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Over the past decade, the field of image-based 3D scene reconstruction

and generation has experienced a significant transformation, driven by the

integration of deep learning technologies. This shift underscores a maturing

discipline characterized by rapid advancements and the introduction of

numerous innovative methodologies aimed at broadening research boundaries.

The specific focus of this study is on image-based 3D reconstruction techniques

applicable to large-scale urban environments. This focus is motivated by the

growing need for advanced urban planning and infrastructure development for

smart city applications and digitalization, which requires precise and scalable

modeling solutions. We employ a comprehensive classification framework

that distinguishes between traditional and deep learning approaches for

reconstructing urban facades, districts, and entire cityscapes. Our review

methodically compares these techniques, evaluates their methodologies,

highlights their distinct characteristics and performance, and identifies their

limitations. Additionally, we discuss commonly utilized 3D datasets for large

environments and the prevailing performance metrics in this domain. The paper

concludes by outlining the current challenges faced by the field and proposes

directions for future research in this swiftly evolving area.

KEYWORDS

3D reconstruction, computer vision, large scale 3D urban model, 3D mapping, image

based 3D modeling

1 Introduction

The rapid development of digital cameras, sensors, and computational power has led to

significant progress in 3D reconstruction technology over the past few decades. The ability

to generate accurate and detailed 3D models of real-world scenes has broad applications

in areas such as autonomous driving, city planning, environmental monitoring, cultural

heritage preservation and digital twin. In particular, image-based 3D reconstruction has

become a popular technique due to its low cost and ease of use compared to other methods

such as LiDAR or structured light scanning. While image-based 3D reconstruction has

been successfully applied to indoor environments, the reconstruction of large outdoor

scenes remains a challenging task due to the complex and dynamic nature of natural

environments. Outdoor scenes are often characterized by uneven terrain, complex lighting

conditions, occlusions, and varying textures and colors, making it difficult to accurately

capture and process the necessary data. Despite these challenges, recent advances in camera
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and computational technologies have enabled researchers to make

significant progress in this field. In the domain of large-scale

3D reconstruction, primary data acquisition is dominated by

two technologies: LiDAR and camera-based imagery. LiDAR,

which includes airborne and terrestrial methods, utilizes Time

of Flight and triangulation techniques to collect data. Airborne

LiDAR provides broad coverage Vosselman and Maas (2010),

while terrestrial LiDAR offers detailed, location-specific scans but

may omit features like building roofs due to viewing constraints

(Wang, 2013; Amberg et al., 2007; Kühner and Kümmerle, 2020).

Alternatively, camera-based imagery, captured through drones (Liu

and Ji, 2020), satellites (Duan and Lafarge, 2016), and handheld

devices, is instrumental in generating detailed topographic maps

and intricate urban models, valuable for applications such as

urban planning and disaster management. The data from these

technologies are represented through various methods including

volumetric (Wu et al., 2015), geometric (Qi et al., 2017; Pan

et al., 2018), primitive shapes (Tulsiani et al., 2017), and implicit

surface representations (Xu et al., 2019), each offering unique

advantages in handling complex 3D structures. In this study, we

have narrowed our focus to research studies that specifically deal

with large-scale outdoor 3D reconstruction using images as the

input modality. Instead of conducting a comprehensive review

of all related works, we have categorized the literature based on

the scale of the reconstructed scene in an outdoor scenario. This

categorization includes facades, districts, and cityscapes. Table 1

lists all the different outdoor scenarios and their corresponding

approaches that will be covered in this paper.

1.1 Review methodology

The selection of papers for this review followed a systematic

approach to ensure a comprehensive and unbiased evaluation

of advancements in large-scale outdoor 3D reconstruction.

Literature published from 2015 onwards was prioritized, as

this period marked significant progress in both classical and

deep learning-based approaches. Studies were included if they

utilized image-based techniques for large-scale reconstruction,

specifically focusing on urban facades, districts, and cityscapes.

Preference was given to research incorporating deep learning,

neural rendering, hybrid methods, or classical photogrammetry

techniques. Conversely, studies that relied primarily on LiDAR,

radar, or other non-visual sensors without integrating image-

based reconstruction were excluded, as were those focusing

on small-scale object reconstructions, indoor environments, or

non-urban scenarios. A total of 73 papers were selected and

analyzed, categorized based on the scale of reconstruction and

the methodologies employed. Each study was assessed for its

approach, data sources, performance evaluation, and contributions

to the field, enabling a structured comparison of different

techniques and their effectiveness in real-world applications.

The objective of this paper is to provide a comprehensive and

methodical evaluation of recent progress in large-scale outdoor 3D

reconstruction, examining both conventional and deep learning

methodologies. This review aims to guide readers through this

rapidly evolving field, which has gained considerable attention in

TABLE 1 Large-scale 3D reconstruction studies categorized based on the

scale of reconstruction.

3D reconstruction
scale

Techniques Methods

Facades Photogrammetry and

image matching

Classical

Facades Deep Learning and hybrid

methods

Deep learning

Facades Neural rendering Deep learning

Facades Semantic based Deep learning

Districts Neural implicit based Deep learning

Districts Depth-based Deep learning and

classical

Districts GAN based Deep learning

Districts Combinatorial strategy

based

Classical

Cityscapes Multi-procedural based Deep learning and

classical

recent years. To the best of our knowledge, this is the first survey

paper to focus exclusively on image-based 3D reconstruction for

outdoor environments, specifically addressing facades, districts,

and cityscapes. By extensively reviewing literature published

since 2015, we present a detailed analysis of key methodologies,

summarize their performance and properties, and provide a

comparative overview in a structured format.

The structure of our paper is organized as follows: Section

2, delves into the categorization of existing studies on facade

reconstruction, which we have divided into three primary

methodologies: photogrammetry and image matching, deep

learning and hybrid methods, and neural rendering techniques.

This section aims to provide a foundational understanding of the

current methodologies employed in facade reconstruction. Section

3 expands our exploration into the 3D reconstruction of urban

districts, detailing five specific techniques: semantic-based, neural

implicit-based, depth-based, GAN-based, and combinatorial-

based methods. This section is designed to offer insights into

the diverse approaches tailored to urban district modeling.

Section 4 is dedicated to the comprehensive examination of

research focused on the reconstruction of entire cityscapes.

Here, we discuss the integration and scaling of reconstruction

techniques to accommodate the complexity of whole-city

modeling. Section 5 introduces the most widely utilized image-

based datasets pertinent to large-scale 3D reconstruction. This

section highlights the critical role of datasets in developing, testing,

and benchmarking reconstruction algorithms. Section 6 presents

common performance metrics used in image-based large-scale 3D

reconstruction. This section aims to equip readers with the criteria

and standards used to evaluate the effectiveness and accuracy of

various reconstruction methods. Finally, section 7, serves as the

culmination of our discussion, where we synthesize the prevailing

trends and outline the challenges currently facing the field.

Additionally, we propose potential avenues for future research

within this domain, aiming to inspire continued innovation

and exploration.
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2 Facade reconstructions

Image-based facade reconstruction lies in its ability to provide

detailed and accurate information about the facade of a building.

This information can be used for a variety of purposes, such

as historic preservation, architectural analysis, urban planning,

maintenance and virtual tours. We have organized the extant

literature on image-based facade reconstruction into three sections:

photogrammetry and image matching, deep learning and hybrid

methods, and neural rendering approaches.

2.1 Photogrammetry and image matching
3D reconstruction

Photogrammetry uses image matching algorithms to transform

a series of overlapping two-dimensional photos into a cohesive

three-dimensional point cloud. This method relies on identifying

and aligning unique features visible across multiple images. By

using principles of projective geometry, photogrammetry uses

these feature correspondences to perform spatial triangulation,

calculating the exact coordinates of the physical features in three-

dimensional space. The process includes refining a mesh and

applying texture mapping to create a high-fidelity 3D model

that accurately captures the topology and morphology of the

subject. This sophisticated technique is crucial for fields that

require realistic digital representations of complex environments

and objects, such as topographic surveying and the digital

preservation of cultural heritage artifacts (Gruen, 2012). Building

upon these foundational application, Wu et al. (2018) presented

a new approach to optimize the 3D modeling of urban areas

by integrating aerial oblique imagery with terrestrial imagery.

The approach involves matching feature points between aerial

oblique images and terrestrial images to perform combined Bundle

Adjustment (BA) for the two datasets. This process yields optimal

image orientation parameters that better co-register the aerial and

terrestrial datasets, resulting in improved geometric accuracy. The

input for the approach includes aerial and terrestrial image datasets

and their respective initial image orientation parameters. The

improved image orientation parameters and the sparse point clouds

of the combined image block are retrieved using the BA approach.

These can then be imported to generate dense point clouds

and surface models with better geometric accuracy using existing

scene reconstruction software. Finally, the approach optimizes the

textures of building facades using image patches from terrestrial

views, resulting in higher-quality 3Dmodels. Overall, this approach

provides a more accurate and comprehensive 3D model of urban

areas by combining the strengths of both aerial and terrestrial

imagery. Figure 1 depicts the workflow of the proposed framework.

Li et al. (2020) similarly uses a combination of aerial and

terrestrial images to generate a textured 3D mesh model. The

workflow of the proposed approach can be divided into three

main steps: data pre-processing, combined Structure from motion

(SfM), and optimal generation of a textured 3D mesh model. The

first step, data pre-processing, includes optimal image selection,

color equalization, and moving object removal to reduce the

computational cost in subsequent steps and reduce differences

FIGURE 1

Overall workflow of the proposed approach by Wu et al. (2018).

between images obtained from different sources. The second step,

combined SfM, involves estimating the Exterior Orientation (EO)

parameters of the aerial and terrestrial images separately as initial

values. These initial values are then refined through a combination

of image matching and BA. In the final step, the refined point

clouds are improved by detecting and modifying visibility conflicts.

These refined point clouds are then used to generate a 3D mesh

model, and textures are mapped using the images selected in the

pre-processing step. Guo and Guo (2018) proposes a new method

for optimizing the accuracy of 3D reconstruction from multi-view

images in urban scenes. The proposed method incorporates 3D line

information along with dense points information to refine all the

existing edges in the scene. The method involves joint estimation

of 3D line and dense points information which is used to remove

wrong lines and incorrect points. The process includes several steps

such as reconstruction of dense points and 3D line information

from structure and motion result, removal of wrong lines and

incorrect points, and fusion of point position information with
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normal information. The proposed method was tested on several

sets of real images of urban buildings and demonstrated significant

improvement in reconstruction accuracy compared to the original

results. Overall, the study presents a promising approach to

improve the accuracy of large-scale scene reconstruction in urban

areas. To address the problem of ambiguity in image matching

Xu et al. (2020) proposed a method called Matching Ambiguity

Reduced Multiple View Stereo (MARMVS). The ambiguity in

image matching is one of the main factors that reduce the quality

of the 3D model reconstructed by PatchMatch based multiple view

stereo. The proposed method uses three strategies to handle the

ambiguity in image matching process:

1. The matching ambiguity is measured by the differential

geometry property of image surface with epipolar constraint,

which is used as a critical criterion for optimal scale selection

of every single pixel with corresponding neighboring images.

2. The depth of every pixel is initialized to be more close to the true

depth by utilizing the depths of its surrounding sparse feature

points, which yields faster convergency speed in the following

PatchMatch stereo and alleviates the ambiguity introduced by

self-similar structures of the image.

3. In the last propagation of the PatchMatch stereo, higher

priorities are given to those planes with less ambiguity in

their corresponding 2D image patches. This approach helps

extend the correct reconstruction of surfaces into areas with

unprocessed textures.

The proposed method is validated on public benchmarks,

and the experimental results demonstrate competing performance

against the state of the art. Given the adequate parameterization

and discretization in the depth map computation stage, the

proposed approach is exceptionally efficient even when operating

on consumer-grade CPUs.

2.2 Deep learning and hybrid methods 3D
reconstruction

Deep learning, when integrated with hybrid methods, is

significantly advancing the field of 3D reconstruction. The essence

of this advancement lies in the synergy between neural network

architectures for depth estimation and image segmentation, and

traditional computational geometry for model refinement. Auto-

encoder networks are now being employed to infer depth from

single RGB images, reducing the need for complex sensor

arrays and lowering costs. Generative Adversarial Networks

(GANs) enhance the segmentation of facades, leading to more

accurate reconstructions. Finally, the output from deep learning

models is seamlessly integrated with computational geometry

techniques, resulting in automated, adaptable, and precise 3D

models. This fusion of methodologies is proving to be particularly

transformative in urban modeling, offering a path to detailed and

structurally accurate digital representations from minimal and

less complex data inputs. The aforementioned advancements in

deep learning and hybrid methodologies set the stage for the

work of Bacharidis et al. (2020) who sought to expand upon the

robustness and applicability of their previous research Bârsan et al.

(2018) in producing 3D representations of building facades. The

contributions of their paper are threefold:

1. An auto-encoder neural network architecture for depth

estimation using a single RGB image instead of a stereoscopic

image sensor rig design. This can potentially increase the

flexibility and decrease the overall cost of the framework.

2. Incorporating a deep learning-based facade segmentation stage

based on GANs, enabling more scalable and robust facade

element detection. This improves the accuracy and efficiency of

the framework.

3. Integrating computational geometry techniques and point cloud

processing algorithms to produce a detailed reconstructed 3D

surface, enhancing the automation and adaptability of the

suggested workflow. This makes the framework more flexible

and adaptable to different scenarios.

Overall, the extension improves the 3D reconstruction

framework for building facades by introducing new technologies

and approaches, enhancing the accuracy, efficiency, and flexibility

of the workflow compared to their previous work.

In line with learning based approaches Alidoost et al.

(2020) proposed a deep learning-based framework for automatic

detection, localization, and height estimation of buildings from

a single aerial image. The proposed framework is based on a

Y-shaped Convolutional Neural Network (Y-Net) which includes

one encoder and two decoders. The input of the network is a

single RGB image, and the outputs are predicted height information

of buildings as well as the rooflines in three classes of eave,

ridge, and hip lines. The extracted knowledge by the Y-Net is

utilized for 3D reconstruction of buildings based on the third

Level of Detail (LoD3). The proposed approach consists of data

preparation, Convolutional Neural Network’s (CNNs) training, and

3D reconstruction. For the experimental investigations, airborne

data from Potsdam were used, which were provided by the

International Society for Photogrammetry and Remote Sensing

(ISPRS). The results shows an average Root Mean Square Error

(RMSE) and a Normalized Median Absolute Deviation (NMAD)

of about 3.8 m and 1.3 m, respectively, for the predicted heights.

Moreover, the overall accuracy of the extracted rooflines is

about 86%.

Huang et al. (2020) proposed a statistical model called “shell

model” (see Figure 2). This hybrid model combines elements of

Constructive Solid Geometry (CSG) and Boundary Representation

(BRep) models and is designed to work with data from both

terrestrial and Unmanned Aerial Vehicle (UAV) imagery. Unlike

conventional surface or solid body models, the shell model consists

of an outer and inner layer that defines a solid body model with

a certain thickness between them, providing a more practical and

suitable geometric model. The authors observe that measurement

data, such as point clouds from LiDAR and image matching,

only reveals the surface of the building, which is imperfect due

to measurement uncertainty. They acknowledge that there are

still challenges to be addressed, such as the representation of

public and commercial buildings with special shapes that cannot

be represented by the introduced rectangular primitives, and the

modeling of superstructures on the roof and facades, as well
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FIGURE 2

Shows the discovery of a structure with a half-hipped roof. The input point cloud is fitted to the shell model with inner (red) and outer (blue) layers

(bottom). The layer (green) between them is therefore taken to be the model of best fit by Huang et al. (2020).

as annexes of the buildings. The authors suggest upgrading the

library of primitives with flexible geometric shapes and specific

types for superstructures and annexes. The paper also suggests the

use of ConvNets for direct parsing of 3D geometry, such as the

segmentation of point clouds into building parts and the detection

of facade elements using both color and depth information. The

study presents a promising approach to building 3D models and

highlights future directions for research.

Fan et al. (2021) presents a web-based interactive platform

called VGI3D, that can construct 3D building models using free

images from internet users or VolunteeredGeographic Information

(VGI) platforms. The proposed platform is designed to address

the challenges associated with creating 3D building models,

which typically require significant labor and time costs, as well

as expensive devices. The platform can effectively generate 3D

buildingmodels from images in 30 seconds, using a user interaction

module and CNN. The user interaction module provides the facade

boundary for 3D building modeling, while the CNN can identify

facade elements even in complex scenes with multiple architectural

styles. The user interaction module is designed to be simple and

user-friendly for both experts and non-experts. The paper also

presents usability testing results and feedback from participants to

further optimize the platform and user experience. Using VGI data

reduces labor and device costs, and the CNN simplifies the process

of extracting elements for 3D building modeling. In contrast,

Tripodi et al. (2020) introduces an automated pipeline for creating

3D models of urban areas with Level of Detail one (LoD1) using

satellite imagery. The accuracy of the model is dependent on the

quality of the stereo images, which can often be affected by noise

and distortion. To overcome this, the paper proposes a pipeline

that combines U-net for contour extraction and optimization with

computational geometry techniques for the creation of a precise

digital terrain model, digital height model, and the position of

building footprints. The pipeline is efficient and can work even

when close-to-nadir images are not available. Experimental results

demonstrate the effectiveness of the proposed pipeline in 3D

building reconstruction.

Given a multi-view stereo, Romanoni et al. (2017) tries to

improve the geometry and semantic labeling of a given mesh

for semantic 3D reconstruction using their framework. Current

methods rely on volumetric approaches to fuse RGB image data

with semantic labels, but these methods are not scalable and do not

produce high-resolution meshes. The proposed approach refines

mesh geometry by using a variational method that optimizes a

composite energy consisting of a pairwise photometric term and

a single-view term that models the semantic consistency between

the labels of the 3D mesh and those of the segmented images.

The approach updates the semantic labeling through a Markov

Random Field (MRF) formulation that considers class-specific

priors estimated directly from the annotated mesh. This is the first

approach to use semantics within a mesh refinement framework

and it improves the robustness of noisy segmentations compared

to existing methods that use handcrafted or learned priors.

Roy et al. (2022) introduces a hybrid learning based framework

for generating 3D buildingmodels from 2D images. The framework

is based on a parametric representation of 3D buildings, which

provides human-interpretable 3D models that allow users to make

edits to the model. The framework is composed of two main

modules, a facade detection and frontalization module and a 2D

to 3D conversion module. To train the model, the authors used

a large-scale synthetic dataset generated by the hyper simulation

platform, which allowed them to learn reliable models from a small

amount of real data. The results show that the model is able to

generate meaningful 3D models from arbitrary 2D images and

can capture the structural details of the building in 2D images.

The authors plan to extend their work by incorporating more

parameters andmore complex 3D buildings with multi-layered and

non-uniform structures.
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2.3 Neural rendering based 3D
reconstruction

Neural Rendering based 3D Reconstruction is an

advanced computational approach that merges neural network

methodologies with traditional 3D rendering techniques to

tackle the complexities of reconstructing large-scale scenes with

variable lighting. This approach employs neural networks to create

detailed surface geometries, utilizing appearance embeddings

to capture lighting variations and generating meshes as direct

geometric representations Tewari et al. (2022). These meshes are

then integrated into standard graphics workflows, overcoming

the computational intensity typically associated with volumetric

radiance fields. The technique is further refined by a hybrid

sampling strategy that leverages both voxel data and surface

predictions, optimizing the process for environments with limited

computational resources. Pioneering works in this domain not

only provide more efficient and accurate reconstruction methods

but also contribute specialized datasets, like Heritage-Recon, that

facilitate the evaluation of these neural rendering techniques in

real-world scenarios with incomplete ground truth. This field

represents a significant stride in the ability to digitally capture and

model our world with high fidelity, even in the face of challenging

lighting and vast spatial complexity, a feat further refined by

Sun et al. (2022), who introduced a proficient methodology for

reconstructing the surface geometry of expansive scenes, adeptly

handling fluctuating lighting conditions. Their technique is

predicated on the utilization of appearance embeddings to model

the variability in illumination, with an emphasis on generating

mesh outputs. Meshes provide a direct representation of the scene’s

geometry and can be readily imported into standard graphics

pipelines. To reconstruct the surface geometry, the approach

leverages volume rendering methods, coupling a neural surface

representation with volumetric rendering. However, integrating

the surface representation with a volumetric radiance field involves

huge compute demands for large-scale data collections, making

it intractable in settings with limited access to high-end GPUs.

To address this issue, the paper proposes a hybrid voxel- and

surface-guided sampling technique. The approach uses sparse

point clouds from SfM to create samples from a sparse volume.

This voxel-guided method is combined with a surface-guided

sampling technique that creates samples based on the current state

of optimization. The paper also introduces Heritage-Recon, a new

benchmark dataset derived from the public catalog of free-licensed

LiDAR data available in Open Heritage 3D. The dataset is paired

with Internet-derived image collections and SfM models from the

MegaDepth dataset, and a carefully designed evaluation protocol

suited for such large-scale scenes with incomplete ground truth is

used to evaluate the approach. The results demonstrate that the

proposed approach surpasses classical and neural reconstruction

methods in terms of efficiency and accuracy. An interesting

work by Wu et al. (2022) uses a combination of implicit neural

representation and explicit multiplane images to represent 3D

scenes as shown in Figure 3. Their method which is called

Implicit Multiplane Images representation (ImMPI) employs a

learning-based network for ImMPI initialization, which involves

extracting 3D scene distribution priors. This approach accelerates

and stabilizes the optimization process. Furthermore, the paper

presents a new dataset for remote sensing novel view synthesis,

which includes 16 real-world 3D scenes collected from Google

Earth along with their multi view images. The dataset covers

various terrains such as mountains, urban areas, buildings, parks,

and villages.

2.4 Summary

The exploration of image-based facade reconstruction

encompasses a variety of methodologies, notably photogrammetry

and image matching, deep learning and hybrid methods, and

neural rendering approaches. These techniques offer innovative

solutions to the intricate task of digitally capturing the architectural

essence of building facades. Despite their advancements and the

promising outcomes they present, several potential criticisms and

areas for further scrutiny emerge:

2.4.1 Dataset limitations
The effectiveness of these methods is often demonstrated on

curated datasets, which, while valuable, may not encapsulate the

full complexity and diversity of urban facades encountered in

real-world settings. The generalizability of these techniques across

varied architectural styles and environments remains a question,

underscoring the need for broader dataset evaluations to ascertain

their applicability.

2.4.2 Complexity and computational
requirements

The reliance on advanced deep learning models, such as

those employed in neural rendering and some hybrid methods,

necessitates substantial computational resources. The scalability

of these approaches for comprehensive urban reconstruction

projects is a concern, with significant demands on processing

power, memory, and data storage posing potential barriers to

widespread adoption.

2.4.3 Accuracy and robustness
Despite showcasing high-quality reconstructions, the precision

and reliability of these methods under less-than-ideal conditions–

such as poor lighting, occlusions, and the presence of dynamic

elements–warrant further investigation. The robustness of these

reconstruction techniques in accurately capturing the nuances of

facade geometries and textures in varied environmental conditions

is crucial for their advancement.

2.4.4 Limitations of individual techniques
Each reconstruction approach has inherent strengths and

weaknesses. For instance, photogrammetry and image matching

techniques may struggle with feature ambiguity in densely textured

urban scenes. Deep learningmethods, while powerful, often require

extensive labeled datasets for training, which can be difficult to
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FIGURE 3

Their proposed method involves two main stages. The first stage is the cross-scene initialization, where they select a reference view and use a prior

extractor encoder to generate a latent feature called Fprior . This feature serves as the initialization for the ImMPI. The encoder is trained on various

Remote Sensing (RS) scenes using self-supervised learning. The second stage is per-scene optimization, where they take a set of input views and

iteratively refine the ImMPI representation. This refined representation is then used for rendering novel views through di�erentiable rendering

techniques Wu et al. (2022).

procure. Neural rendering approaches, though promising for their

realism and detail, face challenges in computational efficiency and

the need for high-quality training data.

2.4.5 Lack of comparison with traditional
methods

A comprehensive evaluation that includes comparisons

with traditional reconstruction methods is often missing.

Such comparisons are essential to highlight the advancements

these new methodologies offer over conventional techniques,

providing a clearer understanding of their added value and

potential limitations.

In summary, while the discussed studies introduce cutting-edge

approaches to facade reconstruction, addressing the highlighted

criticisms is essential for their evolution. Future research should

aim to enhance dataset diversity, improve computational efficiency,

and ensure the accuracy and robustness of these methods in

varied real-world scenarios. Additionally, comparative analyses

with traditional reconstruction techniques could further validate

the effectiveness and innovation of these advanced methodologies.

Tables 2–4 offers a detailed summary of the methods employed in

each study, including the input data utilized and the evaluation

metrics applied, alongside the year of each study.

3 District reconstructions

District reconstruction refers to the task of creating a 3D

model of a entire district or urban area. This can be done using

satellite imagery, aerial photographs, and street view imagery,

either separately or together. The goal is to capture the spatial

and structural characteristics of the district in order to create

an accurate and comprehensive 3D model. We have arranged

the existing research on image-based district reconstruction into

five sections: semantic-based, neural implicit-based, depth-based,

generative adversarial network-based, and combinatorial methods.

Semantic-based 3D reconstruction strives to simultaneously

capture the geometric shape and semantic information of a 3D

scene from a collection of 2D images, whether taken from a

single viewpoint or multiple viewpoints. This technique involves a

multi-step process encompassing tasks such as feature extraction,

camera pose estimation, depth estimation, semantic labeling, and

the fusion of 3D information. The essence of semantic-based 3D

reconstruction lies in its ability to not only recreate the physical

structure of the scene but also to associate meaningful labels

with objects, enabling a richer understanding of the reconstructed

environment and its elements.

Neural implicit-based 3D reconstruction is an innovative

paradigm that leverages neural networks to infer complex 3D

shapes from 2D images or sparse data points. This approach utilizes

implicit functions, which are mathematical descriptions that can

represent intricate shapes without explicitly defining them. Neural

implicit-based methods excel at capturing fine details and handling

diverse shapes that may be challenging for traditional geometric

representations. This technique holds significant promise for

advancing 3D reconstruction by harnessing the power of machine

learning to derive accurate and intricate 3D models from limited

visual input.

Depth-based 3D reconstruction is a foundational methodology

centered on extracting three-dimensional information from images

by estimating the distances to various points in a scene. This

approach relies on techniques such as stereo vision, where the

disparity between corresponding points in multiple images is used

to calculate depth. Depth-based methods offer a straightforward

and accurate means of reconstructing object shapes and spatial

relationships. However, they often require well-calibrated

cameras and controlled lighting conditions to yield reliable

results. Despite these constraints, depth-based 3D reconstruction

remains a critical technique in computer vision, particularly in
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TABLE 2 Works on photogrammetry and image matching for 3D reconstruction.

References Input data Methods Year Evaluation
metric

Wu et al. (2018) Aerial oblique imagery and terrestrial imagery Feature matching+ combined bundle adjustment 2018 CMD

Li et al. (2020) Aerial and terrestrial images Combined SfM+ optimal generation of textured 3D mesh

models

2020 CMD

Guo and Guo (2018) Multi-view images Joint estimation of the line and dense points 2018 NA

Xu et al. (2020) Multiple view stereo images MARMVS 2020 R, A, HM

R, recall; A, accuracy; HM, harmonic means; CMD, cloud-mesh distance.

TABLE 3 Works on deep learning and hybrid methods for 3D reconstruction.

References Input data Methods Year Evaluation
metric

Alidoost et al. (2020) Single aerial image Y-shaped CNN 2020 RMSE, NMAD

Huang et al. (2020) Airborne and terrestrial imagery Shell model 2020 NA

Fan et al. (2021) Internet images CNN+ VGI3D 2021 P, R, I

Tripodi et al. (2020) Stereo pairs of satellite images CNN+ optimization+ computational geometry 2020 NA

Romanoni et al. (2017) Multi-View Stereo Variational surface evolution framework 2017 A, R, F-score

Roy et al. (2022) 2D images Facade detection+ frontalization module 2022 L1

Bacharidis et al. (2020) Single RGB image Auto-encoder+ GAN+ computational geometry techniques 2020 NA

R, recall; A, accuracy; I, Integrality; P, Precision; RMSE, Root Mean Square Error; NMAD, Normalized Median Absolute Deviation.

TABLE 4 Works on neural rendering based 3D reconstruction.

References Input
data

Methods Year Evaluation
metric

Sun et al. (2022) 2D image

collections

Neural

radiance

fields

2022 P, R, F1

Wu et al. (2022) Aerial

images

ImMPI 2022 PSNR, SSIM,

LPIPS

R, recall; P, precision; F1, F1 Score; PSNR, Peak Signal-to-Noise Ratio; SSIM, Structural

Similarity Index Measure; LPIPS, Learned Perceptual Image Patch Similarity.

applications such as robotics, augmented reality, and autonomous

navigation systems.

GAN-based 3D reconstruction is an innovative approach that

harnesses the power of adversarial learning to enhance the process

of generating three-dimensional models from two-dimensional

images. GANs consist of two neural networks, a generator, and

a discriminator, engaged in a competitive learning process. The

generator creates candidate 3D models from input images, while

the discriminator evaluates their similarity to real 3D shapes.

This interplay refines the generator’s ability to create increasingly

accurate 3D representations. GAN-based 3D reconstruction has

shown remarkable success in producing intricate and realistic 3D

models, often surpassing conventional methods. However, training

GANs can be complex and resource-intensive, requiring extensive

datasets and careful tuning.

3.1 Semantic based district reconstruction

The use of semantic information in 3D reconstruction has

become an increasingly popular research area in recent years, with

many studies focusing on the integration of object recognition and

classification algorithms with traditional reconstruction methods.

In particular, the reconstruction of urban districts presents a

unique challenge due to the complexity and diversity of the

built environment, making it an area of active research and

innovation. In this regard Vineet et al. (2015) proposes an end-to-

end system that can perform real-time dense stereo reconstruction

and semantic segmentation of outdoor environments by outputting

a per voxel probability distribution instead of a single label.

The system is designed to incrementally build dense large-scale

semantic outdoor maps and can handle moving objects more

effectively than previous approaches by incorporating knowledge

of object classes into the reconstruction process. The core of the

system is a scalable fusion approach that replaces the fixed dense

3D volumetric representation of standard formulations with a

hash-table-driven counterpart. The system uses stereo instead of

Kinect-like cameras or LiDARs and visual odometry instead of

Iterative Closest Point (ICP) camera pose estimation. The semantic

segmentation pipeline extracts 2D features and evaluates unary

potentials based on random forest classifier predictions. It transfers

these into the 3D volume, where a densely connected Conditional

Random Field (CRF) is defined to reduce the computational

burden and enforce temporal consistency. The system uses online

volumetric mean-field inference and a volumetric filter suitable

for parallel implementation to efficiently infer the approximate

MaximumPosteriorMarginal (MPM) solution. The semantic labels

are used to reinforce the weights in the fusion step to handlemoving

objects more effectively. The approach is evaluated on the KITTI

dataset, and the results show high-quality dense reconstruction and

labeling of several scenes.

For generating 3D maps of large-scale environments using a

combination of deep learning and probabilistic graphical modeling

techniques, Yang et al. (2017) introduces a method that involves
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FIGURE 4

Overview of the system as originally shown in Yang et al. (2017), (a) Input stereo image pairs. (b) Geometric 3D reconstruction achieved using ORB

SLAM and occupancy mapping. (c) 2D semantic segmentation through CNN, acting as the conditional random field (CRF) unary potential. (d)

Generation of superpixel cliques using SLIC for ensuring label consistency within regions, which calculates the CRF high-order potential. (e)

Introduction of the hierarchical CRF model. An e�cient mean-field inference approach is developed for this hierarchical CRF in the 3D grid space.

(f) Final semantic mapping obtained after optimization using the 3D CRF approach.

utilizing a CNN to compute pixel label distributions from 2D

images and transferring this information to a 3D grid space. To

enforce semantic consistency among the grids, the paper proposes a

CRFmodel with higher-order cliques, which are generated through

superpixels. An efficient filter-based mean field approximation

inference is developed for this hierarchical CRF. To make the

method applicable to large-scale environments and to achieve real-

time computation, the paper introduces a scrolling occupancy grid

that represents the world and is memory and computationally

bounded. The proposed approach improves segmentation accuracy

by 10% over the state-of-the-art systems on the KITTI dataset.

The paper’s main contributions are the proposal of a (near) real-

time incremental semantic 3D mapping system for large-scale

environments using a scrolling occupancy grid, the development

of a filter-based mean-field inference for high-order CRFs with

a robust Pn potts model by transforming it into a hierarchical

pairwise model, and the improvement of segmentation accuracy

over the state-of-the-art systems. Figure 4 shows the overview of

the system.

For mapping and reconstructing large-scale dynamic urban

environments, Bârsan et al. (2008) presents a new algorithm

that is specifically designed to separate and classify objects in

the environment as either static background, moving objects, or

potentially moving objects. This ensures that even objects that may

not be moving at the moment but have the potential to move, like

parked cars, are accurately modeled. To achieve this, the authors

use a combination of instance-aware semantic segmentation and

sparse scene flow. The depth maps computed from the stereo

input and camera poses estimated from visual odometry are used

to reconstruct both the background and (potentially) moving

objects separately. The sparse scene flow helps estimate the 3D

motions of the detected moving objects, resulting in more accurate

reconstruction. The authors have also developed a map pruning

technique to improve reconstruction accuracy and reduce memory

consumption, which has led to increased scalability. The system

has been thoroughly evaluated on the KITTI dataset and has

shown promising results. The only limitation is the instance-

aware semantic segmentation, which currently acts as the primary

bottleneck, but the authors suggest that this could be addressed in

future work. Furthermore, Yang et al. (2018) presented a method to

create a detailed 3D map of an outdoor urban environment using

binocular stereo vision. The system takes a stereo color images

from a moving vehicle and uses visual odometry to estimate the

camera’s movement and construct a 3D space around the vehicle. At

the same time, the system performs semantic segmentation using

deep learning technology, which helps to verify feature matching

in visual odometry. This process calculates the motion, depth, and

semantic label of every pixel in the input views. To generate a 3D

semantic map, the system uses a voxel CRF inference technique to

fuse the semantic labels to voxel. This means that the system can

accurately map the semantic labels of each voxel in the 3D space,

taking into account the semantic labels of neighboring voxels. This

also helps to remove moving objects and improves the accuracy

of the motion segmentation. The system can generate a dense 3D

semantic map of the urban environment from any length of image

sequence. This means that the system can continuously update and

improve the map as the vehicle moves through the environment.

A fully automated 3D reconstruction from multi-view aerial

images without any additional data assistance was proposed by Yu

et al. (2021) that consists of three parts: efficient dense matching

and Earth surface reconstruction, reliable building footprint

extraction and polygon regularization, and highly accurate height

inference of building roofs and bases. The first part of the method

uses a novel deep learning-based multi-view matching method
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to reconstruct the Digital Surface Model (DSM) and Digital

Orthophoto Map (DOM) efficiently without generating epipolarly

rectified images. This is done using a convolutional neural network,

gated recurrent convolutions, and a multi-scale pyramid matching

structure. The second part of the method introduces a three-stage

2D building extraction method to deliver reliable and accurate

building contours. Deep-learning based segmentation, assisted

with DSM, is used to segment buildings from backgrounds.

The generated building maps are then fused with a terrain

classification algorithm to improve segmentation results. A polygon

regularization algorithm and a level set algorithm are employed to

transfer the binary segmentation maps to structured vector-form

building polygons. Finally, a novel method is introduced to infer

the height of building roofs and bases using adaptive local terrain

filtering and neighborhood buffer analysis. The proposed method

was tested on a large experimental area that covered 2,284 aerial

images and 782 various types of buildings. The results showed

that the accuracy and completeness of the reconstructed models

approached that of manually delineated models to a large extent,

and exceeded the results of other similarmethods by at least 15% for

individual 3D building models in a between-method comparison,

with many of them comparable to manual delineation results.

Cheng et al. (2022) proposed a 3D semantic mapping system

that can reconstruct a 3Dmap of the environment using only stereo

images and optional sensor data such as Global Navigation Satellite

System (GNSS) for global positioning and IMU measurements.

The pipeline of the proposed system consists of three main

modules: direct visual odometry (VO), semantic segmentation, and

temporally consistent labeling. The direct VO module estimates

relative camera poses and a sparse 3D reconstruction of the

environment. The global map optimization is performed based

on loop closure detection, which detects when the vehicle revisits

a previously explored area and uses this information to improve

the map’s accuracy. The semantic segmentation module uses

a state-of-the-art neural network to generate accurate semantic

labels for each pixel of the stereo images corresponding to the

keyframes defined by the VO front-end. This allows the system to

understand the different types of objects in the environment, such

as buildings, roads, and trees. The temporally consistent labeling

module generates temporally consistent 3D point labels based on

the VO outputs and the 2D semantic labels. This enables the system

to create a 3D semantic map that not only shows the geometry

of the environment but also the semantic information associated

with it. Finally, the paper discusses how the 3D semantic mapping

system can be used to create a city-scale map by stitching together

the reconstructions from a fleet of vehicles.

MonoScene (Cao and de Charette, 2022a), uses a single RGB

image to project 2D features along their line of sight, inspired by

optics, to bridge 2D and 3D networks. This approach allows the

3D network to self-discover relevant 2D features. the proposed

approach uses a pipeline that combines 2D and 3D UNets, bridged

by a Features Line of Sight Projection module (FLoSP) that

lifts 2D features to plausible 3D locations. This module boosts

information flow and enables 2D–3D disentanglement. The 3D

Context Relation Prior component (3D CRP) is inserted between

the 3D encoder and decoder to capture long-range semantic

context. The pipeline is guided by two complementary losses. The

first is a scene-class affinity Loss that optimizes the intra-class and

inter-class scene-wise metrics. The second is a frustum proportion

loss that aligns the classes distribution in local frustums, which

provides supervision beyond scene occlusions. The paper argues

that the existing literature on Semantic scene completion (SSC)

mainly relies on cross-entropy loss, which considers each voxel

independently and lacks context awareness. The authors propose

novel SSC losses that optimize the semantic distribution of groups

of voxels, both globally and in local frustums. To further boost

context understanding, the authors also designed a 3D context

layer to provide the network with a global receptive field and

insights about the semantic relations of the voxels. The authors

extensively tested MonoScene on indoor and outdoor scenes and

found that it outperformed all comparable baselines and even some

3D input baselines.

Recently Huang et al. (2023) proposed a new approach

to describe 3D scenes called Tri-Perspective View (TPV)

representation, which extends the Bird’s Eye-View (BEV)

representation by including two additional perpendicular planes.

The authors argue that TPV provides a more comprehensive

description of the 3D structure of a scene compared to BEV,

which has difficulty representing fine-grained 3D structure with

a single plane. To obtain the feature of a point in the 3D space,

the authors first project it onto each of the three planes and use

bilinear interpolation to obtain the feature for each projected point.

They then sum the three projected features as the comprehensive

feature of the 3D point. To effectively obtain the TPV features

from 2D images, the authors propose a transformer-based encoder

called TPVFormer. TPVFormer performs image cross-attention

between TPV grid queries and the corresponding 2D image

features to lift 2D information to the 3D space. Then, it performs

cross-view hybrid-attention among the TPV features to enable

interactions among the three planes. The authors demonstrate the

superiority of TPV representation by formulating a challenging

task for vision-based 3D semantic occupancy prediction, where

only sparse LiDAR semantic labels are provided for training

and predictions for all voxels are required for testing. They

evaluate their model on two proxy tasks: LiDAR segmentation on

nuScenes and 3D semantic scene completion on SemanticKITTI,

both using only RGB images as inputs. Their results show that

TPVFormer produces consistent semantic voxel occupancy

prediction with only sparse point supervision during training, and

achieves comparable performance with LiDAR-based methods on

LiDAR segmentation.

An interesting work called VoxFormer Li et al. (2023b) is

designed to generate complete 3D volumetric semantics from 2D

images. The goal is to enable AI systems to imagine the complete

3D geometry of occluded objects and scenes, which is a vital ability

for recognition and understanding. The framework has a two-stage

design, where the first stage involves starting from a sparse set of

visible and occupied voxel queries obtained from depth estimation.

This is followed by a densification stage that generates dense 3D

voxels from the sparse ones. The authors propose that starting

with the featurization and prediction of the visible structures is

more reliable, as the visual features on 2D images correspond only

to the visible scene structures rather than the occluded or empty

spaces. To propagate information to all the voxels, the authors
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apply a masked autoencoder design to the sparse queries using self-

attention. The framework uses Transformer-based architecture for

this purpose, and they call it VoxTransformer. VoxTransformer

is trained to predict dense 3D voxel occupancy and semantic

labels given the sparse set of voxel queries. The authors evaluate

the performance of VoxFormer on the SemanticKITTI dataset

and show that it outperforms the state of the art by a relative

improvement of 20.0% in geometry and 18.1% in semantics. They

also report that VoxFormer reduces GPU memory during training

by∼ 45% to <16GB.

Recently, research conducted by Miao et al. (2023), suggested a

method for 3D SSC that provides dense geometric and semantic

scene representations. they claim accurate depth information is

crucial for restoring 3D geometry, and the authors propose a

stereo SSC method named OccDepth, which fully exploits implicit

depth information from stereo images (or RGBD images) to

help recover 3D geometric structures. To better fuse 3D depth-

aware features, the authors propose the Stereo Soft Feature

Assignment (Stereo-SFA) module, which implicitly learns the

correlation between stereo images. Additionally, the Occupancy

Aware Depth (OAD) module is used to obtain geometry-aware

3D features by knowledge distillation using pre-trained depth

models. The authors also provide a reformed TartanAir benchmark,

named SemanticTartanAir, for further testing their OccDepth

method on SSC tasks. Extensive experiments on SemanticKITTI

show that their OccDepth method achieves superior performance

compared to state-of-the-art RGB-inferred SSC methods, with an

improvement of +4.82% mIoU. Of this improvement, +2.49%

mIoU comes from stereo images and +2.33% mIoU comes from

the authors’ proposed depth-aware method.

3.2 Neural implicit based district
reconstruction

In the realm of district reconstruction, the use of neural implicit

methods has emerged as a promising technique for accurately

and intricately reconstructing complex 3D environments. This

approach shows potential in overcoming the challenges associated

with conventional methods, such as the need for manual

intervention and limited scalability. A specific example of such

a method is Block-NeRF (Tancik et al., 2022), which is a

variant of Neural Radiance Fields (NeRF) Mildenhall et al.

(2021) designed to represent large-scale environments with greater

efficiency and accuracy. NeRF is a state-of-the-art method for

rendering photorealistic 3D scenes, but it is limited in its ability

to represent large-scale scenes. Thus, the authors demonstrate

that by decomposing the scene into individually trained NeRFs,

Block-NeRF can render city-scale scenes spanning multiple blocks,

enabling rendering to scale to arbitrarily large environments and

allowing per-block updates of the environment. The authors make

several architectural changes to NeRF to make it robust to data

captured over months under different environmental conditions.

They add appearance embeddings, learned pose refinement, and

controllable exposure to each individual NeRF, and introduce a

procedure for aligning appearance between adjacent NeRFs so that

they can be seamlessly combined, then build a grid of Block-

NeRFs from 2.8 million images to create the largest neural scene

representation to date, capable of rendering an entire neighborhood

of San Francisco. This represents a significant advancement in

the ability to represent large-scale environments using neural

rendering techniques. Turki et al. (2022) describes three key

challenges for using NeRFs on large-scale scenes:

1. The need to model thousands of images with varying lighting

conditions, each of which captures only a small subset of

the scene

2. The large model capacity required, making it infeasible to train

on a single GPU

3. Significant challenges for fast rendering to enable interactive

fly-throughs.

To address these challenges, the authors propose a sparse

network structure that is specialized to different regions of the

scene. They also introduce a geometric clustering algorithm for data

parallelism, which partitions training images into different NeRF

submodules that can be trained in parallel. The proposed approach

is evaluated on existing datasets (Quad 6k and UrbanScene3D)

as well as on drone footage collected by the authors. The results

demonstrate that the proposed method improves training speed

by 3x and Peak Signal-to-Noise Ratio (PSNR) by 12% compared

to existing methods. The authors also evaluate recent NeRF fast

renderers on top of Mega-NeRF and introduce a novel method

that exploits temporal coherence. Their technique achieves a

40x speedup over conventional NeRF rendering while remaining

within 0.8 db in PSNR quality, exceeding the fidelity of existing

fast renderers. Overall, the paper presents a promising method

for building interactive 3D environments from large-scale visual

captures, addressing several challenges associated with usingNeRFs

on such scales.

To address the challenges of modeling 3D environments with

vastly different scales, such as city scenes or landscape models

Xiangli et al. (2022) presents BungeeNeRF, a progressive neural

radiance field that aims to achieve level-of-detail rendering by

progressively fitting distant views with a shallow base block and

then appending new blocks to accommodate emerging details

in increasingly closer views. The approach progressively activates

high-frequency channels in NeRF’s positional encoding inputs

and successively unfolds more complex details as the training

progresses. The paper demonstrates the superiority of BungeeNeRF

in modeling diverse multi-scale scenes with varying views on

multiple data sources, including city models, synthetic data,

and drone-captured data. The approach supports high-quality

rendering in different levels of detail, and the results show

improved performance compared to traditional NeRF on multi-

scale scenes (see Figure 5 for the overview of the proposed system)

A self-supervised monocular scene reconstruction method

called SceneRF which only uses posed image sequences for

training is presented by Cao and de Charette (2022b), the

method aims to overcome the dependence on costly-acquired

datasets that are typically used for 3D reconstruction from 2D

images. The authors build upon recent progress in NeRF and

optimize a radiance field with explicit depth optimization and

a novel probabilistic sampling strategy that efficiently handles
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FIGURE 5

Overview of the system as originally shown in Xiangli et al. (2022), (a) Illustration of the multi-scale data present in city scenes. Where they use to

denote scales. The model progressively evolves with the training set at each stage. (b) As training progresses, new residual blocks are added to the

network. This addition is guided by supervision from samples encompassing the most distant scale up to the ongoing scale. The structure of a

residual block is outlined in the dashed box. (c) The Level-of-Detail (LOD) rendering outcomes achieved at distinct residual block stages. Going from

shallower to deeper levels, finer details are incrementally introduced.

large scenes. The proposed method requires only a single input

image for inference and can hallucinate novel depth views that

are fused together to obtain 3D scene reconstruction. Thorough

experiments are conducted to demonstrate the effectiveness of the

proposed method. The results show that the proposed method

outperforms all recent baselines for novel depth views synthesis and

scene reconstruction on both indoor BundleFusion and outdoor

SemanticKITTI datasets. Overall, the proposed SceneRF method

provides a promising alternative to costly-acquired datasets for 3D

reconstruction from 2D images.

Zakharov et al. (2021) proposed a new method that represents

movable objects separately from the static background and recovers

a full 3D model of each distinct object as well as their spatial

relations in the scene using only a single image. The method

leverages transformer-based detectors and neural implicit 3D

representations and builds a Scene Decomposition Network (SDN)

that reconstructs the scene in 3D. The authors also demonstrate

that the 3D reconstruction can be used in an analysis-by-synthesis

setting via differentiable rendering. The method is trained only on

simulated road scenes but generalizes well to real data in the same

class without any adaptation thanks to its strong inductive priors.

Experiments on two synthetic-real dataset pairs (PD-DDAD and

VKITTI-KITTI) show that the method can robustly recover scene

geometry and appearance, as well as reconstruct and re-render the

scene from novel viewpoints. Overall, the method provides a new

approach to scene reconstruction that can capture the 3D geometry

and appearance of a road scene from a single image.

3.3 Depth based district reconstruction

Depth sensors are capable of capturing geometric and spatial

information from regions with homogeneous and poor textures,

which are common in indoor situations. However, these sensors

have limitations when it comes to outdoor reconstruction due to

their restricted range and vulnerability to sunlight interference

with the patterns used for depth estimation. Considering these

issues and the prevalence of cameras in modern mobile devices,

it becomes practical to explore entirely vision-based solutions for

creating detailed 3D models of outdoor areas. This is precisely

the approach followed by Schöps et al. (2017). The approach

uses plane sweep stereo to build depth maps with a fisheye

camera and GPU. The study describes a set of filtering procedures

for recognizing and rejecting unreliable depth measurements.

Following that, the retained depth map sections are combined into

a volumetric representation of the environment using a truncated

signed distance function. Notably, this technique enables real-time

reconstruction of large outdoor sceneries utilizing mobile devices,

which was previously unfeasible. The paper extensively evaluates

the proposed method and demonstrates the benefit of rigorously

filtering depth maps. Overall, the approach is significant because

it enables real-time reconstruction of large-scale outdoor scenes

on mobile devices. Figure 6 shows the overall systems pipeline.

In a recent work by Yin et al. (2022) a two-stage pipeline for

3D shape estimation from single images, consisting of a depth

recovery module and a point cloud module has been proposed. The

depth recovery module takes a single image as input and outputs

a depth map. If sparse depth points are available, they are also

used as input to the module to output a metric depth map. The

point cloud module takes the predicted depth map and an initial

estimate of the focal length as input and outputs shift adjustments

to the depth map and the focal length to improve the geometry of

the reconstructed 3D scene shape. The two modules are trained

separately on different data sources and combined at inference

time. The depth recovery module is trained on multiple sources

of data, including high-quality LiDAR sensor data, medium-quality

calibrated stereo data, and low-quality web stereo data, using a mix

of heterogeneous losses depending on the quality of the data source.

The point cloudmodule is trained on synthetic data generated from

3D models and real-world data captured using a LiDAR sensor.

The proposed pipeline addresses the limitations of previous depth

completion methods by improving robustness to diverse scenes,
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FIGURE 6

The pipeline of the mobile reconstruction system as originally shown in Schöps et al. (2017).

various sparsity patterns, and noisy inputs, and showing promising

metric reconstruction results with very sparse depth points and

noisy inputs.

3.4 GAN based district reconstruction

GANs have emerged as a promising tool for generating realistic

and high-quality 3D models from various data sources, including

images, point clouds, and voxels. By learning the underlying

distribution of the input data, GANs can produce new samples

that are visually and structurally consistent with the original data,

while also introducing novel and diverse variations. One interesting

study in this realm is Rodríguez-Santiago et al. (2021) that proposed

a configured deep learning architecture as an autoencoder, but

with differences in the encoder stage which is set as a residual

net with four residual blocks, and the decoder stage, which is

set as a generative adversarial network called a GAN-Decoder.

The network takes a sequence of 2D aerial images as input,

with the encoder stage extracting feature maps from the images,

and the GAN-Decoder generating a point cloud based on the

information obtained. The experiments show that the proposed

system is capable of performing three-dimensional reconstructions

of an area flown over by a drone using the point cloud generated

with the deep architecture. The proposed system is compared with

other works and commercial software, and the results show that

it can generate reconstructions in less processing time, with less

overlapping percentage between 2D images and is invariant to

the type of flight path. Details of the suggested model’s general

configuration are shown in Figure 7.

3.5 Combinatorial based district
reconstruction

Combinatorial optimization has been widely used in urban

planning and design to solve complex spatial problems, such

as facility location, transportation network design, and land-

use allocation. Recently, researchers have explored the use of

combinatorial optimization techniques for district reconstruction,

which involves generating 3D models of urban districts from

various data sources, such as satellite imagery, LiDAR data,

and street-level photos. Combinatorial-based approaches can

handle large-scale datasets and complex urban environments

by partitioning the input data into smaller sub-regions and

optimizing the arrangement of building blocks or other elements

within each sub-region. In this regard Romanoni and Matteucci

(2015) proposes a method for performing incremental urban

reconstruction from a monocular video captured by a surveying

vehicle, using a delaunay triangulation of edge-points to capture the

sharp edges of the urban landscape. The proposed method allows

online incremental mapping for tasks such as traversability analysis

or obstacle avoidance. The delaunay triangulation of edge-points

constrains the edges of the 3D delaunay triangulation to real-world

edges, improving the accuracy of the reconstruction. The paper

also introduces the inverse cone heuristic, which preemptively

avoids the creation of artifacts in the reconstructed manifold

surface. This is important because a manifold surface allows

the application of computer graphics or photometric refinement

algorithms to the output mesh, improving the visual quality

of the final 3D model. The proposed approach was evaluated

on four real sequences of the public available KITTI dataset

by comparing the incremental reconstruction against Velodyne

measurements. The results show that the proposed method

achieves comparable or better results than existing methods while

being computationally efficient and able to handle dynamic scenes.

Another related work is by Piazza et al. (2018) that proposes

a real-time incremental manifold reconstruction algorithm that

runs on a single CPU and can handle large scale scenarios.

Figure 8 shows an example of the reconstructed mesh using

the algorithm. The proposed algorithm speeds up the run time

of existing algorithms while improving the accuracy of the

reconstruction. The authors achieved these results by redesigning

some of the classical manifold reconstruction steps, proposing a

novel shrinking method and a novel ray tracing approach that

leverage on hashing and caching strategies. One of the significant

advantages of the proposed algorithm is that it is also able to

manage moving points without using any approximate heuristics,

resulting in negligible overheads. This is in contrast to existing

algorithms that require the use of approximate heuristics to

handle moving points. As a possible future development, the

authors plan to manage loop closures and update the map shape

accordingly, which means handling the change of mesh genus

when needed. They are also working on improving the accuracy

of the reconstruction by incorporating shape prior, such as planes,

through constrained delaunay triangulation while still preserving

real-time execution.
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FIGURE 7

The internal layer configuration for each stage of the architecture, encompassing both the Encoder and the Decoder, is now referred to as

GAN-Decoder. Specific blocks utilized in the model, including the Residual Block (RB), Upsampling Block (UB), and Convolutional Block (CB), are

presented in detail at the bottom, as originally shown in Rodríguez-Santiago et al. (2021).

3.6 Summary

Overall, the mentioned studies focus on different techniques

and methods for image-based district reconstruction, specifically

semantic-based, neural implicit-based, depth-based, GAN-

based, and combinatorial methods. While these studies propose

innovative approaches and achieve promising results, there are

some potential criticisms to consider:

3.6.1 Dataset limitations
Most of the studies evaluate their proposed methods on specific

datasets such as KITTI, nuScenes, or SemanticKITTI. While these

datasets provide valuable benchmarks, they may not fully represent

the complexity and diversity of real-world urban environments.

The generalizability of the proposed methods to different contexts

and datasets should be further explored.

3.6.2 Complexity and computational
requirements

Several studies rely on deep learning techniques, such as

CNNs or GANs, which often require significant computational

resources and training data. The practicality and scalability of

these methods for large-scale district reconstruction need to be

carefully considered, especially in terms of memory consumption,

processing time, and hardware requirements.

3.6.3 Accuracy and robustness
While the aforementioned studies demonstrate high-quality

reconstruction results, there may still be limitations in terms

of accuracy and robustness. Factors such as occlusions, lighting

variations, and dynamic objects pose challenges for accurate 3D

reconstruction. Further investigation is needed to evaluate the

methods’ performance under various real-world scenarios and

challenging conditions.

3.6.4 Limitations of individual techniques
Each category of reconstruction methods has its own strengths

and limitations. For example, semantic-based methods heavily

rely on object recognition and classification algorithms, which

can be affected by occlusions and variations in appearance.

Neural implicit-based methods may face challenges in terms

of training data availability and the interpretability of learned

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1467103
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Akhavi Zadegan et al. 10.3389/fcomp.2025.1467103

FIGURE 8

Real-time mesh reconstruction using the suggested algorithm, as originally shown in Piazza et al. (2018).

representations. Depth-based methods depend on accurate depth

estimation, which can be challenging in certain scenarios. GAN-

based methods may struggle with complex and diverse 3D shapes

and require careful training to avoid generating unrealistic or

distorted reconstructions. Combinatorial methods that combine

different techniques may face integration challenges and potential

trade-offs between accuracy and computational efficiency.

3.6.5 Lack of comparison with traditional
methods

While the studies highlight the improvements over

previous approaches, it would be beneficial to compare the

proposed methods with traditional techniques, such as manual

reconstruction or simpler algorithms, to assess the added value and

potential limitations of the proposed approaches.

In conclusion, while the mentioned studies present innovative

approaches and achieve promising results in image-based district

reconstruction, further research and evaluation are needed to

address the limitations and challenges associated with these

methods. Additionally, considering a broader range of datasets

and comparison with traditional techniques would provide a more

comprehensive understanding of the strengths and weaknesses

of the proposed approaches. Additionally, the following tables

(Tables 5–9) offer detailed summaries of the methodologies

employed in each research endeavor, including the specific types

of input data utilized, the evaluation metrics applied, and the years

of publication for each study.

4 City-scape reconstructions

Virtual city modeling is a huge challenge with applications in

many sectors, including gaming, film, and civil engineering, but

it takes a large amount of time and work, even for professionals.

There have been earlier attempts to produce 3D city models

using two methodologies: procedural modeling (Bulbul, 2023;

Parish and Müller, 2001; Aliaga et al., 2008; Vanegas et al.,

2012; Emilien et al., 2015; Kelly and McCabe, 2007) and image-

based modeling (Vezhnevets et al., 2007; Barinova et al., 2018).

Procedural modeling involves generating city components based

on a set of rules or grammar, whereas image-basedmodeling creates

components based on the existing street-level or aerial images. Both

strategies try to recreate a genuine city, either using grammatical

rules or input images, and 3D components are built only when

the input image has a corresponding component. Kim et al. (2020)

proposes a system for generating 3D models of cities from street-

level images. The system consists of four stages: scene parsing,

generation of city property vectors, generation of terrain and height

map, and 3D model construction. In the first stage, the input query
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TABLE 5 Works on semantic-based district 3D reconstructions.

Ref Input
data

Methods Year Evaluation
metric

Vineet et al.

(2015)

Stereo

images

Hash-based

technique+

mean-field

inference

2015 A

Yang et al.

(2017)

Multi-view

stereo

images

CNN+ CRF 2017 A, IoU

Bârsan et al.

(2008)

Stereo

images

Hybrid

approach

2018 Semantic-aware

Evaluation

Yang et al.

(2018)

Stereo

images

CNN+ voxel

CRF

2018 Average IoU

Yu et al.

(2021)

Multi-view

aerial images

Mask R-CNN

+MA-FCN

2021 IoU

Cheng et al.

(2022)

Stereo

images

VO+

semantic

segmentation

+ temporally

consistent

labeling

2022 IoU, mIoU

Cao and

de Charette

(2022a)

Single RGB

image

MonoScene 2022 IoU, mIoU

Huang et al.

(2023)

RGB images TPVFormer 2023 IoU, mIoU

Li et al.

(2023b)

RGB images VoxFormer 2023 IoU, mIoU

Miao et al.

(2023)

Stereo

images

OccDepth 2023 IoU, mIoU

A, Accuracy; IoU, Intersection over Union; mIoU, Mean Intersection over Union.

image is parsed, and the city component vector is extracted by

filtering segmentation labels associated with city modeling. In the

second stage, a CNN model takes the original image as input to

obtain a city property vector. In the third stage, the city component

vector is passed through a trained GANmodel to obtain terrain and

height maps. Finally, the 3D city model is synthesized based on the

obtained terrain and height maps by applying parameters collected

from the city property vector. The paper uses paired training data of

CNN and GAN models. The CNN model is trained using pairs of

street-level city images and city property vectors. The segmented

city images are converted to city component vectors by filtering

labels associated with city modeling. Pairs of city component

vectors and terrain and height maps are used to train the GAN

model. The proposed system enables the generation of 3D models

of cities from street-level images. The system is trained using paired

data of CNN and GAN models, which enables the system to learn

the relationship between the input query image and the desired 3D

model output. Figure 9 illustrates the overview of the system.

A complex and multi stage pipeline for generating virtual 3D

city models is presented by Singla and Padia (2021) that uses open-

source libraries and in-house routines. The inputs required for

generating the models are high-resolution satellite imagery, high-

resolution Digital Elevation Model (DEM), and vector shape files

from OpenStreetMap (OSM). The paper highlights that virtual

3D city models are used for various applications, including smart

TABLE 6 Works on neural implicit-based district 3D reconstructions.

Ref Input
data

Methods Year Evaluation
metric

Tancik et al.

(2022)

RGB images Block-NeRF 2022 PSNR, SSIM,

LPIPS

Turki et al.

(2022)

RGB images Mega-NeRF 2022 PSNR, SSIM,

LPIPS

Xiangli et al.

(2022)

Multi-view

stereo

images

BungeeNeRF 2022 PSNR, SSIM,

LPIPS, Mean

PSNR

Cao and

de Charette

(2022b)

Multi-view

stereo

images

SceneRF 2022 IoU, P, R

Zakharov

et al. (2021)

Multi-view

stereo

images

Scene

Decomposition

Network

2021 PSNR, SSIM,

LPIPS

R, Recall; P, Precision; PSNR, Peak Signal-to-Noise Ratio; SSIM, Structural Similarity Index

Measure; LPIPS, Learned Perceptual Image Patch Similarity; IoU, Intersection over Union.

TABLE 7 Works on depth-based district 3D reconstructions.

Ref Input
data

Methods Year Evaluation
metric

Schöps et al.

(2017)

Stereo

images

Monocular

motion stereo

2017 A, Completeness

Yin et al.

(2022)

RGB

images

Affine-invariant

depth map+

locally weighted

linear regression

2022 LSIV

A, Accuracy; LSIV, Locally Scale-Invariant RMSE.

TABLE 8 Works on GAN-based district 3D reconstructions.

Ref Input
data

Methods Year Evaluation
metric

Rodríguez-

Santiago

et al.

(2021)

Sequences of

2D aerial

images

Modified

autoencoder

architecture

2021 CD, EMD, time

CD, Chamfer Distance; EMD, Earth Mover’s Distance; time, processing time.

TABLE 9 Works on combinatorial-based district 3D reconstructions.

Ref Input
data

Methods Year Evaluation
metric

Romanoni

and

Matteucci

(2015)

Monocular

video

Delaunay

triangulation of

edge-points

2015 RE

Piazza

et al.

(2018)

Stereo image

sequences

Incremental

manifold

reconstruction

2018 MAE

RE, Reconstruction Error; MAE, Mean Absolute Error.

city, virtual reality, disaster management, education, tourism, and

real estate services. The proposed approach involves mosaicking

preprocessed DEM scenes and images, resampling datasets using

the cubic-resampling algorithm, registering the image, DEM, and

vector layers using phase correlation algorithm, and extracting

height information from the DEM and shape files. The vector layers

are registered using latitude and longitude and overlaid on the
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FIGURE 9

The system’s overview outlines its functionality into two primary sub-tasks: (1) employing a CNN to produce a city property vector using the input

query image, and (2) utilizing a GAN to generate terrain and height maps based on the segmentation outcome of the input query image. The final 3D

city model is constructed by merging the two outcomes from the learning model, as originally shown in Kim et al. (2020).

3D city model to provide information about places, roads, and

water bodies. To make the virtual city model more realistic, virtual

trees are placed in open spaces, and sun position, day/night effects,

ambient condition effects, and building texture are incorporated.

For efficient visualization and rendering of the model, the paper

uses the OpenSceneGraph library and a tiling-based approach. The

tiles are replaced in the main memory by their sub-tiles based on

the viewer’s position. The proposed approach is cost-effective and

can be used to develop virtual 3D city models of any given area,

provided the required inputs are available. The paper primarily

focuses on the approach and the advantages of this new cost-

effective approach to develop virtual 3D city models using Indian

Remote Sensing datasets.

Another multi stage work is presented by Cheng et al. (2022)

that includes direct visual odometry, global map optimization,

semantic segmentation, and temporally consistent labeling. The

direct VO stage estimates the relative camera poses and a

sparse 3D reconstruction of the environment. The global map

optimization stage improves the accuracy of the map by detecting

loop closures and optimizing the map based on this information.

The semantic segmentation stage uses a state-of-the-art neural

network to generate accurate semantic labels for each pixel of

the stereo images corresponding to the keyframes defined by

the visual odometry front-end. The temporally consistent labeling

stage generates temporally consistent 3D point labels based on

the visual odometry outputs and the 2D semantic labels. The

paper demonstrates that the proposed pipeline can be used to

create city-scale maps based on a fleet of vehicles. This is a

significant achievement since it shows that purely vision-based

mapping systems can generate accurate and detailed maps of the

environment. The paper also suggests that the pipeline can be

extended to extract information like lane markings, which could be

used for autonomous driving applications.

4.1 Summary

The studies mentioned have several limitations that warrant

critical consideration. Firstly, Kim et al. (2020) rely heavily

on paired training data, which can be labor-intensive and

resource-demanding to obtain. The lack of comprehensive

discussion on the accuracy and realism of the generated

3D city models raises concerns about their reliability for

various applications. Similarly, Singla and Padia (2021) primarily

emphasize the advantages and cost-effectiveness of their approach

without thoroughly addressing the fidelity and accuracy of

the resulting models. The proposed method’s applicability may

also be restricted to specific regions or datasets, limiting its

generalizability. Furthermore, Cheng et al. (2022) primarily focus

on generating accurate maps rather than explicitly addressing

the quality and realism of the 3D city models. The scalability

of their pipeline and potential computational challenges remain

unexplored. Collectively, these limitations highlight the need for

further research to address issues related to data availability,

model accuracy, realism, and computational scalability to enhance

the overall utility and reliability of virtual 3D city modeling

approaches. Table 10 provides an overview of each study,

detailing the various types of input data used, the methodologies

implemented, the year of publication, and the evaluation

metrics applied.

5 Common datasets

This section curates a collection of prominent datasets

employed for large-scale 3D reconstruction from images.

We explore their diverse applications and impact across

various fields.

5.1 Outdoor scene reconstruction

BigSfM by Cornell University: This project offers a rich

repository of Structure-from-Motion (SfM) datasets, including

Quad 6K (Crandall et al., 2012), Dubrovnik6K (Li et al., 2010), and

Rome16K (Li et al., 2010). Primarily sourced from public platforms

like Flickr and Google, these datasets target reconstructing outdoor

scenes of city landmarks.
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TABLE 10 Works on city-scape reconstruction.

Ref Input
data

Methods Year Evaluation
metric

Kim et al.

(2020)

Street-level

images

CNN+ GAN 2020 NA

Singla

and Padia

(2021)

Satellite

imagery,

DEM, Vector

shape files

Open-source

libraries and

in-house routines

2021 NA

Cheng

et al.

(2022)

Stereo images Direct VO+

global map

optimization+

semantic

segmentation+

temporally

consistent

labeling

2022 IoU, mIoU

IoU, Intersection over Union; mIoU, Mean Intersection over Union.

5.2 Detailed disparity maps

WHU-Stereo (Li et al., 2023a): this dataset leverages LiDAR

data alongside imagery to create detailed disparity maps. While

offering high-quality depth information, it presents challenges due

to seasonal variations. US3D (Bosch et al., 2019): this collection

utilizes WorldView-3 observation satellite imagery to generate

disparity maps, facilitating 3D reconstruction, but with potential

limitations arising from seasonal changes.

5.3 Datasets for robotics and perception

KITTI-360 (Liao et al., 2022): designed for autonomous

driving and mobile robotics research, this comprehensive dataset

provides a suite of sensor data, including LiDAR and camera

feeds. Its diverse data streams prove invaluable for various

computer vision tasks related to object detection, localization,

and mapping.

5.4 Photogrammetry and remote sensing

ISPRS Benchmark Datasets (Nex et al., 2015): catering to the

photogrammetry and remote sensing community, these datasets

offer high-resolution aerial imagery with precise ground truth

information. This enables complex analyses like 3D building

reconstruction and semantic segmentation.

5.5 3D modeling resources

Microsoft’s BingMaps Streetside (Pendleton, 2010): this dataset

offers panoramic street-level imagery, a valuable resource for

tasks related to urban planning and infrastructure management.

Google Earth: This platform enables users to create custom 3D

reconstructions by leveraging its extensive collection of satellite

imagery and aerial photography.

5.6 Object detection challenges

SpaceNet (Weir et al., 2019) Multi-View Overhead Imagery:

this dataset features multi-angle, annotated imagery, specifically

designed to challenge and advance object detection algorithms in

satellite and aerial imagery.

5.7 Diverse environments for 3D modeling

ETH3D (Schops et al., 2017), Tanks and Temples (Knapitsch

et al., 2017): these datasets encompass high-definition camera

footage and scenes captured by Unmanned Aerial Vehicles (UAVs).

They provide diverse environments for detailed 3Dmodeling tasks.

5.8 Extensive image collections

GL3D (Yao et al., 2020; Luo et al., 2018) and UrbanScene3D

(Lin et al., 2022): these datasets offer large collections of high-

resolution images, well-suited for both SfM and Multi-View

Stereo (MVS) techniques. They play a crucial role in in-depth

studies of urban scene reconstruction. In conclusion, these

prominent datasets empower a wide range of applications in 3D

reconstruction. They continuously push the boundaries of accuracy

and complexity in the models we can create.

6 Common performance metrics in
large-scale image-based 3D
reconstruction

This section introduces common performance metrics utilized

in the evaluation of large-scale image-based 3D reconstructions,

grouped by their specific application and measurement focus.

6.1 Geometric accuracy

Geometric accuracy metrics assess the precision of the

reconstructed model by measuring the closeness of reconstructed

points to their true positions in the ground truth. These metrics

are crucial for evaluating the fidelity of the 3D shapes and surfaces

generated by reconstruction algorithms.

• Accuracy (A): measures the average proximity of the

reconstructed points to their true positions, indicating

geometric precision.

A =
1

|P|

∑

p∈P

min
p′∈P′

‖p− p′‖ (1)

• Chamfer distance (CD): evaluates the bidirectional nearest-

point distances between models and ground truth.

CD(P, P′) =
1

|P|

∑

p∈P

min
p′∈P′

‖p−p′‖+
1

|P′|

∑

p′∈P′

min
p∈P

‖p′−p‖ (2)
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• Cloud-mesh distance (CMD): measures the average distance

from points in a cloud to the nearest mesh surface.

CMD =
1

|P|

∑

p∈P

min
m∈M

‖p−m‖ (3)

6.2 Error measurement

Error measurement metrics quantify the overall accuracy

and reliability of the reconstruction process by calculating

the deviations between the reconstructed and actual data

points. These metrics provide a comprehensive view of error

distribution and magnitude, highlighting potential areas for

algorithmic improvement.

• Root Mean Square Error (RMSE): indicates the square root

of the mean of squared differences between estimated and

actual values.

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2 (4)

• Mean Absolute Error (MAE): represents the average

magnitude of errors between reconstructed and actual values.

MAE =
1

N

N
∑

i=1

|yi − ŷi| (5)

• Reconstruction Error (RE): provides a general assessment

of discrepancy between the reconstructed model and the

ground truth.

RE =
1

|P|

∑

p∈P

min
p′∈P′

‖p− p′‖ (6)

6.3 Distribution and density

Distribution and density metrics evaluate how well

the reconstruction captures the overall spread and density of

the true data points. These metrics are essential for assessing

the completeness of the reconstruction and its effectiveness in

representing the entire dataset.

• EarthMover’s Distance (EMD): quantifies the minimum cost

to transform one point cloud into another.

EMD(P, P′) = min
φ : P→P′

∑

p∈P

‖p− φ(p)‖ (7)

• Completeness (C): measures the proportion of the ground

truth accurately captured by the reconstruction.

C =
|{p′ ∈ P′ :minp∈P ‖p− p′‖ < δ}|

|P′|
(8)

6.4 Advanced statistical metrics

Advanced statistical metrics apply sophisticated statistical

methods to further analyze the accuracy and robustness of the

reconstruction. These metrics are designed to provide deeper

insights into the performance of 3D reconstruction methods under

various conditions and scales.

• Locally Scale-Invariant RMSE (LSIV): adjusts RMSE to be

invariant to local scaling in depth maps.

LSIV =

√

√

√

√

1

N

N
∑

i=1

(logDi − logD′
i − µ)2 (9)

where µ = 1
N

∑N
i=1(logDi − logD′

i)

• Normalized Median Absolute Deviation (NMAD):

provides a robust measure of error spread, less sensitive

to outliers.

NMAD = 1.4826×median(|yi −median(y)|) (10)

TABLE 11 Summary of open problems and challenges in large-scale 3D

reconstruction.

Challenge Description

Standardization Lack of a definitive standard for 3D shape representation

across different scales (facade, district, city-scale), impacting

consistency and comparability.

Training

Details

The training details of 3D reconstruction networks,

particularly hybrid training architectures, require further

exploration to enhance model performance and efficiency.

Environmental

Factors

Handling occlusions, dynamic scenes, textureless surfaces,

and illumination changes presents significant challenges in

accurately capturing real-world complexity.

Technical

Issues

Camera calibration errors and computational complexity are

significant hurdles, affecting the accuracy and feasibility of

3D reconstructions.

Scale and

Diversity

The vast scale and diversity of large-scale scenes pose

challenges in maintaining geometric and textural accuracy

across varied environments.

Input Image

Quality

High-quality input images are crucial, especially in outdoor

settings, where varying conditions can impede data

collection and model fidelity.

Generalizability Limited adaptability of models trained on restricted datasets

to new and diverse settings hinders the application of 3D

reconstruction techniques.

Computational

Demands

The computational demands of complex algorithms,

including time and resource requirements, limit the

scalability and practicality of current approaches.

Future

Directions

Panoptic neural rendering, as a future direction, offers

advantages in holistic scene synthesis and dynamic object

removal, promising more accurate and contextually rich

reconstructions.
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6.5 Evaluation of feature detection and
matching

Metrics in this category focus on the effectiveness of feature

detection and matching within the reconstructed model. They

measure the accuracy and quality of object detection, segmentation,

and the alignment of features between the reconstructed model and

the ground truth, critical for applications involving detailed and

complex scene reconstructions.

• Precision (P), Recall (R), Intersection over Union (I):

evaluate the accuracy and quality of object detection

and segmentation.

P =
TP

TP + FP
(11)

I =
|A ∩ B|

|A ∪ B|
(12)

• Harmonic Mean (HM) of precision and recall: provides a

balanced average of precision and recall rates.

HM = 2×
P × R

P + R
(13)

7 Discussion and conclusion

This survey has explored recent advances in image-based

3D reconstruction for large-scale outdoor environments,

analyzing methodologies at three different scales: facades,

districts, and cityscapes. By categorizing these approaches and

summarizing their methodologies and performance, we provide

a structured comparison of techniques that highlights both their

strengths and limitations. The evolution of 3D reconstruction

has been driven by technological advancements, shifting from

classical geometric-based methods to data-driven deep learning

approaches. Traditional techniques, such as photogrammetry and

structure-from-motion (SfM), have long been the foundation

of 3D reconstruction, relying on multi-view geometry, feature

matching, and optimization techniques. While these methods

achieved high geometric accuracy, they struggled with challenges

such as occlusions, textureless surfaces, varying lighting conditions,

and large-scale scene complexity. The emergence of deep learning

has transformed the field, introducing powerful methods capable

of learning features directly from data rather than relying on

hand-crafted descriptors. Convolutional Neural Networks (CNNs)

have improved depth estimation and object recognition, while

hybrid methods combining classical techniques with neural

networks have enhanced efficiency and robustness. More recently,

neural implicit representations, such as Neural Radiance Fields

(NeRF), have further advanced the field by offering continuous

and high-fidelity 3D scene representations. Despite these

advancements, there is still no definitive standard for 3D shape

representation, and scalability remains a significant challenge.

Large-scale 3D reconstruction continues to face unresolved issues,

including the impact of environmental factors (e.g., occlusions,

dynamic objects, and illumination changes), computational

demands, and the need for high-quality input data. Additionally,

generalizability remains a key hurdle, as many methods are

trained on restricted datasets, limiting their adaptability to new

and diverse environments. These challenges are summarized in

Table 11, which outlines key obstacles and their implications for

the field.

One promising direction for future research is panoptic

neural rendering (Kundu et al., 2022; Zhang et al., 2023),

which extends traditional neural rendering by incorporating

comprehensive scene understanding. Unlike standard rendering

techniques that focus on generating realistic views of objects,

panoptic neural rendering enables the synthesis of entire scenes,

considering multiple objects, lighting conditions, and interactions.

This approach not only enhances the realism of 3D reconstructions

but also facilitates dynamic object removal, a critical capability

for applications such as autonomous navigation and digital

twin environments.

By addressing these challenges and leveraging advancements

in deep learning and neural rendering, the field of large-scale 3D

reconstruction is poised to achieve greater accuracy, efficiency,

and adaptability. We hope this survey provides valuable insights

into the evolution of the field and serves as a foundation for

future research, guiding efforts toward more robust and scalable

reconstruction techniques.
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