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Introduction: Understanding how urban environments shape public sentiment 
is crucial for urban planning. Traditional methods, such as surveys, often fail to 
capture evolving sentiment dynamics. This study leverages language and vision 
models to assess the influence of urban features on public emotions across 
spatial contexts and timeframes.

Methods: A two-phase computational framework was developed. First, 
sentiment inference used a BERT-based model to extract sentiment from 
geotagged social media posts. Second, urban context inference applied PSPNet 
and Mask R-CNN to street view imagery to quantify urban design features, 
including visual enclosure, human scale, and streetscape complexity. The study 
integrates publicly available data and spatial simulation techniques to examine 
sentiment-urban form relationships over time.

Results: The analysis reveals that greenery and pedestrian-friendly infrastructure 
positively influence sentiment, while excessive openness and fenced-off areas 
correlate with negative sentiment. A hotspot analysis highlights shifting sentiment 
patterns, particularly during societal disruptions like the COVID-19 pandemic.

Discussion: Findings emphasize the need to incorporate public sentiment into 
urban simulations to create inclusive, safe, and resilient environments. The study 
provides data-driven insights for planners, supporting human-centered design 
interventions that enhance urban livability.
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1 Introduction

Urban areas are complex, dynamic environments that can significantly shape human 
perceptions and emotions. With the global trend toward increasing urbanization, 
understanding the interplay between urban spaces and public sentiment has become 
increasingly crucial. In today’s digital age, these interactions are not only influenced by physical 
spaces but are also documented and shared through digital platforms (Luo et al., 2011; Sadiq 
et al., 2020; United States Geospatial Intelligence Foundation, 2021). However, despite the 
critical role of qualities of urban design (e.g., visual enclosure, human scale, and streetscape 
complexity) traditional research methodologies have notable limitations. For example, 
methods such as field surveys, interviews, and direct observations, often fail to capture the full 
scope of human experiences across diverse urban settings or over extended periods (Ben-Akiva 
and Bierlaire, 1999; Choudhry et al., 2015; Ewing et al., 2006; Hadavi et al., 2015; Montello 
et al., 2003; Steen Jacobsen, 2007; Tveit et al., 2018).
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To address these gaps, a two-phase computational framework is 
proposed. The first phase, “sentiment inference,” leverages location-based 
social media (LSM) data combined with natural language processing 
(NLP) techniques to extract characterizations of public sentiment from 
social media content, to construct a robust dataset that captures diverse 
human experiences and emotional responses to urban environments. The 
second phase, “urban context inference,” applies computer vision 
techniques (e.g., PSPNet and Mask R-CNN) to street view imagery to 
quantify qualities of urban design, such as visual enclosure, human scale, 
and streetscape complexity.

By examining the intersection of urban spaces and human sentiments 
through digital lenses, the research contributes to the academic discourse 
on urban development and design (Ahn et al., 2022). Earlier studies, such 
as those of Tveit et al. (2018) and Ewing et al. (2006), have focused on 
pedestrian behavior and urban morphology. Recent advances in digital 
methodologies such as Ahn et al. (2022); Choudhry et al. (2015) provide 
the foundation for this study’s two-phase approach, offering a 
comprehensive understanding of the urban-human sentiment dynamic.

This research makes three key contributions: First, it integrates NLP 
techniques with urban studies to infer public sentiment from LSM data, 
providing a scalable and efficient alternative to traditional sentiment 
analysis methods. Second, it connects the inferred sentiments to features 
representing qualities of urban design so that their relationships can 
be explored. Finally, it offers actionable insights for urban planners and 
policymakers, emphasizing specific design elements that can enhance 
public well-being and satisfaction in urban environments.

The paper is organized as follows: the next section reviews relevant 
literature to situate the research within existing academic discourse. 
Following this, the proposed two-phase computational framework is 
described in detail, including an example application. The results are 
then presented, with a discussion of their broader implications for 
urban planning and design. Finally, the conclusion highlights the 
study’s contributions and outlines directions for future research.

2 Background

To position this study within the context of existing research, it is 
crucial to outline how previous studies have examined the relationship 
between urban design and human sentiments. To this end, this section 
synthesizes key contributions from urban design, environmental 
psychology, and sentiment analysis, highlighting the multidisciplinary 
efforts to understand the intricate connections between urban 
environments and public sentiment. Recent advancements in machine 
learning models, including language and vision models, have 
revolutionized how researchers analyze both textual and visual data, 
providing deeper insights into how people emotionally respond to their 
urban surroundings. These developments offer new avenues for capturing 
the dynamic and nuanced interplay between urban spaces and public 
sentiment, moving beyond the limitations of traditional 
research methodologies.

2.1 Impact of urban design on public 
sentiment

The urban design profoundly influences the emotional 
experiences of its inhabitants, shaping how people perceive, interact 

with, and feel about their surroundings. Urban design goes beyond 
aesthetics; it reflects an ongoing dialog between space and sentiment, 
where the built environment can evoke a wide range of emotional 
responses (Ewing et  al., 2006; Gehl, 2013). Works by prominent 
researchers such as Jacobs (1961) and Lynch (1964) have significantly 
contributed to this understanding, emphasizing the importance of 
vibrant, mixed-use neighborhoods and pedestrian-centric designs. 
Jacobs (1961) highlights how human-centered urban design promote 
social interaction, safety, and a sense of community, while Lynch 
(1964) focuses on the psychological and cognitive dimensions of 
cityscapes, stressing the importance of landmarks, paths, and nodes 
in creating a city’s “imageability.”

Building on these early ideas, Talen (2006) argues for the need to 
create compact, pedestrian-friendly urban environments, 
underscoring their role in enhancing social cohesion and emotional 
well-being. Carmona (2010) and Talen and Ellis (2002) further 
integrate sensory and aesthetic considerations into urban planning, 
advocating for designs that prioritize human experience and 
emotional responses. These perspectives move beyond mere 
infrastructure to consider the intangible feelings that urban 
spaces evoke.

Lynch (1964)‘s framework, emphasizing identity, structure, 
and meaning, continues to be influential in explaining the deep 
connections individuals form with their surroundings. These 
connections extend beyond simple recognition of space to more 
profound emotional and cognitive associations. Environmental 
psychology, particularly through the works of Kaplan and Kaplan 
(1989) and Ulrich (1983), has further explored these connections, 
examining the therapeutic and restorative effects of natural 
elements within urban environments. Their research 
demonstrates that natural features like trees and green spaces can 
significantly enhance emotional well-being, reduce stress, and 
improve overall mental health.

Duan et  al. (2022) expand upon this understanding by 
focusing specifically on urban youth sentiments and the built 
environment. Their study in Shanghai reveals that sentiment 
intensity is significantly associated with built environment 
elements at smaller scales, with youth expressing a mix of 
emotions that reflect both positive and negative associations with 
urban features. This work underscores the importance of spatial 
scale in understanding sentiment dynamics and emphasizes the 
unique emotional geographies of younger populations.

Ewing and Handy's (2009) contributions are particularly 
notable for their efforts to quantify these abstract constructs. By 
developing measurable metrics related to visual enclosure, human 
scale, and streetscape complexity, they shifted the discourse from 
theoretical to empirical. Whereas challenges remain in 
operationalizing these metrics, their work marks a new era in 
urban planning where human sentiment is recognized as a critical 
factor in evaluating urban spaces. Similarly, He et  al. (2024) 
explore the nonlinear and synergistic relationships between 
macro- and micro-scale urban built environmental factors and 
public sentiment, emphasizing the need to consider street-level 
features that directly shape human perceptions. Their findings 
suggest that recreation facilities, mixed land use, and a rich street 
view environment are key contributors to positive sentiment, 
reinforcing the importance of context-sensitive urban 
design strategies.
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2.2 Measuring sentiment

Measuring sentiment in urban landscapes presents its own set 
of challenges and has driven numerous innovations in recent 
years. Goodchild (2007)‘s concept of “Citizens as Sensors” 
revolutionized the field by recognizing that citizens themselves 
can serve as valuable sources of experiential data. This approach 
harnesses the power of everyday urban dwellers to provide  
rich, ground-level insights into the qualitative aspects of 
urban spaces.

Research inspired by this concept spans a wide range of 
domains, from sentiments about infrastructure (such as 
walkability and bikeability) to more abstract notions like safety, 
aesthetics, and the presence of nature (Baobeid et  al., 2021; 
Motieyan et  al., 2022). Traditional tools, such as on-ground 
evaluations and Likert-scale surveys, laid the foundation for 
measuring public sentiment but have limitations in scale, scope, 
and temporal coverage (Hartig and Staats, 2006; Nasar, 1990). 
These methods often fail to capture the dynamic and rapidly 
changing nature of urban environments.

The advent of the digital revolution has fundamentally 
transformed sentiment analysis in urban studies. Technological 
innovations, particularly crowdsourcing platforms and advanced 
deep learning (DL) algorithms have enabled more extensive and 
nuanced sentiment assessments. Tools like Google Street View 
have democratized data collection, providing accessible and 
detailed visual information about urban environments. 
Meanwhile, DL techniques have enhanced the ability to interpret 
complex visual data, as demonstrated by projects like the MIT 
Media Lab’s Place Pulse, which combines crowdsourced data with 
computational methods to measure urban sentiments with 
unprecedented detail (Dubey et al., 2016).

Li et al. (2024) leverage big textual data from social media to 
evaluate public space usage and perception in Xiamen, China. 
Their study demonstrates how social media data can uncover 
dynamic citizen experiences, such as social sentiment, leisure 
activities, and preferred visual elements, offering urban planners 
critical insights into placemaking practices. This underscores the 
growing importance of big data as a tool for understanding urban 
vibrancy and public interaction. Textual data from social media 
platforms has further expanded the capabilities of sentiment 
analysis. These platforms serve as repositories of spontaneous 
reflections and reactions, providing raw, unfiltered insights into 
how people feel about their urban surroundings. As Batty (2013) 
notes, social media data captures intimate personal narratives 
that reveal the public’s perceptions and interactions with their 
environments. When analyzed effectively, these narratives may 
offer a deeper understanding of urban sentiments and 
interactions (Guerrero et al., 2016; Martí et al., 2017).

Despite these advancements, the precise relationship between 
specific urban features—such as greenery, visual enclosure, and 
pedestrian-friendly infrastructure—and public sentiment 
remains underexplored. Prior studies have indicated potential 
links but lack the comprehensive framework required to evaluate 
these interactions systematically over time within an  
urban context. This study addresses this gap by exploring  
the extent to which qualities of urban design may 
impact sentiment.

2.3 Language and vision models in urban 
analysis

2.3.1 Language models for sentiment analysis
Recent advancements in Large Language Models (LLMs) have 

significantly enhanced the capacity to analyze complex textual data 
from social media, enabling a more sophisticated understanding of 
public sentiment toward urban environments. Among the most 
notable LLMs is BERT (Bidirectional Encoder Representations 
from Transformers), developed by Devlin et  al. (2019). BERT 
involves a bidirectional approach to processing text, allowing for 
context to be understood in both forward and backward directions. 
This innovation has proven highly effective for sentiment analysis 
tasks, especially for understanding nuanced expressions of public 
sentiment found in social media data. BERT has been employed in 
numerous studies for urban analysis, such as assessing the 
emotional responses to different urban spaces in cities like 
New  York and London (Ho et  al., 2024). The model’s ability to 
capture context from both directions allows it to accurately 
interpret sentiment even in short, informal, or ambiguous social 
media posts.

Building upon BERT, Liu et al. (2019) propose RoBERTa (Robustly 
optimized BERT approach) in which the pre-training method is 
refined by using more extensive data and dynamic masking 
techniques. This model has been shown to outperform BERT in 
various sentiment analysis tasks. XLNet (Yang et al., 2020), another 
influential LLM, integrates autoregressive and autoencoding 
techniques to capture word dependencies, improving upon BERT by 
removing the independence assumption of masked words. Research 
by Sharma et al. (2024) used RoBERTa and XLNet to analyze positive 
or negative opinions or attitudes toward public transportation such as 
electric vehicle.

Moreover, models like T5 (Text-to-Text Transfer Transformer) 
(Raffel et al., 2023) and GPT-3 (Generative Pre-trained Transformer 
3) by OpenAI (Brown et al., 2020) extend the capabilities of LLMs to 
generate and classify text, providing robust tools for sentiment 
analysis. T5’s ability to convert all text-based problems into a text-to-
text format has been useful in creating sentiment scores from raw text 
data, as demonstrated in a study on the sentiment of residents toward 
green spaces in urban areas. Meanwhile, GPT-3’s natural language 
generation capabilities have been used to analyze public discourse on 
urban policy changes by generating potential sentiment interpretations 
from vast social media datasets (Kheiri and Karimi, 2023). 
Additionally, ALBERT (A Lite BERT) (Lan et al., 2020) reduces model 
size while maintaining performance, making it ideal for sentiment 
analysis in resource-constrained environments. ALBERT has been 
utilized in studies focusing on smaller cities or specific neighborhoods, 
such as research into local sentiments around urban renewal projects 
in Toronto Canada, where computational resources were a constraint.

2.3.2 Vision models for sentiment analysis
Alongside advancements in language models, computer vision 

models have greatly improved the analysis of visual data in urban 
studies. The Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 
2017) is highly regarded for its ability to perform semantic 
segmentation by capturing global contextual information from images 
through a multi-level feature pyramid. PSPNet has been extensively 
used to analyze complex urban scenes, such as detecting green spaces, 
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sidewalks, and buildings from high-resolution street view images in 
cities of various scales (Aman et al., 2022; Biljecki and Ito, 2021). The 
model’s pixel-wise accuracy makes it particularly effective for 
differentiating fine details in dense urban environments. Mask R-CNN 
(He et  al., 2017), another state-of-the-art model, extends Faster 
R-CNN by adding a branch for predicting segmentation masks, which 
enables precise object detection. This model has been employed in a 
variety of urban studies to identify and classify urban features like 
trees, vehicles, pedestrians, and street furniture. For instance, several 
studies used Mask R-CNN to evaluate street-level greenery’s impact 
on pedestrian satisfaction, finding a significant correlation between 
greenery and positive pedestrian experiences (Lu et al., 2023).

YOLO (You Only Look Once) models (Jocher, 2022; Redmon 
et al., 2016), are recognized for their object detection capabilities, 
which make them ideal for applications requiring rapid analysis of 
visual data. In urban contexts, YOLO has been applied to monitor 
traffic patterns and pedestrian density, providing insights into urban 
mobility and safety (Kunekar et al., 2024). U-Net (Ronneberger et al., 
2015), initially designed for biomedical image segmentation, has also 
been adapted for urban analysis tasks such as segmenting building 
footprints from satellite imagery. U-Net’s symmetrical architecture 
allows for the capture of fine spatial details, making it suitable for 
urban morphology studies. It has been used to assess the impact of 
building density and form on urban heat islands (Lee and Kim, 2022). 
Additionally, the DeepLab family of models (Chen et  al., 2018) 
employs an Atrous convolution and a fully connected Conditional 
Random Field (CRF) to improve segmentation accuracy at multiple 
scales, which has been applied in studies aiming to map urban 
vegetation and assess the walkability of neighborhoods (Zhang et al., 
2022). Though these models have different strengths, all have proven 
to be valuable tools in extracting features relevant to urban planning, 
such as green spaces, pedestrian pathways, and building 
characteristics, from high-resolution images.

3 Framework

This section outlines the framework developed to investigate the 
connection between urban design and public sentiment. The framework 
integrates sentiment data from social media with features representing 
qualities of urban design derived from street view imagery, providing a 
structured approach to analyzing how different urban features may 
influence public sentiment over time. The methodology is designed to 
capture temporal dynamics within a single urban context, reflecting the 
complex nature of urban environments.

The framework focuses on two key hypotheses: (1) specific urban 
features, such as greenery, streetscape complexity, and pedestrian 
infrastructure, are significantly associated with public sentiment, and 
(2) other events, such as societal disruptions, can jointly influence 
sentiment. By combining sentiment data and urban features, this 
framework provides a computational approach for examining 
these relationships.

The analytical framework is divided into two primary components: 
(a) sentiment inference and (b) urban context inference, which are 
subsequently integrated to assess their relationship. Figure 1 illustrates 
the overall workflow of the framework.

3.1 Sentiment inference

The sentiment inference component extracts public sentiment 
data from social media platforms using advanced natural language 
processing (NLP) techniques. Models such as BERT, RoBERTa, and 
GPT-3 are applied to analyze text, emojis, and other expressive 
elements within social media posts. These models generate sentiment 
scores that reflect public emotional responses to specific geotagged 
urban locations. The resulting dataset is mapped with precise spatial 
and temporal markers, enabling visualization of sentiment patterns 
across different urban contexts and timeframes.

3.2 Urban context inference

The urban context inference component quantifies characteristics 
of the built environment surrounding the geotagged social media 
posts. Points of interest (POIs) are selected based on streets near social 
media posting sites, spaced at regular intervals to ensure 
comprehensive coverage. Street view imagery databases, such as 
Google Street View, are queried for images of these locations, often 
from multiple vantage points.

Advanced computer vision techniques, including the Pyramid 
Scene Parsing Network (PSPNet) and Mask R-CNN, are applied to 
these images to extract features representative of qualities of urban 
design such as visual enclosure, human scale, and streetscape 
complexity. These models segment and classify urban features, such 
as sky, greenery, roads, and buildings, providing a detailed 
representation of the built environment. The results are then integrated 
with sentiment scores from the sentiment inference component to 
evaluate how urban features correlate with public emotional responses 
over time.

3.3 Relationship assessment

The final step integrates sentiment metrics with features 
representing qualities of urban design to analyze their connections. 
Hot spot analysis is performed to identify significant spatial clusters 
of sentiment and visualize emotional patterns across the urban 
landscape. Statistical methods, including correlation and regression 
analyses, evaluate relationships between specific urban features and 
public sentiment, accounting for temporal variations. These analyses 
provide insights into how the association between urban environments 
and sentiment evolves over time.

4 Case study

To demonstrate the application of the analytical framework, 
a case study was conducted for a region of interest (ROI) within 
the city of Columbia, MO, USA. The city of Columbia is of 
moderate size, host to a population of 126,254 and is a notable 
hub for higher education. The ROI (Figure 2) is a 1.57 sq. km. 
area within the city’s central business district, one that is 
frequently visited by residents and tourists.
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4.1 Location-based social media data 
acquisition

This study utilized public Instagram posts as proxies for sentiment 
expression related to the city’s streetscapes. Previous research has used 
hashtag-based approaches (e.g., #Columbiamissouri, #Southboston, 
#cambridge) to analyze urban emotions (Kim et al., 2020) and explore 
identity-related interpretations in urban identity comprehension (Jang 
and Kim, 2019). However, these methods have limitations. For 
example, many posts lack location data, complicating their linkage to 
specific geographic sites and not all posts express personal 
sentiments—some are merely advertisements.

To address these limitations, this study instead focused on 
retrieving posts from known Instagram posting sites (i.e., Facebook 

locations). Given the absence of a straightforward method to query 
Instagram posting sites by city at the time of this research, the study 
utilized the instagraphi Python package (https://github.com/adw0rd/
instagrapi) to search for Instagram posting sites. This was done by 
inputting geographic coordinates, representing specific POIs within 
the study area, into the instagrapi. These coordinates were selected to 
cover key locations within the city’s central business district, ensuring 
comprehensive spatial representation of Instagram posting sites for 
sentiment analysis.

Through this method, 135 unique Instagram posting sites were 
identified within the region (Figure 3a). The names of these sites 
were categorized into one of eight land use types using 
OpenStreetMap (OSM) tags (Figure 3b). Of the initial 135 sites, 
some were discarded due to their broad representation of locales 

FIGURE 1

Analysis framework.
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like “Columbia, MO.” Ultimately, 111 posting sites were retained. 
At the time of this research, access to Instagram posts was restricted 
to a small set of data providers. Partnering with InstaLoadGram, a 
third-party data provider, public posts associated with these sites 
were retrieved. Each post is attributed with its latitude, longitude, 
date, and caption. A total of 63,861 posts made between January 1, 
2015, and October 20, 2021, were retrieved. Posts without captions, 
containing advertisements or promotional material were excluded, 
yielding 47,107 eligible posts for analysis. Figure  4 shows the 
distribution of posts over the years, with notable fluctuations. The 
number of posts steadily increased from 2015 to 2018, peaking in 
2017 with 8,776 posts. A noticeable decline is observed in 2020, 
with 5,372 posts, likely reflecting the impact of COVID-19, 
followed by a recovery in 2021, reaching 6,871 posts. These 
variations reflect changing posting behaviors over the 
analyzed period.

4.2 Sentiment analysis

To categorize posts based on sentiment, an LLM was used to process 
geotagged posts using a normalized rating system. Among several deep 
learning (DL) models reviewed, the Hugging Face API’s BERT-based 
pre-trained Transformer model, a type of LLM particularly effective for 
social media data was selected (Devlin et al., 2019). BERT (Bidirectional 
Encoder Representations from Transformers) read text bidirectionally, 
unlike traditional left-to-right or right-to-left methods, capturing a richer 
understanding of language (Sanh et al., 2019). To quantify and interpret 
the sentiment associated with each social media posting, computational 

analyses were performed using the Google Colab Pro platform, 
configured with an Nvidia Tesla P100-PCIE GPU and supported by 16GB 
of RAM. The sentiment analysis covered 47,107 postings, requiring a 
computational time of approximately 26,375 s. In this application, the 
BERT model effectively deciphered the nuanced human sentiments 
expressed in Instagram posts, classifying them into a standardized binary 
rating system of ‘Negative = 0’ or ‘Positive = 1’. This transformation 
provided a clear, straightforward method to analyze overall sentiment 
trends in the dataset (Colón-Ruiz and Segura-Bedmar, 2020). Figure 5 
illustrates the BERT-based NLP model in action, demonstrating how the 
model processes input text and arrives at a sentiment score. Thus, in 
addition to the latitude, longitude, date, and caption of each posting, the 
sentiment analysis adds the inferred sentiment score and its likelihood. It 
is only this information that is considered in subsequent analyses.

4.3 Retrieval of street view images (SVIs)

Street View Images (SVIs) of georeferenced street segments 
provide a rich dataset for spatial feature classification, capturing 
street-level perspectives. Among available sources, Google Street 
View (GSV) is a prominent public repository, with over 220 billion 
images from more than 100 countries worldwide, collected through 
diverse methods (e.g., driving, pedaling, sailing, walking) using 
specialized cameras (Google Street View, 2022). Access to this vast 
database is enabled through the Google API, which requires 
specific parameters, including location coordinates (latitude and 
longitude), camera pitch, and heading, to ensure the retrieval of 
relevant SVIs.

FIGURE 2

Region of interest.
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In this application, 341 points of interest (POIs) were created at 
30 m intervals along the roads within the ROI. These POIs, 
representing specific locations and their respective headings along the 
roads, were used to query the GSV images via the Google API 
(Figure  6  - left panel). Four different viewing perspectives were 
considered for each POI: (a) forward movement, (b) 90 degrees, (c) 
180 degrees, and (d) 270 degrees from the POI (Figure 6 - right panel). 
To maintain consistent visual parameters, the horizontal field of view 
was set to 90 degrees, and the pitch of the 800×400 pixel images was 
fixed at 0 degrees. This approach resulted in the retrieval of 1,364 
images, four for each POI.

4.4 Spatial feature classification

Two deep learning models for urban space analysis, the PSPNet 
and Mask R-CNN, were utilized in this application. PSPNet is 
renowned for its semantic segmentation capabilities, effectively 
capturing and analyzing global contextual information within images. 

Conversely, Mask R-CNN excels in object detection by generating 
precise bounding boxes and segmentation masks for every identifiable 
object in an image. Using a pre-trained PSPNet on the 150-category 
ADE20k dataset, the images were segmented into 12 categories of 
urban features thought to contribute to three qualities of urban 
design - visual enclosure, human scale, and streetscape complexity. 
The segmented features in each image were either summarized by 
computing the proportion of the image area occupied by features of a 
category or by computing the number of features in the image of a 
category as detailed in Table  1. For example, the ‘Sky’ category 
represents the proportion of pixels classified as ‘Sky’ out of the total 
image pixels. The ‘Bicycle’ category represents the number of features 
in an image that were classified as a bicycle.

The presence of features such as sky, walls, fences, vegetation, and 
buildings were used to represent visual enclosure as they indicate the 
openness or confinement of an urban space. Such features help explain 
the spatial configuration and its impact on public sentiment, where open 
spaces might evoke feelings of freedom, and confined spaces may induce 
a sense of restriction. The human scale was represented by the presence 

FIGURE 3

(a) Instagram posting locations, (b) Categories of posting locations.
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of features such as roads and sidewalks, which are indicators of potential 
for movement and human interaction. Pedestrian-friendly environments 
have been historically linked to positive urban experiences, fostering 
social interactions and enhancing public sentiment. Finally, streetscape 
complexity was represented by the quantity of people, bicycles, motor 
vehicles, streetlights, and signboards present in each image.

To approximate the factors representing the qualities of urban design 
(visual enclosure, human scale, and complexity), the following steps were 
conducted. First, for each of the 1,364 street view images corresponding 
to 341 Points of Interest (POIs), the proportion of area (for visual 
enclosure and human scale) or the count (for streetscape complexity) was 
computed across all 12 urban feature categories. Figure 7 illustrates a 
representative street view image (Figure 7a) processed using PSPNet for 
pixel segmentation (Figure 7b) and Mask R-CNN for object detection 
(Figure 7c). These models facilitated the extraction and quantification of 
urban features present in each image, enabling a detailed breakdown of 
their spatial attributes. Next, to summarize the surrounding urban 
characteristics at each POI, the proportions/counts computed for the four 
images (from the directional perspective 0°, 90°, 180°, and 270°) were 
combined. For each feature category, proportions (e.g., “Tree”) were 
summed across the four directional images and then divided by four to 
calculate the mean proportion for that category at the POI. Conversely, 
count-based features (e.g., pedestrians, vehicles) were summed across the 
four directional images to represent the total feature counts for that 
POI. Finally, for each of the 47,107 geotagged social media posts, the 

proportions/counts of the feature categories surrounding POIs within a 
100 m of the post’s location were averaged. This step allowed urban feature 
characteristics surrounding each posting site to be incorporated into the 
sentiment analysis. For instance, if a posting location is within 100 m of 
three POIs, the mean value of their feature proportions (e.g., % “Tree”) or 
total feature counts (e.g., number of pedestrians, vehicles, etc.) is attributed 
to that post.

5 Results

The results of the analyses are summarized at several temporal 
levels: (a) all years (2015–2021), (b) pre-COVID (2019), (c) during 
COVID (2020), and (d) post-COVID (2021), focusing on the 
relationships observed between urban design and public sentiment. 
First, the spatial distribution of public sentiment across different 
locations in the ROI is examined, identifying hotspots of positive and 
negative sentiment. The temporal analysis highlights changes in the 
spatial clustering of sentiment over these time periods. Second, the 
associations between urban design and public sentiment are analyzed 
over the same set of time periods. This analysis explores how urban 
features, such as greenery, streetscape complexity, and pedestrian 
infrastructure, contribute to positive or negative sentiment and how 
these relationships changed over the pre-COVID, during COVID, and 
post-COVID periods.

FIGURE 4

Monthly Instagram posting frequency over the years 2015–2021 (n = 47,107).

FIGURE 5

BERT-based NLP model.
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5.1 Spatial distribution of sentiment

A Getis-Ord Gi* hotspot analysis (Getis and Ord, 1992) was 
applied to the sentiment of postings from the years 2015–2021 at 
locations in the ROI. The analysis utilized a fixed Euclidean distance 
of 300 m and incorporated False Discovery Rate (FDR) correction to 
account for multiple hypothesis testing. The results (Figure  8a) 
revealed distinct spatial autocorrelation, identifying statistically 
significant clusters of positive sentiment (hotspots) and negative 
sentiment (cold spots).

Positive sentiment hotspots were predominantly concentrated in 
the Southern region, with 25 sites statistically significant at the 90% 
confidence level or higher. Of these, 24 sites were significant at the 
99% level, collectively representing 11,396 posts. These hotspots align 
with areas characterized by favorable urban features such as greenery, 
pedestrian infrastructure, and aesthetically pleasing environments. In 
contrast, negative sentiment cold spots were primarily located in the 
Northwest sector, where 26 sites were significant at the 99% level, 
collectively representing 23,119 posts. These cold spots may 
correspond to areas with less favorable urban attributes, such as 
inadequate infrastructure, higher traffic congestion, or limited 
public amenities.

As illustrated in Figure 3b, the Instagram posting locations 
vary by land use type, which may provide insight into the spatial 
distribution of activities. For instance, the Southern hotspots in 
Figure 8a correspond to locations with high recreational activity 
and visually appealing features, including parks and pedestrian 
spaces. Additionally, the clustering near educational institutions 
and dormitories suggests a relationship between these spaces and 
positive sentiment, perhaps influenced by community dynamics 
and student-centric activities. Conversely, cold spots in the 
Northwest are concentrated near areas of dense commercial  
and transportation activity, which may evoke negative  
perceptions due to congestion, noise, or limited 
pedestrian infrastructure.

Next, the relationship between urban design and sentiment is 
examined across three distinct periods [pre-COVID (2019), during 
COVID (2020), and post-COVID (2021)] in an attempt to 
understand the extent to which societal disruption may impact 
their relationship.

5.1.1 Pre-COVID
The spatial distribution of positive sentiment hotspots in 2019 

(Figure 8b) is more diffuse compared to the pattern observed over 
the observed years. Twelve sites were significant at the 90% 

FIGURE 6

POIs along the street segments and SVIs per POI.
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confidence level, with 9 sites reaching the 99% level, collectively 
representing 576 posts. Negative sentiment cold spots are more 
concentrated, with 3 sites at the 95% significance level and 3 sites 
at the 99% level, collectively accounting for 503 posts. During this 
period, public sentiment appears to reflect typical urban 
interactions, with hotspots in areas characterized by favorable 
features like greenery and pedestrian-friendly infrastructure. On 
the other hand, cold spots in areas associated with challenges such 
as congestion, lack of public amenities, or limited 
pedestrian accessibility.

5.1.2 During COVID
During the pandemic, the spatial distribution of sentiment is 

significantly different (Figure  8c). There are a greater number of 
negative sentiment cold spots, with 11 sites significant at the 90% level 
and 11 sites at the 99% level, collectively linked to 1,372 posts. The 
number of positive sentiment hotspots is significantly diminished, 
with only 6 sites significant at the 90% level and 2 sites at the 95% level, 
representing 852 posts. These changes may reflect restricted access to 
urban spaces and increased stressors, such as health concerns and 
reduced social interaction during the pandemic. Such stressors 
perhaps contributed to the expansion of negative cold spots and the 
contraction of positive hotspots.

5.1.3 Post-COVID
In 2021, as restrictions eased, the spatial clustering of positive 

sentiment also increases (Figure 8d). The number of positive hotspots 
increases to 6 sites significant at the 90% significance level, 2 sites at 
95%, and 17 sites at the 99% level, representing 1,347 posts. However, 
the number of negative sentiment cold spots also increases, with 29 
sites significant at the 99% level, collectively associated with 3,352 
posts. The small increase in clustering of positive sentiment may 
reflect increased mobility and interactions with favorable urban 
spaces, though the persistence of negative cold spots could stem from 
unresolved infrastructure issues, limited access to amenities, or other 
lingering effects unrelated to the pandemic. Also, the observed trends 
may reflect the influence of other factors acting on sentiment other 
than the pandemic.

5.2 Dynamics of urban context-sentiment 
relationships

5.2.1 General relationship 2015–2021
The relationship between urban features and public sentiment 

over the period 2015–2021 was evaluated using ordinary least squares 
(OLS) regression. Table  2 summarizes the results, showcasing 
significant associations between various urban features and sentiment 
rankings. The variables representing the presence of urban features 
(e.g., ‘Sky’, ‘Wall’, etc.) indicate the proportion of the visual area 
covered by these features in the analyzed images.

Features representing enclosure reveal contrasting relationships. 
The negative coefficient for the proportion of the area classified as 
‘Sky’ (b = −1.00, p < 0.001) suggests that excessive openness is 
perceived unfavorably, potentially evoking discomfort or a lack of 
shelter. In contrast, the proportion of area classified as ‘Fence’ 
(b = −0.47, p < 0.001) and ‘Wall’ (b = −0.10, p < 0.001) represents 
physical barriers that are often associated with reduced visibility or 
restricted movement, which may contribute to negative sentiment. 
Conversely, the positive association for the proportion of area 
classified as ‘Tree’ (b = 0.16, p < 0.001) perhaps indicating the value of 
greenery in enhancing public perceptions of urban environments.

Features tied to human scale also exhibit distinct sentiment 
associations. ‘Sidewalk’ (b = 0.44, p < 0.001) emerges as a strong 
positive contributor, possibly reflecting the public’s preference for 
pedestrian-friendly infrastructure. ‘Road’ (b = −0.23, p < 0.001) 
suggests negative perceptions tied to vehicular dominance, possibly 
due to noise, pollution, or safety concerns in car-centric areas. Features 
representing urban complexity reveal the importance of active and 
visual elements. ‘Person’ (b = 0.35, p < 0.001) and ‘Bicycle’ (b = 0.26, 
p < 0.001) display positive sentiment associations, perhaps indicating 
the value of vibrant, active streetscapes that support human interaction 
and sustainable transportation. In contrast, ‘Streetlight’ (b = −0.33, 
p < 0.001) and ‘Signboard’ (b = −0.60, p < 0.001) suggest that excessive 
artificial lighting or visual clutter may detract from perceived 
urban quality.

Figure  9 visualizes the distribution of urban feature values 
across positive and negative sentiment categories. Features such as 
‘Tree’ and ‘Sidewalk’ display higher values under positive sentiment, 
reinforcing their association with favorable public perceptions of 
livable urban spaces. In contrast, features like ‘Fence’, ‘Streetlight’, 
and ‘Road’ are more strongly associated with negative sentiment, 

TABLE 1 Categories of urban features analyzed and corresponding 
qualities.

Qualities of 
urban design

Urban feature 
categories

Description

Visual enclosure Sky Proportion of image area 

classified as sky

Wall Proportion of image area 

classified as wall

Fence Proportion of image area 

classified as fence

Tree Proportion of image area 

classified as tree, grass, or 

other vegetation

Building Proportion of image area 

classified as building or 

other structure

Human scale Road Proportion of image area 

classified as road surface

Sidewalk Proportion of image area 

classified as sidewalk, 

steps, or pathway

Streetscape complexity Person Count of pedestrians 

detected in the image

Bicycle Count of bicycles detected 

in the image

Motor vehicle Count of motor vehicles 

detected in the image

Streetlight Count of streetlights 

detected in the image

Signboard Count of signboards 

detected in the image
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possibly reflecting potential discomfort or dissatisfaction tied to 
these elements. Interestingly, features like ‘Wall’ and ‘Building’ 
exhibit overlapping distributions for positive and negative 
sentiment. This suggests their impact on public sentiment may 
be highly context dependent. For example, greater presence of walls 
might enhance safety or structure in some scenarios, fostering 
positive sentiment, but may also evoke a sense of restriction or 
enclosure in other contexts, leading to negative sentiment. Similarly, 
a greater presence of buildings can enhance functionality and 
aesthetics in well-designed settings but may be  associated with 
overcrowding or reduced openness in denser urban environments. 
These results highlight the roles of specific urban features and the 
need to consider broader contextual factors when interpreting 
their impact.

5.2.2 Relationship: pre-COVID
For the pre-COVID period (January to December 2019), an 

eigenvector spatial filter was applied to the OLS analysis, adding four 
eigenvectors to mitigate autocorrelation in the residuals. The analysis 
reveals distinct patterns in how various urban features influenced 
public sentiment. Table  3 summarizes the regression results, 
highlighting the associations between urban features and sentiment. 
The analysis highlights significant sentiment associations for features 
like ‘Sky’ (b = −1.05, p < 0.001), which exhibits a strong negative 
association with public sentiment. This is suggestive of a discomfort 
with open spaces during the pre-COVID period, possibly due to 
perceptions of exposure or lack of shelter. ‘Fence’ (b = −0.47, 
p < 0.001) also indicates a significant negative association, conceivably 
reflecting concerns related to restricted movement or visibility.

Conversely, ‘Tree’ (b = 0.14, p < 0.001) exhibits a positive 
association with public sentiment, which aligns with research on the 
importance of greenery in promoting positive emotional responses. 
‘Sidewalk’ (b = 0.42, p < 0.001) strongly correlates with positive 
sentiment, possibly reflecting the public’s appreciation for pedestrian-
friendly infrastructure. ‘Road’ (b = −0.19, p < 0.001) shows a negative 
association, perhaps reflecting dissatisfaction with vehicular 
dominance and related urban challenges like noise and pollution. 
‘Person’ (b = 0.31, p < 0.001) and ‘Bicycle’ (b = 0.31, p < 0.001) are 
positively associated with public sentiment, which may reflect the 
value of active and human-centered spaces. ‘Streetlight’ (b = −0.37, 
p < 0.001) and ‘Signboard’ (b = −1.59, p < 0.001) show strong negative 
associations, suggesting that excessive artificial lighting and visual 
clutter may be negatively perceived.

Figure 10 visualizes sentiment distributions for various urban 
features during the pre-COVID period. Features like ‘Tree’ and 
‘Sidewalk’ display higher densities under positive sentiment, 
conceivably reflecting their alignment with public preferences for 
greenery and walkable spaces. In contrast, ‘Fence’ and ‘Sky’ are 
strongly associated with negative sentiment, potentially indicating 
discomfort with physical barriers and open spaces. ‘Wall’ and 
‘Building’ have overlapping distributions, perhaps indicating their 
context-dependent impact on public sentiment.

5.2.3 Relationship: during COVID
For the COVID-19 period (January to December 2020), an 

eigenvector spatial filter was applied to the OLS analysis, adding six 
eigenvectors to mitigate autocorrelation in the residuals The results in 
Table 4 show significant changes in sentiment associations compared 
to the pre-COVID period.

‘Sky’ (b = −1.30, p < 0.001) exhibited a stronger negative 
association compared to the pre-COVID period, possibly reflecting 
increased discomfort with open spaces during the pandemic. Fence 
(b = −0.45, p < 0.001) and ‘Building’ (b = −0.17, p < 0.001) continued 
to have a negative relationship with sentiment, while ‘Tree’ (b = 0.08, 
p = 0.004) maintained a modest positive relationship.

‘Sidewalk’ (b = 0.44, p < 0.001) remained a significant positive 
contributor, perhaps indicating its importance for pedestrian mobility 
during lockdowns. ‘Road’ (b = −0.12, p < 0.001) maintained a negative 
association, perhaps reflecting dissatisfaction with vehicular 
dominance even during reduced traffic periods. ‘Person’ (b = 0.23, 
p < 0.001) and ‘Bicycle’ (b  = 0.23, p  < 0.001) sustained positive 
sentiment associations, suggestive of a preference for active and 
human-centered spaces. Interestingly, ‘Signboard’ (b = 0.74, p < 0.001) 
shifted to a positive association, perhaps reflecting an appreciation for 
localized commercial activity during restricted times.

Figure  11 demonstrates the distribution of urban features for 
positive and negative sentiment. Whereas ‘Tree’ and ‘Sidewalk’ 
continue to dominate positive sentiment distributions, ‘Sky’ and 
‘Fence’ align more strongly with negative sentiment, perhaps reflecting 
increased public concern for open and enclosed spaces during 
the pandemic.

5.2.4 Relationship: post-COVID
For the post-COVID analysis (January to December 2021), an 

eigenvector spatial filter was applied to the OLS analysis, adding four 
eigenvectors to mitigate autocorrelation in the residuals. The analysis 

FIGURE 7

Spatial feature classification. (a) representative Google Street View image; (b) PSPNet segmentation map; (c) Mask R-CNN object detection with 
bounding boxes.
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FIGURE 8

Hotspot analysis (a) all years (2015–2021), (b) pre-COVID (2019), (c) during COVID (2020), (d) post-COVID (2021).
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summary in Table 5 highlights the stability and shifts in sentiment 
toward various urban features.

Post-COVID sentiment remained influenced by features 
representing enclosure, with ‘Sky’ (b = −1.35, p < 0.001) continuing to 
show a strong negative association. This indicates a persistent public 
preference for enclosed spaces, possibly tied to lingering concerns 
over safety or comfort in open areas. ‘Fence’ (b = −0.39, p < 0.001) and 
‘Building’ (b = −0.14, p < 0.001) also retained negative associations, 
reflecting continued apprehension about restricted visibility or overly 
urbanized environments. Conversely, ‘Tree’ (b  = 0.19, p  < 0.001) 
maintained a strong positive relationship, underscoring the enduring 
value of greenery in urban spaces.

‘Sidewalk’ (b = 0.47, p < 0.001) continued to emerge as a major 
positive contributor, reflecting public appreciation for walkable, 
pedestrian-friendly infrastructure as cities reopened. ‘Road’ 
(b = −0.03, p = 0.258), however, showed an insignificant relationship, 
suggesting reduced concern over vehicular dominance during this 
recovery period. ‘Person’ (b = 0.25, p < 0.001) and ‘Bicycle’ (b = 0.29, 
p < 0.001) sustained positive associations with sentiment, reinforcing 
the importance of active, human-centered spaces in urban recovery. 
Notably, ‘Signboard’ (b  = 0.68, p  < 0.001) shifted to a positive 
association, suggesting an increased public interest in commercial 
and informational elements as urban life resumed normalcy. 
However, ‘Streetlight’ (b = −0.34, p < 0.001) continued to exhibit a 

TABLE 2 General relationship between urban features and sentiment ranking 2015–2021.

Qualities of 
urban design

Urban feature 
categories

Estimate Std. Error t-value p-value+ Lower 
bound

Upper 
bound

Enclosure Sky −1.00 0.01 −97.38 < 0.001 *** −1.02 −0.98

Wall −0.10 0.02 −5.93 < 0.001 *** −0.13 −0.06

Building −0.12 0.01 −13.18 < 0.001 *** −0.14 −0.11

Fence −0.47 0.02 −23.69 < 0.001 *** −0.51 −0.43

Tree 0.16 0.01 16.16 < 0.001 *** 0.14 0.18

Human scale Road −0.23 0.01 −24.16 < 0.001 *** −0.25 −0.21

Sidewalk 0.44 0.01 53.21 < 0.001 *** 0.43 0.46

Complexity Streetlight −0.33 0.01 −37.04 < 0.001 *** −0.34 −0.31

Signboard −0.60 0.10 −6.24 < 0.001 *** −0.79 −0.41

Person 0.35 0.01 46.06 < 0.001 *** 0.33 0.36

Bicycle 0.26 0.01 34.44 < 0.001 *** 0.25 0.28

Motor Vehicle −0.13 0.02 −8.15 < 0.001 *** −0.16 −0.10

+FDR adjustment applied.
Dependent variable: Negative (0) or Positive (1) Sentiment.
Model fit metrics: Residual standard error: 0.33 on 47,094 degrees of freedom.
Adjusted R2: 0.53, F-statistic: 4370 on 12 and 47,094 DF (p-value < 0.001).

FIGURE 9

General distribution of urban features by sentiment 2015–2021.
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negative relationship, highlighting concerns over excessive 
artificial lighting.

Figure 12 shows the distribution of urban features across positive 
and negative sentiments during the post-COVID period. Features 
such as ‘Tree’ and ‘Sidewalk’ retained higher distributions for positive 
sentiment, emphasizing their continued importance in fostering 
favorable perceptions of urban environments. Conversely, ‘Sky’ and 
‘Fence’ remained dominant in the negative sentiment category, 
reflecting persistent concerns about open spaces and restricted 
visibility. The positive association with ‘Signboard’ stands out as a key 
shift, indicating renewed public interest in visual and commercial 
elements as cities recovered from the pandemic.

6 Discussion and conclusion

This study explored the relationship between urban features and 
public sentiment by integrating sentiment data from geotagged social 
media posts and urban metrics derived from street view imagery. The 
research utilized a two-phase computational framework: first, applying 
NLP techniques with LLMs to analyze public sentiment; and second, 
using computer vision models to quantify qualities of urban design, 
including visual enclosure, human scale, and streetscape complexity. 
This framework sheds light on how urban environments may shape 
human emotions and perceptions, particularly within the context of 
other events, such as societal disruptions.

TABLE 3 Relationship between urban features and sentiment ranking (pre-COVID period).

Qualities of 
urban design

Urban feature 
categories

Estimate Std. Error t-value p-value+ Lower 
bound

Upper 
bound

Enclosure Sky −1.05 0.02 −43.98 < 0.001 *** −1.10 −1.00

Wall −0.04 0.04 −1.09 0.28 −0.11 0.03

Building −0.09 0.02 −3.96 < 0.001 *** −0.13 −0.05

Fence −0.47 0.05 −9.67 < 0.001 *** −0.57 −0.38

Tree 0.14 0.02 5.86 < 0.001 *** 0.09 0.19

Human scale Road −0.19 0.02 −8.38 < 0.001 *** −0.24 −0.15

Sidewalk 0.42 0.02 20.87 < 0.001 *** 0.38 0.45

Complexity Streetlight −0.37 0.02 −17.52 < 0.001 *** −0.41 −0.32

Signboard −1.59 0.27 −5.95 < 0.001 *** −2.12 −1.07

Person 0.31 0.02 18.07 < 0.001 *** 0.28 0.35

Bicycle 0.31 0.02 16.19 < 0.001 *** 0.27 0.35

Motor Vehicle −0.21 0.04 −5.81 < 0.001 *** −0.28 −0.14

+FDR adjustment applied.
Dependent variable: Negative (0) or Positive (1) Sentiment.
Model fit metrics: Residual standard error: 0.31 on 7,438 degrees of freedom.
Adjusted R2: 0.57, F-statistic: 616.7 on 16 and 7,438 DF (p-value < 0.001).

FIGURE 10

Distribution of urban features by sentiment (pre-COVID period).
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The results indicate that certain urban features, such as greenery 
(trees) and pedestrian infrastructure (sidewalks), consistently elicit 
positive public sentiment over time, pointing toward their potential 
importance in fostering livable urban environments. These findings 
align with theories of biophilia (Kaplan and Kaplan, 1989; Ulrich, 
1983) and human-centered urban design, which highlight the 
psychological and restorative benefits of natural and pedestrian-
friendly spaces. Conversely, features such as visible sky and fences are 
linked to negative sentiment, reflecting a preference for balanced and 
enclosed environments that provide a sense of comfort and safety 
(Alexander et al., 1977; Jacobs, 1961). This study also contributes to 
the growing body of research on urban morphology and public 

sentiment by providing empirical evidence for the role of urban form 
in shaping emotional responses. The findings support existing theories 
on the importance of greenery and pedestrian-friendly infrastructure 
(Ewing and Handy, 2009; Gehl and Rogers, 2010), while also revealing 
context-dependent variations that challenge simplistic assumptions 
about urban preferences.

The spatial clustering of hotspots and cold spots suggests potential 
implications for urban design and planning. Positive sentiment 
associated with parks, pedestrian-friendly zones, and areas near 
educational institutions indicates the potential importance of spaces 
that encourage social interaction, community engagement, and a 
sense of belonging. Conversely, the clustering of cold spots in 

TABLE 4 Relationship between urban features and sentiment ranking (during COVID period).

Qualities of 
urban design

Urban feature 
categories

Estimate Std. Error t-value p-value+ Lower 
bound

Upper 
bound

Enclosure Sky −1.30 0.03 −44.76 < 0.001 *** −1.36 −1.24

Wall −0.10 0.05 −2.23 0.026 * −0.19 −0.01

Building −0.17 0.03 −6.47 < 0.001 *** −0.22 −0.12

Fence −0.45 0.05 −8.26 < 0.001 *** −0.56 −0.34

Tree 0.08 0.03 2.86 0.004 ** 0.03 0.14

Human scale Road −0.12 0.03 −4.07 < 0.001 *** −0.17 −0.06

Sidewalk 0.44 0.03 17.32 < 0.001 *** 0.39 0.49

Complexity Streetlight −0.36 0.03 −12.92 < 0.001 *** −0.42 −0.31

Signboard 0.74 0.21 3.53 < 0.001 *** 0.33 1.16

Person 0.23 0.02 10.5 < 0.001 *** 0.19 0.28

Bicycle 0.23 0.02 9.47 < 0.001 *** 0.18 0.28

Motor Vehicle −0.07 0.04 −1.69 0.091 −0.15 0.01

+FDR adjustment applied.
Dependent variable: Negative (0) or Positive (1) Sentiment.
Model fit metrics: Residual standard error: 0.32 on 5,353 degrees of freedom.
Adjusted R2: 0.54, F-statistic: 348.9 on 18 and 5,353 DF (p-value < 0.001).

FIGURE 11

Distribution of urban features by sentiment (during COVID period).
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vehicular-dominated areas likely indicate challenges related to noise, 
congestion, and limited pedestrian accessibility. These findings imply 
that balanced land-use planning, and human-centered design 
approaches could help mitigate disparities in sentiment across 
different urban zones, potentially contributing to more inclusive and 
adaptable urban environments.

Temporal variations in sentiment are likely due to factors 
other than qualities of urban design, such as disruptive events. 
Analysis of sentiment over time periods spanning one such 
societal disruption, the COVID-19 pandemic provided some 
insight into this. During the COVID-19 pandemic, the expansion 
of cold spots in vehicular and commercial zones might reflect 
heightened public concern for safety and accessibility in urban 

spaces. In contrast, hotspots near localized commercial areas 
(e.g., signboards) may suggest a shift in public appreciation for 
accessible services during periods of restricted mobility. Post-
COVID, the reemergence of sentiment hotspots in recreational 
and pedestrian-friendly spaces could provide evidence of the 
importance of resilience in urban environments that prioritize 
inclusivity and adaptability. However, the temporal changes 
observed in this study could also be interpreted as indicative of 
broader trends rather than definitively linked to specific 
disruptions or urban features. This highlights the need for more 
granular investigations to isolate the relative contributions of 
land-use patterns, infrastructure changes, and societal 
disruptions to sentiment dynamics over time. By doing so, future 

TABLE 5 Relationship between urban features and sentiment ranking (post-COVID period).

Qualities of 
urban design

Urban feature 
categories

Estimate Std. Error t-value p-value+ Lower 
bound

Upper 
bound

Enclosure Sky −1.35 0.03 −53.29 < 0.001 *** −1.4 −1.3

Wall −0.06 0.04 −1.74 0.082 −0.13 0.01

Building −0.14 0.02 −6.23 < 0.001 *** −0.18 −0.09

Fence −0.39 0.04 −8.93 < 0.001 *** −0.47 −0.3

Tree 0.19 0.02 8 < 0.001 *** 0.14 0.24

Human scale Road −0.03 0.02 −1.13 0.258 −0.07 0.02

Sidewalk 0.47 0.02 24.97 < 0.001 *** 0.44 0.51

Complexity Streetlight −0.34 0.02 −13.74 < 0.001 *** −0.38 −0.29

Signboard 0.68 0.18 3.75 < 0.001 *** 0.33 1.04

Person 0.25 0.02 12.5 < 0.001 *** 0.21 0.29

Bicycle 0.29 0.02 16.18 < 0.001 *** 0.25 0.32

Motor Vehicle 0.04 0.03 1.15 0.251 −0.03 0.1

+FDR adjustment applied.
Dependent variable: Negative (0) or Positive (1) Sentiment.
Model fit metrics: Residual standard error: 0.30 on 6,857 degrees of freedom.
Adjusted R2: 0.61, F-statistic: 663.5 on 16 and 6,857 DF (p-value < 0.001).

FIGURE 12

Distribution of urban features by sentiment (post-COVID period).
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research can build a deeper understanding of how urban design 
interventions influence public sentiment under varying contexts.

While the proposed framework and example application can 
provide valuable insights into the relationship between urban 
features and public sentiment, limitations do exist. The reliance 
on social media data primarily reflects the perspectives of 
individuals active on these platforms, which may not fully capture 
the diversity of public sentiment. Likewise, whereas street view 
imagery is widely publicly available, it may not be available for all 
locations and/or dates of interest. As such, other data sources 
may need to be  incorporated to augment the analysis. 
Additionally, while sentiment analysis enhanced by LLMs is a 
powerful tool, it may not account for the full spectrum of 
emotions or contextual nuances. Similarly, the computer vision 
models used to quantify urban features are subject to potential 
errors in feature classification, which could influence the 
accuracy of derived metrics. Misclassification errors in NLP and 
computer vision models could introduce uncertainties into the 
results, potentially influencing the observed associations.

The proposed analysis framework was applied to evaluate the 
relationship between sentiment and features representing qualities of 
urban design for a single city over a period of years. While the findings 
are in line with existing theory, more work is certainly needed to assess 
the extent to which the findings are generalizable to other locations and 
times. Expanding the analysis to include other urban environments 
perhaps representing a range of urban layouts, geographic, and 
socioeconomic contexts might further shed light on factors influencing 
sentiment. Also, there are a variety of other facets of the urban 
environment that could be  included in this type of analysis, such as 
non-visual factors like noise, air quality, and cultural significance, which 
may also shape public perceptions. Further, in the example application of 
the analysis framework, the sentiment of all social media posts was 
analyzed together. However, future research could investigate the extent 
to which the sentiment of various categories (e.g., topic) of posts may 
be influenced differentially by qualities of urban design. Such an effort 
though would require a data collection plan that would ensure adequate 
numbers of posts from categories of interest exist and/or could 
be collected for a region of interest.

Finally, in this application, sentiment was assessed for each 
posting and analyzed by time period, but without tracking 
specific objects or topics across time. Posts at the same location 
may refer to different objects or experiences, such as a building 
in one period and a newly opened park or restaurant in another. 
Consequently, temporal changes in sentiment at specific locations 
might reflect shifts in public attention to different elements of the 
urban environment, making it challenging to attribute changes to 
a single factor. While societal disruptions like the COVID-19 
pandemic may have significantly influenced public sentiment, 
they may not be  the sole driver of observed changes. Other 
factors, such as infrastructure development projects (e.g., 
addition of new parks, sidewalks, roads, or buildings), politics, 
natural hazards, etc., may have also contributed. As such, the 
ability to jointly account for the spatial and temporal presence of 
the diverse set of factors potentially influencing sentiment is 
needed. By accounting for both societal disruptions and changes 
in the physical urban landscape, future studies can better evaluate 
the interplay of these factors in shaping temporal 
sentiment dynamics.

Despite these limitations, the consistent patterns observed in this 
study offer meaningful insights into how urban features influence 
public sentiment. These findings should be interpreted as indicative 
trends that contribute to a broader understanding of urban design and 
public perceptions, rather than as definitive causal relationships. To 
enhance the robustness and applicability of the framework, future 
research should integrate additional datasets, such as environmental 
data (e.g., air quality and noise levels) and cultural variables (e.g., 
landmarks, public art), to provide a more comprehensive understanding 
of the factors shaping public sentiment Improvements could also 
include exploring alternative computational models, validating 
findings across diverse contexts, and incorporating longitudinal studies 
and sentiment tracking to better capture the dynamic interactions 
between urban features and public sentiment. Addressing the 
uncertainties introduced by model misclassification, future research 
should systematically evaluate the sensitivity and robustness of the 
approach by testing different models and assessing the consistency of 
key findings. Additionally, integrating data on urban infrastructure 
developments would support a more comprehensive evaluation of how 
physical and societal dynamics jointly influence public sentiment, 
particularly when considering the interplay of societal disruptions and 
infrastructure changes.

In conclusion, this study demonstrates the potential of combining 
NLP-based sentiment analysis with computer vision techniques to 
evaluate the relationship between urban features and public sentiment. 
The findings highlight the enduring importance of greenery and 
pedestrian-friendly infrastructure in promoting positive urban 
experiences while also revealing the dynamic and context-dependent 
nature of public preferences. By aligning urban design strategies with 
these insights, planners and policymakers can create more inclusive, 
adaptable, and resilient environments that cater to diverse community 
needs and respond effectively to evolving societal challenges.
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