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Breast cancer diagnosis using
radiomics-guided DL/ML
model-systematic review and
meta-analysis

Nazmul Ahasan Maruf* and Abdullah Basuhail

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz

University, Jeddah, Saudi Arabia

Cancer is one of the leading causes of death on a global scale, whereas breast

cancer is the type of cancer that a�ects the most women. Early detection

and accurate staging are essential for e�ective cancer treatment and improved

patient outcomes. Recent developments in medical imaging and artificial

intelligence (AI) have created new opportunities for breast cancer detection

and staging. Medical image analysis techniques, including radiomics, machine

learning and deep learning, have shown promise for breast cancer detection

and stage estimation. The goal of the systematic review and meta-analysis is

to evaluate and examine the state-of-the-art implications of radiomics-guided

deep learning (DL) approaches for breast cancer early detection utilizing di�erent

medical image modalities. The selection criteria were established on the basis of

the PRISMA statement. Our research employs a PICO structure and text mining

technique (Topic Modeling) using Latent Dirichlet allocation (LDA) approach.

The primary objective of the search was to conduct a thorough evaluation of

the literature related to radiomics analysis and breast cancer in the fields of

medical informatics, computer vision, and cancer research. Subsequently, the

investigation concentrated on the fields of medical science, artificial intelligence,

and computer science. The inquiry encompassed the years 2021 to 2024. The

QUADAS-2 instrument is employed to evaluate the articles to ensure their

quality and eligibility. Feature extraction methods that employ radiomics and

deep learning are extracted from each study. The sensitivity value was pooled

and transformed using a random-e�ects model to estimate the performance

of DL techniques in the classification of breast cancer. The systematic review

comprised 40 studies, while the meta-analysis consisted of 23 studies. The

research studies employed a variety of image modalities, radiomics, and deep

learning models to diagnose breast cancers. Ultrasound and DCI-MRI are the

most frequently employed image modalities. The pyradiomcs pyhon package is

employed to extract the radiomic features, and CNNs, ResNet, and DenseNet

models are employed to extract the deep features. The LASSO (13) and T-test (9)

statistical models are the most commonly used for feature selection. The most

widely used deep learning models for breast cancer classification are ResNet

and VGG. This systematic review and meta-analysis examined the feasibility

of employing radiomics-guided deep learning/machine learning models for

identifying breast cancer. The studies yielded positive results, as specific models

demonstrated remarkable precision in distinguishing between malignant and

benign breast tumors. However, there is a wide variety of variations in the

designs of studies, the architectures of models, and the methodologies used for

validation. Further research is required to verify the results of this study and to
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investigate the potential of deep learningmodels guided by radiomics in the early

detection of breast cancer.

KEYWORDS

breast cancer,medical image processing, radiomics, deep learning, AI, systematic review

and meta-analysis

1 Introduction

Cancer is one of the primary causes of mortality worldwide,

whereas breast cancer is the type of cancer that affects the

greatest number of women worldwide (Sung et al., 2021). In

2020, approximately 2.3 million new cases of breast cancer

were diagnosed, making it the most prevalent cancer among

women globally (Lei et al., 2021). Although the death rates have

decreased due to innovations in breast cancer early detection

and diagnosis, it remains the second-leading cause of death

for women (Arnold et al., 2022). However, effective cancer

treatment and enhanced patient outcomes are contingent upon

early detection and accurate staging. Staging is a comprehensive

procedure that involves assessing the extent of cancer progression,

including whether it has progressed from the breast to other

regions of the body. Accurate staging could be useful in

choosing the most effective treatment and determining the

patient’s prognosis.

In the past decade, there has been a growing topic of discussion

on the significance of medical imaging techniques in breast cancer

staging (Balkenende et al., 2022). Mammography is one of the

most widely used image modalities for detecting breast cancer,

and recently, with enhanced imaging approaches, it’s become a

potential tool for detection and diagnosis (Tsarouchi et al., 2023).

A follow-up examination is crucial for detecting abnormalities

identified during mammography and assessing the degree of

dense breast tissue (Gatta et al., 2023). Mammography may

be supplemented with other imaging modalities like computed

tomography (CT), ultrasound, magnetic resonance imaging (MRI),

and positron emission tomography (PET), as mammography

has some limitations (Ha et al., 2023). Dynamic MRI (DCE-

MRI) is a process of contrast enhancement based on the

usage of images, wherein the time-dependent transformation

in contrast enhancement is observed precisely (Ingrisch and

Sourbron, 2013). This technique can help identify areas of

the body where blood vessels associated with cancer are

growing and determine the size and depth of the tumor. MRI

also has one main negative aspect concerning unsatisfactory

specificity that might lead to probable false positives, in addition

to raising the overall cost compared to mammography and

ultrasound (Zhang et al., 2023). Besides, it takes a long evaluation

period (Wang L. C. et al., 2023). Elastography with ultrasound

is a technique that is used to determine the body tissues’

stiffness (Ditonno et al., 2023), which might be the symbol of

malignant growth. Image processing is an essential part of the

ultrasound screening technique used to examine and expose

soft tissues. It enables the detection and description of breast

abnormalities (Cè et al., 2023). Studies indicate that ultrasound

imaging techniques are perfectly safe for their frequent use and have

the unique property of being free from radiation (Abhisheka et al.,

2023).

Recent advances in medical imaging and artificial intelligence

(AI) have created new opportunities for the detection and staging

of breast cancer. Techniques of medical image analysis, such as

radiomics and machine learning, have demonstrated promise for

breast cancer detection and stage estimation (Wang Q. et al.,

2023). Radiomics as a field of study is about obtaining quantitative

features from medical images, which help to visualize and identify

the patterns and biomarkers related to cancer growth (Rizzo

et al., 2018). These attributes process information about the shape,

texture, intensity levels, and spatial relations between the data

in the images (Gupta et al., 2024). Radiomics analysis embraces

most of the medical imaging modalities like computed tomography

(CT), magnetic resonance imaging (MRI), ultrasound, positron

emission tomography (PET), and others (Peng et al., 2023). Those

modalities should be an integral part of any analysis that seeks

to establish the impact radiomics has on imaging for diagnosis,

prognosis, treatment planning, or disease monitoring, specifically

in cancer.

Deep learning (Guo et al., 2016; Dhar et al., 2023; Li X.

et al., 2023), a subfield of machine learning, has shown enhanced

performance in medical image analysis. In the research of Yuan

et al. (2023), they emphasize that the CNN (convolutional

neural network) can be trained to accurately recognize patterns

and markers associated with breast cancer using medical

images. Based on radiomics characteristics, machine learning

and deep learning algorithms can be trained to develop

predictive models for breast cancer detection and staging. Such

models have demonstrated high accuracy rates, outperforming

conventional diagnostic techniques. Early detection and accurate

staging of breast cancer are crucial for selecting the optimal

treatment and enhancing patient outcomes. Through using deep

learning methods for medical image analysis, we can make our

approach more accurate and go into the higher stages too,

which in turn can lead to improved treatment outcomes and

survival rates.

Despite the fact that a substantial amount of work

has been done in this area in recent years, there is still

potential for improvements, as the accuracy of radiomics-

guided breast cancer detection and stage prediction

can significantly impact the diagnosis of this disease.

Hence, to lead our research on radiomics-guided breast

cancer detection, we are now assessing the current state-

of-the-art literature through a systematic review and

meta-analysis. Our systematic review focused on the

following questions:
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• What are the most prominent deep learning and machine

learning models that have been developed in state-of-the-

art literature, and how are those models analyzed with

performance metrics?

• What are the widely used feature extraction and selection

processes in breast cancer detection-based medical image

processing?

• How is radiomics-guided feature extraction made in cutting-

edge research?

The forthcoming sections of the paper will be presented in

the following arrangement: Section 2 describes the methodology

of a systematic review taken. In the result Section 3, the findings

of the study are provided. Section 4 discusses the findings. Lastly,

Section 5 concludes the inferences from the analysis.

2 Methodology

Systematic reviews and meta-analyses serve as an essential

conduit in breast cancer research for appraising the efficacy of

radiomics analysis using deep learning techniques. This systematic

approach carefully weighs and combines ongoing research to get

an overall verdict on the effectiveness of deep learning radiomics in

improving the early detection, diagnostic, and treatment functions

of breast cancer.

2.1 Search strategy

In order to conduct a comprehensive and systematic search,

we devised a search strategy to locate pertinent material. The

search technique was customized for five databases: Scopus,Web of

Science, Science direct, IEEE and Google scholar. The search terms

used were “Radiomics” AND “Radiomics Analysis” AND “Deep

learning” AND “Breast Cancer.” The search included all data from

the database’s establishment until 2021, specifically focusing on

journal articles, conferences and review articles that were published

only in English.

2.2 Eligibility criteria

To ensure the eligibility of studies for our present study,

we established precise criteria for inclusion and exclusion.

Additionally, we created a PICO structure specific to our research,

which comprises the following components: P, Breast Cancer

Patient; I, Deep Learning and Image Processing Approaches; C,

Radiomics Analysis; Radiomics Guided; O, Image Classification,

Segmentation, Prediction, Detection, and Medical Image Analysis.

In order to minimize publication bias, we also implement the text

mining technique (topic modeling) for knowledge discovery using

the latent Dirichlet allocation (LDA) approach.

2.3 Inclusion criteria

In our systematic review and meta-analysis, we established

inclusion criteria based onmany factors. All the research conducted

was centered on the English language. The studies specifically

targeted breast cancer, and the reported findings were based on

the analysis of deep learning and radiomics features in breast

cancer images.

2.4 Exclusion criteria

We have excluded from our systematic review and meta-

analysis any studies that meet particular criteria. These

requirements include research that does not analyze the results

of deep learning approaches, case report studies, book chapters,

conference abstracts, comments, letters to the editor, or studies

published in languages other than English. In addition, research

focusing on topics other than breast cancer is also eliminated.

2.5 Selection criteria

The selection criteria were derived from the PRISMA

Statement (Moher et al., 2009). The search primarily focused

on a comprehensive assessment of the literature pertaining to

Radiomics Analysis and Breast cancer within the domains of

cancer research, medical informatics, and computer science. The

inquiry thereafter focused on the subject areas of computer science,

Artificial Intelligence, and medical science. The search included

the time period from 2021 to 2024. Articles published before to

2021 were omitted from the search results. The search mostly

focused on certain keywords such as Deep learning, Radiomics,

Radiomics Analysis, Breast cancer, and image processing. The

selection method started by eliminating any redundant items

from the study selection process. The studies underwent a two-

step procedure, which included screening the titles and abstracts,

followed by an in-depth review of the entire texts. Only pertinent

papers that satisfied the predetermined criteria for inclusion were

selected for comprehensive evaluation after conducting a thorough

examination of the title and abstract. Figure 1 presents the PRISMA

flow chart, which visually represents the process of selecting studies

for the research.

2.6 Quality assessment

A quality appraisal tool called QUADAS-2 was used to assess

the quality of studies on diagnostic tests (Whiting, 2011). This tool

contains four questions, which are categorized into four different

domains. The categories include patient selection, index tests, time

and flow, and reference standards. Here are the questions: (1).

Could the selection of patients have introduced bias? (2). Was the

threshold value pre-specified, if threshold value used? (3). Is the

reference standard likely to correctly classify the target condition?

(4). Were all patients included in the analysis?
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FIGURE 1

PRISMA flow diagram illustrating the systematic review process, including identification, screening, eligibility assessment, and inclusion of studies. A

total of 941 articles were screened, with 40 studies meeting the inclusion criteria for the final review.

2.7 Meta-analysis

We employed a correlation coefficient-specific random effect

model for correlation data with the application of sensitivity and

sample size analysis. The web application [Jamovi (Version 2.5),

2024; Hornik, 2012; Viechtbauer, 2010] was used to effect and

conduct the meta-analysis of all the data.

3 Result

The initially conducted electronic systematic search yielded

1120 studies from databases such as PubMed, Google Scholar,

IEEE, Science Direct, Web of Science, and Scopus. Following

the elimination of the duplicate, we discovered 941 articles.

Figure 2 depicts the year-wise distribution of articles. The x-axis

represents the time from 2021 to 2024, with each year being

shown. The vertical axis with blue bars represents the number

of papers published each year. There has been a consistent

growth in the quantity of published papers over the last four

years. Subsequently, we use inclusion and exclusion criteria

to assess all titles, abstracts, and keywords using our unique

keywords. As a result, we identified 63 papers for additional

investigation. We use a custom Python script to implement

screening criteria and conduct the actions. Out of the total

number of articles screened, 23 were removed because they did

not have sufficient research relevance to our research and did not

provide clear information on the sensitivity, specificity, accuracy,

precision, and AUC of outcomes. Ultimately, 40 studies satisfied

all the requirements and were subsequently added for additional

examination. Figure 1 depicts the PRISMA flowchart used for the

selection procedure.
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FIGURE 2

Year-wise distribution of articles from 2021 to 2024, illustrating a total of 350 articles published in 2023 and 200 articles in 2024, highlighting the

research interest during the observed period.

FIGURE 3

Topic modeling visualization showing (left) the intertopic distance map and (right) the top 30 terms, highlighting term frequency and relevance(λ = 1).

3.1 Knowledge discover from literature
abstract

Topic modeling is a text mining technique that has

demonstrated its effectiveness as a method for doing systematic

literature reviews (Asmussen and Muller, 2019). The most

common topic modeling technique for knowledge discovery,

Latent Dirichlet Allocation (LDA), finds meaningful topics in

multiple literature by calculating the probability of words from

each topic. LDA reveals latent topics for papers by extracting
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FIGURE 4

Word cloud visualization highlighting the most frequent terms in the dataset. Key terms such as “radiomics,” “learning,” “model,” “deep,” and “image”

appear prominently, reflecting their central role in the analyzed text corpus.

a set of words with high probabilities (Jelodar et al., 2019). In

our systematic review and meta-analysis, we extract the abstracts

from selected 40 literature and identify the latent knowledge

discoveries from each paper by analyzing the frequency of words

and their probabilities using LDA. The results from Figure 3 shows

that certain words like radiomics, image, breast, deep, learning

appear more frequently, and have higher probabilities. In our topic

modeling we followed a specific methodology. After extracting the

abstracts we first preprocess the text by removing stop words and

punctuation after that we convert the abstract to lower case. We

create a dictionary and document-term matrix to identify the most

frequent words and topics that appear in the abstracts. Then, we use

LDA for topic modeling. The Figure 4 shows most frequent words

used in abstract. This word cloud supports the relevance of our

paper’s focus on deep learning, machine learning, and radiomics

analysis by highlighting these topics as prominent themes in

recent research. The prominence of terms like “deep learning,”

“machine learning,” and “radiomics” reflects a significant trend

in applying advanced learning techniques to medical imaging,

which aligns closely with our study’s approach. Additionally,

terms such as “patients,” “clinical,” and “cohort” underscore a

focus on real-world clinical applications and patient outcomes,

validating our research’s emphasis on improving healthcare

through radiomics-based predictive modeling. The presence of

words like “model,” “validation,” “performance,” and “prediction”

shows that evaluating model accuracy is crucial in this field, which

supports the significance of our work in assessing and validating

predictive models. Furthermore, the word “image” emphasizes

the role of medical imaging, demonstrating the importance of our

findings in enhancing diagnostic capabilities through radiomics

analysis. Overall, the word cloud illustrates that our study not only

aligns with high-interest areas but also contributes meaningfully

to the ongoing discourse in medical machine learning, reinforcing

our research’s novelty and practical impact.

3.2 Study classification

A collection of 40 papers, with publication dates ranging

from 2021 to 2024, was used in this study. Overall, 12,685

patients were in the study, which trained, tested, and validated

deep learning models for processing outcomes. In this review,

the participants were between 48 and 70. Figure 5a shows the

distribution of patients among different publications. The articles

that were selected included an average of 507 patients. The

imaging modalities highlighted in the literature focus on DCI-

MRI, a commonly utilized technique. The Figure 5b showcases the

imaging techniques frequently used in papers where ultrasound

ranked as the second most popular modality. Twelve studies

utilized DCI-MRI imagemodalities. Out of these, five studies utilize

various techniques to forecast breast cancer. Various methods

involve the prediction of cancer states, classification of sentinel

lymph nodes (SLN) and metastasis (SLNM), estimation of HER2

expression in breast cancer, and forecasting preoperative axillary

lymph node (ALN) status. Other imaging techniques are commonly

employed to predict the condition of axillary lymph nodes (ALN).

In addition, researchers use these techniques to predict the

probability of achieving a pathological complete response (pCR)

to neoadjuvant chemotherapy (NAC), evaluate lymphovascular

invasion (LVI) in patients, and make predictions based on the

proliferation marker Ki-67. Figure 5c in this study illustrates the

frequency distribution of cancer biomarker values and treatment
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FIGURE 5

Illustrating key distributions across analyzed articles: (a) Patient distribution over 40 articles, with the maximum patient count reaching approximately

3000 in individual studies. (b) Image modality distribution, where DCE-MRI and Ultrasound are the most frequently utilized techniques. (c)

Distribution of cancer biomarkers and treatment factors, highlighting NAC and ALN as the most reported, followed by HER2 and SLN, reflecting the

emphasis on these factors in the studies.
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factors in the selected literature. The 13 reviewed studies centered

their analyses on ALN, SLN, and NAC biomarkers. Nine of the

articles used specific cancer biomarkers, including HER2, Ki-

67, triple-negative breast cancer (TNBC), and LVI, employing

diverse methodologies. Table 1 explains the processing method

for particular biomarkers and the process for choosing radiomics

features using feature selection. In radiomics analysis, several easily

detectable changes are qualitative characteristics extracted fromCT,

MRI, or PET scans. Different data types are sent through various

stages of analysis to seek patterns and correlation (Kumar et al.,

2012). Likewise, such patterns provide information that is vital for

the diagnosis and prediction of prognosis. They act closely with

the clinical outcomes, aligning with them (Traverso et al., 2018).

The major part of the chosen articles employs the usual features of

radiomics, which are first-order Features, Shape features (3D and

2D), Gray Level Co-occurrence Matrix too (GLCM), Gray Level

Run Length Matrix (GLRLM), and Gray Level Size Zone Matrix

(GLSZM), Neighboring Gray Tone Difference Matrix (NGTDM),

and Gray Level Dependence Matrix (GLDM). After reviewing

40 studies (Table 1), DCI-MRI and Ultrasound emerged as the

most widely used imaging modalities for breast cancer detection.

Key cancer biomarkers included ALN, NAC, and SLN, central to

various diagnostic and prognostic analyses. Advanced radiomics

features were frequently selected to enhance predictive accuracy,

demonstrating the essential role of these tools in personalized

cancer assessment.

3.3 Feature extraction and selection model

The Table 2 presented all extraction-feature and selection

methods used in the selected studies. This knowledge will be a

facilitator for determining the ways in which case data analysis can

be conducted and the results can be deduced. This table provides

an in-depth review through which we can learn trend details of

feature selection methods and also get a grasp of the significance of

feature features in different tasks. The existing radiomics method is

PyRadiomics, a highly reliable approach used for feature extraction

with the CNNs, ResNet, and DenseNet models following. There

were twenty four studies that used pyradiomics in order to extract

radiomics features for different imaging modalities. Furthermore,

out of the five papers that utilized deep learning techniques, three

of them used CNN, ResNet, or VGG-16 to extract their features.

The number of features extracted varies significantly across studies,

from as few as 25 to over 11,000, highlighting differences in

feature granularity and study focus. The table indicates that many

studies in radiomics and breast cancer research utilize privately

collected datasets from different hospitals, reflecting a common

approach where institutions collect and analyze their imaging

data. This reliance on private datasets allows for tailored data

that fits specific study objectives. It also introduces variability,

making it challenging to replicate results or compare findings

across studies due to differences in data acquisition protocols,

equipment, and patient demographics. On the other hand, the

Duke-Breast-Cancer-MRI (Saha et al., 2018) dataset is one of the

most frequently used publicly available datasets in this domain.

The technique of feature selection generally involves the use

of an array of methods, with machine learning approach like

LASSO being the most popular option that is frequently used.

Statistical methods like the ANOVA, t-test, the Spearman rank

correlation coefficient, and correlation analysis are the methods

often selected for feature selection. Other advanced selection

models include neural networks, ensemble methods like Random

Forest and LightGBM, as well as ranking algorithms such as

Mutual Information, Gain Ratio, and Information Gain. These

techniques helpmanage complex data relationships effectively. This

was observed as 15 studies applied the LASSO, 5 studies adopted

the ANOVA, and other studies used the Spearman rank correlation

coefficient, correlation analysis, T-test, PCA, U-Test. This overview

highlights the wide array of tools andmethods utilized in radiomics

research, reflecting a trend toward integrating statistical rigor with

machine learning capabilities for effective feature selection.

3.4 Characteristics of DL/ML models

The Table 3 presents a comprehensive overview of the

performance of various deep learning (DL) and machine learning

(ML) models utilized in studies, highlighting their sensitivity,

specificity, accuracy, and area under the curve (AUC) metrics. The

performance metrics presented here provide a rounded evaluation

of each model’s effectiveness. Sensitivity, or recall, reflects a model’s

ability to correctly identify positive cases, making it essential in

scenarios where missing a positive result is costly, such as medical

diagnoses. Specificity measures how accurately a model identifies

negative cases. Reducing false positives and avoiding misclassifying

negative cases as positive is crucial. Conversely, accuracy assesses

the model’s overall efficacy by determining the correct positive

and negative prediction ratio to the total predictions made. Lastly,

the Area Under the Curve (AUC) provides a holistic measure

of the model’s discriminatory power across various threshold

settings, with higher values indicating improved performance in

differentiating between positive and negative outcomes. These

metrics comprehensively understand each model’s performance,

highlighting their strengths and limitations in various contexts.

The Table 3 indicates that ResNet (10 of the studies) is a preferred

model in breast cancer analysis, with numerous studies employing

its different variations due to its effectiveness in extracting detailed

imaging features. For instance, Beuque et al. (2023) use ResNet101

along with Mask R-CNN, achieving a strong balance of high

sensitivity and AUC, highlighting ResNet’s robustness in capturing

intricate details in imaging data. The study employs a data split

rather than cross-validation, dividing the dataset into training, test,

and external validation sets. Specifically, the study allocated 850

patients to the training set, 212 patients to the test set, and 279

patients to an external validation set from a separate institution.

This setup does not involve cross-validation folds; instead, using

an independent external dataset is an additional test for the

model’s generalizability. The external validation provides a strong

benchmark for testing the model on unseen data from a different

population. The wide adoption of ResNet’s variations, including

ResNet18, ResNet34, ResNet50, and ResNet101, across studies

reassures researchers about its adaptability to specific data sizes

and computational resources. It also found that authors leverage
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TABLE 1 Summary of imaging modalities, cancer biomarkers, and radiomics feature extraction techniques reported across reviewed studies,

highlighting the diversity in methodologies and patient cohorts.

References Year Image modality Patients Cancer bio markers Radiomics features

Yang et al., 2023 2023 DCE-MRI 206 Lymphovascular Invasion(LVI) 7 Radiomics features

Abbasian Ardakani et al., 2023 2023 Ultrasound 200 None 3 Radiomics features

Wang C. et al., 2023 2023 Ultrasound 359 Sentinel Lymph Node(SLN) DL-Grayscal

DL-CDFI

DL-elastography

Yu et al., 2023 2023 Ultrasound 603 Neo Adjuvant Chemotherapy (NAC) Deep learning radiomics

Wei et al., 2023 2023 Ultrasound 892 Axillary Lymph Node(ALN) 5 radiomics features

Zheng et al., 2023 2023 PET/CT 105 Neo adjuvant Chemotherapy (NAC) 7 Radiomics features

Gao et al., 2023 2022 DCE-MRI 941 Axillary lymph Node(ALN) 7 Radiomics features

Xu et al., 2022 2022 Ultrasound 144 Human epidermal Growth factor

receptor 2 (HER2)

None

Peng et al., 2022 2022 DCE-MRI 356 Neo adjuvant Chemotherapy (NAC) 7 Radiomics features

Vigil et al., 2022 2022 Ultrasound 780 None 7 Radiomics features

Rashid et al., 2022 2022 MRI 35 None 7 Radiomics features

Chen et al., 2022 2022 Digital breast Tomosynthesis (DBT) 298 None 7 Radiomics features

Jiang et al., 2022 2022 Digital breast Tomosynthesis (DBT) 266 K-67 7 Radiomics features

Wang et al., 2022 2022 DCE-MRI 151 Axillary Lymph Node(ALN) 7 Radiomics features

Cattell et al., 2022 2022 DCE-MRI 198 Sentinel Lymph Node(SLN) 5 Radiomics features

Wu et al., 2022 2022 Contrast-enhanced Cpectral

Mammography(CESM)

182 Sentinel lymph Node(SLN) 7 Radiomics features

Bong et al., 2023 2023 Ultrasound 1,024 None None

Sharmin et al., 2023 2023 Histology images None None Deep feature extraction

Beuque et al., 2023 2023 Mammography 850 None Handcrafted radiomics

Liu et al., 2024 2024 MRI 1,760 None 7 Radiomics features

Wang J. et al., 2023 2023 Ultrasound 263 Ki-67 7 Radiomics features

Ferre et al., 2023 2023 Ultrasound 88 HER2 7 Radiomics features

Haraguchi et al., 2023 2023 Histology images 100 ALN 7 Radiomics features

Jailin et al., 2023 2023 Mammography 1673 None None

Quan et al., 2023 2023 Ultrasound 445 None 7 Radiomics features

Murtas et al., 2023 2023 DBT 150 None 7 Radiomics features

Nicosia et al., 2023 2023 Ultrasound 365 None 7 Radiomics features

Chen W. et al., 2023 2023 PET/CT 236 None Deep radiomics

Sun et al., 2023 2023 DCE-MRI 91 TNBC 7 Radiomics features

Wei Li et al., 2023 2023 DCE-MRI 1,048 NAC 7 Radiomics features

Xiang et al., 2023 2023 Histology images 8,797 None None

Bangalore et al., 2024 2024 Histology images None None Deep feature extraction

Romeo et al., 2023 2023 DCE-MRI 248 HER-2 7 Radiomics features

Li Y. et al., 2023 2023 DCE-MRI 95 None 7 Radiomics features

Caballo et al., 2023 2023 DCE-MRI 922 NAC 7 Radiomics features

Chen Y. et al., 2023 2023 DCE-MRI 479 ALN Deep feature extraction

Oladimeji et al., 2024 2024 DBT 1,140 None 7 Radiomics features

Gamal et al., 2024 2024 DCE-MRI 109 NAC 7 Radiomics features

Jiang et al., 2024 2024 DCE-MRI 198 LVI 7 Radiomics features

Del Corso et al., 2024 2024 ABVS and DBT 66 None 7 Radiomics features
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TABLE 2 Overview of feature extraction methods, extracted feature counts, and feature selection techniques used across reviewed studies, emphasizing

the diverse approaches to data processing and analysis.

References Feature extraction Extracted
features count

Feature selection

Yang et al., 2023 PyRadiomics 2,478 T-tests, Correlation analysis, LASSO

Abbasian Ardakani et al., 2023 PyRadiomics CNN 27 features for each

Image

Kolmogorov–Smirnov test, t-test ROC analysis and curve

Wang C. et al., 2023 Annotation Tool ResNet-18

Yu et al., 2023 Annotation Tool DCNN

Wei et al., 2023 PyRadiomics 1,403 Spearman’s rank correlation coefficient, LASSO

Zheng et al., 2023 PyRadiomics ResNet101 7,740 Boruta-shap Method, Univariate analysis Multivariate Cox analysis

Gao et al., 2023 PyRadiomics 1,409 ANOVA, LASSO

Xu et al., 2022 DenseNets

Peng et al., 2022 PyRadiomics 851 LASSO

Vigil et al., 2022 Radiomics

Deep Radiomics

354 Deep Neural Network

Spectral embedding method

Laplacian Eigenmaps

Rashid et al., 2022 PyRadiomics 75

Chen et al., 2022 PyRadiomics 107 (Saha et al., 2018) Multiple SVM classifier

Jiang et al., 2022 Radiomics

Deep Radiomics

2,479 Intraclass correlation coefficient (ICC)

Mann–Whitney U-test

LASSO

Wang et al., 2022 PyRadiomics VGG-16 120 T-test

LASSO

Cattell et al., 2022 PyRadiomics VGG-16 1,105 z-score Normalization Spearman, U-test Principal Component

Analysis(PCA), LASSO

Wu et al., 2022 PyRadiomics ResNet-18 3,738 Correlation Analysis

LASSO

ANOVA

Bong et al., 2023 ResNet101 Deep features Clinical factors and R-CNN

Sharmin et al., 2023 ResNet50 Deep Features

(Janowczyk and

Madabhushi, 2016)

Random forest and LightGBM

Beuque et al., 2023 Handcrafted radiomics ResNet101

Liu et al., 2024 PyRadiomics 11,342 LASSO

ANOVA

Wang J. et al., 2023 PyRadiomics 849 LASSO

Ferre et al., 2023 PyRadiomics

Haraguchi et al., 2023 PyRadiomics LASSO

Jailin et al., 2023 YOLO

Quan et al., 2023 PyRadiomics 91

Murtas et al., 2023 LIFEx 58 K-best, ANOVA, Sequential Embedded method, Random Forest

Nicosia et al., 2023 LIFEx LASSO

Chen W. et al., 2023 Deep Features Attention-based aggregate CNN

Sun et al., 2023 PyRadiomics 2,832 ANOVA Recursive feature elimination

Wei Li et al., 2023 PyRadiomics

Xiang et al., 2023 Deep Features DenseNet-121

Bangalore et al., 2024 Pruned CNN 550 (Janowczyk and

Madabhushi, 2016;

Balkenende et al., 2022)

Information Gain (IG) Supervised Relative Reduct (SRR) Gain-Ratio

(GR), OneR mRMR Chi-Squared (CS)

(Continued)
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TABLE 2 (Continued)

References Feature extraction Extracted
features count

Feature selection

Romeo et al., 2023 PyRadiomics 1,288 (Saha et al., 2018) ICC Analysis

Li Y. et al., 2023 PyRadiomics 1,130 LASSO

Caballo et al., 2023 PyRadiomics 348 (Saha et al., 2018) U-test

Chen Y. et al., 2023 DenseNet121 1,000 (Saha et al., 2018) mRMR

LASSO

SMOT

Oladimeji et al., 2024 PyRadiomic 857 (Buda et al., 2020) Mutual information

U Test

Gamal et al., 2024 Genetic algorithm (GA)

Standardization

Jiang et al., 2024 PyRadiomics 6,195 mRMR

LASSO

Del Corso et al., 2024 PyRadiomics 25 PCA

Adaptive feature selection

two deep learning models like (Yu et al., 2023), leveraging VGG16

and ResNet50 models where authors use a split-sample validation

approach rather than cross-validation. Specifically, author divides

the data from three medical centers, using patients from two

centers as a training cohort (420 patients) and patients from

the third center as an external validation cohort (183 patients),

attaining robust accuracy metrics highlighting deep learning

capacity for breast cancer classification. Other famous models, such

as Inception V3, DenseNet, and SqueezNet, are frequently used by

researchers. In contrast, traditional ML models are often used as

benchmarks or in cases of limited data availability; for instance, Liu

et al. (2024) utilize Support Vector Machine (SVM) and Gaussian

Process models where authors employ a split-sample approach

across five distinct cohorts to evaluate the model’s robustness. They

divide the data into training (775 patients) and validation (518

patients) cohorts for model development. For further testing, they

use three independent testing cohorts: an internal retrospective

cohort (167 patients), an internal prospective cohort (188 patients),

and an external retrospective cohort (112 patients), reporting

moderate sensitivity and specificity values. Ensemble methods,

particularly XGBoost, are frequently implemented, with Quan et al.

(2023) demonstrating XGBoost’s impressive high specificity and

accuracy. The authors apply a 4:1 split ratio, dividing patients

into a training set (357 patients) and an independent test set

(88 patients), highlighting the advantages of ensemble learning in

achieving better generalizability. Studies using hybrid approaches,

such as Nicosia et al. (2023), incorporate attention-based CNNs

where authors apply 10-fold cross-validation to select radiomics

features using the LASSO (Least Absolute Shrinkage and Selection

Operator) logistic regression model. Additionally, they split the

data into a training set (70%, with 255 lesions) and a test set

(30%, with 110 lesions) to further validate model accuracy and

robustness, achieving high AUC values. Moreover, studies such

as those by Ferre et al. (2023) and Gamal et al. (2024) show

the continued relevance of logistic regression and random forests,

particularly when paired with feature selection techniques, to

achieve competitive performance. In the study by Rashid et al.

(2022), CNN-SVM achieved the highest AUC of 0.974. Notably,

this model also achieves higher accuracy (98.83%) compared to

other models. Yang et al. (2023) achieved the highest sensitivity of

0.889 using 3DResNet. This model also demonstrates a remarkable

level of lower specificity, with a value of 0.692. The study conducted

by Wu et al. (2022) attained the nearest sensitivity of 0.88 utilizing

a radiomics model. Accuracy is crucial in cases where detecting all

positive instances, such as cancerous tumors, is vital. In a study

by Rashid et al. (2022) and Bangalore et al. (2024), the CNN-SVM

model and EfficientNet-Transformer models respectively achieved

the highest accuracy of 0.9883 and 0.9884. Specificity is vital in

situations where there is a chance that a negative prediction is truly

negative. Cattell et al. (2022) demonstrated that VGG-16 achieved

the highest level of specificity, with a score of 0.87.However, the

AUC value for this study is 0.83, which is notably higher than

other models.

3.5 Literature methodology analysis

The primary objective of the study will be the detailed analysis

of the methods sections of 16 selected papers. We evaluated

and studied different research designs for our examine the

methodology used in recent literature. This approach will ensure

the exploration of each methodology, developing a more detailed

understanding of the research process. Choosing an appropriate

image dataset is usually the first step in research methodology

where researcher typically use one specific type of image modality.

After doing several image processing steps the features are

extracted using radiomics models or deep learning models. Then,

the next stage will be selecting the best features using several

appropriate statistical models. Finally, different DL/ML models

are proposed or evaluated, either individually or in combination.

The authors of those studies (Yang et al., 2023; Wu et al., 2022;

Abbasian Ardakani et al., 2023; Gao et al., 2023) implemented

new deep learning or radiomics models in their research. Yang
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TABLE 3 Performance analysis of DL/ML models across studies, including metrics such as sensitivity, specificity, accuracy, and area under the curve

(AUC), highlighting variations in model e�ectiveness and application.

References ML/DL Sensitivity Specificity Accuracy Area under curve
(AUC)

Yang et al., 2023 3DResNet 0.889 0.692 0.743 0.857

Abbasian Ardakani et al.,

2023

SqueezNet,

InceptionV3 VGG16,

VGG19

0.861, 0.843

0.847, 0.867

Wang C. et al., 2023 ResNet18 DL-grayscale - 0.82,

DL-CDFI - 0.77

DL-elastography - 0.88

DL-grayscale - 0.84,

DL-CDFI - 0.71

DL-elastography - 0.82

DL-grayscale - 0.83,

DL-CDFI - 0.76

DL-elastography - 0.86

DL-grayscale - 0.85, DL-CDFI

- 0.76 DL-elastography - 0.87

Yu et al., 2023 ResNet34, ResNet50

VGG16, DenseNet121

ResNet34 - 0.788,

ResNet50 - 0.773

VGG16 - 0.606,

DenseNet121 - 0.697

ResNet34 - 0.684,

ResNet50 - 0.855

VGG16 - 0.786,

DenseNet121 - 0.684

ResNet34 - 0.721,

ResNet50 - 0.825

VGG16 - 0.716,

DenseNet121 - 0.689

ResNet34 - 0.785, ResNet50 -

0.879 VGG16 - 0.707,

DenseNet121 - 0.724

Wei et al., 2023 ResNet50, ResNet101

Inception_v3, VGG19

ResNet50 - 0.71,

ResNet101 - 0.57

Inception_v3 - 0.71,

VGG19 - 0.71

ResNet50 - 0.67,

ResNet101 - 0.80

Inception_v3 - 0.74,

VGG19 - 0.49

ResNet50 - 0.72,

ResNet101 - 0.76

Inception_v3 - 0.72,

VGG19 - 0.83

ResNet50 - 0.69, ResNet101 -

0.69 Inception_v3 - 0.71,

VGG19 - 0.58

Zheng et al., 2023 ResNet101 0.8595

Gao et al., 2023 ResNet 0.792 0.853 0.828 0.852

Xu et al., 2022 DenseNets 0.727 0.84 0.805 0.84

Peng et al., 2022 ResNext50 0.566 0.556 0.558 0.554

Vigil et al., 2022 Unet 0.853

Rashid et al., 2022 Inception_V3,

CNN-SVM

Inception_V3 - 0.9196,

CNN-SVM - 0.9883

Inception_V3 - 0.932,

CNN-SVM - 0.974

Chen et al., 2022 ResNet50 0.68 0.78 0.74 0.82

Jiang et al., 2022 ResNet50 0.864 0.500 0.500 0.714

Wang et al., 2022 VGG-16 0.78 0.87

Cattell et al., 2022 VGG-16 0.58 0.87 0.77 0.83

Wu et al., 2022 Radiomics Model 0.88 0.68 0.75 0.85

Bong et al., 2023 Mask R-CNN

ResNet101

0.78 0.85

Sharmin et al., 2023 ResNet50V2 0.95

Beuque et al., 2023 Mask R-CNN

ResNet101

0.90 0.86 0.95

Liu et al., 2024 Gaussian Process

Support vector

machine(SVM)

0.84

Wang J. et al., 2023 Logistic regression

Random forests

Support vector machine

Extreme gradient

boosting (XGBoost)

0.88

Ferre et al., 2023 Logistic regression

k-nearest neighbor

Näve Bayes

0.818 0.742 0.824

Haraguchi et al., 2023 Support vector machine 0.765

Jailin et al., 2023 YOLO 0.964

Quan et al., 2023 Logistic regression

Random forests

Support vector machine

Extreme gradient

boosting (XGBoost)

0.991 0.996

Murtas et al., 2023 Random forest 0.72

(Continued)
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TABLE 3 (Continued)

References ML/DL Sensitivity Specificity Accuracy Area under curve
(AUC)

Nicosia et al., 2023 Multivariable logistic 0.914

Chen W. et al., 2023 Attention-based

aggregate CNN

0.809 0.85 0.83 0.886

Sun et al., 2023 Support vector machine 0.82 0.85

Wei Li et al., 2023 Logistic regression (LR)

Linear discriminant

analysis (LDA) Support

vector machine (SVM)

0.843 0.893

Xiang et al., 2023 Attention-based CNN 0.864 0.866 0.865 0.95

Bangalore et al., 2024 Triplet attention-based

Efficient network

(TAENet)

0.9718 0.9812 0.9884

Romeo et al., 2023 Logistic regression 0.80 0.43 0.63 0.66

Li Y. et al., 2023 Deep learning radiomic

(DLR) Logistic

regression

0.875 0.90 0.893 0.914

Caballo et al., 2023 Logistic regression

model with

leave-one-out

cross-validation

(LOOCV)

0.707

Chen Y. et al., 2023 DenseNet121 0.65 0.80 0.75 0.80

Oladimeji et al., 2024 Random forest Extreme

gradient boosting

(XGBoost) Logistic

regression Decision

Tree

0.92

Gamal et al., 2024 LightGBM Extreme

gradient boosting

(XGBoost)

0.88 0.98 0.88

Jiang et al., 2024 Logistic regression (LR)

Support vector machine

(SVM) Classification

and Regression Trees

(CART) K-Nearest

Neighbors (KNN)

Gradient Boosting

Machine (GBM)

0.90 0.72 0.87

Del Corso et al., 2024 Logistic regression (LR)

Support vector machine

(SVM) Logistic

regression

0.842 0.807 0.807 0.921

et al. (2023) introducing three innovative deep-learning models

that leverage the power of radiomics: DL-gray scale, DL-CDFI,

and DL-elastography. Wu et al. (2022) developed two radiomics

nomograms capable of reliably showing the presence or absence

of NSLN metastasis and the extent of axillary tumoral burden. A

new filter based on deep learning and adaptive residual learning

has been proposed by Abbasian Ardakani et al. (2023). Gao

et al. (2023) explore the capabilities of their attention-based DL

model in distinguishing ALN metastasis in breast cancer using

dynamic contrast-enhanced MRI (DCE-MRI) before surgery. The

remaining authors of the papers utilize various cancer bio-markers

to make predictions about breast cancer. Authors employ feature

extraction and selection model that is based on radiomics and deep

learning. The authors also conducted various statistical analyses to

select features. To develop their DL/ML model, authors created

separate models for radiomics and deep learning. Furthermore,

several of them utilized radiomics and deep learning features

to train DL/ML models. In the end, the authors provided an

affirmation of accuracy by performing both internal and external

validation techniques. Research from Jiang et al. (2022) exploited

radiomics and deep learning features from different tumor

areas. These features were then sequentially selected by LASSO

regression and finally produced radiomics signatures. AUROC,

accuracy, sensitivity, and specificity were calculated to estimate
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the radiomics signatures. After doing extensive research on 40

articles we developed a widely used methodology which is shown

in Figure 6.

3.6 Risk of bias

The quality assessment of 16 publications was assessed using

QUADAS-2. We prioritized studies that provided high-quality and

comprehensive data on patient selection and target classification

for breast cancer to ensure the robustness and applicability of our

findings. The selected studies represented the most relevant and

rigorous evidence available for quality assessment. For the risk of

bias, there is a higher number of unclear answers in the reference

standard selection due to the specific modality used. The flow

and timing of high-risk responses may suggest different reference

standards being used and ambiguous intervals with index tests.

There are some concerns regarding the applicability of the reference

standard due to the use of a particular modality, which has resulted

in a higher number of unclear answers. The increased risk of bias

in index tests primarily stems from the design of the validation

process. There is some ambiguity when it comes to patient selection

due to the lack of clear inclusion and exclusion criteria. Figure 7

illustrates the process of quality assessment, utilizing the robvis

tool (McGuinness and Higgins, 2021).

3.7 Correlation coe�cient

Correlation coefficients are thus pivotal in the distinction

between correlation types, revealing whether two variables show

synchronized movements, diverge in opposite directions, or are

completely unrelated. By adopting the random effect model, we

endeavor to find out the values of the correlation coefficient (n, r)

between the sample size and sensitivity in our meta-analysis study.

This meta-analysis investigates the correlation coefficients

across 23 studies using a random-effects model. Fisher’s r-to-z

transformed correlation coefficient is used as the primary outcome

measure, allowing for a standardized effect size across studies with

varying sample sizes. The model uses the restricted maximum

likelihood (REML) estimator for study-level variability. The Table 4

and Figure 8 describe our meta analysis. The random-effects model

estimated an average effect size of 1.20 with a standard error of

0.0869. A Z-test yielded a value of 13.8, with a p-value of <0.001,

indicating statistical significance. The 95% confidence interval (CI)

for the effect size ranges from 1.033 to 1.373, suggesting a robust,

statistically significant association. Tau τ , representing the standard

deviation of true effect sizes, is estimated at 0.412, and Tau2 τ
2, the

variance of effect sizes, is 0.1694 (with a standard error of 0.0524).

I2 is very high at 98.63%, indicating substantial heterogeneity across

studies. This indicates that almost all variability in observed effect

sizes is due to differences between studies rather than random

chance. The Q-test for heterogeneity also supports this high level of

heterogeneity, with a Q value of 1,574.190 (df = 22) and a p-value

< 0.001. These metrics imply that the included studies are highly

heterogeneous, and the overall effect size should be interpreted with

caution, as it may not represent a single underlying population

effect. The funnel plot shows asymmetry, suggesting the potential

for publication bias or small-study effects. Studies appear unevenly

distributed around the mean effect size, especially toward the left

side, which might indicate an underrepresentation of studies with

small or null effects. The forest plot displays individual effect

sizes for each study along with their 95% confidence intervals.

Effect sizes range considerably across studies, from approximately

0.5 to 2.7, reinforcing the high heterogeneity (I2 = 98.63%). The

pooled effect size obtained from the random-effects model is 1.20,

with a 95% confidence interval of 1.03 to 1.37, displayed at the

bottom of the forest plot. Log-likelihood, Deviance, AIC, BIC,

and AICc values are reported for both the maximum-likelihood

and restricted maximum-likelihood models. The REML model

has a slightly better fit, with lower values across these criteria

(AIC = 27.743, BIC = 29.925, AICc = 28.374), suggesting it is

more appropriate for this data due to better handling of the high

heterogeneity. The meta-analysis reveals a significant average effect

size, suggesting a meaningful correlation across studies. However,

the high heterogeneity, as evidenced by I2 and the Q-test, indicates

that effect sizes vary widely among the studies, possibly due to

differences in study populations, methodologies, or contextual

factors. The presence of funnel plot asymmetry further suggests the

possibility of publication bias, which should be considered when

interpreting these findings.

4 Discussion

In the discussion section of this systematic review and

meta-analysis, we explore the detailed insights derived from the

comprehensive body of evidence examined. By carefully analyzing

the data, we aim to present an in-depth understanding of the

research field and learn the research patterns.

After surveying the studies, DL/ML technology shows

remarkable accuracy in forecasting results. Through an in-depth

and methodical review, we have assessed the efficacy of existing

techniques, identified promising areas for future research, and

acquired valuable insights into their accuracy. The radiomics-

guided DL/ML model has shown promising potential for

improving accuracy. In some instances, the radiomics model alone

has shown the ability to achieve the highest accuracy in identifying

breast cancer. In our research, 12,685 patients were enrolled, and

the authors used several strategies to identify these individuals.

Since our review question primarily pertains to image processing

methods using radiomics-guided deep learning models, we will

only concentrate on image processing using radiomics-guided

deep learning models. Ultrasound is a widely used tool for imaging

cancer biomarkers. Sentinel lymph nodes (SLN) and axillary lymph

nodes (ALN) are mainly used as biomarkers. Most of the articles

we picked used seven radiomics attributes for radiomics analysis.

The radiomics characteristics are extracted using the pyradiomics

python package. Deep learning models are famous for extracting

deep learning information from images. Following the extraction

process, writers often use LASSO statistical analysis for feature

selection. In addition, the researchers used several statistical

analyses, such as U-test, T-test, and correlation coefficient,

in their study. The authors used many statistical approaches
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FIGURE 6

Workflow for medical image analysis: image collection, pre-processing, feature extraction, feature selection, model generation, and validation.
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FIGURE 7

Quality assessment according To QUADAS-2.

collectively for their investigations. Our research revealed that

authors independently use statistical approaches for selection

in their radiomics and deep learning models. When generating

DL/ML models, authors often use various variations of ResNet,

including ResNet 18, ResNet 34, ResNet 50, and ResNet 101.

Even though the CNN-based model achieved the highest AUC of
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TABLE 4 Random-e�ects model summary (R = 2.5, K = 23) with heterogeneity statistics and model fit metrics for ML and REML methods.

Estimate se Z p CI lower bound CI upper bound

Random-e�ects model (k = 23)

Intercept 1.14 0.0869 13.8 0.001 1.033 1.373

Tau τ
2 I2 H2 IR2 df Q

Heterogeneity Statistics

0.412 0.1694 (SE= 0.00524) 98.63% 72.766 - 22.000 1,574.190

Log-likelihood Deviance AIC BIC AICc

Model Fit Statistics and information Criteria

Maximum-Likelihood –11.915 113.448 27.831 30.102 28.431

Restricted Maximum-Likelihood –11.871 23.743 27.743 29.925 28.374

97.4%, with the same model, we achieved an impressive accuracy

of 98.83%.

A previous systematic review conducted by Taddese and

Tilahun (2024) consisted of 48 studies, while their meta-analysis

comprised 24. The studies utilized various images and models to

diagnose various gynecological cancers. The authors emphasized

that DL algorithms demonstrated higher sensitivity but lower

specificity than machine learning (ML) methods.

This systematic review thoroughly examined the topic using

a well-defined methodology and strict inclusion criteria. We also

customized the quality assessment tools to suit the included studies.

We explore image feature extraction and selection methods,

utilize radiomics and deep learning models, and compare their

performance. It is worth noting that previous studies and current

guidelines have highlighted the importance of internal validation.

This involves training and validating models using the same

dataset, often through techniques like cross-validation. However, it

is essential to be cautious with the results obtained through internal

validation, as they tend to overestimate accuracy and may not be

easily generalized due to overfitting. Therefore, only studies that

utilized external validation of test sets were considered during the

initial phase of literature identification. Thus, our research offers

valuable insights into the use of DL for diagnosing breast cancer.

However, this systematic review did not include publications in

languages other than English, which could introduce bias in the

selection process. Furthermore, the lack of sufficient data hindered

the calculation of comprehensive diagnostic measures.

We recommend conducting more precise research on feature

extraction and selection based on radiomics and deep learning

models. After extracting the features, we should find the

most valuable features by conducting statistical analysis using

both categories of features combined to obtain more accurate

prospective studies. We recommend using externally validated data

to conduct a more thorough assessment of the DL/ML model

for both ruptured and unruptured aneurysms. To ensure that the

results of this promising technology can be replicated and applied

to a broader range of cases, we suggest developing standardized

research guidelines for further investigations.

This systematic review investigated the potential of utilizing

radiomics-guided deep learning/machine learning models to

identify breast cancer. The studies provided encouraging findings,

as specific models showed impressive accuracy in distinguishing

between malignant and benign breast tumors. Nevertheless, there

is a wide range of variations in the designs of studies, architectures

ofmodels, and techniques used for validation. In literature, a variety

of imaging methods are employed. Upon evaluation, we found

that the most frequent imaging modality is ultrasound imaging.

In addition, DBT, CT/PET, and DCI-MRI are utilized for early

identification of breast cancer. Extracting features mainly combines

radiomics and deep learning feature extraction methods. The

Pyradiomics Python package extracts Radiomics characteristics,

and the most used deep learning model for extracting medical

image features is ResNet. In this review, we observed that while

there is a considerable use of other statistical models such as T-

test, ANOVA, and correlation analysis, researchers mainly utilize

LASSO for feature selection. The most popular deep-learning

models for classifying breast cancer are ResNet and VGG.

Additional research is necessary to establish uniform techniques,

enhance applicability, and explore the practical implications of

these models. Future research in radiomics-guided deep learning

(DL) and machine learning (ML) for breast cancer detection

should prioritize several key areas to build upon the promising

yet varied findings highlighted in this review. First, standardized

model development, validation, and evaluation guidelines are

crucial. The wide variability in model architectures, feature

extraction techniques, and validation methods across studies

has led to inconsistent performance metrics, challenging the

generalizability of findings. Establishing a common framework will

allow researchers to compare results more effectively and ensure

that the models developed are robust, reproducible, and clinically

applicable. Second, the future of our research should be built on a

foundation of external validation through multi-center prospective

trials. Many current studies rely on internal validation, which

may introduce overfitting and overestimate model accuracy. It’s

urgent that we evaluate model performance in real-world clinical

environments by conducting trials across diverse populations and

imaging settings. This step is crucial in increasing confidence

in the models’ diagnostic accuracy and generalizability, and it’s

a key part of our journey toward more reliable and effective

breast cancer detection. Additionally, the field would benefit from

further investigation into optimal feature selection techniques

that combine radiomics and DL features. Current methods, such
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FIGURE 8

Forest plot and funnel plot presenting the meta-analysis results. The forest plot illustrates individual study e�ect sizes and 95% confidence intervals,

with a pooled e�ect size of 1.20 (95% CI: 1.03, 1.37) obtained using a random-e�ects model. The funnel plot indicates an asymmetric distribution,

suggesting potential publication bias or small-study e�ects.

as LASSO, U-test, and T-test, show promise, but additional

methods that integrate both categories of features could enhance

the predictive power of DL/ML models. Exploring new feature

selection algorithms or hybrid approaches could yield insights

into the most predictive attributes for distinguishing between

benign and malignant tumors. Lastly, our research should explore

the practical application of these advanced imaging techniques

with existing diagnostic workflows. We should study the potential
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roles of DL/ML models not as standalone diagnostic methods,

but as complementary tools. This approach could facilitate their

practical application in early breast cancer detection, monitoring,

and treatment planning, making them an integral part of our

clinical workflows.

5 Conclusion

This systematic review investigated the potential of utilizing

radiomics-guided deep learning/machine learning models to

identify breast cancer. The studies provided encouraging findings,

as certain models showed impressive accuracy in distinguishing

between malignant and benign breast tumor. Nevertheless, there is

a wide range of variations in the designs of studies, architectures

of models, and techniques used for validation. In literature, a

variety of imaging methods are employed. Upon evaluation, we

found that the most frequent imaging modality is ultrasound

imaging. In addition, DBT, CT/PET, and DCI-MRI are utilized

for early identification of breast cancer. Extracting features are

mostly done with the combination of radiomics and deep learning

feature extraction methods. The Pyradiomics Python package is

used to extract Radiomics characteristics, and the most used

deep learning model for extracting medical image features is

ResNet. In this review, we observed that while there is a

considerable use of other statistical models such as T-test, ANOVA,

and correlation analysis, researchers mostly utilize LASSO for

feature selection. The most popular deep learning models for

classifying breast cancer are ResNet and VGG. The review identifies

notable challenges, such as variability in model architectures,

feature selection techniques, and validation approaches across

studies, which have led to inconsistencies in model performance

and generalizability. Although widely used, internal validation

methods are limited in assessing accurate diagnostic accuracy

due to the risk of overfitting. The recommendation is to

prioritize external validation through multi-center, prospective

trials, enabling more accurate and generalizable assessments and

supporting broader clinical applicability. Furthermore, combining

radiomics and DL/ML features through optimized feature selection

techniques, such as LASSO, and exploring hybrid approaches

could enhancemodel precision. Standardizingmodel development,

validation, and evaluation protocols is essential to improve the

comparability and reliability of findings across studies. Looking

forward, radiomics-guided DL/ML models show great promise as

complementary diagnostic tools rather than standalone methods,

potentially enhancing early breast cancer detection, monitoring,

and treatment planning. However, the findings underscore the need

for standardized guidelines, external validation, and more rigorous

prospective studies to realize the full potential of these models

in clinical settings. This review provides a foundation for future

research, which should continue to refine and integrate DL/ML

methodologies into diagnostic pathways, ultimately improving

patient outcomes in breast cancer care.
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