 3 illustrates different one-stage object

detection techniques along with a comparative analysis. The

variation in datasets for various object detections, taking into

account not only size but also purpose, is considered for the results

obtained.

5.6 Comprehensive review of two-stage
(region based) networks object detection
model

Two-stage or region-based deep learning approaches rank

among the most prominent models for achieving accurate

object detection in images. These methods excel by employing

a two-step process. The Region Proposal Network (RPN)

focuses solely on areas containing objects, thereby avoiding an

exhaustive search across the entire image. Unlike brute-force

methods, RPNs enhance detection accuracy by training on data

relevant to object-specific regions, facilitating precise and efficient

classification. This method is especially beneficial for real-time

applications, as RPNs identify potential object regions, allowing

the classification stage to refine bounding boxes for accurate

localization. Both stages present opportunities for customization,

with advanced network architectures designed to meet the

specific requirements of RPN and classification. This section

summarizes and analyzes popular two-stage object detection

models, comparing them across factors such as speed, accuracy,

computational complexity, and advancements proposed by various

researchers.
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FIGURE 9

Object detection using RetinaNet (Lin et al., 2017b).

TABLE 3 Understanding of Di�erent 1-Stage Object Detection Techniques beside YOLO.

Model Researcher Backbone Key Parameter Dataset Input Size References

SSD Liu et al. VGG-16 Simple, 1-stage VOC 2007 300x300 Liu et al., 2016

SqueezeDet Wu et al. Fire modules Better accuracy COCO 2017 Various Wu et al., 2017

RetinaNet Lin et al. Resnet-50 Improved accuracy COCO 2017 800x800 Lin et al., 2017b

DSSD Fu et al. VGG-16 Small Objects prediction VOC 2007 300x300 Fu et al., 2017

DenseNet Huang et al. DenseNet Higher accuracy VOC 2007 300x300 Huang et al., 2017

MobileNet Sandler et al. MobileNet Lightweight VOC 2007 300x300 Sandler et al., 2018

Mobiledets Xiong et al. MobileNet Fast and real-time COCO 300x300 Xiong et al., 2021

CornerNet Law and Deng Hourglass network Key-point detection COCO 2017 Various Law and Deng, 2018

NAS-FPN Ghiasi et al. Neural Architecture Optimized FPN COCO 2017 Various Ghiasi et al., 2019

5.6.1 Region-based Convolutional Neural
Network

In 2014, Girshick et al. (2014b) introduced a seminal approach

to object detection by incorporating CNNs to enhance detection

accuracy and improve bounding box quality through deep

feature extraction. This method achieved a significant milestone,

attaining a mean Average Precision (mAP) of 53.4%, a remarkable

improvement over contemporaneous models. The model was

trained on the PASCAL VOC 2012 benchmark dataset, setting a

new standard for object detection tasks. A simplified representation

of the RCNN process is illustrated in Figure 10. The RCNN

process comprises two primary stages: region proposal and feature

extraction with classification. In the region proposal stage, the

entire image is scanned using a selective search algorithm, which

evaluates features such as color, texture, position, and location

to generate candidate regions likely to contain objects. These

candidate regions are resized to conform to the input dimensions

the applied CNN requires.

In the feature extraction and classification stage, the resized

regions are processed using a pre-trained CNN model to extract

high-level features such as color, shapes, textures, and edges. The

extracted features are then input into two distinct support vector

machines (SVMs): one for object classification and the other

for bounding box refinement. The classification SVM predicts

the object class (e.g., car, airplane, chair, person, cat), while the

bounding box refinement SVM fine-tunes the proposed bounding

box to ensure better localization of the detected object. The SVM

assigns a score to each class through non-maximum suppression

while maintaining the Intersection over Union (IoU) below a

predefined threshold, further enhancing detection precision.

RCNN pioneered object detection by leveraging deep neural

networks to extract hierarchical features from images, capturing

multi-scale information across layers for precise detection. The

model classifies objects and generates bounding boxes around

detected regions. However, RCNN also has notable limitations.

The fully connected layers in the CNN necessitate resizing images

to a fixed size of 277 × 277, which increases computational

overhead. The selective search algorithm generates thousands of

potential regions, resulting in inefficiencies and high computation

time. Additionally, processing these regions individually leads

to redundant computations, and the SVM-based classification

introduces bottlenecks that hinder speed and optimization. These

challenges limit RCNN’s performance in real-time applications,

complex image backgrounds, and small object detection.

To address these issues, several advancements have been

proposed. For instance, Zhang et al. (2015) tackled inaccurate

localization in RCNN by introducing three key improvements:

(1) Bayesian optimization to refine bounding boxes by evaluating

classification scores and localization accuracy; (2) structured

loss to penalize inaccuracies in predicted bounding boxes; and

(3) class-specific CNNs to enhance accuracy for diverse object

categories (Zhang et al., 2015). Furthermore, adopting superpixel

classification can refine object boundaries and improve efficiency

in handling complex scenes and small objects. However, careful
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FIGURE 10

Region-based convolutional neural network (Girshick et al., 2014b).

implementation is needed to mitigate potential segmentation

inaccuracies.

The fixed filter sizes used in CNN training, along with

challenges such as object rotation, deformation, and pose variation,

were addressed by Ouyang et al. using deformation-constrained

pooling layers. Their approach used guided deformable filters

to adaptively adjust shape and size, predicting offset values for

local object alignment while applying geometric penalties to

promote meaningful deformations. This method, integrated into

the DeepID-Net, demonstrated improved accuracy on the ISVRC

2014 dataset (Ouyang et al., 2015).

The limitations of anchor-based bounding boxes, which affect

small object detection and computational efficiency, were mitigated

by the DeepBox anchor-free design proposed by Zhang et al. This

method detects objects without predefined anchors, facilitating

better localization of small objects with flexible bounding

box shapes and orientations, although it remains sensitive to

hyperparameter tuning. Additionally, Pinheiro et al. (2016)

introduced SharpMask for refining critical regions, providing

superior performance in managing overlapping objects and

complex scenes, albeit at the expense of increased computational

requirements due to the attention mechanism. Understanding

these advancements and their trade-offs provides valuable insights

into the suitability of various RCNN-based models for specific

tasks. Models such as SPPNet (He et al., 2015a) and Fast RCNN

(Girshick, 2015) build upon the foundation of RCNN, delivering

significant improvements in efficiency and performance, which will

be explored in subsequent sections.

5.6.2 Spatial Pyramid Pooling Network (SPPNet)
In the context of RCNN, the CNN model requires input

images to be of a fixed size, creating challenges when handling

images of varying dimensions. This necessitates resizing, which

can lead to information loss, reduced accuracy, and increased

computational overhead during the scaling process. The Spatial

Pyramid Pooling Network (SPPNet) was introduced to address

this limitation, enabling the processing of variable-sized input

images. SPPNet employs a spatial pyramid pooling mechanism

that divides the input image into pyramids of subregions, extracts

features from each subregion, and pools them into a fixed-

size representation that is independent of the original image

dimensions. This approach enhances the model’s flexibility and

scale invariance. Furthermore, SPPNet allows feature extraction

from multiple convolutional layers at different resolutions,

facilitating improved object localization and mitigating the

resolution reduction issue inherent in RCNN. By integrating

multi-scale feature extraction and enabling efficient handling

of variable image sizes, SPPNet significantly improves object

detection models’ flexibility, scalability, and robustness. It is

particularly effective in managing diverse image sizes and complex

backgrounds, making it a valuable advancement over traditional

RCNN methods. Figure 11 illustrates pivotal architectures in

object detection. Fast R-CNN enhances region-based convolutional

networks by integrating RoI pooling and shared convolutional

features, while SPPNet introduces spatial pyramid pooling to

efficiently handle input images of varying sizes (Kaur and Singh,

2023).

Lazebnik et al. (2006) introduced the groundbreaking concept

of SPM for object detection, which captures the spatial information

of an image by dividing it into multiple subregions and extracting

features at various scales. This innovative approach enables

the representation of spatial relationships within the image,

enhancing feature extraction and localization. Building on this

concept, SPPNet incorporates several key advancements. SPPNet

efficiently handles images of various sizes, providing scale-invariant

detection capabilities. Leveraging multi-scale features extracted

from different subregions significantly improves localization

accuracy and enhances overall detection performance. These

features collectively make SPPNet a robust and accurate model for

object detection, particularly in scenarios involving diverse image

sizes and complex spatial structures.

5.6.3 Fast R-CNN
The primary limitation of R-CNN lies in its slow processing

speed and high computational cost, primarily due to its dependence

on selective search for region proposals. Addressing this issue,

Girshick (2015) introduced Fast R-CNN, a model that significantly

enhances detection speed while maintaining high accuracy. In Fast

R-CNN, the RPN directly generates region proposals from image

features, eliminating the inefficiency of exhaustive region searches

and reducing computational overhead. This approach accelerates
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FIGURE 11

(a) Fast R-CNN architecture (Girshick, 2015) with RoI pooling for object detection. (b) Spatial Pyramid Pooling Network (SPPNet)(He et al., 2015a) for

fixed-length feature representation, enabling multi-scale feature extraction.

the process and ensures accurate object detection, as presented in

Figure 11a.

Fast R-CNN employs a multi-task learning strategy, jointly

training the RPN and the classifier to optimize region proposal

generation and object detection in a unified pipeline. This

integrated framework improves accuracy compared to traditional

pipeline-based methods. To further enhance efficiency, Fast R-

CNN leverages pre-trained CNN models, such as VGG or ResNet,

which are trained on large-scale datasets such as ImageNet.

These pre-trained networks capture hierarchical features, ranging

from low-level patterns to high-level abstractions, enabling precise

analysis of specific regions. The challenge of processing variable-

sized regions of interest in fully connected layers, prevalent in R-

CNN, is addressed in Fast R-CNN by introducing ROI pooling.

ROI pooling divides each ROI into fixed-size subgrids, extracting

uniformly sized features for the fully connected layers, thus

ensuring consistency and improving detection accuracy.

For region proposal generation, ROI pooling utilizes features

extracted from the RPN, avoiding external algorithms such as

selective search. The softmax layer classifies objects within the

image by predicting the probability of each object class, resulting

in a K + 1-dimensional vector for K object classes, with the

additional dimension representing the background category. The

class with the highest probability is assigned to the detected

object. The bounding box regression branch also employs linear

regression to refine the predicted bounding box coordinates. Offset

values, derived from ROI-pooled features, are added to the initial

ROI coordinates to improve bounding box precision, ensuring

accurate localization of objects. Fast R-CNN represents a significant

advancement over its predecessor, achieving superior speed and

accuracy in object detection tasks (Girshick, 2015).

The multi-task loss L of Fast R-CNN is jointly expressed with

the two output layers, specifically training for classification and

bounding box regression for each labeled ROI. For the trained

model, the discrete probability distribution p, computed by a

softmax over K+1 categories per ROI from a fully connected layer,

is defined by

p = (p1 + p2 + . . . + pn) (2)

the output bounding box regression offset is given by

tk = (tkx , t
k
y , t

k
w, t

k
h). (3)

Where K is the object class indexed by k. The Iverson bracket

indicator function [u ≥ 1] is employed to omit all background RoIs

(Girshick et al., 2014b).

L(p, u, tu, v) = Lcls(p, u)+ λ[u ≥ 1]L1oc(t
u, v) (4)

in which Lcls(p, u) is log loss for true class u.

The second task loss, LLOC. The bounding-box regression

targets for the class (u, v) = (vx, vy, vw, vh) and the predicted tuple

tu = (tux, tuy, tuw, tuh). For the bounding box regression, we use

the loss

L1oc(t
u, v) =

∑

i∈{x,y,w,h}

smoothL1 (t
u
i − vi), (5)

in which

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise,
(6)

Here the L1 loss is less sensitive to the outliers than the L2 loss

used in R-CNN and SSPNet.

5.6.4 Faster R-CNN
Although Fast R-CNN improves detection speed and accuracy

compared to its predecessor, it still has limitations in terms of

optimization and efficiency. Fast R-CNN relies on pre-trained

feature extraction and external ROI pooling mechanisms that

utilize fixed-size features and a softmax bounding box classifier.

This dependence on external algorithms for region proposals can

introduce inefficiencies, including slower processing and potential

inaccuracies. Additionally, the requirement for separate stages in

the training process decreases overall efficiency. Faster R-CNN was

introduced to address these issues by integrating RPN with the

CNN architecture into a unified framework. This design eliminates

the dependence on external algorithms, resulting in significantly

higher speeds than Fast R-CNN. The model trains the entire

pipeline jointly, enhancing efficiency, accuracy, and effectiveness.

Furthermore, Faster R-CNN is better equipped to handle diverse
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FIGURE 12

(a) Faster R-CNN (Ren et al., 2016) and (b) Region Proposal Network (RPN) (Ren et al., 2016). The diagram e�ectively illustrates the architecture of the

Faster R-CNN model, highlighting the interactions of RPN and other essential components.

datasets, improving its performance in real-time applications (Ren

et al., 2015).

In the architecture of Faster R-CNN, the RPN slides a small

spatial window over the feature map, connecting to an n×n spatial

region. For instance, with VGG16, a low-dimensional vector of size

512 is extracted within the sliding window and passed to two fully

connected (FC) layers: one for box classification (cls) and another

for box regression (reg). This architecture incorporates an n × n

convolutional layer connected to two 1× 1 convolutional layers, as

depicted in the corresponding (Figure 12).

Bounding box regression is achieved by refining the proposals

in relation to the reference boxes. The model utilizes anchors

of three different scales and three aspect ratios, which improve

detection for objects of various sizes and shapes. The loss function

in Faster R-CNN is similar to that of Fast R-CNN, maintaining

a balance between classification accuracy and bounding box

regression.

The loss function is given by,

L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗
i )+ λ

1

Nreg

∑

i

p∗i Lreg(ti, t
∗
i ) (7)

Where

Pi: Predicted probability of anchor box i containing an object

(foreground).

ti: Predicted bounding box coordinates (4 values: x, y, width,

height) for anchor box i.

p*i: Ground truth label for anchor box i (1 for foreground, 0 for

background).

t*i: Ground truth bounding box coordinates for the object

associated with positive (foreground) anchor box i.

Ncls: Number of anchor boxes per image in the mini-batch

during training.

Nreg: Number of positive (foreground) anchor boxes in the

image.

λ: Hyperparameter balancing the importance of classification

and regression tasks.

Lcls(pi, p
∗
i ): Classification loss for anchor box i, often binary

cross-entropy.

Lreg(ti, t
∗
i ): Regression loss for the predicted bounding box of

anchor box i, often Smooth L1 loss.

5.6.5 Mask R-CNN
Mask R-CNN is a robust deep learning framework for object

detection and instance segmentation. During object detection, it

identifies and localizes objects within an image while incorporating

instance-level context, which enables precise recognition of what

the objects are and their locations. In the segmentation phase,

Mask R-CNN goes beyond bounding boxes to create pixel-level

masks for individual objects, providing superior precision. It can

accurately segment various objects, such as cars, cats, bicycles, or

billboards, even in challenging conditions such as partial occlusion

or shadowed regions.

Mask R-CNN addresses key limitations of Faster R-CNN,

such as the inability to segment individual objects within the

same class or differentiate between multiple instances (e.g.,

distinguishing people in a crowd). It also reduces the computational

overhead of storing intermediate features, thereby improving

efficiency. By incorporating fine-tuning mechanisms, Mask R-CNN

enhances detection accuracy and optimization, making it a robust

solution for tasks such as autonomous navigation. Additionally,

its end-to-end network training provides better optimization and

performance compared to Fast and Faster R-CNN, establishing it

as a versatile and reliable tool for image analysis.

Introduced by He et al. (2017), Mask R-CNN enhances the

capabilities of Faster R-CNN by adding instance segmentation at

the pixel level. Its innovation lies in integrating a mask prediction

branch alongside the bounding box classifier, addressing the

spatial limitations of Faster R-CNN’s bilinear interpolation with

a novel sampling technique that preserves spatial information.
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FIGURE 13

Architecture of mask R-CNN for instance object detection (He et al., 2017).

By combining region proposal and classification, this unified

network architecture improves training efficiency by eliminating

intermediate feature storage and optimizing the entire network

through end-to-end learning. This architecture is depicted in

Figure 13.

The core of Mask R-CNN is built upon Faster R-CNN,

incorporating additional components such as ROI Align, shared

feature pooling, and a mask prediction branch. Key architectural

elements include the backbone feature extractor, RPN, shared

pooling layers, detection and segmentation branches, and a multi-

task loss function for joint optimization. Table 4 summarizes

the performance of various models, with segmentation showing

notable results. The findings demonstrate significant improvements

in AP across different backbone architectures, highlighting the

effectiveness of Mask R-CNN in this domain.

The foundational architecture of Mask R-CNN is Faster R-

CNN. The in-depth architectural components of Mask R-CNN

include the backbone feature extractor, RPN, shared feature

pooling, detection, segmentation, and the calculation of the

training and loss functions. ROI Align, shared features, and end-to-

end training are additional components of Mask R-CNN compared

to Faster R-CNN.

The backbone extractor, typically ResNet (50/101) or a VGG

variant, captures complex features to enhance detection accuracy.

Feature maps derived from this backbone provide rich semantic

information about the input image. Anchors within the RPN

are adapted to the objects’ shape and size, and convolutional

layers predict the presence of objects and bounding boxes.

Non-maximum suppression (NMS) ensures efficient processing

by suppressing redundant regions and selecting high-confidence

proposals. Shared feature pooling, specifically ROI Align, preserves

spatial information while resizing features for consistent mask

prediction. For each ROI, the classification branch predicts object

classes using fully connected layers and a softmax activation

function, while the bounding box regression branch refines

localization. The mask branch generates binary masks for ROIs,

and skip connections enhance the network’s ability to capture

object shapes and extents. A multi-task loss function optimizes

classification, bounding box regression, and mask prediction

simultaneously, enabling robust performance through end-to-end

training. Despite its computational complexity and high hardware

requirements, Mask R-CNN remains a state-of-the-art tool for

computer vision applications (He et al., 2017).

5.6.6 Feature Pyramid Network
The concept of Feature Pyramid Networks (FPN) was

developed by researchers (Lin et al., 2017a) to address

the challenges associated with traditional object detection

methodologies. Specifically, FPN aims to resolve two primary

issues: the loss of spatial information due to down-sampling and

the limited semantic information that can hinder accurate object

detection. Furthermore, FPN partially mitigates the limitations

inherent in Mask R-CNN, which employs traditional CNNs that

often experience reduced spatial resolution, complicating the

precise localization of small objects within images. FPN integrates

bottom-up and top-down pathways to produce multi-scale feature

maps while maintaining semantic information. This architecture

enhances detection capabilities for small objects across various

resolutions and sizes. The semantic gap in feature maps derived

from different levels in Mask R-CNN can significantly degrade

detection accuracy, particularly in cluttered scenes. To address
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TABLE 4 Mask R-CNN performance for instance segmentation (He et al., 2017).

Model Backbone AP AP50 AP75 APS APM APL

MNC ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6

FCIS +OHEM ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50

Mask RCNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1

Mask RCNN ResNet-101-FPN 35.7 58 37.8 15.5 38.1 52.4

Mask RCNN ResNetXt-101-FPN 37.1 60 39.4 16.9 39.9 53.5

this, FPN employs lateral connections that bridge this gap by

injecting high-level semantic information from deeper layers into

the feature maps. This ensures accurate object identification along

with location and class information (Chhabra et al., 2023).

A notable advantage of FPN is its ability to reuse features

computed within the CNN backbone, which minimizes

computational overhead. This resource-efficient design enables

the construction of multi-scale features without creating pyramids

from scratch, thereby enhancing computational efficiency. As a

result, FPN demonstrates improved accuracy while maintaining

low computational complexity across diverse applications. It excels

at detecting small objects of varying sizes with high accuracy and

efficiency. During the detection process, FPN effectively integrates

both bottom-up and top-down approaches. The bottom-up

pathway captures fine spatial details with high semantic value using

existing convolutional networks, although it may lack semantic

richness and exhibit lower resolution. Conversely, the top-down

pathway begins with the deepest feature map and progressively

upsamples it while merging it with shallower maps through

lateral connections. This synthesis results in a comprehensive

representation that combines high-level semantic information with

preserved low-level spatial details. Figure 14 presents how features

are extracted at multiple scales, resulting in a feature pyramid that

captures information at different levels of detail and abstraction.

5.6.7 CentripetalNet
CentripetalNet demonstrates higher prediction accuracy

than the bounding box approach in FPN. It achieves fine-

grained localization of potential objects within an image and

delivers superior performance in challenging scenarios, such

as dense or crowded scenes and partially visible objects. The

architecture of CentripetalNet, illustrated in Figure 15, leverages

key points for object detection. Kivee (Dong et al., 2020) developed

CentripetalNet to pursue high-quality keypoint pairs for object

detection, addressing issues related to inaccurate keypoint

matching and limited feature integration, which often result in the

loss of spatial context and essential information for effective object

detection.

This recent object detection approach relies on key points

instead of bounding boxes, predicting primary objects based on

the location and relationships of corner key points. Initially,

the model predicts the corner key points associated with each

object and utilizes a shift vector, known as the centripetal

shift, to guide these points toward the object’s center. To pair

corresponding key points within the same object, it employs

predicted shift values in a process called shift matching, which is

particularly useful when the points are initially scattered. Corner

pooling extracts features from the area surrounding each corner

point with sufficient precision to represent them as detected

objects. Finally, deformable convolutions are employed to refine

the exact shape of the object in real-time. Table 5 provides

a comparative evaluation of object detection performance on

the MS-COCO test-dev dataset, focusing on various detection

methodologies and their performance metrics. Key indicators,

including Average Precision (AP), AP at different Intersection over

Union (IoU) thresholds (AP50, AP75), and performance across

small, medium, and large object scales, are presented. The findings

indicate that multi-scale approaches, particularly those employing

Centernet511 and CetripetalNet, exhibit enhanced performance

across all assessed metrics, highlighting their efficacy in object

detection tasks.

5.6.8 Dual-path aggregation network (D2Det)
Cao et al. (2020) introduced an aggregation network for object

detection that significantly enhances accuracy while maintaining

high processing speed, making it suitable for real-time applications.

D2Det addresses the limitations of traditional methods by

employing a dual-path aggregator that integrates high spatial detail

from low-resolution features with rich semantic information from

high-resolution features. This design balances the trade-off between

accuracy and classification efficiency. D2Det selectively applies

deformable convolutions at specific stages to improve feature

learning, optimizing the balance between system performance and

computational efficiency. Furthermore, lightweight layers ensure

faster processing speeds, making the architecture highly suitable for

real-time tasks. The simplified yet advanced design of D2Det has led

to its adoption in various real-time domains, demonstrating robust

performance and scalability.

5.6.9 TridentNet
Li et al. (2019) developed TridentNet, a multi-branch

architecture featuring a three-branch structure aimed at addressing

scale variations in object detection. Each branch processes distinct

field parameters to specialize in detecting objects of various sizes.

The low-resolution branch captures fine-grained details of small

objects, the middle-resolution branch balances detail and semantic

information for medium-sized objects, and the high-resolution

branch focuses on the semantic representation of large objects.
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FIGURE 14

(a) Featured image pyramids. Lin et al. (2017a) fundamental idea behind FPNs. (b) Feature Pyramid Network. Lin et al. (2017a) that shows how the

network takes an input image and generates a single feature map for key concepts and architectural details of FPNs.

FIGURE 15

Architecture of CentripetalNet for instance object detection (Dong et al., 2020).

During the training phase, TridentNet segments the image based

on the size of the objects, with each branch functioning on

its corresponding scale. To achieve an efficient design with low

computational complexity, TridentNet shares weights among the

branches, setting it apart from conventional multi-scale approaches

(Alzubaidi et al., 2021). This architecture provides improved

accuracy and effectiveness for detecting objects across diverse

scales, as demonstrated in its performance comparison with other

architectures in Table 6.

The methods discussed above emphasize multitasking, multi-

scaling, and contextual detection to manage objects of varying

sizes and complexities in images. In multitask learning, they

detect objects using bounding boxes of regular shapes, classify

the detected objects, and estimate key points, particularly corner

points, while assessing object depth. Multi-scale representations

facilitate the detection of objects at different scales by extracting

and integrating features from various resolutions within an image.

Contextual modeling focuses on understanding the relationships

between objects and their surrounding backgrounds, enabling the

differentiation of overlapping objects through spatial information.

This approach enhances scene comprehension, leading to more

accurate object detection in complex environments. Addressing

these aspects improves detection accuracy, particularly in

challenging scenarios.
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TABLE 5 Comparison of object detection performance on the MS-COCO test-dev dataset for various methods, highlighting metrics such as Average

Precision (AP), AP50, AP75, and performance across small (APS), medium (APM), and large (APL) object scales for single-scale and multi-scale evaluations

(Dong et al., 2020).

Methods Backbone AP AP50 AP75 APS APM APL

ExtremeNet (single-scale) Hourglass -104 40.2 55.5 43.2 20.4 43.2 53.1

CornerNet511(multi-scale) Hourglass -104 42.1 57.8 45.3 20.8 44.8 56.7

ExtremeNet (multi-scale) Hourglass -104 43.7 60.5 47 24.1 46.9 57.6

Centernet511(single-scale) Hourglass -104 43.7

Centernet511(multi-scale) Hourglass -104 47 64.5 50.7 28.9 49.9 58.9

CetripetalNet w./o mask (single-scale) Hourglass -104 45.8 63 49.3 25 48.2 58.7

CetripetalNet w./o mask (multi-scale) Hourglass -104 47.8 65 51.5 28.9 50.2 59.4

CetripetalNet (single-scale) Hourglass -104 46.1 63.1 49.7 25.3 48.7 59.2

CetripetalNet (Multi-scale) Hourglass -104 48 65.1 51.8 29 50.4 59.9

Instance segmentation performance comparison

CetripetalNet (single-scale) Hourglass -104 38.8 60.4 41.7 19.7 41.3 51.3

CetripetalNet (Multi-scale) Hourglass -104 40.2 62.3 43.1 22.5 42.6 52.1

The bold values (with highest score) indicate the best performance.

TABLE 6 Two-stage object detection architectures summary.

Architecture Authors
(Year)

Region proposal Bounding box
prediction

Loss function References

R-CNN Girshick et al.

(2014)

Selective Search SVM classification SVM hinge loss Girshick et al., 2014a

Fast

R-CNN

Girshick et al.

(2015)

RPN

(CNN-based)

Shared CNN layers with

region-specific features

Multi-task learning with SGD:

Smooth L1 loss, softmax loss

Girshick, 2015

Faster

R-CNN

Ren et al.

(2015)

RPN

(CNN-based)

Shared CNN layers with RoI

Pooling

Multi-task learning with SGD:

Smooth L1 loss, softmax loss

Ren et al., 2015

Mask

R-CNN

He et al.

(2017)

RPN

(CNN-based)

Shared CNN layers with RoI

Pooling and mask prediction

branch

Multi-task learning with SGD:

Smooth L1 loss, softmax loss,

binary cross-entropy loss

He et al., 2017

Cascade

R-CNN

Cai and Nuno

(2018)

RPN

(CNN-based)

Multi-stage refinement with

residual connections

Multi-stage learning with SGD:

Smooth L1 loss, softmax loss

Cai and Nuno, 2018

RetinaNet Lin et al.

(2017)

FPAN-based anchor

generation

FPN-based multi-level

prediction with focal loss

Focal loss, multi-task learning

with SGD: Smooth L1 loss,

softmax loss

Lin et al., 2017b

PolarMask Xie et al.

(2020)

RPN

(CNN-based)

Shared CNN layers with RoI

Pooling and mask refinement

branch

Multi-task learning with Adam:

Smooth L1 loss, softmax loss,

binary cross-entropy loss

Xie et al., 2020

NAS-FPN Ghiasi et al.

(2019)

RPN

(CNN-based)

Shared CNN layers with

NAS-designed FPN

Multi-task learning with SGD:

NAS-optimized loss function

Ghiasi et al., 2019

Deformable DETR Zhu et al.

(2021)

Transformer-based

proposal generation

Set Transformer-based

bounding box prediction

Hungarian loss Zhu et al., 2021

5.7 Hybrid approach of object detection
model

In addition, algorithms such as Cascade R-CNN (Cai and

Nuno, 2018) utilize a cascaded framework based on Faster R-

CNN, merging the strengths of both stages. In the first stage,

it generates feature maps for proposal generation and coarse

classification, while the second stage refines these feature maps to

improve accuracy. This combination of features enhances detection

precision and achieves superior performance on benchmarks.

Similarly, Mask R-CNN, which includes a cascade head, integrates

both stage concepts by utilizing a cascading structure for

mask prediction, thus refining bounding boxes and improving

prediction accuracy. This method excels in instance segmentation

by delivering accurate mask predictions. Similarly, Libra R-CNN

(Pang et al., 2019) utilizes a hybrid approach that alternates between

YOLOv2 (one-stage) and Faster R-CNN (two-stage) depending

on the confidence score. YOLOv2 manages initial predictions,

while Faster R-CNN provides further refinement, balancing speed

and accuracy. Another notable method is RetinaNet-RegNet
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citepxu2022regnet, a hybrid object detection technique that

incorporates the RegNet backbone into the RetinaNet architecture.

This method improves the detection of small objects while ensuring

robust performance in multi-scale and multi-class object detection.

Table 7 summarizes various hybrid approaches in object detection

algorithms, highlighting their region proposal methods, use of

softmax, and loss functions.

5.8 CornerNet and CornerNet lite

CornerNet (Law and Deng, 2018) and CornerNet-Lite (Law

et al., 2019) are complex object detection algorithms designed

for irregularly shaped objects. These architectures utilize a

keypoint-based approach to predict objects rather than relying

on anchor boxes. This design enhances robustness to object

orientation by being rotation-invariant and achieves higher

accuracy while eliminating the hyperparameter tuning associated

with anchor boxes. CornerNet employs a single-stage architecture

consisting of three key steps: corner heatmap prediction to

identify the corner points of objects throughout the image,

embedding prediction to locate key points with associated

class information, and box refinement to finalize bounding

boxes along with class probabilities. CornerNet-Lite addresses

the computational limitations of CornerNet while enhancing

accuracy. It introduces two key innovations: CornerNet Saccade,

which reduces unnecessary computations through an attention

mechanism focused on key points, and CornerNet Squeeze, which

ensures efficient feature extraction compatible with the backbone

architecture. These advancements make CornerNet-Lite suitable

for real-time applications.

5.9 Datasets

Datasets are crucial in testing and training object detection

models, enabling researchers to create more accurate and adaptable

algorithms. These datasets feature detailed annotations, such as

segmentation masks and bounding boxes, which enable precise

object localization and classification. They encompass a variety of

object classes and contexts, making them suitable for numerous

computer vision applications. The availability of such datasets

has significantly advanced object detection, resulting in the

development of more sophisticated and reliable detection models.

5.9.1 General purpose datasets
The COCO dataset comprises over 200,000 images captured

in diverse environments, encompassing various objects and

scenarios. Its primary goal is to enhance object recognition and

segmentation models by providing a comprehensive benchmark

and encouraging algorithms to manage diverse categories and

complex scenarios. COCO includes detailed annotations for object

instances, segmentation masks, and key points. These annotations

are invaluable for training models to identify and differentiate

objects, particularly in situations involving partial occlusion or

intricate shapes. Furthermore, these annotations are especially

beneficial for developing models that perform reliably in real-world

scenarios.

The Pascal VOC dataset, available in two editions (2007

and 2012), consists of over 20,000 images spanning various

object categories and backgrounds. Pascal VOC has been a

cornerstone in the development and evaluation of object detection

models, serving as a benchmark for early detection methods. Its

annotated bounding boxes support tasks such as object recognition

and localization. These annotations are useful for assessing the

performance of detection models in realistic settings where objects

may be partially obscured or exhibit complex geometries.

ImageNet, one of the largest image datasets, contains over

14 million meticulously labeled images across numerous object

categories. It serves as the foundation for training and evaluating

large-scale object detection and recognition algorithms. ImageNet

has played a crucial role in advancing deep learning in computer

vision, providing extensive resources for the development of

innovative algorithms. Its detailed annotations allow models to

learn and identify a wide range of objects with high accuracy,

significantly enhancing their performance and robustness across

numerous applications. Table 8 summarizes popular object

detection datasets, detailing their training, validation, and

testing statistics, including the number of images and objects in

each dataset.

5.9.2 Domain-specific dataset
Domain-specific datasets, which provide specialized data

tailored to particular application domains, are vital for

advancing object detection research. These curated datasets

enable practitioners and researchers to develop highly accurate

and effective object detection models by addressing the unique

requirements and challenges of specific industries or scenarios.

They include targeted annotations, diverse object classes, and

relevant contextual information, making them essential for

training and evaluating object detection algorithms in real-world

environments. Domains such as autonomous driving, medical

imaging, retail, and agriculture benefit significantly from this

customized approach, which enhances model performance within

specific domains and fosters innovation in specialized object

detection research.

The KITTI Vision Benchmark Suite is a prominent dataset

for autonomous driving. It offers annotations for objects such as

cars, pedestrians, and bicycles alongside images and LiDAR data

from diverse scenarios. Similarly, BDD100K is another extensive

dataset for autonomous driving, featuring detailed object labels and

a wide range of driving conditions. NuScenes, designed for urban

scene understanding, provides large-scale object annotations across

complex urban landscapes.

In medical imaging, specialized datasets address tasks such as

organ segmentation and tumor detection using modalities such as

computed tomography (CT) scans and X-rays. Notable examples

include datasets developed under the Medical Image Computing

and Computer-Assisted Intervention Society (MICCAI). These

datasets have significantly contributed to research and development

in medical imaging analysis, leading to advancements in diagnostic

accuracy and improved treatment planning.

Table 9 provides a comparative analysis of various object

detection models evaluated on the Microsoft COCO dataset,
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TABLE 7 Hybrid approaches of object detection algorithms summary.

Algorithm Researchers
(Year)

Region proposal Notes Softmax
incorporated

Loss function References

Cascade

R-CNN

Zhaowei Cai,

Tsung-Yi Lin, Wei

Wei, Songtao Xu

(2018)

Two-stage: uses Faster

R-CNN for region proposals

in the first stage. Subsequent

stages refine proposals

based on previous

predictions.

True hybrid,

combining

one-stage (initial

proposals) and

two-stage

(refinement).

Yes Multi-stage

learning with SGD:

Smooth L1 loss for

bounding box

regression, softmax

loss for

classification

Cai and Nuno, 2018

Mask

R-CNN

with Cascaded

Head

Kailin He, Georgia

Gkioxari, Piotr

Dollar, Ross

Girshick (2017)

Two-stage: Uses standard

Mask R-CNN for region

proposals (no cascade for

proposals). Cascaded

structure applies only for

the mask prediction branch.

Not necessarily a

hybrid in the

context of region

proposals.

Yes Multi-stage

learning with SGD:

Smooth L1 loss for

bounding box

regression, softmax

loss for

classification,

binary

cross-entropy loss

for mask prediction

He et al., 2017

Libra

R-CNN

Jiangmiao Pang, Kai

Chen, Jianping Shi,

Huajun Feng,

Wanli Ouyang,

Dahua Lin

(2019)

Hybrid: Chooses between

YOLOv2 (one-stage) and

Faster R-CNN (two-stage)

proposals based on

confidence scores.

True hybrid,

dynamically using

both types of

proposals.

Yes Multi-task learning

with SGD: Focal

loss for

classification,

Smooth L1 loss for

bounding box

regression

Pang et al., 2019

RegNet Jing Xu, Yu Pan,

Xinglin Pan, Steven

Hoi

(2021)

One-stage: No explicit

region proposals. Uses

anchor boxes for candidate

object locations.

Not a hybrid in

terms of region

proposals.

Yes Multi-task learning

with SGD: Focal

loss for

classification,

smooth L1 loss for

bounding box

regression

Xu et al., 2021

TABLE 8 Popular object detection datasets and their statistics (Zou et al., 2023).

Dataset Train Validation TrainVal Test

Image Objects Image Objects Image Objects Image Objects

VOC-2007 2,501 6,301 2,510 6,307 5,011 12,608 4,952 14,976

VOC-2007 5,717 13,609 5,823 13,841 11,540 27,450 10,991 -

ILSVRC-2014 456,567 478,807 20,121 55,502 476,688 534,309 40,152 -

ILSVRC-2017 456,567 478,807 20,121 55,502 476,688 534,309 65,500 -

MS-COCO-2015 82,783 604,907 40,504 291,875 123,287 896,782 81,434 -

MS-COCO-2017 118,287 860,001 5,000 36,781 123,287 896,782 40,670 -

Objects 365-2019 600,000 9,623,000 38,000 479,000 628,000 10,102,000 100,000 170,000

OID-2020 1,743,042 14,610,229 41,620 303,980 1,784,662 14,914,209 125,436 937,327

detailing key performance metrics such as AP and AP at

different intersections over union thresholds. The results highlight

advancements in object detection technologies, demonstrating

that newer models outperform their predecessors across multiple

performance metrics.

6 Salient object detection

Salient object detection, also called visual saliency

detection, is a domain of computer vision dedicated to

identifying the most significant or visually distinctive regions

in an image. These regions often correspond to areas that

naturally capture human attention, similar to how our eyes

instinctively focus on specific elements within a scene. By

leveraging advanced algorithms, salient object detection

identifies these visually unique areas, facilitating applications

such as image understanding, object recognition, and scene

analysis. This capability enhances tasks such as content-

based image editing, image retrieval, segmentation, and

cropping, making it a vital area of computer vision research

and application development.
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TABLE 9 Comparison of Object Detection Models in Microsoft COCO (Zhao et al., 2019).

Models Backbone architecture AP AP50 AP75 APS APM APL

Fast R-CNN (Girshick, 2015) ResNet 20.5 39.9 19.4 4.1 20.0 35.8

ION (Bell et al., 2016) - 23.6 43.2 23.6 6.4 24.1 38.2

OHEM+FRCN (Shrivastava et al.,

2016)

VGG16 22.6 42.5 22.2 5.0 23.7 34.6

Faster R-CNN (Ren et al., 2015) ResNet 24.2 45.3 23.5 7.7 26.4 37.1

YOLOv2 (Redmon and Farhadi,

2017)

Darknet 21.6 44.0 19.2 5.0 22.4 35.5

SSD300 (Liu et al., 2016) VGG16 23.2 41.2 23.4 5.3 23.2 39.6

SSD512 (Liu et al., 2016) ResNet-50 26.8 46.5 27.8 9.0 28.9 41.9

R-FCN (Dai et al., 2016) ResNet101 29.2 51.5 - 10.8 32.8 45.0

R-FCN (multi-scale training) (Dai

et al., 2016)

ResNet101 29.9 51.9 - 10.4 32.4 43.3

FPN (Lin et al., 2017a) ResNet101 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN (He et al., 2017) ResNet101+FPN 38.2 60.3 41.7 20.1 41.1 50.2

Mask R-CNN (He et al., 2017) ResNeXt101+FPN 39.8 62.3 43.4 22.1 43.2 51.2

DSSD513 (Fu et al., 2017) ResNet101 33.2 53.3 35.2 13.0 35.4 51.1

Identifying salient objects can be likened to solving a complex

mystery. The bottom-up (BU) approach (Tu et al., 2016) acts like a

meticulous investigator, analyzing local features such as edges and

spatial information. However, its limited perspective often results in

low-contrast and blurry "saliencymaps," resembling vague shadows

rather than well-defined objects. Conversely, the top-down (TD)

approach (Yang and Yang, 2016) functions as a strategic analyst,

utilizing prior knowledge about object types to refine the saliency

map and emphasize the object’s key features. For instance, in

semantic segmentation tasks, where individual pixels are classified,

the TD approach enhances the clarity and accuracy of BU-detected

details, ensuring that the proper structure and boundaries of the

object are effectively captured (Gao et al., 2009).

6.1 Deep learning for salient object
detection

CNNs are pivotal in high-level and multi-scale feature

representation within salient object detection. These architectures

have proven effective in various computer vision tasks, including

edge detection, object recognition, and semantic segmentation.

Eleonora (Vig et al., 2014) pioneered a data-driven approach,

leveraging deep networks with diverse layers and parameters to

maximize feature extraction. Similarly, Kümmerer et al. (2014)

introduced Deep Gaze, which utilized AlexNet to create a

high-dimensional feature space for saliency mapping, addressing

challenges posed by limited training data. Extending this idea,

Huang et al. (2015) fine-tuned pre-trained object recognition deep

networks using saliency evaluation metrics such as Similarity and

KL-Divergence. Numerous strategies have since been developed

to enhance the integration of local and global visual cues for

salient object detection. For instance, Wang et al. employed two

separate deep CNNs to capture both local and global features,

while Cholakkal et al. (2018) proposed a weakly supervised

system that fuses top-down and bottom-up saliency maps, refining

them through multi-scale superpixel averaging. Additionally, Zhao

et al. (2015) designed a multi-context deep learning framework

using superpixel segmentation to combine local and global

contextual modeling.

Efforts to incorporate context modeling and semantic

information into salient object detection have also shown

promising results. For example, Li et al. (2016) proposed a multi-

task deep saliency model that creates intrinsic connections between

saliency detection and semantic segmentation. In contrast, He et al.

(2015b) introduced SuperCNN, a superpixel-based CNN aimed at

enhancing performance.

The integration of multi-scale feature maps has proven crucial

for improving detection accuracy. Liu et al. (2015) utilized

CNNs for fixation prediction by jointly learning visual saliency

components, while Wang et al. (2015) introduced RegionNet,

which preserves edges and incorporates multi-scale contextual

modeling for salient object detection. The evolution of deep

learning techniques in salient object detection demonstrates a

continuous trajectory toward more accurate and efficient solutions,

solidifying its importance in computer vision research (Gao et al.,

2009).

6.2 Benchmark datasets and evaluation
metrics

ECSSD (Yan et al., 2013), HKU-IS (Li and Yu, 2016b),

PASCALS (Li et al., 2014), and SOD (Movahedi and Elder, 2010)

are widely recognized benchmark datasets for evaluating the

performance of salient object detection methods. ECSSD contains

over 4,000 challenging images characterized by low contrast and
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TABLE 10 Comparison between the state-of-art methods in salient object detection.

Dataset Metrics CHM
(Li

et al.,
2013)

RC
(Cheng
et al.,
2014)

DRFI
(Jiang
et al.,
2013)

MC
(Zhao
et al.,
2015)

MDF
(Li and
Yu,

2016b)

DSR
(Tang
et al.,
2016)

DCL
(Li and
Yu,

2016a)

ELD
(Lee
et al.,
2016)

NLDF
(Luo
et al.,
2017)

DSSC
(Hou
et al.,
2017)

PASCALS MAE 0.222 0.225 0.221 0.147 0.145 0.128 0.108 0.121 0.099 0.080

ECSSD MAE 0.195 0.187 0.166 0.107 0.108 0.037 0.071 0.098 0.063 0.052

HKU-IS MAE 0.058 0.165 0.143 0.098 0.129 0.040 0.048 0.071 0.048 0.039

SOD MAE 0.249 0.242 0.215 0.184 0.155 - 0.126 0.154 0.143 0.118

The bold values (lowest score) indicate the best performance.

multiple salient objects, while HKU-IS comprises over 1,000

semantically rich and complex natural images. PASCALS originates

from the validation set of the PASCAL VOC 2010 segmentation

dataset, consisting of 850 natural images. In comparison, the

SOD dataset includes 300 images, each featuring multiple salient

objects. Adhering to the standardized training and validation splits

proposed by Jiang et al. (2013) ensures a rigorous and consistent

evaluation of methodologies.

Saliency map evaluation primarily relies on two metrics: Mean

Absolute Error (MAE) and F-measure. The F-measure quantifies

saliency map quality through precision and recall, computed based

on the intersection of the generated binary mask B with a ground

truth Z. These datasets collectively cover diverse image attributes

and complexities, enabling a comprehensive assessment of salient

object detection techniques.

Fβ =
(1+ β2)× Precision× Recall

β2 × Precision+ Recall
(8)

where β2 is set to 0.3 to emphasize how crucial the precision

value is. Using the following formula, the MAE score is calculated.

The Mean Absolute Error (MAE) is calculated using the

following equation:

MAE =
1

H ×W

H∑

i=1

W∑

j=1

∣∣∣Ŝ(i, j)− Ẑ(i, j)
∣∣∣ (9)

It represents the average absolute difference between the

predicted values Ŝ denote the value at position (i, j) in matrix S,

and Ẑ represents the ground truth value at the corresponding

position in the matrices. The Mean Absolute Error is calculated

by taking the absolute difference between each corresponding pair

of values in the matrices, summing up these absolute differences,

and then dividing by the total number of elements (H×W) in the

matrices, where theW and H are the width and height of the salient

area.

This research looks at some salient feature object detection

methods, such as deep learning-focused and classical methods.

Notable for their exceptional performance are the Context-

aware Hierarchical Model (CHM) (Li et al., 2013), Region

Contrast (RC) (Cheng et al., 2014), and Discriminative Region

Feature Integration (DRFI) (Jiang et al., 2013). CNN is the

foundation of other methods, including Multi-Contextual (MC)

(Zhao et al., 2015), Multi-level Deep Feature Integration (MDF)

(Li and Yu, 2016b), Deep contrast learning (DCL) (Li and Yu,

2016a) Edge-Loss with Diverse-thresholding (ELD) (Lee et al.,

2016), Non-Local Deep Features (NLDF) (Luo et al., 2017),

and Deep Scale Selection and Classification (DSSC) (Hou et al.,

2017).

In general, CNN-based techniques outperform classical

approaches; the Table 10 shows the evaluation metrics, F-measure,

and Mean Absolute Error (MAE). In particular, MC and MDF

make better saliency forecasts by utilizing data from both local and

global settings. ELD provides additional information by taking

advantage of low-level custom features. LEGS employs generic

region recommendations for the first salient regions, which might

not be sufficient. Future directions for improvement are suggested

by integrating semantic segmentation and recurrent networks

in DSR and MT. Multi-scale representations and superpixel

segmentation are necessary for DCL, NLDF, and DSSC to produce

highly salient regions and smooth boundaries. Among these, DCL,

NLDF, and DSSC show the best performance on all four datasets;

scale-to-scale short connection modeling allows DSSC to show the

best performance.

Most CNN-based techniques require using superpixel

segmentation to simulate visual saliency along area boundaries

because CNN primarily provides salient information in small

regions. Measuring local conspicuity requires extracting multi-

scale deep CNN features. Strengthening local connections between

several CNN layers and incorporating complementing data from

local and global contexts is considered vital.

7 Challenges and future opportunities

The use of CNN examines potential advancements in object

detection. This study highlights the importance of enhancing object

identification methods to strike a balance between speed and

accuracy. Two-stage and hybrid detection systems provide greater

precision at the cost of increased computational complexity, while

one-stage alternatives prioritize quicker data processing with a

certain level of accuracy. Future research will creatively address

this trade-off by developing systems that are both precise and

efficient.

However, there are several challenges in object detection,

such as occlusion, where items may be hidden by other

objects, leading to inaccurate detection. Additionally, the less

noticeable characteristics of small or distant objects complicate

recognition. Moreover, object detection algorithms encounter

difficulties in situations with overlapping objects and issues related
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to illumination and viewpoint. Furthermore, the limited availability

of data and the lack of annotated data hinder effective model

training. Additionally, the incorporation of multi-modal detection

affects the overall performance of object identification systems.

However, the resolution and image processing techniques impose

restrictions on this integration.

It is critical to ensure the stability and dependability of object-

detecting systems in various situations. Models can be made more

general using domain adaptation and transfer learning strategies,

which will help them function well in novel environments.

Combining many modalities of information, including textual

or temporal signals, might increase the accuracy of complicated

scene interpretation and improve contextual understanding. To

balance this trade-off and create object identification algorithms

that are both extremely precise and computationally economical,

researchers frequently employ multi-task loss functions to penalize

misclassifications and localization errors.

8 Conclusion

The rapid evolution of object detection algorithms marks

a transformative era in image and pattern recognition,

enabling groundbreaking advancements in visual perception

and interaction. This study has comprehensively reviewed

object detection methodologies, ranging from single-stage to

two-stage and hybrid approaches. While single-stage methods

excel in speed and computational efficiency, two-stage and

hybrid approaches demonstrate superior accuracy and detection

precision, making them highly suitable for real-world applications.

By analyzing architectural frameworks, backbone structures,

and loss functions, this study emphasizes the critical importance

of iterative improvement to address the growing demands of

modern technological applications. The developments discussed

pave the way for revolutionary advancements in domains such

as autonomous vehicles, surveillance systems, and broader image

recognition tasks, fundamentally reshaping how humans interact

with the visual environment.

Future research must prioritize the integration of multimodal

data by combining textual, contextual, and visual signals to

improve robustness and contextual sensitivity in object detection

models. This multidisciplinary approach holds promise for

innovative applications in multimedia analysis, augmented reality,

and human-computer interaction. Furthermore, scalable and

parallelizable object detection systems are essential for meeting the

growing demand for real-time processing of large image and video

datasets. Advances in distributed computing, edge computing, and

hardware acceleration will be crucial for deploying these systems in

resource-constrained environments.

Equally important is the need to address object detection

technologies’ social and ethical implications. Privacy, bias,

and fairness concerns must be rigorously examined to ensure

responsible and equitable deployment across diverse societal

contexts. Future research should strive to develop frameworks

and policies that safeguard these principles, fostering the

ethical adoption of object detection systems. By aligning

technological innovation with ethical accountability, the field

can ensure its advancements serve humanity responsibly while

unlocking unprecedented opportunities for creative and practical

applications.
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