
Frontiers in Computer Science 01 frontiersin.org

Investigating the impact of the
OOP-SOLVE application on the
user’s behavior using the
technology acceptance model in
the programming course
Sohail Iqbal Malik *, Roy Mathew , Ragad M. Tawafak ,
Ghaliya Al-Farsi and Abir Al-Sideiri

Department of Information Technology, Al-Buraimi University College, Al-Buraimi, Oman

Introductory programming courses are considered difficult and challenging for
students. They have to focus on and develop different skills related to problem-
solving and programming domains concurrently. However, most programming
courses spend more time teaching programming syntax. Therefore, this study
developed and introduced an application, OOP-SOLVE, which focused on
algorithmic thinking skills in the object-oriented programming (OOP) domain.
The pseudo-code technique is used to create this application. Most of the teaching
topics of the OOP course, such as classes, objects, constructors, inheritance, and
polymorphism, are covered in this application. Moreover, the application presents
each programming question in different sections such as class diagram, main
class, test class, execution process, and output. A technology acceptance model
(TAM) was used to investigate the acceptance of the OOP-SOLVE application in
the OOP course. Moreover, the perceptions of the OOP course lecturers regarding
the OOP-SOLVE application were collected by conducting a semi-structured
interview. 224 students participated in the survey, and six lecturers participated in
the interviews. Results show a positive impact of perceived ease of use, usefulness,
and enjoyment on students’ attitudes toward their intention to use the application
in the course. Lecturers also agreed that the application supported students in
the OOP course. Moreover, it promotes students’ engagement and enhances
collaboration and interaction among students in class activities. In addition to
the solution of the given programming statement, the OOP-SOLVE application
also presents the execution process of the program along with the output of
each programming question. Lecturers also agreed that the application can be a
supporting teaching tool in the OOP course.

KEYWORDS

object-oriented programming, algorithmic thinking, TAM, e-learning, computer
education

1 Introduction

Programming skills are important for all those who are studying computer science and its
related fields (Végh and Czakóová, 2023). On the other hand, different studies (Iqbal et al., 2022;
Sohail et al., 2020; Wang et al., 2016; De Raadt, 2008; Ala-Mutka, 2004; Kölling and Rosenberg,
1996) reported that many students found it a hard and challenging task to grasp the precise
concepts of the programming domain. There are varieties of programming skills such as
algorithmic thinking, problem solving and program design where students need to concentrate

OPEN ACCESS

EDITED BY

Clifford A. Shaffer,
Virginia Tech, United States

REVIEWED BY

Mohammed F. Farghally,
Virginia Tech, United States
Liudmyla Gryzun,
Simon Kuznets Kharkiv National University of
Economics, Ukraine
Leigh Little,
SUNY Brockport, United States

*CORRESPONDENCE

Sohail Iqbal Malik
 sohail@buc.edu.om

RECEIVED 13 October 2024
ACCEPTED 07 May 2025
PUBLISHED 28 May 2025

CITATION

Malik SI, Mathew R, Tawafak RM,
Al-Farsi G and Al-Sideiri A (2025) Investigating
the impact of the OOP-SOLVE application on
the user’s behavior using the technology
acceptance model in the programming
course.
Front. Comput. Sci. 7:1510577.
doi: 10.3389/fcomp.2025.1510577

COPYRIGHT

© 2025 Malik, Mathew, Tawafak, Al-Farsi and
Al-Sideiri. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research
PUBLISHED 28 May 2025
DOI 10.3389/fcomp.2025.1510577

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1510577&domain=pdf&date_stamp=2025-05-28
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1510577/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1510577/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1510577/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1510577/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1510577/full
mailto:sohail@buc.edu.om
https://doi.org/10.3389/fcomp.2025.1510577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1510577

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 02 frontiersin.org

at the same time (Al-Emran et al., 2021). On the other side, most
programming courses give more importance to syntax than other skills
required in the programming domain (Khan et al., 2021). Consequently,
students are familiar with programming syntax and semantics, but they
are not able to use these rules while writing a valid program (Winslow,
1996). Moreover, most programming courses promote programming
shortcuts (Webster, 1994) (problem statement → codes) in their process
of teaching and learning. Therefore, Hromkovic et al. (2016) suggested
that computer science students should take algorithmic thinking as a
main objective in their studies. Loksa et al. (2016) urged that problem
solving skills should be explicitly taught in various courses of
programming. Khan et al. (2021) suggested that programming courses
should include problem solving strategies in all topics.

This study developed an OOP-SOLVE application and then
introduced it in the object-oriented programming (OOP) course
which focuses on algorithmic thinking and problem-solving strategies.
Almost all of the course topics are covered in the application.
Moreover, it is based on pseudo-code technique. Each problem
statement is presented by different sections such as class diagram,
main class, test class, execution process, and output in the application.

The remaining paper is divided into different sections.
Information regarding literature review and research questions of the
study are presented in the next section. An introduction of the
OOP-SOLVE application and Results are presented in the next two
following sections. Finally, research outcomes are presented in the
last section.

2 Literature review

Algorithmic thinking is a process to devise steps in a particular
sequence to solve a given problem (Katai, 2014). The main goal is to
achieve the desired outcomes by formulating the required steps (Hu,
2011). Hromkovic et al. (2016) discussed that algorithmic thinking is
one of the most important concepts for computer science students and
therefore they should focus and practice it as a main objective in this
domain. Kiss and Arki (2017) suggested that strategic focus in
education should be algorithmic thinking because those students were
handicapped in tertiary education if they do not have a
background in it.

Hromkovic et al. (2019) suggested that the learning process in
programming should start with algorithmic thinking activities. By
this approach, problem solving skills can be developed effectively
by students along with programming knowledge at the same time
(Malik et al., 2019). Malik and Coldwell-Neilson (2017) introduced
an ADRI based approach in programming courses to enhance
algorithmic thinking among students. Hromkovic et al. (2016)
promoted algorithmic thinking by introducing three examples in
the programming course. Kiss and Arki (2017) promoted
algorithmic thinking by introducing game-based learning in
programming education. Moreover, a puzzle-based game was used
among students to promote algorithmic thinking (Chih-Chao and
Tzone-I, 2018).

Biju (2013) discussed that Object-Oriented programming (OOP)
is a complex and difficult area of study which students often struggle
to grasp., particularly when they are transitioning from procedural
languages. She suggested focusing on teaching methods such as
student-centered learning which promotes problem solving and

program writing, examples and practical exercises, pictorial
representation, and continuous feedback in the OOP courses. Zainal
Abidin and Abdullah Zawawi (2020) introduced Augmented Reality
(AR) in teaching OOP concepts. They concluded that AR received
positive feedback from users. Moreover, it supports students in
understanding the OOP concepts. Ardiana and Loekito (2020)
introduced gamification in the OOP course. They discussed that
gamification stimulated the activeness and creativity of students in
the OOP learning. Moreover, it provided a sense of enjoyment
derived from the game. They concluded that the use of gamification
increases students’ motivation in learning OOP concepts. Végh and
Czakóová (2023) discussed that visual programming environments
and serious games could be used in OOP learning. They urged that
students could visualize abstract concepts of OOP by using visual
programming environments. Moreover, the serious games helped
students understand the basic concepts of the OOP domain.

Cheah (2020) discussed that students often lack problem-solving
abilities which is a big challenge in teaching and learning computer
programming. He suggested addressing this issue by developing an
effective teaching tool, considering both students’ learning methods,
and the effectiveness of teaching materials. Mathew et al. (2019)
prepared and offered a PROSOLVE game to promote problem solving
skills for novices in programming courses. They found that students
like the game and it also helps students in enhancing their analytical
skills and understanding the programming concepts. Moreover, the
lecturers also appreciated the game and considered it as a good
alternative method to teach programming concepts to novice
programmers. Iqbal and Coldwell-Neilson (2018) offered an ADRI
based teaching approach in the programming course. They concluded
that the new approach emphasized analytical programming strategies
and promoted practice among students.

Al-Emran et al. (2021) used the TAM model in a programming
course to determine the actual use among three E-platforms which are
based on the PROBSOL approach. They concluded that usefulness and
ease of use of these three E-platforms influenced the behavioral
intention of students to use these platforms in their learning process
of programming domain. Thongkoo et al. (2020) introduced digital
learning tools in programming education courses and used the TAM
model to investigate the students’ acceptance of these tools in their
studies. Results showed that the students appreciated the initiative of
using the digital learning tools in the programming domain. Cabada
et al. (2018) introduced a learning environment which is based on web
3.0 in a java programming course and used the TAM model to
determine the influence of the learning environment on students’
behavior. They concluded that the new learning tool supported
students in the programming course.

Different tools were prepared and offered in programming
education to enhance programming skills and algorithmic thinking.
Zhong and Zhan (2024) introduced an intelligent tutoring system in
programming learning which promoted motivation and reduced
cognitive load. Kazemitabaar et al. (2024) prepared and introduced
codeAid tool in a programming class. Calderon et al. (2024) designed
and introduced an automated assessment tool for continuous
assessment of students’ work in programming. Finnie-Ansley et al.
(2022) introduced OpenAI released Codex in introductory
programming. Alam (2022) revealed that employing robots in
teaching computer programming is a promising tool for early
childhood STEM education. Iqbal et al. (2022) prepared and offered a

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 03 frontiersin.org

chatbot in programming education. Majid (2014) integrated web 2.0
tools in a programming course. Sohail et al. (2019) promoted
algorithmic thinking by introducing the PROSOLVE game in
programming courses.

2.1 Research questions

It is clear from the earlier discussion that algorithmic thinking
is an important component in learning computer programming.
Different tools were developed and introduced in programming
education to enhance programming analytical skills. This study
prepared and offered an OOP-SOLVE application to promote
algorithmic thinking skills of students related to object-oriented
programming concepts. Two research questions are proposed to
find out the influence of OOP-SOLVE application in the
OOP course.

The statements of these two research questions are as follows:

RQ1: What is the feedback of students after introducing the
OOP-SOLVE application in Programming education?

RQ2: What is the feedback of object-oriented programming
lecturers regarding the OOP-SOLVE application?

3 Research methodology and design

For the first research question, a survey was administered to
students of the object-oriented programming course after introducing
the OOP-SOLVE application. 224 students participated in the survey.
Results show that female participants were 116 in the survey and the
remaining 108 were male participants. Ethical approval was obtained
from the college before collecting the responses to the survey.
Moreover, participation in the survey was voluntary and anonymous.

For the second research question, semi-structured interviews were
performed with six lecturers of object-oriented programming courses.

The survey consists of twenty-five questions, the statements of
which are presented in Table 1 and Figures 1–5. Responses were
received using the five-point Likert scale (1 – “strongly disagree” to
5 – “strongly agree”).

4 Introduction to OOP-SOLVE
application

The OOP-SOLVE is a web-based application that introduces a
novel approach to the pseudo-code technique of solving problem
statements related to object-oriented programming. The application
covers most topics of the OOP course, such as classes, objects,
constructors, inheritance, and polymorphism. Questions related to
each topic are accessible from the relevant menu bar. Moreover,
Figure 6 shows that each problem statement is presented by different
sections such as class diagram, main class, test class, execution process,
and output.

Figure 7 depicts the interface of the first section of the problem
statement in the OOP-SOLVE application. The first section focuses
on the problem statement, class diagram, and pseudo-code of the

class. The application was developed using visual basic web forms. A
programming question is provided at the top of the first section. A
class diagram is provided, illustrating the relevant components of the
problem statement. The Random Steps text area offers a pseudo-
code-based solution to the programming question, as illustrated in
Figure 7. The solution steps are randomised each time the user
reloads or reopens the program, ensuring that students receive
different solutions and concentrate on proposing a solution with
every attempt. A user selects and moves the provided solution of the
given programming question from the Random Steps text area to the
Proposed Steps text area by using the right arrow shown in the
Actions area. A given pseudo-code solution is automatically added in
the Pseudo Code section for the step moved in the Proposed Steps
text area by the user. Four arrows (right, left, up and down) are
provided in the Actions area so the user can move the commands
right or left between the Radom and Proposed text areas. Moreover,
the commands can be moved up or down either in the Random Steps
or Proposed Steps text areas using the up or down errors.

This section also shows the errors in the solution in two ways. The
right solution is shown in green in the Proposed Steps text area, as
shown in Figure 7. The wrong solution or steps are shown in red in the
Proposed Steps text area. Moreover, the number of errors in the
solution is shown at the bottom of the Proposed Steps text area.

Figure 8 depicts the second section of the OOP-SOLVE
application. This section focuses on the test class of the given
programming question. The second section is shown only when the
right solution for the given programming question is provided in the
Proposed Steps text area of the first section. The second section
consists of a test class diagram, Random Steps and Proposed Steps text
areas, pseudo-code Solution text area, four arrows, No of Errors label,
and Input Data box, as shown in Figure 8. The functionality of the
second section is similar to the first section except that the Input Data
section is included to get variable values from the user related to the
given programming question.

Figure 9 depicts the third section of the OOP-SOLVE application
which focuses on the execution process of the test class. The section
shows how objects, variables are created, and methods are executed as

TABLE 1 Participant demographic information.

Category Field Total Percentage

Participants IT-BUC students 224 100%

Gender Female 116 51.8%

Male 108 48.2%

Major Information systems 80 35.7%

Computer science 57 25.5%

Software engineering 87 38.8%

Degree Diploma 86 38.4%

Advanced diploma 3 1.3%

Bachelor 135 60.3%

Class timings Morning 107 47.8%

Evening 117 52.2%

Technology

learning interest

Low 37 16.5%

Medium 73 32.6%

High 114 50.9%

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 04 frontiersin.org

FIGURE 1

Perceived usefulness (PU).

FIGURE 2

Perceived ease of use (PEU).

FIGURE 3

Perceived enjoyment (PE).

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 05 frontiersin.org

per the instructions of the test class of the given problem statement as
shown in Figure 9.

Figure 10 depicts the fourth section of OOP-SOLVE Application
which shows the output of the test class of the given problem statement
in a tabular form. This section focuses on objects, variables, and
methods of the test class.

5 Results

Results of student’s survey and semi-structured interviews of
Object-oriented programming course lecturers are described in this
section. Research question 1 is addressed by probing the responses of
student’s survey.

RQ1: What is the feedback of students after introducing the
OOP-SOLVE application in programming education?

This study used the technology acceptance model (TAM) to
investigate the impact of OOP-SOLVE application on the user’s
behavior. The e-learning acceptance studies used TAM (Davis, 1986) as
one of the most accepted theories (Teo, 2009). In this study, the research
model consists of five factors such as “perceived usefulness (PU),”
“perceived enjoyment (PE),” “perceived ease of use (PEOU),” “attitude
toward using (ATU),” and “intention to use (IU).” There are four items
in each factor. The questionnaire statements are shown in Figures 1–5.
Moreover, the conceptual research model is shown in Figure 11.

The study uses the following seven hypotheses to determine the
relationships between five factors of this study:

H1: The perceived ease of use of the OOP-SOLVE positively
impacts its perceived usefulness.

H2: The perceived usefulness of OOP-SOLVE increases the
students' attitude toward using the tool in the future.

FIGURE 4

Attitude toward using (ATU) OOP-SOLVE application.

FIGURE 5

Intention to use (IU).

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 06 frontiersin.org

FIGURE 6

Four sections of the problem statement.

FIGURE 7

First section of the OOP-SOLVE application (class).

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 07 frontiersin.org

H3: The perceived ease of use of the OOP-SOLVE enhances the
students' attitude to use the tool.

H4: The perceived ease of use of the OOP-SOLVE enhances the
students' perceived enjoyment of using the tool.

H5: The perceived enjoyment of the OOP-SOLVE enhances the
students' attitude to use the tool.

H6: The student's attitude toward using OOP-SOLVE leads to
their intention to use the tool in their programming activities.

H7: The perceived enjoyment of the OOP-SOLVE leads to the
intention to use the tool in their programming activities.

FIGURE 8

Second part of OOP-SOLVE application (test class).

FIGURE 9

Third section of OOP-SOLVE application (execution process).

FIGURE 10

Fourth section of OOP-SOLVE application (output).

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 08 frontiersin.org

5.1 Participants

Participants of this survey were IT students at Al-Buraimi
University College, Oman. 224 Students filled in the survey after the
OOP-SOLVE application was offered to them in the object-oriented
programming course. The demographic information of the
participants is presented in Table 1. This section includes six
questions relating to gender, major, degree, class timings, and
technology learning interest.

5.2 Procedure

The OOP-SOLVE application was offered during the first semester
of academic year 2023–24 in the OOP course. Students used the
application during class time under the teacher’s supervision and then
after the class at their own convenience without supervision of the
teacher. The responses for the survey were collected during the time
frame of 8th to 15th of January 2024.

5.3 Findings

The PLS-SEM program was used to validate the model and test
the hypotheses of this study. Figure 1 presents the surveys’
questionnaire statements and their mean values regarding the four
questions related to perceived usefulness (PU). All mean values are in
the range of 3.81 to 4.028.

Figure 2 depicts the mean values of four questions related to
perceived ease of use (PEU). The range of mean values is between
3.798 and 4.

Four questions related to perceived enjoyment (PE), along with
their mean values, are presented in Figure 3. All mean values are in
the range of 3.877 to 4.189.

Figure 4 shows four questions and their mean values related to
attitudes toward using (ATU) the OOP application. The range of mean
values is between 4.266 and 4.413.

The last section of the survey presents four questions related to the
intention to use (IU). All mean values are in the range of 4.03 to 4.21.

5.4 Reliability analysis

A reliability analysis was performed to determine the internal
validity and consistency of each item which is used in each factor. A
Cronbach’s Alpha test was performed to calculate the validity values
of each item used in the research model. The Cronbach’s Alpha value
of equal to or greater than 0.7 is considered as an acceptable reliability
of an instrument. A value of 0.8 or above is considered a good level of
reliability. Table 2 depicts that the Cronbach’s Alpha values of “Attitude
toward using (ATU),” and “Perceived Ease of Use (PEOU)” are at the
acceptable level. The reliability values of “Intention to Use (IU),”
“Perceived Enjoyment (PE),” and “Perceived Usefulness (PU)” are in
the range of good level of reliability.

The results depict that “perceived enjoyment,” “intention to use,”
and “perceived usefulness” factors are good which means that students

FIGURE 11

Conceptual research model.

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 09 frontiersin.org

enjoyed using the OOP-SOLVE application in the teaching-learning
process of object-oriented programming concepts. The remaining two
factors (PEOU and ATU) also lie in the acceptable range which means
that students perceive that it is easy to use the OOP-SOLVE application.

5.5 Hypothesis testing

The path analysis was performed to verify all hypotheses which
show the relationship between pairs of the factors used in this study.
Table 3 depicts the path coefficient (β), f-square, and p-value for each
hypothesis of this study. The acceptable value of path coefficient (β) is
equal to or greater than 0.1, and for p-value it is p < 0.01 or p < 0.001,
and for f-square the acceptable effect size is greater than or equal
to 0.02.

The results in Table 3 show that all hypotheses are supported and
the relationship between independent and dependent factors are
significant. Moreover, all the path coefficient (β), f-square and p-values
are in acceptable range.

Results depict that PEOU and PU have a positive impact on the
attitude of the students to use the OOP-SOLVE application in learning
object-oriented programming concepts. Moreover, students enjoyed
using the application in the course which impacted positively on their
intention and attitude to use the application.

5.6 Semi-structured interviews with
object-oriented programming course
lecturers

Results of the second research question are presented in this part
of the paper. Research question 2 is explored by organizing semi-
structured interviews with lecturers of the object-oriented
programming course.

RQ2: What is the feedback of object-oriented programming
lecturers regarding the OOP-SOLVE application?

Six lecturers of the OOP course participated in semi-structured
interviews. The purpose of the interviews was to explore the lecturers’
in-depth feedback regarding the affordances and barriers of the
OOP-SOLVE application in the studying process of the OOP courses.
The interview was not audio-recorded, and the session notes were
taken independently by the moderator and the assistant moderator.
They produced a joint session report and shared it with all lecturers
for feedback and approval.

The interviews focused on exploring the lecturers’ feedback on:

 1 Students’ experience with OOP-SOLVE application during
the course.

 2 The effect of OOP-SOLVE application on students’ learning.
 3 Strengths and weaknesses of the OOP-SOLVE application.
 4 Any further suggestions to improve the OOP-SOLVE

application for the programming course.

5.6.1 First impression of OOP-SOLVE application
Six lecturers agreed that the first impression of the OOP-SOLVE

application in the course was positive. They appreciated the idea of
introducing pseudo-code techniques in understanding the OOP
concepts. The application supports students to grasp the fundamental
building concepts of programming paradigm such as problem
analysis, program design without taking care of syntax of computer
programming language. One lecturer said, “The OOP-SOLVE
application uses a pseudo-code technique, which I believe is the best
strategy to start teaching programming.”

Lecturers discussed that the application presents each problem
statement with class diagram, main class, test class and execution
process. This process provides a holistic view of the OOP domain
to students.

5.6.2 Students’ experience with OOP-SOLVE
application

Five lecturers ascertained that the OOP course students felt
comfortable with using the application. Moreover, the application
provides practice to students for most teaching topics of the OOP
domain. Students found that it is easy to use and accessible everywhere,
which helps them to get more hands-on experience regarding the OOP
concepts covered in the course. One lecturer said, “The OOP-SOLVE
application is awesome; students can practice the exercises at home.”

TABLE 2 Cronbach’s alpha test for reliability analysis.

Factor Cronbach’s alpha

“Attitude toward using (ATU)” 0.747

“Intention to use (IU)” 0.846

“Perceived ease of use (PEOU)” 0.790

“Perceived enjoyment (PE)” 0.888

“Perceived usefulness (PU)” 0.826

TABLE 3 Hypothesis testing results.

Hypothesis Relationship β p value f-square Remarks

H1 Perceived ease of use → Perceived usefulness 0.238 0.000 0.213 Supported

H2 Perceived usefulness → Attitude toward using 0.492 0.001 0.354 Supported

H3 Perceived ease of use → Attitude toward using 0.427 0.001 0.403 Supported

H4 Perceived ease of use → Perceived enjoyment 0.531 0.000 0.890 Supported

H5 Perceived enjoyment → Attitude toward using 0.411 0.000 0.613 Supported

H6 Attitude toward using → Intention to use 0.549 0.010* 0.171 Supported

H7 Perceived enjoyment → Intention to use 0.376 0.000 0.529 Supported

p < 0.01, * p < 0.001, β > =0.1.

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 10 frontiersin.org

Six lecturers agreed that students’ engagement in the course was
promoted by the application. Moreover, the simple design of the
OOP-SOLVE application motivates users to practice more
programming problems.

5.6.3 Impact of OOP-SOLVE application on
students’ learning

Six lecturers concluded that the OOP-SOLVE application
provided a good impact on students’ learning. The application
enhances collaboration and interaction among students. The
application indicates the mistakes or wrong steps to students which
provides them the chance to think about their solution for the given
programming question. One lecturer said, “Students learning in the
programming domain can be enhanced by providing instantaneous
feedback on their code.”

Four lecturers agreed that the OOP-SOLVE application also
impacted positively on students’ attitudes toward completing the
exercises. Moreover, it presents the execution process of the given
programming question related to the computer memory which provides
a clear understanding of the underlying OOP concepts to users.

5.6.4 Strengths of the OOP-SOLVE application
Five lecturers agreed that the application promotes a novel

approach by using pseudo-code technique in the teaching-learning
process of OOP concepts. The application provides each time new
random steps as a solution of the given programming question which
promotes critical thinking for solving the given programming
question. The application promotes problem solving skills because
the given solution is provided with pseudo-code technique and
students can only pay attention to the problem analysis and program
design. One lecturer said, “Most programming courses offer practice
using offline software. The OOP-SOLVE is web-based, which
supports students’ engagement in the course.”

Students can easily access the application through the web.
Furthermore, students can practice or finish exercises at their own
convenience. Students can consider the OOP-SOLVE as a good
supporting tool for practicing the OOP concepts.

5.6.5 Weaknesses of the OOP-SOLVE application
Four lecturers suggested that the option to add more programming

questions in the OOP-SOLVE application should be provided. This
process helps to increase the question bank and provides more variety
of problem statements to students for practice. They also suggested
adding tooltips for the pseudo-code terminology used in the
OOP-SOLVE application.

5.6.6 Suggestions to improve the OOP-SOLVE
application

Five lecturers suggested introducing a login feature for users in the
application. This process helps to monitor the progress of the students
in the application. They also suggested introducing a system to track
the common mistakes of students while solving the problems. This
process helps lecturers to focus more on programming concepts where
students make more frequent mistakes.

Two lecturers suggested introducing game elements in the
application to promote fun and a reward system in the learning
process. Moreover, it promotes competition and enhances practice
among students.

6 Discussion

The OOP-SOLVE application was developed and introduced in
object-oriented programming education to promote algorithmic
thinking skills. Students’ perceptions regarding the application were
collected by administering a survey. Results show that students
perceived that it is convenient and simple to use this OOP-SOLVE
application. This result is consistent with Malik et al. (2019) who also
promoted problem solving skills in programming education by
introducing a web-based application. Results show that students
perceived that they enjoyed the course after introducing the
application in it. This result is consistent with Cabada et al. (2018) who
also discovered that students enjoyed a learning environment which
is based on web 3.0 in a programming course.

Results also showed that students’ behavioral intention to use the
OOP-SOLVE application in the course was influenced by easy to use
and usefulness. This result is consistent with Al-Emran et al. (2021).
The OOP-SOLVE application is accessible to students at any place and
at their own convenience. They can solve programming questions after
the class at their home as well which promotes practice among
students. This result is consistent with Winslow (1996) who stated that
“the old saw that practice makes perfect has a solid psychological
basis” (p. 18). Moreover, Wang et al. (2017) stated that programming
training supports in enhancing students’ higher order thinking.

The OOP-SOLVE application discourages “programming shortcut”
(Webster, 1994) (programming question → codes) and encourages
four-step programming approach (programming question → problem
solving strategy for main class → problem solving strategy for test class
→ codes). The four-step programming approach supports users to
better understand the programming question and underlying concepts
of object-oriented programming before start writing the code. This
result is consistent with Sohail et al. (2019) who introduced a game in
the programming course to discourage programming shortcuts.

Lecturers in their semi-structured interviews agreed that the
OOP-SOLVE is a useful supporting tool in programming education
which supports students to practice object-oriented programming
(OOP) concepts at their own convenience. Pseudo-code technique is
used in the OOP-SOLVE which promotes algorithmic thinking
among students. The application provides random steps to plan the
solution of the given programming question. This process supports
students by taking less cognitive load for devising the solution and
focusing more on underlying OOP concepts, program design and
structure. This finding is consistent with Shuhidan (2012) who
discussed that programming courses involve theoretical concepts and
their practice which pushes the cognitive process of many students
into overload.

7 Conclusion

This study prepared and introduced the OOP-SOLVE application
to promote algorithmic thinking skills among students of object-
oriented programming (OOP) course. Pseudo-code technique is
used to develop this application. The teaching topics of the OOP
domain such as classes, objects, constructor, inheritance,
polymorphism, and test classes are covered in the
OOP-SOLVE. Questions belonging to the above-mentioned teaching
topics are accessible from the relevant menu bar in the

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 11 frontiersin.org

OOP-SOLVE. Each problem statement is presented by different
sections such as class diagram, main class, test class, execution
process, and output in the application. The technology acceptance
model (TAM) was used in this study to explore the acceptance of the
OOP-SOLVE application in the course. Semi-structured interviews
were performed with the lecturers of the OOP course to collect their
in-depth feedback regarding the affordances and barriers of
OOP-SOLVE application in the programming domain.

A survey was conducted with the students of OOP class after
introducing the OOP-SOLVE application in programming education.
The PLS-SEM program was used for validating the model and testing
the hypotheses of this study. Results show that all hypotheses are
supported in this study. Moreover, the perceived usefulness, ease of
use, and enjoyment have a positive influence on the attitude of
students toward their intention to use the OOP-SOLVE application.

Lecturers agreed that the OOP-SOLVE application supported
students’ learning in the programming domain. The pseudo-code
technique is used in developing the application which provides
students an opportunity to focus more on program analysis and
design. The application promotes algorithmic thinking skills, enhances
interaction and collaboration among students. Students can access the
application anytime and anywhere which impacts positively on
students’ attitudes toward completing the exercises. The application
also presents the execution process and output of each problem
statement which provides students a better understanding of the
underlying concepts of the OOP domain. The application design is
simple which motivates students to practice programming problems
related to the OOP domain. The application is a good supporting tool
for students to practice OOP concepts.

7.1 Implications for future research

The OOP-SOLVE application is based on the pseudo-code
technique. We plan to introduce the flow chart technique, which
provides students with a visual presentation of the programming
questions. The OOP-SOLVE application provides information
about the number of errors in the users’ solution. We plan to add
specific information about the errors to the users. Tooltips will
be added for the pseudo-code terms used in the application. The
OOP-SOLVE application will be offered in other computer subjects
such as data structure, web programming, or other STEM or
business subjects.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Research Ethics
Committee/Buraimi University College. The studies were conducted
in accordance with the local legislation and institutional requirements.
The ethics committee/institutional review board waived the
requirement of written informed consent for participation from the
participants or the participants’ legal guardians/next of kin because
students’ participation was voluntary and anonymous.

Author contributions

SM: Conceptualization, Funding acquisition, Writing – original
draft, Writing – review & editing. RM: Conceptualization, Software,
Writing – original draft, Writing – review & editing. RT: Investigation,
Methodology, Writing – original draft, Writing – review & editing.
GA-F: Conceptualization, Data curation, Formal analysis, Writing –
original draft, Writing – review & editing. AA-S: Software, Validation,
Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by MOHERI, Oman. The grant number is (BFP/RGP/ICT/23/454).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References
Alam, A., (2022). Educational robotics and computer programming in early childhood

education: a conceptual framework for assessing elementary school students’
computational thinking for designing powerful educational scenarios. In 2022
International Conference on Smart Technologies and Systems for Next Generation
Computing (New York, USA: ICSTSN) (pp. 1–7). IEEE.

Ala-Mutka, K., (2004). Problems in learning and teaching programming – a literature
study for developing visualizations in the codewitz-minerva project, Codewitz needs

analysis. Available online at: http://www.cs.tut.fi/%7Eedge/literature_study.pdf
(Accessed December 20, 2013).

Al-Emran, M., Malik, S. I., Arpaci, I., and Mathew, R. (2021). “Comparison of e-learning,
m-learning, and game-based learning applications for introductory programming courses:
an empirical evaluation using the TAM” in Recent advances in technology acceptance
models and theories. eds. M. Al-Emran and K. Shaalan. Studies in systems, decision and
control, Springer, Cham. 335, 293–309. doi: 10.1007/978-3-030-64987-6_17

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://www.cs.tut.fi/~edge/literature_study.pdf
https://doi.org/10.1007/978-3-030-64987-6_17

Malik et al. 10.3389/fcomp.2025.1510577

Frontiers in Computer Science 12 frontiersin.org

Ardiana, D. P., and Loekito, L. H. (2020). “Gamification design to improve student
motivation on learning object-oriented programming” in Journal of physics: Conference
series. 2nd International Conference on Vocational Education and Technology (IConVET)
(Bali, Indonesia: IOP Publishing) 1516:012041. doi: 10.1088/1742-6596/1516/1/012041

Biju, S. M. (2013). “Difficulties in understanding object-oriented programming
concepts” in Innovations and advances in computer, information, systems sciences, and
engineering. eds. K. Elleithy and T. Sobh (New York: Springer) 152, 319–326. doi:
10.1007/978-1-4614-3535-8_27

Cabada, R. Z., Estrada, M. L. B., Hernández, F. G., Bustillos, R. O., and
Reyes-García, C. A. (2018). An affective and web 3.0-based learning environment for a
programming language. Telematics Inform. 35, 611–628. doi: 10.1016/j.tele.2017.03.005

Calderon, K., Serrano, N., Blanco, C., and Gutierrez, I. (2024). Automated and
continuous assessment implementation in a programming course. Comput. Appl. Eng.
Educ. 32:e22681. doi: 10.1002/cae.22681

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning
of computer programming: a literature review. Contemp. Educ. Technol. 12:ep272. doi:
10.30935/cedtech/8247

Chih-Chao, H., and Tzone-I, W. (2018). Applying game mechanics and student-
generated questions to an online puzzle-based game learning system to promote
algorithmic thinking skills. Comput. Educ. 121, 73–88. doi: 10.1016/j.compedu.2018.02.002

Davis, F. D. (1986). Technology acceptance model for empirically testing new end-user
information systems: theory and results. MA, USA: Massachusetts Institute of Technology.

De Raadt, M., (2008). Teaching programming strategies explicitly to novice
programmers', PhD thesis, University of Southern Queensland, Australia. Available at:
https://research.usq.edu.au/item/9yy76/teaching-programming-strategies-explicitly-to-
novice-programmers (Accessed June 17, 2024).

Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., and Prather, J., (2022).
The robots are coming: exploring the implications of openai codex on introductory
programming. In Proceedings of the 24th Australasian Computing Education
Conference. New York, NY, USA: Association for Computing Machinery. 10–19. doi:
10.1145/3511861.3511863

Hromkovic, J., Kohn, T., Komm, D., and Serafini, G. (2016). Examples of algorithmic
thinking in programming education. Olympiads Inform. 10, 111–124. doi: 10.15388/ioi.2016.08

Hromkovic, J., Kohn, T., Komm, D., and Serafini, G., (2019). Algorithmic thinking
from the start, The Education Column, Available online at: http://bulletin.eatcs.org/
index.php/beatcs/article/view/478 (Accessed May 10, 2024).

Hu, C., (2011). Computational thinking: what it might mean and what we might do
about it. In Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, New York, USA: ACM. 223–227.

Iqbal, S. M., Ashfaque, M. W., Mathew, R., Jabbar, J., Al-Nuaimi, R. S., and Al-sideiri,
A. (2022). Fostering the learning process in a programming course with a Chatbot. Int.
J. Online Pedagog. Course Des. 12, 1–17. doi: 10.4018/IJOPCD.306686

Iqbal, S. M., and Coldwell-Neilson, J. (2018). Gender differences in an introductory
programming course: new teaching approach, students’ learning outcomes, and
perceptions. Educ. Inf. Technol. 23, 2453–2475. doi: 10.1007/s10639-018-9725-3

Katai, Z. (2014). The challenge of promoting algorithmic thinking of both sciences
and humanities-oriented learners. J. Comput. Assist. Learn. 31, 287–299. doi:
10.1111/jcal.12070

Kazemitabaar, M., Ye, R., Wang, X., Henley, A. Z., Denny, P., Craig, M., et al. (2024).
“Codeaid: evaluating a classroom deployment of an llm-based programming assistant
that balances student and educator needs” in Proceedings of the CHI conference on
human factors in computing systems. New York, NY, USA: Association for Computing
Machinery. Article 650, 1–20. doi: 10.1145/3613904.3642773

Khan, I., Al-Mamari, A., Al-Abdulsalam, B., Al-Abdulsalam, F., Al-Khansuri, M.,
Iqbal Malik, S., et al. (2021). “A machine learning classification application to identify
inefficient novice programmers” in Advances in visual informatics: 7th international
visual informatics conference, IVIC 2021, Kajang, Malaysia, November 23–25, 2021,
proceedings 7 (Switzerland: Springer International Publishing), 423–434.

Kiss, G., and Arki, Z. (2017). The influence of game-based programming education on
algorithmic thinking. Procedia. Soc. Behav. Sci. 237, 613–617. doi: 10.1016/j.sbspro.2017.02.020

Kölling, M., and Rosenberg, J., (1996). BlueJ – a language for teaching object-oriented
programming. Proceedings of the twenty-seventh SIGCSE technical symposium on

Computer science education. New York, NY, USA: Association for Computing
Machinery. 190–194. doi: 10.1145/236452.236537

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., and Burnett, M. M.,
(2016). Programming, problem solving, and self-awareness: effects of explicit guidance.
Proceedings of the 2016 CHI conference on human factors in computing systems. New
York, NY, USA: Association for Computing Machinery. 1449–1461. doi:
10.1145/2858036.2858252

Majid, N. A. A. (2014). Integration of web 2.0 tools in learning a programming course.
Turk. Online J. Educ. Technol. 13, 88–94. Available at: https://www.tojet.net/articles/
v13i4/13410.pdf (Accessed June 17, 2024).

Malik, I. S., and Coldwell-Neilson, J. (2017). Impact of a new teaching and learning
approach in an introductory programming course. J. Educ. Comput. Res. 55, 789–819.
doi: 10.1177/0735633116685852

Malik, I. S., Mathew, R., and Hammood, M. M. (2019). “PROBSOL: a web-based
application to develop problem-solving skills in introductory programming” in Smart
technologies and innovation for a sustainable future. Advances in science, Technology
& Innovation (IEREK interdisciplinary series for sustainable development). eds. A. Al-
Masri and K. Curran (Germany: Springer), 295–302.

Mathew, R., Malik, S. I., and Tawafak, R. M. (2019). Teaching problem solving skills
using an educational game in a computer programming course. Inform. Educ. 18,
359–373. doi: 10.15388/infedu.2019.17

Shuhidan, S. M.. (2012). Probing the minds of novice programmers through guided
learning, PhD thesis, retrieved July 2024, RMIT University: Australia.

Sohail, I. M., Al-Emran, M., Mathew, R., Tawafak, R., and AlFarsi, G. (2020).
Comparison of E-learning, M-learning and game-based learning in programming
education–a gendered analysis. Int. J. Emerg. Technol. Learn. 15, 133–146. doi:
10.3991/ijet.v15i15.14503

Sohail, I. M., Mathew, R., Tawafak, R. M., and Khan, I., (2019). Gender difference in
perceiving algorithmic thinking in an introductory programming course. In
EDULEARN19 Proceedings (Valencia, SPAIN: IATED) 8246–8254.

Teo, T. (2009). Modelling technology acceptance in education: a study of pre-service
teachers. Comput. Educ. 52, 302–312. doi: 10.1016/j.compedu.2008.08.006

Thongkoo, K., Daungcharone, K., and Thanyaphongphat, J. (2020). “Students’
acceptance of digital learning tools in programming education course using technology
acceptance model” in 2020 Joint International Conference on Digital Arts, Media and
Technology with ECTI Northern Section Conference on Electrical, Electronics,
Computer and Telecommunications Engineering (ECTI DAMT & NCON) (New York,
USA: IEEE), 377–380.

Végh, L., and Czakóová, K. (2023). Possibilities of using games in teaching and
learning the basic concepts of object-oriented programming, INTED2023 proceedings,
17th International Technology, Education and Development Conference, 5329–5334,
IATED, doi: 10.21125/inted.2023.1383

Wang, H. Y., Huang, I., and Hwang, G. J. (2016). Comparison of the effects of project-
based computer programming activities between mathematics-gifted students and
average students. J. Comput. Educ. 3, 33–45. doi: 10.1007/s40692-015-0047-9

Wang, X. M., Hwang, G. J., Liang, Z. Y., and Wang, H. Y., (2017). Enhancing students’
computer programming performances, critical thinking awareness and attitudes towards
programming: an online peer-assessment attempt. J. Educ. Technol. Soc. 20: 58–68.
Available online at: www.jstor.org/stable/26229205 (accessed February 3, 2020).

Webster, M., (1994). Overview of programming and problem solving, Merriam-
Webster's Collegiate Dictionary, 10. Merriam-Webster, Springfield, MA. Available at:
https://samples.jbpub.com/9781284028645/Programming6e_CH01.pdf (Accessed June
13, 2024).

Winslow, L. E. (1996). Programming pedagogy-a psychological overview. ACM Sigcse
Bull. 28, 17–22. doi: 10.1145/234867.234872

Zainal Abidin, Z., and Abdullah Zawawi, M. A. (2020). OOP-AR: learn object oriented
programming using augmented reality. Int. J. Multimed. Recent Innov. 2, 60–75. doi:
10.36079/lamintang.ijmari-0201.83

Zhong, X., and Zhan, Z. (2024). An intelligent tutoring system for programming
education based on informative tutoring feedback: system development, algorithm
design, and empirical study. Interact. Technol. Smart Educ. 22, 3–24. doi:
10.1108/ITSE-09-2023-0182

https://doi.org/10.3389/fcomp.2025.1510577
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.1088/1742-6596/1516/1/012041
https://doi.org/10.1007/978-1-4614-3535-8_27
https://doi.org/10.1016/j.tele.2017.03.005
https://doi.org/10.1002/cae.22681
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.1016/j.compedu.2018.02.002
https://research.usq.edu.au/item/9yy76/teaching-programming-strategies-explicitly-to-novice-programmers
https://research.usq.edu.au/item/9yy76/teaching-programming-strategies-explicitly-to-novice-programmers
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.15388/ioi.2016.08
http://bulletin.eatcs.org/index.php/beatcs/article/view/478
http://bulletin.eatcs.org/index.php/beatcs/article/view/478
https://doi.org/10.4018/IJOPCD.306686
https://doi.org/10.1007/s10639-018-9725-3
https://doi.org/10.1111/jcal.12070
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1016/j.sbspro.2017.02.020
https://doi.org/10.1145/236452.236537
https://doi.org/10.1145/2858036.2858252
https://www.tojet.net/articles/v13i4/13410.pdf
https://www.tojet.net/articles/v13i4/13410.pdf
https://doi.org/10.1177/0735633116685852
https://doi.org/10.15388/infedu.2019.17
https://doi.org/10.3991/ijet.v15i15.14503
https://doi.org/10.1016/j.compedu.2008.08.006
https://doi.org/10.21125/inted.2023.1383
https://doi.org/10.1007/s40692-015-0047-9
http://www.jstor.org/stable/26229205
https://samples.jbpub.com/9781284028645/Programming6e_CH01.pdf
https://doi.org/10.1145/234867.234872
https://doi.org/10.36079/lamintang.ijmari-0201.83
https://doi.org/10.1108/ITSE-09-2023-0182

	Investigating the impact of the OOP-SOLVE application on the user’s behavior using the technology acceptance model in the programming course
	1 Introduction
	2 Literature review
	2.1 Research questions

	3 Research methodology and design
	4 Introduction to OOP-SOLVE application
	5 Results
	5.1 Participants
	5.2 Procedure
	5.3 Findings
	5.4 Reliability analysis
	5.5 Hypothesis testing
	5.6 Semi-structured interviews with object-oriented programming course lecturers
	5.6.1 First impression of OOP-SOLVE application
	5.6.2 Students’ experience with OOP-SOLVE application
	5.6.3 Impact of OOP-SOLVE application on students’ learning
	5.6.4 Strengths of the OOP-SOLVE application
	5.6.5 Weaknesses of the OOP-SOLVE application
	5.6.6 Suggestions to improve the OOP-SOLVE application

	6 Discussion
	7 Conclusion
	7.1 Implications for future research

	References

