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Quantum Natural Language Processing (QNLP) is a relatively new subfield of
research that extends the application of principles of natural language processing
and quantum computing that has enabled the processing of complex biological
information to unprecedented levels. The present comprehensive review analyses
the potential of QNLP in influencing many branches of bioinformatics such as
genomic sequence analysis, protein structure prediction, and drug discovery and
design. To establish a correct background of QNLP techniques, this article is going to
explore the basics of quantum computing including qubits, quantum entanglement,
and quantum algorithms. The next section is devoted to the application of QNLP
in the extraction of material and valuable information and knowledge related
to drug discovery and development, prediction and assessment of drug-target
interactions. In addition, the paper also explains the application of QNLP in protein
structural prediction by quantum embedding, quantum simulation, and quantum
optimization for exploring the sequence-structure relationship. However, this study
also acknowledges the future of QNLP in bioinformatics in the discussion of the
challenges and weaknesses of quantum hardware, data representation, encoding,
and the construction and enhancement of the algorithms. This looks into real-life
problems solved from industry applications, benchmarking and assessment criteria,
and a comparison with other traditional NLP methods. Therefore, the review
enunciates the research and application perspectives, as well as the developmental
and implementation blueprint for QNLP in bioinformatics. The plan is as follows:
its function is to achieve the objectives of precision medicine, new protein design,
multi-omics, and green chemistry.

KEYWORDS

quantum natural language processing, bioinformatics, sustainability, drug discovery,
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1 Introduction

Natural language processing (NLP) is a field of computer science and a subfield of artificial
intelligence that aims to make computers understand human language. NLP uses
computational linguistics, which is the study of how language works, and various models based
on statistics, machine learning, and deep learning. Quantum Natural Language Processing
(QNLP) is an integrative approach that encompasses natural language processing and physical
theories taken from quantum mechanics to speed up the process of analyzing human language
(Karamlou et al, 2022). By doing so, it can transform how humans engage with
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language-based data by proposing new and unique enhancements for
a range of purposes such as Text Processing and Preprocessing;
semantic analysis; text classification, sentiment analysis; information
retrieval; and language translation. Because of principles as
superposition and entanglement, QNLP can process enormous
amounts of linguistic information simultaneously, which in turn
entails a more efficient and comprehensive analysis of language than
in classical NLP (Widdows et al., 2024). Besides, it is believed that
QNLP should be more efficient and precise than conventional NLP
due to the peculiarities of quantum computing as the solution to the
problems associated with context-dependent and
linguistic information.

Quantum systems, on which QNLP is based, are divided into two
types: closed and open. Isolated quantum systems evolve under
unitary time evolution, that is, by the Schrodinger equation. These
systems are best used in theoretical work and form the basis of
QNLP. On the other hand, the open quantum system has contact with
other surroundings, the evolution is non-unitary due to dissipation
and decoherence(Weidner et al., 2024). As a start for the exploration
of QNLP techniques, this paper initially concentrates on closed
quantum systems, although recognizing that open systems affected by
Markovian and non-Markovian processes are essential in quantum
computation. This work could be extended in future research by
incorporating open quantum system models to expand the areas to

which QNLP can be applied.

1.1 Background and motivation

In the past, ever since the development of modern computing,
the application of algorithms and mathematical models in biological
studies has expanded tremendously (Ofer et al., 2021). Natural
language processing is now an indispensable method of data mining
in bioinformatics to enable fast and efficient extraction of
knowledge from bulk data. However, classical NLP techniques have
problems with the organization of complexity, heterogeneity, and
scale, typical for biological data, including scientific articles,
databases, and experimental outcomes (Khurana et al., 2023). These
limitations call for a change in the approach to
computational strategies.

QNLP alleviates this problem by using quantum computing’s
strengths of handling big data most efficiently. Quantum circuits and
compositional vector-based semantics used in language tasks improve
the simulation of biological processes such as interactions between
molecules and genomics data analysis. For example, QNLP methods
could bring a drastic improvement in such tasks as protein folding
prediction, ligand binding constant estimation, and genome-wide
sequence comparison. Since there is no currently implementable
quantum hardware, the current quantum algorithms, simulators, and
prototype quantum systems allow for research into QNLP in
bioinformatics (Havlicek et al., 2019).

1.2 Biological challenges, scope, and
contribution

Bioinformatics has a significant scope and potential contribution
to Quantum Natural Language Processing (QNLP). The knowledge
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that can be utilized to enhance QNLP models is extracted from
biological data using bioinformatics approaches, including text
mining and natural language processing. An example of the advanced
analytical skills that bioinformatics can contribute to QNLP (Huang
et al.,, 2015) is the utilization of NLP approaches for the detection of
noncoding RNA and the prediction of protein structure and function.
Particularly in light of the quantum advantage in processing massive
amounts of data (Kumar et al., 2024), the computational models and
algorithms utilized in bioinformatics to manage huge datasets may
be advantageous for QNLP. Furthermore, novel approaches to
language processing in QNLP may be presented by the incorporation
of bio-inspired models into computing, as elaborated in reference
(Jiménez Lopez, 2022).

At the time of biological data processing, however,
conventional NLP methodologies confront several obstacles: The
dualistic nature and uncertainty in achieving accurate reading and
decoding of sentences in biology using typical natural language
processing (NLP) models is sometimes difficult due to the
terminology’s complexity, which often includes acronyms and
multiple meanings (Locke et al., 2021). Integration and analysis of
biological data are complicated by the heterogeneity of the data
(Hilton et al., 2020). On the contrary, biological data sources
include scientific articles, databases, experimental results, and
scientific papers; each possesses its distinct organization, format,
and nomenclature. Given the rapid expansion of biological data,
traditional natural language processing (NLP) methods may face
challenges in efficient processing and analyzing enormous
datasets, leading to limitations in scalability and performance (Liu
et al., 2024). In contrast to classical computers, quantum
computers can revolutionize algorithm efficiency through the
execution of operations that classical machines are incapable of.
This can result in significant accelerations through the avoidance
of superfluous computations. The quantum computers can execute
intricate computations within days, which would require classical
supercomputers an eternity to finish. Despite the lack of fully
operational quantum hardware, efforts have continued to create
and investigate quantum algorithms for natural language
(NLP). in prototype
construction, coupled with mathematical analysis and the

processing Recent advancements
introduction of high-performance quantum computer simulators,
have facilitated the investigation of quantum algorithms for a wide
range of biological applications (Ohno-Machado et al., 2013).

Although these difficulties highlight the need for novel
computational techniques, QNLP presents encouraging paths to fill
these gaps. This paper outlines a comprehensive approach to explore
these possibilities, bridging theoretical and practical aspects of QNLP
in bioinformatics.

1.3 Contribution and organization of the
paper

The theoretical underpinnings and practical applications of
quantum computing and QNLP in the domain of bioinformatics are
encompassed within the scope of this article. In addition to outlining
forthcoming opportunities and problems, it offers a complete
assessment of the existing status of research in this location. The
structure of the paper is as follows:
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This research employs a systematic research methodology in
Section 2 which outlines, detailing the search strategy, inclusion
and exclusion criteria, and quality assessment process used for the
review of QNLP in bioinformatics. The foundational principles of
quantum computing and an assortment of QNLP approaches are
presented in Section 3. Potential QNLP applications in various
bioinformatics disciplines, including drug discovery and design,
protein structure prediction, genomic sequence analysis, and
biomedical literature mining, are examined in Section 4. The
problems and limitations of QNLP in bioinformatics are examined
in Section 5. These encompass constraints imposed by quantum
hardware, concerns related to data representation and encoding,
as well as the development and optimization of algorithms.
Performance evaluation and comparative analysis are the subjects
of Section 6. Evaluation metrics and a comparison of traditional
NLP approaches versus QNLP methods are all covered. Section 7
provides a critical examination of the findings in relation to the
research questions. In conclusion, Section 8 delves into
prospective research avenues Future Research Directions,
and Roadmap.

2 Research methodology

We examine Quantum Natural Language Processing (QNLP) and
its bioinformatics applications in this exhaustive review. Our primary
objective is to define the fundamental concepts of quantum computing
and QNLP methodologies, with an emphasis on their potential
advantages over conventional NLP approaches. Then, we examine the
myriad bioinformatics applications of QNLP, which include
biomedical literature mining, drug discovery and design, protein
structure prediction, and genomic sequence analysis. Furthermore,
we endeavor to recognize and investigate the barriers and restrictions
that plague quantum natural language processing in the field of
bioinformatics. These include limitations imposed by quantum
hardware, complications related to data representation and encoding,
as well as difficulties in developing and optimizing algorithms. To
assess the practical implications and efficacy of QNLP, a comparative
study is undertaken with traditional NLP methodologies. This analysis
is substantiated by benchmarking outcomes and empirical case studies.

2.1 Research questions

Research Question 1: Investigate the application of quantum
computing concepts and methodologies to
natural language processing (QNLP).

Research Question 2: In what ways could QNLP be utilized to
automate and enhance the drug discovery
and design process, namely in literature
mining, drug-target interaction prediction,
and virtual screening?

Research Question 3: What is the performance of QNLP

NLP
using

algorithms about traditional

techniques, as evaluated
benchmarking and criteria metrics?
Research Question 4: What are the current limitations and future

opportunities for QNLP in bioinformatics?
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Our objective is to furnish a comprehensive synopsis of the
present state of QNLP in bioinformatics, expose areas where further
research is warranted, and establish a framework for the advancement
and adoption of QNLP in this field.

2.2 Search strategy

A comprehensive search was performed for this study, covering
the period from 2013 to 2024. The search encompassed several
reputable databases, such as PubMed, Scopus, IEEE Xplore, ACM
Digital Library, and Web of Science. The extensive inquiry was
motivated by the particular emphasis on the utilization of quantum-
based techniques in addressing bioinformatics obstacles, such as drug
development, Protein structure prediction, and genetic analysis,
among others. With deliberate intention, we expanded our search
beyond medical databases such as PubMed and Medline, which
predominantly cover health informatics and biomedical subjects.
Conversely, we investigated numerous databases about the domain of
computer science (CS). The papers were identified by the utilization
of several screening tasks and quantum computing-related keywords
‘Quantum Search Strategy, ‘Quantum Embeddings, ‘Quantum
Mapping, ‘Quantum Superposition and Quantum Entanglement,
‘Prediction’ and incorporating NLP keywords like ‘Relation Extraction,
‘Name entity Recognition, ‘Semantic Analysis, Sentiment Analysis,
‘Knowledge discovery, ‘Machine learning in NLP.

2.3 Selection criteria
The criteria for including articles in this selection were as follows:

a. Articles must be written in English;

b. Publication date must be 2013 or later;

c. Articles must make initial and significant contributions to
the field.

d. Articles must be published as original journal articles or
conference proceedings.

This review did not include if:

a. The research was published in the form of a summary, research
report, conference abstract, news article, internet-based
material, or workshop report, or as a research protocol.

b. The study was identified as duplicates using a systematic
approach which includes automatic detection through Zotero
followed by manual verification.

c. Articles focused on research involving animals or

non-human samples.

d. Articles did not address any of the research questions.

Quality Assessment Criteria (QAC) were created to guarantee the
dependability and methodological soundness of the included studies.
These standards assess the research based on its contributions to the
area, methodological transparency, and relevancy. In addition to
ensuring consistency in evaluating the caliber of research, the QACs
aid in standardizing the inclusion process.
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QAC Assessment criteria

QAC1 Does the study utilize quantum natural language processing
(QNLP) techniques?

QAC2 Is the study relevant to bioinformatics tasks?

QAC3 Is there a clear motivation for the research?

QAC4 Does the study confirm the experimental findings with adequate
evaluation metrics?

QAC5 Is there a clear motivation for the research that aligns with solving
specific challenges in bioinformatics?

QAC6 Are the experimental setups, including experimental environments
and dataset details, described in detail?

QAC7 Does the key contributions and limitations of the study.

Each study has been evaluated using the QAC scoring system:

0 If does not meet mentioned QAC
1 Partially met the QAC
2 Completely met QAC

As shown in Figure 1, the initial search yielded a total of 1,417
records from the specified databases. After eliminating 450 duplicate
articles, 967 records remained for screening. Subsequently, based on
the pre-established inclusion criteria, 737 articles were excluded,
leaving us with 230 articles for consideration in the second round of
the selection process. Following a thorough examination of the full-
text articles, a total of 184 papers were included in this systematic
review. The next section begins with the review of the foundational
principles of quantum computing and an assortment of
QNLP approaches.

3 Quantum computing concepts and
QNLP techniques

Quantum Natural Language Processing (QNLP) is an academic
discipline that is founded upon the ideas and concepts of quantum
computing, which are inherently distinct from the paradigms of
classical computing. To comprehend the potential of QNLP and its
bioinformatics applications, it is essential first to grasp quantum
computing’s fundamentals. This section presents a comprehensive
outline of the foundational principles, establishing the preparatory
stage for the following discourse on QNLP methodologies and their
ramifications within the realm of bioinformatics.

3.1 Fundamental quantum computing
concepts

In contrast, quantum computers unlock an entirely new realm of
potentialities. The initial obstacle in describing quantum computing
is elucidating its information management system. Data is usually
maintained in quantum bits, or qubits, which is a quantum version of
classical computer bits present in a quantum processor. Integrating
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quantum computers in artificial intelligence (AI) has implications
(Portugal, 2022). AT algorithms, which can be based on traditional
computation techniques, could give by quantum processors the ability
to gain vast processing capabilities. Defined by specific features such
as superposition, interference, entanglement, DE coherence, gates,
and circuits. For altering the way how AI deals with data, quantum
computing opens the grounds for progressively complex and swift AI
operations and the emergence of new quantum algorithms given these
phenomena (Piattini et al., 2020).

3.1.1 Qubit

Quantum bits are actual physical systems of a photon with a
specific polarization or an ion trapped in a magnetic field. a qubit is
described as the basic information unit of a quantum computer. A
qubit is different from a classical computer bit which can be either 0
or 1 at any one time but a qubit can be 0 and 1 simultaneously. Observe
Figure 2 where the behavior of the coin shows the classical and
quantum physics stating the key difference between the deterministic
and probabilistic systems which introduces the quantum superposition
and entanglement. In classical the coin has two possible states Head
or Tail when it is spinning it lands on either head or tail so it has a
chance of 50% for both head and tail. In quantum, the coin blends in
both head and tail calculating the probability of the states and giving
the state that has a high probability value. This is called superposition
which can make quantum computers solve many problems altogether
hence making them so efficient for specific tasks.

Qubits are basics units of quantum computer systems and are
physically implemented through certain entities such as ions subjected
to magnetic fields. A qubit can be in any state other than 0 and 1 as
Schrodinger’s cat is alive and dead state at the same time (Black et al.,
2002). A qubit exhibits one of the following collapse states when
observed? Interactions with a single qubit can affect the entire state,
as groups of qubits can correlate. Qubits, which are denoted by the
complex coeflicients a and f, exist in a superposition of the states 0
and 1, whereas bits are the fundamental units of traditional computing.

In Figure 3 watching a qubit changing its state, these coefficients
pertain to physical measurements. In the domain of quantum
information, the qubit, represented by the Dirac notation |0) and
consisting of two states, serves as the comparable entity. |1), where |o)
denotes a quantum state. The main difference between quantum and
classical information is that, as Equation 1 illustrates, a qubit can exist
in any superposition of the states |0) and |1).

[¥)=al0)+ 1) (W

Wherea,ﬂeC|a|2+|,B|2=1 (2)

The frequencies of the distinct states in quantum computing are
denoted by the complex coefficients a and f. As a fundamental
principle of quantum physics, these amplitudes are highly susceptible
to the impact of physical measurement. A qubit’s state will be altered
during the measurement process, by the principles of quantum
mechanics (Dejpasand and Sasani Ghamsari, 2023), if it is in a
superposition of potential measurement outcomes. As a qubit
collapses into its measured state, its amplitudes lose all information.
Complex language patterns and relationships in biological data can
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be represented by qubits, which are capable of existing in superposition
states. Simultaneously including numerous linguistic aspects or
representations, QNLP models provide a more comprehensive
analysis of biological texts, analogous to how a qubit can exist in a
superposition of states.

3.1.2 Quantum entanglement

In addition, entanglement is a quantum phenomenon that qubits
are capable of manifesting, in which the states of two qubits become
coupled irrespective of their separation. It is easier to imagine two
qubits as two magic dice. In classical the flipping of two dice results is
independent of each other. As shown in Figure 4, in quantum they are
“entangled,” then flipping one die immediately reveals the outcome of
the other no matter where the two are located across the room, across
the country, across the universe! Their results are perfectly correlated,
even though the outcomes are random and unpredictable. This
magical connection does not work the way we observe other
connections that are usual to us but is a natural component of
quantum mechanics.

The experimental data show that any quantum calculation that
does not require entanglement can be carried out at a slightly slower
pace on a classical computer. When computing is associated with
systems, which involve many qubits that are susceptible to quantum
entanglement, one fully understands the meaning of computing.
Entanglement is defined as any process that takes place on a single
qubit influences the total state of the whole set of qubits.

Figure 5 represents system consists of two qubits, with each qubit
capable of existing in a superposition of the states |0), |1), the
combined system can also exist in any superposition of the states |00),
|01), |10), [11), and so forth (or any of the 2AN binary strings from
[0...0.0) to |1...0.1) in the case of an N-qubit system). The so-called
Bell states, which are significant in the context of quantum

Frontiers in Computer Science

06

entanglement (Wong, 2019), are among these superpositions. This is
illustrated by Equation 2.

1
[#)=—7(10)+Jor) ®

The underlying assumption is based on the potential of the
quantum computer to work at data-intensive large volumes. In
order to understand this, let us consider a quantum system of N
qubits at our disposal. If the state of the system is not entangled,
the number of amplitudes in a state of this system is equal to 2AN,
where amplitudes of states of each qubit in the system are summed.
When the system becomes entangled, however, these amplitudes
all become independent and the qubit register as a whole transform
into a 2 N-dimensional vector (Tao, 2024). By modeling and
analyzing interrelated links between biological things or concepts
represented in textual data, the concept of quantum entanglement
is utilized. Similar to how quantum entanglement enables the
correlation of qubits, QNLP represents and comprehends the
intricate interrelationships among proteins, illnesses, genes, and
other biological components by employing this idea.

3.1.3 Quantum interference

Quantum interference is employed in the computation of
quantum computers with the help of Equation 3, which is helpful.
However, acknowledging the fact that quantum computers are
inherently noisy and do not always provide accurate results and
decisions, they always utilize probability to provide the best guess or
most likely occurrence anticipated. Besides locations, quantum
computers use the energy level of qubits or spin to do computations
(Simmons, 2024). This can be expressed using the Born rule, which
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states that the probability of measuring a particular outcome x given
a quantum state represented by a density matrix p is given by:

|Wt0tal>:C1|\Vl>+02|W2> (4)

The weight of each state in the superposition is determined by the
complex probability amplitudes, denoted as ¢, and c,, which are
represented by Equation 4. The interference of various states may
result in interference effects in the final state |y.), which can
manifest as observable phenomena like interference patterns in
experiments involving interference, such as the double-slit experiment.

The interference element (c1c2*) in the superposition formula has
the potential to induce either constructive or destructive interference,
contingent upon the relative phases of c1 and c2. The interference
behavior described here is an essential component of quantum physics
and has far-reaching implications for quantum communication,
computation, and other technologies.

The processing and analysis of textual data may be improved with
the application of quantum interference (Torlai and Melko, 2020).
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Utilizing interference effects, QNLP models are capable of conducting
more complex and context-aware analyses by modeling language
elements and relationships as quantum states (Pseiner et al., 2024).
Language modeling, sentiment analysis, and information extraction
from biological texts are a few examples of the tasks in which this may
result in enhanced precision.

3.1.4 Quantum gates

Quantum information can be manipulated by performing quantum
gates wherein physical operations are utilized by using laser pulse for the
ion qubits and optical elements for the photonic qubits. Unlike their
more often than not conceptual definitions, quantum gates have to
be described as unitary matrices by strict quantum mechanical demands.
When a quantum gate is performed on at least two entangled qubits,
then a 2N x 2 N matrix is multiplied by a 2 N entity. The fact that
quantum computers can register and manipulate roughly 2 N quantities
of information using a number of operations equal to N forms the basis
of a possible exponential quantum edge over classical computers.

For quantum gates to be used in the normalizing of quantum states,
they have to be unit and linear, or act on superposition (Klimov et al.,
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2024). But, unlike classical computing that involves only one nontrivial
gate, namely the NOT gate per bit, quantum computing can perform an
infinite number of one-qubit quantum gates. It has been established that
any quantum gate can be approximated from a basis set of gates which
only includes the single qubit gate and the two qubit controlled NOT
gate. The exponential number of gates may hinder the application of
good approximations should the need arise in the future. Language
properties and relationships can be transformed by quantum gates and
therefore, more complex tasks can be performed (Van Vu et al., 2024).

The development of quantum algorithms that are well suited to AI
tasks such as data analysis, optimization, and machine learning has
elicited a lot of attention from academic and industrial pioneers
(Preskill, 2018). These algorithms exploit the specific features of
quantum computers and, thus, perform calculations, which makes
artificial intelligence operations more complex and faster compared
to their counterparts based on classical computers (Patel et al., 2023).
The properties of classical and quantum computing that distinguish
their respective methods of operation are compared in Table 1.

Having discussed the fundamental principles of quantum
computing, the next section focuses on how these principles are
adapted and implemented in QNLP methodologies, particularly in
bioinformatics applications.

3.2 Quantum natural language processing
techniques

Quantum natural language processing (QNLP) improves natural
language processing tasks through the utilization of quantum
computing and parameterized quantum circuits to compute word
embeddings. Drawing inspiration from categorical quantum
mechanics, the DisCoCat framework, this approach transitions from
grammatical structure to quantum processes via string diagrams. By
employing the DisCoCat framework and Grover’s algorithm, the
initial QNLP algorithm showcased a quadratic quantum acceleration
in the domain of text categorization and the quantum language
models which generates the text using the quantum algorithms by
improving the model efficiency.

3.2.1 Quantum embedding

While we have the classical embeddings like Word2Vec or
Glove, which map words in the high-dimensional vector space
where quantum embedding maps words or phrases as quantum

TABLE 1 Comparison of classical and quantum computing properties.

10.3389/fcomp.2025.1464122

states as observed in Figure 6. This could lead to improved levels
of comparison between text analysis and semantic similarity
assessments of texts. In few of the research, the advantages of
quantum embedding in NLP tasks were highlighted. One of the
works suggested a quantum embedding model based on quantum
circuits. By mapping words or phrases into quantum states through
quantum gates, our paradigm allows more accurate and effective
control and description of linguistic features compared to
traditional methods (Nam and Nguyen., 2024). A unique approach
inspired by quantum mechanics is presented in this study, which
utilizes embeddings to facilitate biomedical text-mining tasks
including entity detection and relation extraction. By exploiting
quantum computing principles, this approach transforms high-
dimensional quantum states into biological concepts and
relationships (Samanta et al., 2016; Baiardi et al., 2023).

One approach is to use amplitude encoding, where each word is
encoded as a quantum state is represented in Equation 5:

[W)=2aili) (5)

where, i) represents the basis states, and o_i are the complex
amplitudes corresponding to the word w. An innovative methodology
utilizes the principles of quantum computing to encode relationships
and concepts in biomedicine into high-dimensional quantum states.

3.2.2 Discocat framework

Quantum Natural Language Processing (QNLP) is a recent and
fascinating application of quantum computing that seeks to represent the
meaning of sentences as vectors encoded into quantum computers
(Abbaszade et al., 2021). It achieves this by extending the distributional
meaning of words to encompass the compositional meaning of sentences,
a concept known as the DisCoCat model (Martinez and Leroy-Meline,
2022). This model employs an algorithm based on tensor products to
compose the vectors representing the meanings of words through the
syntactic structure of the sentence. One striking aspect of this approach
is that while the algorithm is inefficient on classical computers, it exhibits
promising scalability when executed using quantum circuits.

One of the fundamental ideas underlying the convergence of
quantum theory and natural language processing is the establishment
of a direct link between linguistic features, such as syntactic structures
and semantic meanings, and quantum states (Surov et al., 2021). As
illustrated in Figure 5 (Yeung and Kartsaklis, 2021), the DisCoCat

Property Classical Computing Quantum Computing Ref

Information Unit Bit (0 or 1) Qubit (0, 1, or superposition of 0 and 1) Black et al. (2002)

Parallelism Limited parallel processing Quantum parallelism Preskill (2018)

Information Processing Deterministic Probabilistic Farahmand et al. (2014)

Complexity Theory Bounded by polynomial time Can solve certain problems in polynomial time Shor (1999)

Computing Model Turing Machine Quantum Circuit Model Preskill (2018)

Energy Efficiency High energy consumption Potentially energy-efficient Gyongyosi and Imre (2019)

Error Correction Classical error-correcting codes Quantum error-correction codes Ramette et al. (2024)

Computational Speedup Limited speedup for certain problems Exponential speedup for certain problems Shor (1999)

Memory Storage Classical memory (RAM, hard drives) Quantum memory (quantum registers) Heshami et al. (2016)
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framework serves as a network-like language for accomplishing this
relationship through the use of string diagrams as given in Figure 7.
This approach is an integral part of the longstanding tradition of
computational linguistics, which has sought efficient methods for
describing language structures and meanings in machine-accessible
formats (Tsujii, 2021). The distributional approach relies on statistical
analysis of word contexts based on the distributional hypothesis. In
contrast, the symbolic approach focuses on individual word meanings
and the compositionality of sentences. The symbolic approach, rooted
in theoretical linguistics, posits that the meaning of a sentence depends
on the meanings of its constituent words and the grammar used to
arrange them (Ganguly et al., 2022). One of paper shows how DisCoCat
allows QNLP to classify biomedical abstracts by building sentence
embeddings that retain structural and content-based characteristics.
By mapping the syntactic dependencies of sentences to quantum states,
the framework improves the identification of functional/contextual
similarities in biology articles (Steedman and Baldridge, 2011).
However, this approach has seen limited success in natural language
processing applications, where the distributional paradigm, based on
statistical analysis, currently dominates (Liu et al., 2024).

3.2.3 Quantum language models

Quantum language models (QLM) is a kind of quantum-
inspired neural network model that defines language units, such
as words and phrases, as quantum states in Hilbert space and
create text using quantum algorithms, which may result in
exponential speedups compared to classical models. Complex
patterns in language data can be efficiently learned by the
Quantum Boltzmann Machine (QBM), allowing for more precise
language production and modeling (Wiebe et al., 2019). The
present study introduces a novel quantum circuit-based QLM
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architecture and showcases its efficacy in various domains,
including text classification, sentiment analysis, and language
modeling (Shuyue et al., 2023). The existing body of research
primarily represents word sequences as a classical mixture of word
states, which fails to adequately utilize the capabilities of a
probabilistic quantum description (Campbell et al., 2024). As of
yet, a comprehensive quantum model that explicitly captures the
non-classical correlations inside word sequences has not been
created (Yu et al., 2020). A neural network architecture has been
suggested, using an innovative Entanglement Embedding (EE)
component, to convert word sequences into entangled pure states
of many-body quantum systems. The word sequences exhibit
robust quantum entanglement, a fundamental principle of
quantum information and a sign of parallelized correlations
among the words (Chen et al., 2023; Figure 8).

Equation 6 represents the quantum circuit to estimate the
probability distribution over words, given a context as follows:

P(wle) = (y(0)| Uy |w(c)) (6)

Where, [y(c)) is the quantum state representing the context, U_w
is a unitary operator corresponding to the word w, and (y(c)|U_
w|y(c)) is the probability amplitude of observing w given c.

In the field of bioinformatics, QLM:s predict the probability of a
word in a context so that functions such as sequence alignment have
been accomplished (Liang et al., 2023). Linguistic features are
processed in quantum circuits which enhances the accuracy of
sentiment to be derived from research abstracts or clinical data
(D'Aloisio et al., 2024). Potential advantages of this quantum
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approach to estimating the probability distribution across words
over classical methods include a more effective capacity to capture
complex dependencies and context information (Jayanth et al., 2023).

These techniques not only capture complex linguistic relationships
but also lay the foundation for addressing bioinformatics where
semantic precision is critical. In the following section, we explore how
Quantum techniques are used in the QNLP tasks.

3.3 Quantum techniques for QNLP

Quantum natural language processing extends the recent
advances of classical machine learning and quantum machine
learning to process language. Traditional deep learning methods
like embeddings, neural networks, and transformers have paved
the way for NLP progress by allowing functions such as text
categorization, sentiment analysis, and translation. The above
approaches are expanded on by QNLP but with the use of QML for
scalability and efficiency. Two methods, Quantum Circuit Learning
(QCL) and Quantum Kernel Learning (QKL), introduced in the
paper, are designed to contribute to QNLP tasks as QNLP tasks
involve encoding linguistic data into quantum states and pattern
matching. Hybrid quantum-classical methods even extend the
capacity of QNLP due to integration of quantum advantage with
classical flexibility. For the first time, QNLP applies quantum
optimization and quantum embeddings, thus connecting
traditional NLP with quantum calculations and offering effective
approaches to context-sensitive language processing, entity
identification, and semantic search. It is in this regard that this
relationship demonstrates how QNLP applies ML and QML
frameworks to reinvent NLP in bioinformatics and more broadly.

3.3.1 Quantum machine learning in
bioinformatics

Machine learning (ML) is a branch of Artificial intelligence that
enables systems to learn patterns from data and make predictions.
NLP focuses on equipping computers to comprehend, interpret, and
generate human language and ML uses that data to generate
predictions, decisions, and classifications. This ML integration in NLP
is observed in Figure 9.

Quantum Machine Learning (QML) combines quantum
computing with machine learning to enhance data processing by
leveraging quantum properties like superposition and entanglement,
offering exponential speedups and richer data representations (Das
Sarma et al., 2019). Within QML, Quantum Natural Language
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Processing (QNLP) specializes in applying quantum principles to
linguistic tasks, encoding text as quantum states and enabling
efficient processing of language structures. Like sentiment analysis,
semantic parsing, and relation extraction to scale efficiently while
uncovering deeper patterns in language using quantum-enhanced
embeddings and kernels. As Bioinformatics involves analyzing and
interpreting large volumes of biological data, such as genomic
sequences, protein structures, and gene expression data. QNLP
benefits from QMULs advanced computation, many problems in this
field can be formulated as machine learning tasks, such as
classification, clustering, and pattern recognition (Repetto et al.,
2024; Ghoabdi and Afsaneh, 2023).

Quantum machine learning (QML) has emerged as a promising
approach to tackle these challenges, leveraging the principles of
quantum mechanics to potentially enhance the computational
capabilities of classical machine learning algorithms. The following
concepts are provided for further enhancement of QML techniques.

3.3.1.1 Quantum circuit learning for bioinformatics

QML in bioinformatics is quantum circuit learning, which is the
process of training parameterized quantum circuits to perform certain
kinds of machine learning. These circuits can be represented as
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unitary operators U(6), where 0 is the set of trainable parameters. It is
to find the best parameter 6* that may minimize a cost function C(0)
suitable for the bioinformatics problem in question. Mathematically,
the optimization problem can be formulated as Equation 7:

0" = argmin C(0) 7)

The cost function C(0) is then calculated through using the
quantum circuit U(0) on the input states that are equivalent to the
biological data and measuring the output states. The derivatives of
the cost function with respect to the parameters can be estimated by
methods such as the parameter shift rules or analytical derivatives,
and thus optimisation can be performed by gradient-based methods.
Some of the works in the field of quantum circuit learning include
protein structure prediction (Madsen et al., 2023), gene expression
analysis (Navneet and Pokhrel, 2024), and genomic sequence
classification (Zarei and Elaheh, 2024). Robert et al. (2021)
developed a new method for the prediction of the secondary
structure of proteins by using Quantum Circuit Learning (QCL).
Their model employs a parameterized quantum circuit that takes an
amino acid sequence of a protein as the input where QNLP could
extract the secondary structure information from text-based
annotations where further when coupled with quantum circuit
learning to predict components like alpha helices or beta sheets,
gives better precision and lesser time than other traditional
methods. By adjusting the parameters of the quantum circuit with
gradient information of the cost function, the model reduces the
error between the predicted and actual secondary structures.

3.3.1.2 Quantum kernel methods for bioinformatics
Another subfield of QML in bioinformatics is the so-called quantum

kernel methods, which apply quantum features to improve the efficiency

of kernel-based machine learning techniques, including SVMs and

10.3389/fcomp.2025.1464122

Kernel methods. Quantum kernel methods are a very suitable addition
to QNLP techniques since they provide a method of computing quantum
similarity between quantum-encoded linguistic features. This approach
may be applied to bioinformatics tasks for semantic classification, such
as analyzing connections between drugs and diseases in biological texts.

In quantum kernel methods, the traditional kernel is
substituted by a quantum kernel which is determined by the inner
product of the quantum states corresponding to biological data.
Mathematically, the quantum kernel between two data points x and
y can be expressed as:

K= )| ¥ () P )

Where, in Equation 8 |y(x)) and |y(y)) are the quantum states of
the data points x and y, respectively. Indeed, quantum kernel methods
have been applied in other bioinformatics applications, including
quantum machine learning for genomics data (Abbas, 2024), quantum
kernel clustering for protein sequences (Sarkar, 2018), and quantum
support vector machines for gene expression analysis (Ghosh et al.,
2024). Ng et al. (2023) considered Quantum Kernel Support Vector
Machines (QK-SVM) for classifying gene expression data derived
from microarray experiments. Instead of using classical kernels such
as linear or radial basis function (RBF), they suggested a quantum
kernel that measures the similarity between the gene expression
patterns with the help of their quantum state representations using
QNLP. The developed QK-SVM algorithm uses this quantum kernel
to classify gene expression datasets (Kang et al., 2019). The results of
this study indicated that the proposed QK-SVM had a better
performance of the classification than the classical SVM with
traditional kernels on gene expression data sets.

3.3.1.3 Hybrid quantum-classical approaches
In addition to purely quantum approaches, hybrid quantum-
classical algorithms have also been explored in bioinformatics. By
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utilizing classical models for extensive biomedical text analysis, hybrid
approaches allow quantum circuits to encode context-sensitive
language properties. Figure 10 shows both classical and quantum
computing resources to solve complex problems more efficiently.

Figure 11 shows the high-level structure of the Hybrid quantum
classical approach, there is a quantum circuit with quantum gates 01,
02, 03, and 04 acting on the input gates. The quantum circuit yields an
output which becomes the input for the classical circuit. This approach
combines both quantum and classical computing to determine
parameters that minimize the loss function which can be any cost
function or objective function depending on the use.

Multiple sequence Alignment (MSA) is a basic problem in
computational biology that involves comparing biological sequences
such as DNA, RNA, or protein sequences; Madsen et al. (2023)
proposed a new hybrid quantum-classical algorithm for solving this
problem. This algorithm utilizes quantum and classical hardware to
solve the MSA problem more effectively. The quantum part uses
quantum parallelism and superposition to investigate the massive
solution space of potential alignments. The application of QML may
be vital for solving challenging bioinformatics issues and improving
the study of biological processes. Other research works by Cincio et al.
(2020) and Hatakeyama-Sato et al. (2022) have investigated ways of
reducing noise and errors in quantum machine learning to guide more
efficient and useful applications in bioinformatics.

3.3.2 Quantum simulation

Quantum simulation involves using quantum computers to solve
and model quantum systems which cannot even be approximated by
classical computers due to the exponential resource requirement. It
opens the chance to model complicated dependencies in the structures
of language which is in concordance with the outlook of
QNLP. Conducting new studies in this field has been made to explore
many approaches to quantum simulation that can offer explanations
of numerous quantum phenomena in various fields. A quantum
circuit model which encodes the quantum system into a sequence of
quantum gates acting on an initial state. As proposed in a recent study
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(Duran et al.,, 2023), the dynamics of a quantum system can be
simulated using Equation 9:

¥ (1)) =U ()| ¥(0)) 9)

Where |¥(0)) is the initial state, U(t) is the time-evolution
operator implemented as a quantum circuit, and |¥(t)) is the final
simulated state after time t. The study demonstrated an efficient
simulation of quantum problems using this approach. Another study
(Miranda et al., 2022) explored quantum annealing for simulating
quantum systems, encoding the system into an energy landscape
described by a quantum Hamiltonian. The quantum annealing process
finds the ground state of the Hamiltonian, corresponding to the
simulated system state.

Optimising new quantum algorithms and approximations of
quantum circuits for large scale problems. In a recent work by
Edward et al. (2024), the authors presented a quantum simulation
strategy to simulate biomolecular events including protein folding
changes using near-term quantum computers. They explained the
basic ideas of the simulation of protein model and showed that
quantum computers could be used for investigations of
biomolecular systems. For this, they created a quantum algorithm
that would be able to efficiently simulate quantum dynamics of the
biomolecular system, using quantum characteristics such as
superposition and entanglement. Magann et al. (2021) studied the
application of quantum simulation in protein-ligand interactions
because these interactions play a vital role in the discovery of drugs
and engineering of proteins. They proposed a quantum algorithm
for the quantum dynamics of a protein-ligand system and pondered
over the benefits of applying quantum computing over the classical
approach to this sphere. Cao et al. (2018) discussed the use of
quantum simulation to study the Protein-DNA binding, which is
critical in gene control and drug development. They designed a
quantum algorithm for seeking an optimal binding of a protein to
a DNA sequence. They debated the significance of such findings for

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1464122
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pallavi and Prasanna Kumar

future studies of gene regulation and the development of treatments
that modify protein-DNA interactions.

3.3.3 Quantum optimization

The major issues in bioinformatics can be addressed using
mathematical programming, which involves identifying the solution
that provides the minimum or maximum value to a specified objective
function. Such problems occur when the search space is large;
therefore, it is computationally expensive when solved using
conventional algorithms (Reali et al., 2017). The objective function is
in turn mapped to a Quantum Hamiltonian which describes a wave
operator for a quantum system. The goal is to find an optimal solution
of the optimization problem which is the ground state energy value of
the Hamiltonian.

Let us consider a general optimization problem:

Minimize f(x) Subject to x € S where f(x) is the objective function,
and S is the set of feasible solutions. In quantum optimization, this
problem can be mapped to a quantum Hamiltonian, H, such that the
ground state of H corresponds to the optimal solution(s) of the problem.
Equation 10 expresses the quantum Hamiltonian mathematically by:

H=Ho+yH) (10)

Where: Ho represents the initial Hamiltonian, Hp is the problem
Hamiltonian encoding the objective function and constraints, and y
is a parameter controlling the weight of Hp in the overall Hamiltonian.

The goal is to find the ground state of the Hamiltonian H,
which can be achieved using quantum algorithms such as quantum
annealing or the quantum approximate optimization algorithm
(QAOA; Perdomo-Ortiz et al., 2012). Quantum annealing is a
process where the quantum system is initialized in the ground state
of H_0 and then slowly evolves towards the ground state of H by
gradually increasing the value of y. This process exploits quantum
phenomena like superposition and tunneling to explore the vast
solution space more efliciently than classical algorithms.

The QAOA is an iterative algorithm that alternates between
applying a mixer operator and a phase operator to an initial quantum
state. The mixer operator introduces quantum entanglement, while
the phase operator encodes the objective function and constraints. The
parameters of these operators are optimized to find an approximate
solution to the optimization problem.

Mathematically, Equation 11 represents the QAOA as follows:

— i I—}B —i ,ﬁt' *'11:13 *'1111:[('
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Where |y(y,p) is the quantum state prepared by the circuit,
parameterized by vectors y and f,H B and HC are the mixing and cost
Hamiltonians respectively, representing the classical and quantum
parts of the optimization problem,fp,yp are the parameters controlling
the evolution of the quantum state,|y0) is an initial state, The circuit
prepares a state that is expected to encode the optimal solution to the
optimization problem and the parameters y and f are chosen to
optimize the objective function.

These techniques optimize parameters in quantum linguistic
tasks like accurate biomedical

embeddings, enabling
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question-answering and semantic search. Quantum optimization
has shown promise in multiple sequence alignment (MSA), which
is a fundamental problem in bioinformatics. The objective of MSA
is to discern areas of similarity across numerous biological
sequences, hence offering valuable insights into functional
conservation and evolutionary connections. Utilizing the quantum
features of superposition and tunneling, a recent work (Benedetti
etal., 2017) developed a quantum annealing methodology for MSA
that more effectively explores the huge solution space than classical
methods. Protein structure prediction is yet another bioinformatics
use of quantum optimization. The optimization issue of deducing
the three-dimensional structure of a protein from its amino acid
sequence is extremely difficult and involves a large number of local
minima. Scholars have investigated the application of quantum
annealing and other techniques for quantum optimization to
resolve this issue (Patti et al, 2022). Additionally, quantum
optimization has been implemented to address the issue of inferring
gene regulatory networks. The aforementioned networks symbolize
the intricate interplay between genes and their regulatory factors.
Deducing these networks from experimental data necessitates the
resolution of extensive optimization challenges. A recent study
(Mokhtari et al., 2024) introduced a method for deducing gene
regulatory networks using quantum annealing, capitalizing on the
quantum computer’s enhanced efficiency in traversing the extensive
solution space. In addition, additional bioinformatics issues,
including drug discovery (Onodera et al., 2023), phylogenetic tree
reconstruction (Bach et al., 2024), and genomic sequence assembly
(Boev et al, 2021), have demonstrated the potential of
quantum optimization.

While these theoretical advances demonstrate the potential of
QNLP, their true impact becomes evident in addressing practical
challenges in bioinformatics. The following sections explore how these
QNLP techniques are applied to bioinformatics problems, such as
drug discovery, protein structure prediction, and genomic
sequence analysis.

4 QNLP and its applications in
bioinformatics

Exploring the application of quantum mechanics principles to
the analysis of biological systems, quantum bioinformatics is an
emerging field. The nature of computing operations, the platform
type, and the type of biological data are the three key determinants
upon which a comprehensive categorization system for quantum
bioinformatics can be constructed, according to Marchetti et al.
(2022). Calculations and tools for data mining activities, and the
design, modeling, or creation of computational tools or
optimization, are the two primary categories into which
computational operations can be classified, according to this study.
Furthermore, it is possible to categorize the platform under
consideration as either classical or quantum computers and to
differentiate between quantum biological data and classical
biological data within the realm of biological information. The
transformative potential of quantum computing algorithms in the
field of computational biology has been recognized by numerous
studies. These algorithms possess the capacity to solve, expedite, or
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improve the examination of a wide range of computational obstacles.
The capacity to efficiently map multi-scale biological systems and
genetic analysis onto quantum architectures is one example of the
potential advantages that quantum computing algorithms may
provide over their traditional counterparts, according to a paper by
Sathan et al. (Sathan and Baichoo, 2024).

4.1 Applications of QNLP in bioinformatics

QNLP works with biological information of sequences such as
DNA using quantum computing methods. Quantum scientists have
developed large-scale QNLP models that can classify sequences: DNA
included. By employing tensor networks, these models are ‘syntax
aware—they are concerned with structure and syntax from the outset.
Thus, the models are more comprehensible and it takes fewer gate
operations to work with them in order to gain an understanding of
them. Incorporation of tensor networks and quantum theory in QNLP
models allows the scientists to study the synergy of Al and quantum
informatics in the sphere of bioinformatics. Due to such optimal
functionalities like mid-circuit measurement and qubit reuse,
quantum processors allow for the execution of circuits larger than
what can be done on the quantum hardware (Nalecz-Charkiewicz
et al., 2024). This feature makes available QNLP models for the down
and dirty bioinformatics

applications featured in the

subsequent sections.

4.2 Literature mining and knowledge
extraction

The most common application of the Quantum Natural
Language Processing methodologies in the pharmaceutical study is
the knowledge mining and extraction from the biomedical
literature. This is due to the exponential increase of data in the
biomedical field and unstructured scientific literature that remains
a challenge in the application of typical NLP methods as depicted
in Figure 12.

In this regard, scholars have analyzed the potential of QML
models and algorithms to search for information in biological text
data as fast and accurately as possible. Other applications of QNLP
include integration of QNLP with other quantum computing
paradigms including quantum simulation and quantum machine
learning techniques for Biomedical literature mining. They gathered
knowledge graphs from biomedical literature using QNLP and used

10.3389/fcomp.2025.1464122

quantum graph neural networks to identify patterns, associations, and
related entities in those knowledge graphs. The approach revealed
relatively good effectiveness in the search for complex relations, such
as higher-order patterns and nested relationships, which are critical
for understanding the pathogenesis of diseases and identifying
potential drug targets.

4.3 Drug discovery and design

Analyzing huge quantities of biomedical literature and data is
crucial to the drug discovery and design process to identify prospective
therapeutic targets, develop lead compounds, and comprehend drug-
target interactions. Figure 13 shows the procedure how Quantum
Natural Language Processing (QNLP) methods, enable the extraction
of knowledge from unstructured text input in a more precise and
efficient manner.

4.3.1 Virtual screening and Lead compound
identification

The process of drug discovery means virtual screening and
identification of lead compounds as the major stages. These procedures
estimate the affinities and selectivity of potential drugs to the target
biomolecules. In this context, studies have been conducted to enhance
the accuracy and efliciency of the procedures of QNLP, alongside
machine learning and quantum computing models. In this approach,
QNLP tools are used to search biomedical literature for information
about potential drug candidates and their structures and targets
(Gorgulla et al, 2022). This information is then employed and
incorporated to commence quantum simulations of these drug
candidates and the target biomolecules at the quantum level. QNLP
can extract and incorporate useful knowledge from large volumes of
text data more effectively than conventional approaches; quantum
simulations allow for realistic modelling of the interaction of
molecules and their properties.

4.3.2 Drug-target interaction prediction and
analysis

Previous studies have revealed that QNLP methods are very useful
in predicting and analyzing the drug-target interactions that are so
important in the drug discovery phase. Some studies have investigated
how quantum-based machine learning algorithms, using big databases
of known drug-target associations and molecular conformations, can
be used to predict new interactions and the underlying processes
(Ginex et al., 2024). This approach shows the possibility of using

FIGURE 12
QNLP literature mining and knowledge extraction.
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QNLP in conjunction with other quantum computing methods for a
comprehensive analysis of the interactions between drugs and targets
for their use in drug discovery and development.

These techniques as a group demonstrate the usefulness of QNLP
in understanding the drug discovery process. As we shall see, by
utilizing properties of quantum computing that are intrinsically
superior to classical computing, such as quantum parallelism and
entanglement, one can hope for QNLP techniques to surpass classical
models in terms of their ability to identify novel interactions and
intricate patterns and structures within the data.

4.4 Protein structure prediction

(PSP)
sub-discipline of computational biology, which involves predicting

Protein Structure Prediction is an essential
a protein’s tertiary structure and its secondary structures, such as
helices and sheets from its amino acid sequence. Primary structure
prediction mainly concerns with the local structures while the
secondary structure predicts the local conformation and the
tertiary structure concerns with over all three dimensional
conformations. New opportunities for further PSP have opened
due to the advances in quantum computing and quantum natural
language processing, a process of identifying the three-
dimensional conformation of the protein based on the amino
acid sequence.

Accurate identification of PSP is essential in elucidating protein
function and the mode of interaction in structural bioinformatics and
for designing therapeutic strategies. Although, recent progress in
computational techniques such as Alphafold and the availability of
experimental structures, the protein folding problem remains
challenging. This is a problem that has recently attracted the interest
of the scientific community to be solved using a novel approach called
Quantum Natural Language Processing (QNLP) that incorporates
quantum computing. It uses quantum mechanism principles that
facilitate better feature extraction and optimization of feature search
space concerning sequence structure relationship.

Figure 14 shows the workflow for the prediction of protein
structure using QNLP techniques. The process includes data
pre-processing where protein sequences are retrieved from databases
such as PDB and converted into quantum states and includes QNLP
techniques such as quantum language models for sequence analysis,
quantum kernel methods for structural similarities, model training
using experimental datasets such as cryo-EM and X-ray
crystallography results in predicted protein structure as the output.
Despite the current limited development of QNLP for protein
structure prediction, some investigations have been made to examine
its advantages. These quantum models showed that by leveraging
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quantum phenomena such as superposition and entanglement, signal
features could be represented with higher complexity and long range
dependency could also be captured much better than with classical
models. AlphaFold 2, a groundbreaking tool, combines evolutionary
coupling with deep learning techniques to predict secondary
structures alongside tertiary configurations. Predicting the tertiary
structure of a protein, where the protein’s entire three-dimensional
conformation is predicted, is still a computationally expensive task
(Doga et al., 2024). QNLP compared to classical methods quantum
embeddings can capture intricate sequence dependencies, knowledge
integration where the unified representation of sequences, structure
and experimental data. QNLP presents a promising avenue for
enhancing protein structure prediction by enabling more efficient
feature engineering, knowledge integration, and the development of
quantum algorithms and simulations tailored for this challenging
problem. The potential of QNLP to push the boundaries of
computational protein structure prediction is evident in the growing
body of literature in this field.

4.5 Genomic sequence analysis

Sequence comparison is one of the most basic tasks in
bioinformatics and comprises sequence alignment, search for
conserved motifs and patterns. They are important in characterizing
biological systems, diagnosing diseases, and promoting development
of individualized medication. These tasks have been traditionally
solved by using well-known computational tools, namely the Smith-
Waterman and Needleman-Wunsch ones. However, they are usually
constrained in terms of the computational costs and time required
when analyzing large scale genomic data. The development of
quantum computing over the past few years including Quantum
Natural Language Processing (QNLP) has brought new solutions to
these problems.

Figure 15 shows the hybrid approach combines classical NLP
methods with quantum computing capabilities to potentially
improve natural language processing tasks by leveraging quantum
parallelism, quantum embedding spaces, or quantum algorithms for
sequence alignment, a critical task in bioinformatics. It involves
finding the optimal alignment between two or more biological
sequences, such as DNA, RNA, or protein sequences. Homology
search methods, such as Smith-Waterman and Needleman-Wunsch
are based on dynamic programming of classical sequence
alignment. Although they are quite efficient, their application
degrades as the size of the data or the high dimensionality of the
genomic data increases. Current complexity theory type item
difficulties are addressable by quantum algorithms which depend
on quantum superposition and entanglement.
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Motif identification, the process of identifying recurring patterns
or sequence motifs in genomic data, is another area where quantum
algorithms have shown promise. Pattern recognition in genomic data
is critical for identifying biological relationships and predicting
disease markers. Classical methods rely heavily on statistical modeling
and machine learning, but QNLP offers a transformative approach. By
encoding genomic sequences into quantum states, QNLP leverages
quantum embeddings and tensor-based models to capture complex
relationships between data points.

Some of these works have been done in other genomic sequence
analysis tasks that include gene prediction (Sun et al, 2012),
phylogenetic tree reconstruction (Abdellah et al., 2023) and genome
assembly (Kosoglu-Kind et al., 2023). Quantum simulation techniques
are also being used for the study of gene interactions and for
determining the impact of mutations at scales that have not been
previously possible. These innovations illustrate how QNLP can
be used to confront issues in genomic analysis, including multi-
dimensional integration and noise immunity. The potential of QNLP
in genomic sequence analysis is in the inherent optimization of the
tools with high-throughput sequencing and other applications. More
development in the QNLP field and in the next-generation quantum
hardware, as well as in quantum algorithms, is essential to achieve the
full potential of QNLP for genomics.

The discussed applications of QNLP in bioinformatics strengthen
the efficiency in handling complex biological data using quantum
approaches. The next section provides the case studies and how QNLP
methodologies have been applied to solve complex challenges in
bioinformatics, such as drug discovery, protein structure prediction,
and genomic sequence analysis.
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5 Case studies and real-world
applications

5.1 Biomedical literature mining

The biomedical field produces a large amount of articles every
year, and therefore, it is difficult to find necessary information quickly.
Prior NLP techniques are unable to process the biomedical text well
because it is unstructured and the relationships between the terms are
complex. This case study is concerned with the application of
Quantum Natural Language Processing (QNLP) in biomedical text
mining especially for named entity recognition (NER) and relation
extraction. Another remarkable work has been done by Leurs (2022),
which described how QLM can be used for mining biomedical
literature. By employing quantum parallelism and entanglement, the
authors employed a big number of biomedical articles to train a
quantum language model. This model was then used to perform
complex text processing tasks such as event extraction, named entity
recognition and relation extraction. In the speed and accuracy of their
approach to identify relevant information concerning new targets for
therapy, existing drugs, and their interactions, the authors noted that
the performance of their method outcompeted traditional approaches
to NLP. Soame (2023) proposed an extension of the aforementioned
works, which is a hybrid quantum-classical model for Knowledge
Extraction and Biomedical literature mining. Thus, they were able to
incorporate informative been using a combination of classical
machine learning models and QNLP techniques from domain
knowledge bases, experimental data, and scholarly literature. The
following table summarizes the performance and applications of
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TABLE 2 QNLP in biomedical literature mining.

10.3389/fcomp.2025.1464122

Domain Quantum Dataset Metrics Performance QNLP Task
Approach

Literature Mining (Leurs, Quantum Language Model | Stanford Sentiment Accuracy 0.82 Sentiment Analysis

2022) (QLM) Treebank

Literature Mining (Soame, Quantum Embedding Integration Dataset Semantic Similarity 0.74 Capture Multidimensional

2023) Relationship

Literature Mining (Ganguly Quantum Embeddings + Swiss-Prot Accuracy 0.72 Relationship Extraction

et al., 2024) QLM

Knowledge Extraction Quantum Graph Neural PubMed Recall, F1 Score 0.75/0.68 High-Order Pattern

(Varmantchaonala et al., 2024) | Networks Detection

Knowledge Extraction (De Hybrid Quantum Classical | Clinical Trials Accuracy, F1 Score 0.79 Knowledge Extraction from

Angelis et al., 2023) Framework Text Corpus

quantum approaches in these domains, showcasing the enhancements
over classical methods.

In Table 2, quantum approaches show a general improvement in
performance over literature mining and knowledge extraction
problems in comparison to classical approaches. Quantum Language
Models (QLMs) and embeddings improve the performance of
sentiment analysis and the identification of semantic relations and
Quantum Graph Neural Networks (QGNNGs) help identify high-order
patterns for knowledge graphs. The hybrid quantum-classical
framework continues the integration process by adopting quantum
optimization for knowledge extraction tasks. These results further
emphasize that quantum computing offers an increasing role in
revamping the traditional NLP process.

5.2 Quantum drug discovery

Drug development is one of the most significant real-world uses
of QNLP in bioinformatics. Biogen and IonQ, a leading provider of
quantum computing, partnered in 2021 to find prospective therapeutic
targets and analyze biological data (IonQ, 2021). The alliance
endeavors to speed the drug development process by utilizing the
computing prowess of quantum computers, however, the precise
particulars of their strategy remain undisclosed. Additionally, the
biotechnology business Resilience has been actively investigating drug
development solutions based on quantum computing. In a recent case
study, they illustrated the utilization of quantum techniques, such as
Grover’s algorithm and quantum annealing, for virtual screening and
lead optimization (Salloum et al., 2024).

5.2.1 Quantum virtual screening and lead
compound identification

Quantum machine learning models and quantum simulations have
been shown in several recent works to be capable of predicting binding
affinities and interactions between potential drugs and a target
biomolecule, often a protein or nucleic acid. Mensa et al. presented a
quantum machine learning model for virtual screening that utilized
quantum features of the problem to incorporate quantum-mechanical
effects inherent in molecular interactions (Mensa et al., 2022). Their
approach demonstrated enhanced precision in the prediction of binding
affinities from the traditional computational techniques. Arguing the
same idea, Mohammed et al. (2017) have established a hybrid quantum
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mechanical/molecular mechanics model of virtual screening and
identification of lead compounds. To this end, their model used both
quantum simulations and machine learning algorithms to predict the
binding affinities and interactions of the potential drugs with the target
biomolecules. The authors showed that due to the application of
quantum effects, the precision of predictions made with the help of the
proposed model exceeded classical approaches, which indicates the
applicability of quantum computing in this field. Thus, it has been
suggested that for virtual screening and identification of lead compounds,
it is possible to use hybrid quantum-—classical methods based on the
advantages of QNLP and quantum simulations. Ting and Caflisch (2010)
described a pipeline that combines QNLP for mining chemical/
biological information from text sources with quantum calculations for
estimating the interactions of potential drugs with target biomolecules.

5.2.2 Drug-target interaction prediction and
analysis

In a study by Sathan and Baichoo (2024) the authors proposed a
quantum machine learning model for drug-target interaction
prediction, demonstrating its potential to outperform classical models.
Their approach involved training a quantum neural network on a large
dataset of known drug-target interactions and molecular structures,
leveraging the unique capabilities of quantum computing to capture
the complex patterns and relationships within the data. Similarly,
Veleiro et al. (2023) Combined Transformer and Graph Neural
Networks, these architectures, models capture both global and local
structural information of drugs and sequence features of targets,
improving precision and recall in DTI predictions (Khurana
etal., 2023).

A notable study by Mohammed et al. (2017) further highlighted
the potential of quantum machine learning models in this domain.
The authors trained a hybrid quantum-classical neural network on a
large dataset of drug-target interactions and molecular structures,
demonstrating its ability to outperform state-of-the-art classical
models in predicting novel interactions. Their work also explored the
interpretability of the quantum model, providing insights into the
underlying mechanisms of drug-target interactions. Xiong et al.
(2023) proposed a framework called “Q-Drug” that aims to bring drug
design into the quantum space using deep learning techniques. This
framework incorporates QNLP for literature mining, quantum
simulations for modeling molecular interactions, and quantum graph
neural networks for predicting drug-target interactions. The
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TABLE 3 QNLP in drug discovery.

10.3389/fcomp.2025.1464122

Domain Quantum Dataset Performance  Metrics Used  QNLP task
Approach

Virtual Screening and Lead Compound Quantum Machine ADME-Tox 0.84 Accuracy, Predictive Screening

Identification (Mensa et al., 2022) Learning Model

Drug-Target Interaction Prediction Hybrid Quantum- ChEMBL 0.81 Precision, Recall Map drug target relation

(Mohammed et al., 2017) Classical Neural Network

Drug Discovery Framework (Cao et al., 2019) Integrated Quantum - 32 Computational Comprehensive
Computing Approach Efficiency Modeling

Drug-Target Interaction Prediction (Li et al., Quantum Transformer BindingDB 0.88 Accuracy Extract drug binding

2022) Model relationship

Literature-Based Drug Repurposing (Shuyue Quantum Language PubMed 0.62 Semantic Similarity Semantic Analysis

etal., 2023) Model

Virtual Screening and Lead Optimization Quantum Generative ZINC 0.67 MSE Identify new lead

(Nalecz-Charkiewicz et al., 2024) Adversarial Network Database compounds

Drug-Target Binding Site Prediction (Madsen Quantum Approximate PDB 0.81 Accuracy Structural Analysis

etal, 2023) Optimization Algorithm

integration of these components aims to provide a comprehensive and
efficient computational framework for drug discovery and design.
Similarly, a recent study by Sathan and Baichoo (2024) proposed a
quantum graph neural network for drug-target interaction prediction,
which utilizes QNLP for extracting relevant information from
biomedical literature and integrates it with protein structure data and
quantum simulations of molecular interactions. The Table 3 below
provides details of quantum approaches applied to various drug
discovery tasks, highlighting their datasets, performance metrics, and
specific QNLP tasks.

The Table 3 presents different QNLP approaches, including
quantum language models, quantum machine learning models (e.g.,
quantum neural networks, quantum transformers, quantum graph
neural networks), quantum kernel methods, quantum generative
adversarial networks, and quantum attention models. Various
computational models in these tasks showcase their comparative
analysis over classical NLP and QNLP methods. The research
emphasized the capability of QNLP methods to efficiently investigate
the extensive chemical space and detect prospective medication
candidates. Nevertheless, these practical implementations also
unveiled many obstacles. Prominent challenges that need to
be addressed include the encoding and representation of data, the
optimization of algorithms, and the restricted scalability of existing
quantum technology (Selig et al, 2021). Furthermore, the
implementation of QNLP methodologies in conjunction with
pre-existing drug discovery pipelines and the analysis of quantum-
derived outcomes presented pragmatic obstacles.

5.3 Protein structure prediction (PSP)

More recently, a work from researchers (Cherrat et al., 2024)
proposed the Harvey et al., present complex-valued tensor network
models where PT employs parameterised quantum circuits, thereby
employing Hilbert space as the feature space for the sequence
processing task. The models are connected to archive data in a tree like
structure maximizing data correlation and compositional structure
enhancing interpretability and the permanence of resource
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compression. The experimental results have established the use of the
models in binary classification tasks using realistic datasets, proving
the long-range correlation the models can tackle. This work can
be considered as a major advancement in utilizing quantum machine
learning for protein structure predictions that could further improve
human health and welfare.

In a recent study, Drori et al. (2019) have investigated the
possibility of using QNLP for secondary structure predictability
classical methods like PSIPRED and SPIDER3, make use of the
machine learning algorithms, such as the quantum embeddings and
the quantum neural networks to model the sequence-structure map
for proteins. Compared with the classical models, these quantum
models showed that the utilization of quantum phenomena
superposition and entanglement yielded better feature representation
and long-range dependency capture (Boulebnane et al., 2022). In
quantum computing, there are promising models known as Quantum
Circuit Learning (QCL). Hatakeyama-Sato et al. (2022) has put
forward a QCL model for protein sequences in which quantum
embedding is used to improve the accuracy of the model by including
secondary structure information in the quantum representation.
Likewise, the quantum kernel methods like Quantum Kernel Support
Vector Machines (QK-SVM) have shown better classification
efficiency in identifying the secondary structures elements. Quantum
computing takes it a step further Quantum computing takes it a step
further. In this area, AlphaFold 2 has come a long way and gets to the
experimental accuracy of many proteins using spatial graph networks.
For example, in the work by Webber et al. (2022), the authors wanted
to know if the quantum annealing technique can allow for the effective
sampling of the conformational space of protein folding, which is a
problem for standard molecular dynamics simulations. Edward et al.
(2024) used quantum circuits to simulate the Protein folding dynamics
to show the ability of quantum computers in processing larger and
complex protein structures with better precision. Later suggested that
QNLP should be combined with quantum annealing to probe the
conformational landscape of the protein folding phenomenon.
Through their work, they were able to show that folding dynamics
could be approximated with better energy efficiency than those of
classical molecular dynamics simulation. A recently published paper

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1464122
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pallavi and Prasanna Kumar

by Harvey et al. (2023) pointed out that the existing quantum
hardware have several problems, such as noise, qubit error, and
scalability, which would affect the application of quantum algorithms
and simulations to large-scale protein structure prediction.

Table 4 specifically focuses on protein-related tasks, that detail
advancements in protein structure prediction, folding, or interaction
analysis and also requiring further innovations and hybrid approaches.
This integrated representation can potentially capture complex
patterns and relationships that are difficult to extract using classical
methods, leading to improved structure prediction accuracy.

5.4 Genomic data analysis)

This research has shown that QNLP has a lot of promise for the
analysis of genetic information. A few researchers from the
University of Chicago have recently studied the possibility of using
QAM to search and process genetic sequences (Wang et al., 2024).
In their case study, the researchers came up with a QRAM
framework that proved most effective in storing and accessing
genetic data. In large scale genomic databases, the QRAM enabled
fast search and pattern matching through conversion of genomic
sequences into quantum states, thus outperforming other methods.
While the QRAM was found to show promising results in controlled
trials, the creators of the method encountered difficulties in trying
to extend the method to handle the massive amounts of real genetic
data that the world produces. In order to make the solutions
practically usable, certain critical challenges need to be addressed
including data encoding, the number of qubits needed and error
mitigation (Guarasci et al., 2022).

One of the study, Daskin et al. (2014) applied Grover’s algorithm
to sequence alignment, where quadratic time savings compared with
the classical procedures are needed. Similarly, Khan et al. (2023)
proposed a quantum algorithm for the pairwise sequence alignment

TABLE 4 QNLP in protein analysis.

10.3389/fcomp.2025.1464122

of biological macromolecules and showed that the performance of
the quantum algorithm is much higher than that of Smith-
Waterman algorithm.

There are other domains as well, where quantum algorithms are
useful are Motif identification is the process of finding sequence
motifs that appear in genomic data. Go, First, Plans (2023)
envisaged a quantum algorithm for motif identification that is
superior to classical algorithms for certain circumstances. Sarkar
etal. (2019) followed this up by providing a quantum algorithm for
approximate motif discovery in DNA sequences, which can explore
a solution space exponentially larger in polynomial time thanks to
quantum parallelism. All of these show significant possibilities for
thinking about regulatory components in DNA and RNA sequences.
The Table 5 below provide key details, highlighting datasets,
performance metrics,and specific QNLP tasks.

Data pattern recognition is especially essential in determining
the existing or expected biological association and disease
predictors in genomic data. While classical methods are statistical
modeling and machine learning, QNLP brings a revolutionizing
perspective. QNLP uses quantum embeddings and tensor based
models to represent genomic sequences in terms of quantum
states and to analyze relationships between the data points. Sarkar
(2018) used quantum machine learning models for pattern
recognition, and showed that these models perform better in
terms of scalability and computational complexity. More
development in the QNLP field and in the next-generation
quantum hardware, as well as in quantum algorithms, is essential
to achieve the full potential of QNLP for genomics. In light of the
classical computational methods for genomic sequence analysis,
the application of QNLP techniques presents an opportunity to
tackle the limitations of these classical approaches, particularly in
terms of computational complexity and scalability.
Supplementary Figure 1 presents a comparison between classical

NLP and QNLP for various applications where the X-axis

Domain Quantum Dataset Metrics Performance QNP Task
Approach

PSP (Drori et al., 2019) Quantum Embeddings and PDB RMSD 424,065 Quantum Embedding
Quantum Neural Networks

Protein-Ligand Binding (Chandarana Quantum Chemistry BindingDB Binding Affinity —7.2 kcal/mol Probabilistic Modeling

etal., 2023) Simulations

Protein Sequence-Structure Quantum Associative UniProt Accuracy 0.82,0.75 Sequence-Structure

Relationships (Bhuvaneswari et al., 2023) | Memory Mapping

Protein Contact Map Prediction Quantum Circuit Born SCOP Precision, Recall, F1 0.61, 0.58, 0.59 Probabilistic Modeling

(Chapman et al., 2017) Machine

Protein Secondary Structure Prediction Quantum Convolutional DSSP Q3 Accuracy 0.78 Pattern Analysis

(Hong et al., 2021) Neural Networks

Protein Folding Energy Landscapes Quantum Annealing Rosetta Database Energy Minimization —20.1 kcal/mol Energy Landscape

(Perdomo-Ortiz et al., 2012) Exploration

Protein Interaction Networks (Wong and | Quantum Graph Neural STRING Database | Accuracy 0.84 Network Mapping

Chang, 2021) Networks

Protein Structure Scoring (Pecina et al., Quantum Kernel Methods AlphaFold Accuracy 0.89 Structural Scoring

2020) Database Techniques

Protein Structure Alignment (Soni and Quantum Pattern Matching = RCSB PDB Accuracy 0.82 Pattern Matching

Rasool, 2021) Algorithms
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represents the different NLP tasks and the y-axis represents
performance metric scores ranging from 0 to 1.

For each task, it has two bars blue represents the performance
score of classical NLP and orange represents the performance score of
QNLP methods. As quantum models have given improvement in
several bioinformatics domains such as drug discovery, protein
folding, and genomic sequence analysis.

The following Table 6 synthesizes the main strengths and
weaknesses of the main quantum approaches, as well as their
applicability to certain tasks.

Despite the fact that QNLP has been identified as a relatively
young subfield of bioinformatics, several research institutes and
companies have started exploring its potential applications and
realistic use cases. Such activities provide a vast amount of
understanding about the potential and the limitations of the QNLP
approaches as well as the challenges that surround their
implementation and deployment.

The use of QNLP in bioinformatics and its application in Table 6
provide an understanding of the prospects and challenges in the field.
Among the most important lessons acquired are:

a. The two constraints of encoding and representation of data are
critical in determining the potential of quantum computing in
handling of large data particularly in biological systems.

TABLE 5 QNLP in genome analysis.

10.3389/fcomp.2025.1464122

b. Algorithm optimization and efficient mapping on quantum
processors both constitute core aspects of realizing quantifiable
improvements compared to classical approaches.

c. Shortly, it might be crucial to utilize hybrid quantum-classical
approaches to overcome the limitations of current quantum
hardware and exploit the unique benefits of quantum
computing and classical computing, respectively.

d. The collaboration of hardware engineers, domain specialists,
and quantum algorithm researchers is of the utmost
importance in the development of effective and functional
QNLP solutions for the field of bioinformatics.

e. Interpretability and integration with current bioinformatics
workflows are crucial considerations when putting QNLP
techniques into practice.

With the continuous advancement of quantum computing
technology and the accessibility of more potent quantum hardware,
it is anticipated that the potential of QNLP in the field of
bioinformatics will expand. To unlock the full potential of this
growing industry, however, it will be crucial to address the obstacles
mentioned in these studies.

The Case studies and applications of QNLP in bioinformatics
highlight its transformative potential, but they also reveal key
challenges, particularly with quantum hardware and algorithm

Doamin Quantum Dataset Metrics Performance
algorithm
Motif Identification (Sarkar et al., Quantum Associative Accuracy, F1 score
NCBI GenBank 0.78,0.82 Pattern Matching
2019) Memory
Multi-omics DataGEO Accuracy, AUC
Pattern Recognition Quantum Convolutional
(Gene Expression 0.85, 0.81 Feature Extraction
(Prousalis and Konofaos, 2019) Neural Network
Omnibus)
Pairwise Sequence Alignment (Khan | Quantum Approximate Alignment score
UniProt 0.72 Kernel Optimization
etal., 2023) Optimization Algorithm
Approximate Motif Finding (Sarkar, Quantum Counting Hamming distance
Ensembl Biomart 0.65 Probabilistic Search
2018) Algorithm
Gene Prediction (Prousalis and Quantum Support Vector Accuracy, F1 score
Genomic Annotations 0.79, 0.81 Classification
Konofaos, 2019) Machine
NCBI Sequence Read Accuracy, F1 score Combinatorial
Genome Assembly (Sun et al., 2012) Quantum Annealing 0.68
Archive (SRA) Optimization
Sequence Clustering (Kosoglu-Kind Silhouette Score
Quantum K-means FASTA 0.76 Classification
etal., 2023)
Protein Structure Prediction Quantum Boltzmann RMSD, TM-score
PDB 0.71, 0.62 Energy Minimization
(Webber et al., 2022) Machine
Promoter Identification (de Paula Quantum Associative Accuracy, F1 score
JASPER 0.79, 0.81 Pattern Recognition
Neto et al., 2019) Memory
Splice Site Detection (Vincentius Quantum Support Vector Accuracy, F1 score
SpliceAid 0.82,0.84 Classification
etal., 2019) Machine
Transcription Factor Binding Site Quantum Associative Accuracy, F1 score
JASPAR 0.77,0.79 Probabilistic Mapping
Prediction(Li et al., 2018) Memory
Genome-Wide Association Studies Genome Aggregation AUC
Quantum Annealing 0.81 Sequence mapping
(Karetla et al., 2023) Database

Frontiers in Computer Science

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1464122
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pallavi and Prasanna Kumar

TABLE 6 Comparative analysis of quantum approaches.

Quantum Model

Quantum Language Models
(QLMs)

Application

Drug Discovery

Merit

Handle corpus data like
PubMed.

Demerit

Noisy quantum gates

10.3389/fcomp.2025.1464122

References

Gorgulla et al. (2022); Ginex et al.
(2024); Mensa et al. (2022)

Literature Mining

Relation Extraction,

Knowledge graph

Scalability for large data

Nalecz-Charkiewicz et al. (2024);
Leurs (2022); Yan et al. (2021)

Gene Regulatory Networks

Accurate Gene interactions

as language-like structures.

Interpretation

Abdellah et al. (2023); Veleiro
et al. (2023)

Quantum Embedding Models
(QEMs)

Drug Discovery Maps molecules into Encoding into quantum states Ng et al. (2023); Madsen et al.
quantum spaces. (2023)
Protein Folding Encodes protein structures Scalability Cincio et al. (2020); Edward et al.

in quantum states.

(2024)

Genomic Sequence Analysis

Represents high-dimensional

genomic features compactly.

Qubit limitation

Sarkar (2018); Abdellah et al.
(2023)

Quantum Kernel Methods Drug Discovery Enhanced feature space Scalability Ng et al. (2023); Mohammed
(QKMs) etal. (2017)
Protein Folding Improved Prediction Noise in qubits Miranda et al. (2022); Cao et al.
(2019)
Genomic Sequence Analysis Accelerates alignment of Encoding large data Ghosh et al. (2024); Sun et al.
genomic sequences. (2012)
Literature Mining Improves clustering and High computational cost. Leurs (2022); Soame (2023); Cao
semantic similarity in etal. (2019)
biomedical texts.
Quantum Hybrid Models Drug Discovery Improved acceleration Optimization techniques Mensa et al. (2022); Mohammed

needed. etal. (2017); Veleiro et al. (2023)
Protein Folding Feature extraction. Hardware compatibility Madsen et al. (2023); Edward
etal. (2024)
Gene Regulatory Networks Optimizes regulatory Limited hybrid models Abdellah et al. (2023); Nam and

network inference using

quantum methods.

Nguyen. (2024)

scalability, which are explored in the following section on hardware
limitations and future directions.

6 Challenges and limitations
6.1 Quantum hardware constraints

Noise and Qubit Decoherence: The practical implementation of
QNLP algorithms in bioinformatics is currently constrained by the
limitations of existing quantum hardware. One of the major challenges
is the presence of noise and qubit errors, which can significantly
impact the reliability and accuracy of quantum computations (Preskill,
2018; Daimon and Matsushita, 2024). Quantum systems are highly
susceptible to environmental disturbances, such as electromagnetic
fields, temperature fluctuations, and cosmic radiation, which can
cause decoherence and errors in the qubit states. This shortens the
time available for computations, particularly in tasks like large-scale
genomic sequence analysis or protein folding prediction.

Quantum Error Correction: Robust quantum error correction is
still under development. Mitigating these errors is crucial for the
successful execution of quantum algorithms. Several error correction
techniques have been proposed, including quantum error-correcting

Frontiers in Computer Science

codes (Gowda et al., 2024) and fault-tolerant quantum computing
(Wang and Liu, 2024). Error-prone calculations limit the scalability of
QNLP for bioinformatics tasks where precision is critical, such as drug
discovery or structural bioinformatics.

Limited Qubit Connectivity: Scalability is another significant
challenge for quantum hardware. Current quantum computers have a
limited number of qubits, typically in the range of tens or hundreds,
which restricts the size and complexity of problems that can
be addressed (Grover, 1996). Many bioinformatics applications, such
as genome assembly, protein structure prediction, and large-scale
sequence analysis, require processing vast amounts of data,
necessitating quantum computers with thousands or millions of qubits
that exceed the current hardware capabilities. Low gate fidelities and
restricted qubit connectivity in current quantum systems affect the
accuracy and efficiency of QNLP models.

Researchers are actively exploring various approaches to address
these hardware constraints. One promising solution is the development
of topological quantum computers, which leverage the principles of
topological quantum field theory to achieve fault tolerance and scalability
(Aimeur et al., 2007). Additionally, quantum error mitigation techniques,
such as zero-noise extrapolation (Cross et al., 2019) and probabilistic
error cancellation (Zhou et al., 2020), aim to reduce the impact of
hardware errors without the need for full-scale quantum error correction.
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6.2 Data representation and encoding

Efficient data representation and encoding are critical for leveraging
the potential of QNLP in bioinformatics applications. Biological data,
such as genomic sequences, protein structures, and molecular
interactions, often exhibit complex patterns and high-dimensional
structures, which can be challenging to represent and process on
quantum computers. One common approach for encoding biological
data on quantum systems is the use of qubit representations, where each
qubit or a set of qubits encodes specific aspects of the data (Quetschlich
etal., 2022). In the case of DNA sequences, each nucleotide (A, T, C, G)
can be mapped to a specific qubit state or a combination of qubit states.
However, as the size of the biological data increases, the number of
qubits required for encoding grows exponentially, leading to scalability
issues. To address this challenge, researchers have explored various
quantum data embedding techniques, such as amplitude encoding
(Ibtehaz and Kihara, 2023) and quantum feature mapping (Kim et al.,
2021). These methods aim to represent high-dimensional data in lower-
dimensional quantum states, potentially reducing the number of qubits
required and improving the efficiency of QNLP algorithms.

Another approach is the use of quantum machine learning models,
which can learn efficient representations of biological data directly from
quantum states (Nathans and Sterling, 2016). These models can leverage
the principles of quantum mechanics, such as superposition and
entanglement, to capture complex patterns and relationships in the data.

6.3 Algorithm development and
optimization

In the following section we outline the challenges that have to
be met for the development and optimization of quantum
algorithms for QNLP particularly in bioinformatics. One of the
significant issues is the lack of numerous realistic quantum
algorithms for bioinformatics applications that provide effective
solutions to particular real-world problems. As for quantum
algorithms, there are some theoretical ones, like Grover’s
algorithm (Grealey et al., 2022) and Shor’s algorithm (Shor, 1999),
that provide more efficient solutions for some problems than
classical ones, however, there can be found rather fewer works on
how to use them for bioinformatics tasks with practical
quantum computers.

As a result of this challenge, researchers have sought to employ
integrated quantum-classical algorithms and data pre-processing,
with quantum kernels. This approach will seek to take advantage
of the two types of computing with a view of avoiding the current
drawbacks of quantum computing. For data preparation and
cleaning in genomic sequence analysis, classical methods can
be applied, and for some particular computation, that requires
heavy calculation, quantum method can be used, for example,
pattern matching or sequence alignment. Another challenge
experienced in algorithm development and optimization is the
lack of benchmark and performance metrics. This is particularly
important as the development of quantum algorithms and their
use in bioinformatics continues particularly as it applies to the
assessment of the efficiency of quantum computers as well as the
comparison of quantum algorithms to their classical counterparts.
This involves runtime,

assessing aspects like precision,
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extensibility, and hardware consumption like the number of
qubits, circuit depth.

Additionally,
comprehensively optimized because their creation is based on the

quantum algorithms themselves are not
compromise between several parameters, including computation time,
memory, and error. Thus, in the case of genomic sequence analysis,
faster performing algorithms may have lower accuracy or may need
more qubits which in turn causes more hardware limitations. The
trade-offs between precision and speed are especially important to
Algorithm designers and developers in the context of bioinformatics
applications and they have to choose between these two factors based
on their particular case.

Thirdly, the improvement of quantum algorithms is also important
for practical applications at the same time. This may include circuit
optimization (Zhou et al., 2020), quantum compiler optimization
(Quetschlich et al.,, 2022), and quantum error mitigation techniques
(Kim et al., 2021; Nathans and Sterling, 2016). These optimizations
may enhance the general performance, decrease the demands on
resources, and enhance the precision and stability of quantum
computation for bioinformatics purposes.

6.4 Environmental sustainability and
carbon footprint

Bioinformatics studies are more and more based on high-
performance computing and big data processing, which generate high
amounts of energy consumption and CO2 emissions. Solving this
problem is necessary to achieve global sustainability objectives and
decrease the impact of scientific computing on the environment. Some
papers have compared the costs of different bioinformatics approaches
to the environment and have given suggestions on how to reduce
these costs.

A recent study by Nathans and Sterling (2016) compared the
carbon footprint of typical bioinformatics tools and analyses
based on RNA sequencing, GWAS, genome assembly, phylogenetic
trees, metagenome, and molecular dynamics. The researchers
used the Green Algorithms calculator to come up with the carbon
emissions in kilograms of CO2 equivalent units (kgCO2e). They
also identified the carbon cost of GWAS at the scale of a biobank,
pointing out that the application of efficient codes and the use of
low-carbon data centers are critical to the reduction of carbon
footprint. In addition, (Grealey et al., 2022) also explored the
effects of parallelization, the use of Central Processing Units and
Graphics Processing Units, cloud and local computational
resources, and geographical location on carbon footprint. The
outcomes showed that applying more efficient parallelization
strategies along with simple software updates could cut the carbon
footprint of bioinformatics computations by half.

To address these challenges, a new field called environmentally
sustainable computational science (ESCS) has developed and
offers significant potential for enhancement. To support continued
and sustainable growth in computational science, a more planned
approach to awareness raising, the improvement of transparency,
the better estimation of environmental costs, and the broader
reporting of these costs are required (Stodden and Miguez, 2014).
In support of this effort, the “GREENER” set of principles and best
practices guidance has been developed to guide sustainable
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software development and deployment (Lannelongue et al., 2023).
These environmental sustainability issues in bioinformatics are
not only important for the sustainability context to meet the
global sustainability objectives but also for the bioinformatics
sustainability to be feasible (Selladurai et al., 2024) and sustainable
in the future and large-scale uses. Efficiency improvement of the
resource usage, energy-saving computing solutions, and
cooperation between domain specialists, developers, and
sustainability scholars are the key actions on the way to decreasing
the carbon impact of the bioinformatics analyses. Furthermore,
there has been suggestions that utilization of quantum computing
in bioinformatics could help solve the problems by decreasing the
carbon footprint of computationally rigorous tasks (Shaun et al.,
2021). Specifically, quantum algorithms and simulations can lead
to more efficient analysis in protein folding, genomic sequence
alignments, molecular modeling, and others, thus decreasing
resource usage and emissions (Wong and Chang, 2022).
Supplementary Figure 2 shows various challenges and
limitations faced in the field of Quantum Computing and QNLP,
ranging from hardware constraints to data representation,
algorithm development, and environmental sustainability
concerns.
Table 7 provides differences between computational
characteristics, software ecosystems, and real-world applications.

of Classical NLP and QNLP.

7 Performance evaluation and
component analysis

7.1 Evaluation metrics

When it comes to the appropriate performance evaluation of
QNLP algorithms in bioinformatics, a proper metric needs to be set
up. This not only allows for making accurate and strict comparisons
with classical NLP methods but also defines the direction of
constructing and fine-tuning QNLP algorithms for particular tasks.
The selection of performance indicators varies depending on the
bioinformatics application area and its goals. When assessing the
quality of protein modeling for example in protein structure
prediction, the predicted models can be rated for accuracy by the root-
mean-square deviation (RMSD) from the native structure or the
Global Distance Test (GDT) scores (Kryshtafovych and Fidelis, 2009).
Depending on task, in genomic sequence analysis one can use
measures such as sensitivity, specificity, F1-score for the pattern
recognition or alignment quality measures like Q-score (Yang et al.,
2013). Besides, problem-specific objective functions, which are
calculated based on the results of the algorithm, there are more
universal criteria based on the evaluation of the number of
computational operations, necessary memory space, and quantum
resource usage, such as numbers of qubits, and the depth of
the circuits.

7.1.1 Root-mean-square deviation

It is a fundamental metric in structural bioinformatics and
computational chemistry for evaluating the accuracy of predicted
protein structures. RMSD measures the average distance between the
atoms of a predicted protein structure and the corresponding atoms
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in the experimentally determined native structure, providing a
quantitative assessment of the structural similarity between the two
structures (Olechnovic et al., 2019). The formula for calculating
RMSD between two sets of coordinates, each containing n atoms, is
given in Equation 12:

1Y 2
rvsp= o3l )
i=1

(12)

Here, p; and r; represent the coordinates of the i atom in the
predicted and native structures, respectively. The term || Di —r,"
denotes the Euclidean distance between the corresponding atoms in
the two structures. In structural bioinformatics, RMSD is a key
metric for assessing the quality of protein structure prediction
algorithms and molecular docking simulations (Neveu et al., 2018).
Low RMSD values indicate a high degree of similarity between the
predicted and native structures, suggesting that the model accurately
captures the protein’s folding pattern (Jumper et al, 2021).
Researchers often use RMSD in conjunction with other metrics, such
as Ramachandran plots and GDT (Global Distance Test), to provide
a comprehensive evaluation of protein structure predictions and
refine computational models for drug discovery and molecular
biology applications.

7.1.2 Global distance test

It is another important metric used in structural bioinformatics
to assess the quality of predicted protein structures. GDT measures
the similarity between a predicted protein structure and the
experimentally determined native structure by considering the
distance between equivalent residues in the two structures (Poleksic,
2015). The GDT score is calculated as the percentage of residues in the
predicted structure that are within a specified distance threshold of
the corresponding residues in the native structure. The GDT score is
typically calculated at different distance thresholds like 1 A2A 44,
and 8A to provide a comprehensive assessment of the
structural similarity.

Mathematically, in Equation 13 the GDT score at a given distance
threshold is calculated as follows:

1L
GDTscore = —ZGDT i
i=1

13)

D is the total number of residues (atoms) in the protein. GDTi is
the fraction of residues for atom i that fall within the
distance thresholds.

The GDT score is expressed as a percentage, with higher scores
indicating a greater degree of structural similarity between the
predicted and native structures. A GDT score of 100% indicates
perfect structural similarity, meaning that all residues in the predicted
structure are within the specified distance threshold of the
corresponding residues in the native structure. GDT provides a
quantitative measure of the structural similarity between predicted
and native structures. It complements other metrics such as RMSD
and Ramachandran plots, offering researchers a comprehensive
assessment of the accuracy of computational models in protein
structure prediction.
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TABLE 7 Comparative analysis with classical NLP and quantum NLP components.

Component Classical NLP

Polynomial time complexity for most
Computational Complexity

QNLP Ref.

Potential for exponential speedups due to quantum Biamonte et al. (2017)

by memory and processing power

algorithms parallelism and entanglement

Well-established techniques for Challenges in efficiently encoding biological data Quteiral et al. (2021)
Data Encoding

encoding text data into quantum states

Decades of research and development, An emerging field, a limited number of practical Dunjko and Briegel (2018)
Algorithm Maturity

well-established algorithms algorithms developed.

Scalable on classical hardware, limited Currently limited by the number of available qubits | Salem et al. (2023)
Hardware Scalability

and noise in quantum hardware

Large datasets and pre-trained models
Training Data Availability ilable f s
available for many tas

Limited availability of large-scale quantum datasets Kundu et al. (2024)

for training

. Interpretability challenges with deep
Interpretability learning models

Potential for improved interpretability due to the Perrier et al. (2022)

mathematical nature of quantum algorithms

Error Handli Robust error-handling techniques
rror Handlin,
8 developed for classical models

Error correction and mitigation techniques are still Temme et al. (2017)

in development for quantum computing

Mature software libraries and
Software Ecosystem
frameworks

Limited software tools and frameworks for QNLP, Cao et al. (2018)

mainly research-oriented

Trade-offs Performance vs. interpretability

Speed vs. reliability Maheshwari et al. (2022)

Widely deployed in various
Real-world Applications
bioinformatics applications

Limited practical applications, mostly proof-of- Pudenz and Lidar (2013)

concept studies

Classical methods can benefit from
Hybrid Approaches
quantum computing accelerators

Hybrid quantum-classical approaches leverage the Herrmann et al. (2023)

strengths of both paradigms

NLTK, spaCy, Gensim, Stanford
CoreNLP

Tools

Chow (2024)
Qiskit, Cirq, PennyLane, Q#

7.1.3 F1-score

Equations 14-16 is important to assess the overall performance of
a binary classification model. It is particularly useful when the class
distribution is imbalanced (Nunn et al., 2021).

For calculating F1-score:

Precision X Recall

Fl1=2X (14)
Precision + Recall
Where:
Precision = "l.“r.ue Positives — (15)
True Positives + False Positives
True Positi
Recall = rue Positives (16)

True Positives + False Negatives

The F1 score ranges from 0 to 1, where a higher score indicates
better model performance. It provides a balance between precision
and recall, making it a useful metric for evaluating models, especially
when there is an imbalance between the two classes. It is important to
assess the overall performance of a binary classification model.

7.1.4 Quantum resource utilization

It is a metric that evaluates how efficiently a quantum algorithm
utilizes quantum resources such as qubits, gates, and circuit depth. It
is often used to compare the efficiency of different quantum algorithms
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in terms of resource consumption. The exact formula for calculating
quantum resource utilization can vary depending on the specific
context and the factors considered (Hansen et al., 2023). However, a
general formula could be constructed as follows:

Quantum Resource Utilization (QRU)
_ Number of Qubits x Circuit Depth
Number of Logical Qubits

17)

Where, the total number of physical qubits required for quantum
computation, the depth of the quantum circuit represents the number
of sequential gates that need to be applied, and the number of logical
qubits required to represent the problem being implemented.
Equation 17 provides a measure of how efficiently quantum resources
(such as qubits and gates) are being utilized to solve a particular
problem or implement an algorithm. A lower QRU indicates more
efficient resource utilization, while a higher QRU indicates that more
resources are required for the computation (Lubinski et al., 2023).
Table 8 provide the overview of evaluation metrics and its significance.

QNLP is a captivating domain within the field of bioinformatics,
presenting prospective benefits in terms of computational economy;,
precision, and performance when compared to traditional approaches.
Although benchmarking studies have shown competitive outcomes
for tasks such as genomic sequence analysis (Shiny Duela et al., 2023)
and protein structure prediction (Chow, 2024), the current limitations
in error correction overhead and quantum hardware scalability
prevent the practical implementation of the theoretical speedups
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TABLE 8 Evaluation metrics for QNLP.

Metric Definition

10.3389/fcomp.2025.1464122

Prominence

Accuracy Proportion of correct predictions

Applications

Drug-target interaction Sequence alignment

Measures overall model performance

Precision True positives over predicted positives

Literature mining Drug discovery

Evaluates relevance of predictions

Recall (Sensitivity) True positives over actual positives

Motif detection Protein folding

Assesses ability to identify true cases

Harmonic mean of precision and
F1 Score
recall

Protein structure prediction, RNA analysis

Balances precision and recall in imbalanced

datasets

Average deviation in predicted vs. true
RMSD
structure

Protein folding prediction

Measures structural prediction

Structural similarity between
Global Distance Test (GDT)
predicted and true models

Protein structure comparison

Assesses structural bioinformatics results

Quantum Resource Utilization

Qubit and gate usage efficiency
(QRU)

All QNLP tasks

Measures efficiency of quantum algorithm

Execution Time Time taken for computation

Sequence alignment Virtual screening

Critical for assessing scalability

offered by QNLP (Saggi et al., 2024). To address these obstacles,
hybrid quantum-classical methodologies have surfaced, which involve
the strategic delegation of computationally demanding duties to
quantum processors while making use of classical resources to
preprocess and post-process data (Zhou et al., 2024).

Nevertheless, QNLP techniques encounter intrinsic drawbacks,
such as the complexity of encoding data, challenges in optimizing
algorithms, and the relative youth of quantum hardware in comparison
to the firmly established classical NLP environment. Adoption of
QNLP in bioinformatics will ultimately depend on continuing
algorithm development, progress in quantum computing, and a
prudent comparison of the capabilities of classical and hybrid
techniques to application-specific performance, accuracy, and
scalability needs. However, addressing these obstacles through
collaborative research and technological advancements will not only
overcome existing limitations but also set the stage for groundbreaking
developments in bioinformatics. As we transition into discussing
future directions, we focus on the transformative possibilities that lie
ahead for QNLPFuture Research Directions and Roadmap.

7.2 Potential avenues and future prospects

With the ongoing progress in quantum computer technology, the
domain of Quantum Natural Language Processing (QNLP) possesses
tremendous potential to revolutionize bioinformatics and expand the
frontiers of biological investigation and revelation. A multitude of
burgeoning trends and prospects are positioned to influence the
of QNLP within this field

forthcoming implementations

(Supplementary Figure 3).

7.2.1 Personalized medicine and precision
therapeutics

A highly auspicious domain for QNLP to be implemented is
customized medicine and precision treatments. QNLP techniques
could facilitate a more precise and effective examination of individual
genomic data by harnessing the computational capabilities of quantum
computing. This, in turn, could pave the way for the creation of
customized treatments and personalized pharmacological regimens
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(Chow, 2024). Equipped with extensive multi-omics and clinical data,
quantum machine learning models can discern intricate patterns and
correlations, hence enabling the identification of previously
undiscovered biomarkers and therapeutic targets.

7.2.2 De novo protein design

De novo protein design and protein engineering are indispensable
for the creation of novel biomaterials, enzymes, and medicines. When
combined with quantum simulations and molecular modeling, QNLP
methods have the potential to greatly revolutionize this field by
enabling more accurate predictions of protein folding kinetics,
structures, and functions (Shiny Duela et al., 2023). The application of
quantum algorithms for the fast conformational sampling of proteins
might help to develop new enzymes, designer proteins, and engineered
biomaterials by defining sequences and structures that provide
specific functions.

7.2.3 Multi-omics data integration

Using multiple omics data, including genomes, transcriptome,
proteome, and metabolome, is crucial to develop systems-level models
that capture complex cellular functions. Technique of QNLP can have
a tremendous effect on this field as they can support the integration of
data, patterns’ recognition, and knowledge search across different and
diverse data (Saggi et al., 2024). It could be hypothesized that the
existing relationships and interactions between multi-omics data sets
could be learned by quantum machine learning and algorithms,
providing new and previously unknown information about gene
regulation networks, metabolic pathways, and disease etiology.

7.2.4 Quantum molecular simulations and drug
design

The combination of QNLP methods with molecular quantum
simulations and quantum chemistry calculations may open a new era
in drug discovery. Thanks to quantum computer computing capacities,
the scientists were able to create detailed models of what happens with
proteins and ligands, biochemical reactions, and other complex
biomolecular interactions with superior accuracy and efficiency (Zhou
et al., 2024). The use of these simulations may result in profound
understanding of the molecular interactions of drugs, which in turn
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may help in the rational design of novel therapeutic agents and
optimizing their selectivity, pharmacokinetic profile and affinity.

7.2.5 Sustainable Bio-economies

QNLP methods can be beneficial for the development of new
sustainable bioeconomies and the conservation of biological diversity.
By applying QNLP, it is possible to analyze large biological data sets,
which include ecological data, environmental monitoring data, and
genomics data to improve the efficiency of sustainable practices in
agriculture, forestry and ecosystem management (Pal et al., 2024). If,
for instance, unstructured data from environmental reports and
scientific research was subjected to QNLP methods, then there would
be knowledge and information that is relevant to the development of
sustainable bioeconomies and conservation of biotic diversity. QNLP
is expected to have further potential in bioinformatics and related
fields and the development of quantum computing technology will
extend basic biological research and development. To achieve these
prospective uses, however, will require collective endeavours to
overcome the challenges that arise from the scale of quantum
technology, the algorithms, the data encoding and the application.

7.2.6 Biodiversity conservation

There is a potential for QNLP techniques to contribute to
sustainable bioeconomies and support of initiatives related to the
conservation of biological diversity. QNLP could help promote the
development of sustainable practices in different industries
including agriculture and forestry (Kirubakaran and
Midhunchakkaravarthy, 2024) because QNLP can process big
biological data which include genomic data, ecological data and
environmental data. From genomic data of crop species QNLP
algorithms can identify the right crop cultivars for resistance and
climatic adaptability by feature extraction (Prasad et al., 2024). For
the enhancement of the conservation approaches and ecosystem
management, it could also allow the integration of the data on
biological diversity from different sources such as field surveys,
eDNA, and remote sensing (Di Sipio et al., 2021). In addition, the
knowledge acquisition and insight generation techniques applicable
to sustainable economies and biodiverse conservation (Sood and
Chauhan, 2024) could be used with QNLP techniques to extract
information from such unstructured text data as environmental
reports and research articles. It is also possible that some of the
sustainable practices in industries such as agriculture, forestry,
fishery, and biotechnology might be supported by QNLP through
the improvement of efficient knowledge search and decision-
making. The opportunity to change the approach to the management
of natural systems, as well as the development of bio-economies,
and the protection of the biological wealth of the planet for future
generations, is in the use of QNLP for environmental sustainability
and the conservation of biological diversity.

The potential applications of QNLP provides its capacity to
improve in various domains, from personalized medicine to
sustainable bio-economies and biodiversity conservation. These
advancements underscore the transformative potential of QNLP in
addressing some of the most challenges in bioinformatics and beyond.
However, it helps in realizing these opportunities will require progress
in quantum hardware, algorithm development, and data integration
techniques. The following section delves into the roadmap for
overcoming these challenges, outlining actionable strategies and
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collaborative efforts needed to fully harness the power of QNLP in
future research and applications.

7.3 Roadmap and recommendations

To fully harness the capabilities of QNLP in the field of
bioinformatics and effectively tackle the obstacles associated with
environmental sustainability, it is imperative to establish a thorough
roadmap and a set of suggestions is mentioned in
Supplementary Figure 4. Collaboration among diverse stakeholders
including university researchers, makers of hardware and software for
quantum computing, experts in bioinformatics and sustainability, and

industry partners is important for the formulation of this plan.

7.3.1 Quantum hardware development

The direction for the development of energy-saving quantum
hardware technologies must be granted high importance. These
include the analysis of new forms of qubit, such as quantum dots.
Semiconductor nanostructures used in these qubits may allow them
to operate at higher temperatures, thus rendering large-scale cooling
unnecessary (Nayak et al., 2008). However, topological qubits, due to
their grounding in the principles of topological matter, these qubits
have an intrinsic immunity to external noise and dephasing. As a
consequence, they might require less amount of energy to correct the
errors and other expenses associated with the process. To achieve
efficient quantum hardware, material scientists, specialists in energy
efficiency, and engineers in quantum hardware will need to work
together. To obtain reliable QNLP applications, it will be necessary to
design quantum systems that are immune to errors. It is strongly
believed that the performance of QNLP algorithms can be enhanced
by the advancements in fault-tolerant architectures and quantum
error-correcting codes. Further study of the more extensive quantum
processors with more qubit numbers and longer coherence times is
necessary. This would make it possible to apply more complicated
QNLP models for tasks such as genome-wide association analysis and
protein-ligand interaction analysis. Introducing louder architectures
for quantum devices might reduce the impact of environmental
decoherence and expand the usability of QNLP in actual problems
of bioinformatics.

7.3.2 Algorithm research

In tandem with developments in hardware, the development and
optimization of quantum algorithms for sustainable bioinformatics
applications should be another top priority. This implies the
examination of quantum algorithms that have been developed to
tackle specific problems, and these are some of the problems that may
be solved by quantum computing; sustainable agriculture, protection
of biodiversity, and development of environmentally friendly drugs
(Andersson et al., 2022). It is anticipated that QNLP together with
future generations of quantum computers will revolutionize predictive
bioinformatics. They may make the realistic quantum computer
modelling of different biomolecular processes, for instance protein
folding and gene regulation, feasible on FTQC. With better qubit
coherence and coherence times and with the deployment of scalable
architectures in the future quantum systems, the solution to the
computational challenges of the emulation of sophisticated biological
structures will be realized and quantum advancements in biological
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fields will be made. For example, the incorporation of hybrid
quantum-classical systems to preprocess the data classically before
going to quantum circuits for sequence alignment task could optimise
it. Subsequent studies should focus on improving data encoding,
quantum embeddings, and quantum-classical combinations in order
to minimize the computational load and energy costs associated with
them. (Nammouchi et al., 2023).

7.3.3 Sustainable software engineering

Prescribing and following the best practicable procedures for
eco-friendly computational research and sustainable software
engineering is vital to reducing the carbon impact of QNLP in
bioinformatics. Applying ideas like the “GREENER” approach which
aims at developing principles and recommendations for the
sustainable software development, maximization of resource
utilization efficiency such as memory, storage space, data transfer, as
well as the incorporation of energy-efficient computing solutions are
parts of this process (Lannelongue et al., 2023).

7.3.4 Environmental impact assessment

To provide impartial and consistent assessments of the ecological
consequences of QNLP algorithms and approaches, it is imperative to
establish standardized benchmarking frameworks and processes for
environmental impact evaluation (Strubell et al., 2020). Measuring the
energy usage of quantum and classical computational resources
Assessing the carbon footprint associated with the deployment and
operation of QNLP solutions Evaluating the efficient use of hardware
resources, such as qubits, memory, and storage should be incorporated
into these frameworks to enable comparisons with traditional
methodologies and to direct the optimization of sustainable QNLP
solutions (Liu et al., 2021).

7.3.5 Interdisciplinary collaboration

Establishing strong partnerships among quantum computing
researchers, bioinformaticians, sustainability scientists, and industry
stakeholders is imperative to effectively apply QNLP findings
practically and sustainably. The establishment of interdisciplinary
research institutes, collaborative initiatives, and platforms for
knowledge exchange can expedite the development of sustainable
QNLP solutions for bioinformatics and encourage the cross-
pollination of ideas (Awschalom et al., 2021).

By executing this strategic blueprint and attending to these critical
domains, the bioinformatics community can effectively utilize the
paradigm-shifting capabilities of QNLP in a manner that is consistent
with worldwide sustainability objectives and reduces the ecological
repercussions of computational procedures. Creating libraries and tools
for QNLP applications tailored to bioinformatics needs could accelerate
the development and testing of novel algorithms on emerging quantum
devices. Nevertheless, it is imperative to recognize that the achievement
of sustainable QNLP in bioinformatics necessitates significant financial
expenditures, enduring dedication, and interdisciplinary cooperation
among many stakeholders (Quantum Technology and Application
Consortium - QUTAC et al., 2021).

While the limitations of current quantum hardware present
significant challenges, the future directions outlined suggest a
promising trajectory for QNLP in bioinformatics. The discussion and
conclusion section synthesizes the insights and their broader
implications for the field.
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8 Discussion

Research questions of this study were answered with theoretical
and practical applications of quantum natural language processing in
advancing bioinformatics. In the analysis of Research Question 1,
we showed how QNLP applies basic tenets of quantum computing such
as superposition, entanglement, and parallelism to analyze linguistic
data. Such methods as quantum embeddings and the DisCoCat
framework extend the capabilities of text analysis and allow for
representation and recognizing patterns beyond the scope of classical
NLP. To answer Research Question 2, we found out that QNLP
algorithms outperform traditional methods of NLP especially when it
comes to data scale. Grover’s algorithm speeds up the search by
keywords, while quantum embeddings improve the language modeling
tasks. Of these, the areas that best illustrate the growth of these
principles are Bioinformatics, where scaling factors and precision are
paramount. To answer Research Question 3, we presented the primary
areas of application of QNLP in bioinformatics, such as drug discovery,
protein folding, and genomic sequence analysis. In drug discovery,
QNLP enhances the rate of literature review and virtual screening, as
well as enhancing the identification of the interaction between drugs
and targets. Likewise, in protein structure prediction, QNLP helps in
understanding of large data sets and with that gives a ground for
quantum computational simulations. These cases illustrate how QNLP
is likely to bring about workflow optimization in bioinformatics and
enhance the feasibility of several important processes. Last for Research
Question 4, we looked at the current challenge and future prospect of
QNLP in bioinformatics. The main issues are the limitations of
quantum hardware like noise, qubit coherence, quantum hardware
scaling and the problem of mapping biological data into quantum.
Future opportunities lies in hybrid quantum-classical frameworks,
noise-resilient algorithms, and advancements in quantum processors.
As these limitations are addressed, QNLP is poised to become a
powerful tool in personalized medicine, multi-omics integration, and
environmental bioinformatics. This discussion ties the findings to the
research questions, showing how QNLP can address pressing
challenges in bioinformatics while outlining pathways for future
exploration. By focusing on interdisciplinary collaboration and
technological innovation, QNLP offers a promising avenue for
advancing bioinformatics and related fields.

9 Conclusion

Quantum natural language processing (QNLP) is a new concept that
represents a radical departure from the standard approach to
bioinformatics through the application of quantum computing to
transform the way biological information is analyzed and understood.
The current comprehensive review has also discussed the theory and
application, challenges and opportunities of QNLP in various areas such
as genomics sequence analysis, protein structures prediction, and drug
discovery. From the existing body of work and current industrial
applications, it is obvious that QNLP has the potential to be more
computationally efficient, accurate, and scalable than conventional NLP
techniques despite being a relatively young field of study. By
incorporating quantum characteristics such as entanglement,
superposition, and parallelism, QNLP algorithms have shown promising
results in several applications including sequence alignment, literature
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analysis, virtual library search, and protein folding. However, there are
still some challenges that slow down the implementation of QNLP in the
bioinformatics domain. These include limitations on the quantum
hardware, and the challenge posed by data encoding, and the need for
algorithm design and validation. To tackle these obstacles, it will
be necessary for bioinformaticians, industry stakeholders, and quantum
computing researchers to collaborate. Additionally, substantial
investments will be needed in the development of sustainable software
engineering practices, interdisciplinary education, and workforce
development. QNLP can revolutionize fields like medicine and
genomics. It could speed up the discovery of life-saving drugs, help
doctors create personalized treatments based on a patient’s genetic code,
and provide insights into diseases at a molecular level.

With great promise for revolutionary applications in personalized
medicine, de novo protein design, multi-omics data integration,
sustainable bioeconomics, and environmental sustainability, QNLP in
bioinformatics has a bright future. Through the utilization of quantum
computer computational capabilities and the integration of QNLP
methodologies with molecular modeling and quantum simulations,
scholars have the potential to unveil hitherto unexplored
understandings of biological mechanisms, expedite the process of
discovering new drugs, and establish environmentally sound
approaches to ecosystem management and biodiversity preservation.
With the ongoing advancements in quantum computing technology,
the feasibility of incorporating QNLP into bioinformatics will grow
substantially. This will facilitate the exploration of novel insights, the
efficient analysis of data, and the creation of inventive resolutions for
worldwide issues on healthcare, biotechnology, and environmental
sustainability. By wholeheartedly adopting this burgeoning domain
and following the strategic path delineated in this evaluation, the
bioinformatics community can effectively utilize QNLP to its complete
capacity, thereby propelling scientific advancement and making a
positive and sustainable contribution to the future.
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