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Modern distributed systems store thousands of gigabytes of information in persistent 
relational database management systems. It is the core storage component for 
microservice-based architectures. Due to the peculiarities of internal storage 
mechanisms, the total query processing time may exceed the service level 
agreement value. A common solution is to add a caching layer between the 
database management system and the service. However, maintaining the cache 
in a consistent state across all service replicas is a challenging task. We believe 
we can design a caching system with a consensus algorithm to meet modern 
service level agreement requirements. Firstly, we outline the role of caching in a 
distributed systems context. Secondly, we clarify our consistency model choice. 
Thirdly, we analyze existing distributed systems and their consistency guarantees to 
outline the absence of a solution that can fit our requirements. Finally, we develop 
the architecture of the caching system.
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1 Introduction

Caching is widely used in software design and development as an element of optimization 
under growing data volume. Among other things, it is widely used in fault-tolerant distributed 
systems to speed up query processing and minimize interaction with persistent DBMSs. 
Nevertheless, there are many challenges associated with cache implementation in distributed 
systems. In particular, maintaining strong system consistency with caching, as well as maintaining 
an acceptable query processing speed, is quite challenging. Existing solutions weaken one of the 
dimensions. Some works (Hamdard University, 2017; Liu et al., 2019; Pang et al., 2019; Weitzel 
et al., 2019; Cotroneo et al., 2020; Torabi et al., 2024) utilize subject matter specificity to maintain 
low query processing latency and strong consistency. Existing general-purpose caching systems 
such as Redis have quite extensive functionality, but they do not guarantee strong data consistency. 
For this reason, designing an application software system is quite complex and requires additional 
financial and human resources to embed caching (Leesatapornwongsa et al., 2016; Ganesan et al., 
2017; Berger et al., 2018; Lukman et al., 2019; Strati et al., 2024; Torabi et al., 2024).

The aim of this paper is to close the gap in distributed caching systems with strong 
consistency. The paper presents the adaptation of Raft’s distributed consensus algorithm for 
our caching system to achieve linearizability. We optimized Raft’s customization points with 
respect to the general features of a general-purpose caching system. Next, we tested our system 
and its Redis Cluster counterpart in a special environment that can simulate different types of 
failures. Our results will help to make more informed decisions in the future when 
implementing caching in distributed fault-tolerant systems. In particular, we believe that our 
results will help in designing complex microservice-based architectures.

This paper is structured as follows. Section 2 describes the problem of distributed system 
data consistency and justifies our consistency model choice. Section 3 describes our methodology 
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to design the architecture of distributed caching. Section 4 describes the 
results obtained and provides a discussion of the results. Section 5, 
Conclusion, gives suggestions for practical applications of our results.

2 The role of caching in distributed 
systems

2.1 Distributed information systems and 
caching

Modern software products are developed taking into account their 
possible failure. A failure means that the information system is 
unavailable for communication for a long period of time. Fault 
tolerance defines the types and number of failures a system can 
survive. There are different ways to achieve the desired level of fault 
tolerance. The basic element of all such mechanisms is replication. 
Replication allows the system to survive a finite number of failures. It 
is quite easy to implement in systems that do not store internal state, 
i.e., data that can affect the processing of a request. This data is stored 
in a persistent DBMS (Database Management System) that guarantees 
that all instances of the service operate on the same copy of the data. 
An example of such a system is applications built on the basis of 
microservice architecture. Figure 1 shows a model of a distributed 
application with no internal state.

Figure 1 represents three service instances. Each instance runs the 
same application business logic. The key point of this architecture is 
the absence of internal state on service nodes. All state is stored in the 
persistent DBMS. It should be noted that Figure 1 does not include the 
network communication protocol as well as the load balancer, since 
they do not significantly affect the model. This approach has the 
following advantages:

 • The ability to discreetly change the configuration: input and 
output of service instances;

 • High fault tolerance: if N instances of the service are put into 
operation, the system can survive N-1 failures.

The advantages outlined above make this architectural style the 
most popular. At the same time, one of its main disadvantages is a high 
latency when working with a database of large sizes. Cache is a 
common solution to improve the performance of the previously 
mentioned model. Cache allows faster interaction with a large-sized 
database. Figure 2 shows a model that utilizes the caching technique.

The model uses in-memory storage of key-value type as a cache. 
The model has the advantage that the issue of data consistency is left to 
the third-party software. Typically, the third-party software is deployed 
as a separate process. Figure 3 presents a model of such a service.

Such a model adds internal state in the form of a local cache copy 
to the service. This internal state can lead to data consistency violation. 
To avoid this, it is necessary to choose a consistency model. The model 
must satisfy the requirements of distributed storage. As a result, the 
requirements for the system under development are formulated 
as follows:

 • Transparency to outside observers: a user or a third party sending 
a request to the system should not be able to distinguish between 
execution with and without the cache;

 • The implemented system must introduce the lowest possible 
overhead; otherwise, the use of the cache will be unjustified.

Thus, the system should be a distributed data structure, a hash table, 
with which it will be as easy to work as with the usual, unallocated data 
structure. Any distributed caching system is designed for strictly defined 
purposes. For example, the work (Rodriguez et al., 2021) deliberately 
eschews cache replication in favor of sharding, as the main goal in the 
work is scaling and load balancing depending on the demand for writes. 
The main requirement for Google Zanzibar is to preserve the order of 
user transactions (Liu et al., 2019; Pang et al., 2019). This property is 
critical for authorization services. As failure to preserve the order can 

FIGURE 1

A common microservice model.
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lead to arbitrary access to sensitive data by an unauthorized user. The 
Zanzibar system uses caching for “hot” data, where each server replica 
has a transaction cache. And the entire system provides strict 
consistency guarantees. However, the cache architecture relies on unique 
features of the authorization system. For this reason, the Zanzibar cache 
design cannot be easily adapted to other software solutions.

2.2 Consistency models

The consistency model distinguishes acceptable behavior from 
incorrect behavior. Behavior is usually described as a history of 

observed system events. Typical events are reading and writing a 
value. In addition, the consistency model captures the level of system 
availability shaped by the following weaknesses of distributed systems:

 • Node failure;
 • Brain split;
 • Node operation delay (node may process a request for a long 

time, i. e., garbage collector may delay operation or operating 
system may preempt process from execution).

Explicit identification of such problems is non-trivial and 
complicates the implementation of the consistency model. At the same 

FIGURE 2

The model with the cache.

FIGURE 3

The model with the embeded cache.
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time, the occurrence of any of them in most cases leads to a significant 
delay in the cluster operation. Therefore, for simplicity in consistency 
models, a node can be in one of two states: available or unavailable 
for communication.

Figure 4 shows the relation of consistency models adapted from 
(Bailis et  al., 2013; Viotti and Vukolić, 2017). The left branch of 
consistency models is of interest for systems implementing distributed 
transactions. As an example, relational database management systems 
use distributed transactions. However, distributed transactions are not 
typical for caches. Therefore, they are not considered here. The models 
from the right branch are used in various kinds of data warehouses or 
data processing services. The characteristic of the right branch models 
is presented in Table 1.

In our case, the main goal is to prefer real-time ordering of 
operations. It is an essential feature of our system, since the system 
must modify cache data. In consequence, we  chose to use the 
“Linearizability” model to implement the cache. The main reason 
behind our decision is the ability of a linearizable system to preserve 
operation order. Additionally, a linearizable system is composite. This 
means that we can easily integrate our caching system with other 
linearizable components. In this way, the whole system will provide 
linearizable consistency. Note that the practical implementation of any 
linearizable system is built on a quorum collection operation. To 
guarantee that a value is reliably stored on replicas, it is necessary to 
send queries to all cluster members and wait for a response from the 
majority of nodes. For example, in the case of three servers, it is 
necessary to wait for the result of two queries; in the case of five, three 
results are needed, etc. Hence, the system has overhead for network 
requests at the stage of selecting a consistency model. Therefore, the 
final system may not be suitable for low-latency software products. An 
example of such a product is video streaming applications.

2.3 Linearizability

The construction of a linearizable system reduces to solving a 
consensus problem. The essence of consensus is to choose some value 
by all nodes of the system. The chosen value must satisfy the properties 
of agreement, validity, and finiteness/completeness. The agreement 
means that all nodes have chosen the same value at the next iteration. 
The finiteness property states that the consensus algorithm must 
return a result in a deterministic time interval and cannot run 
indefinitely. Validity is that the value chosen by the algorithm must 
be offered by some consensus participant.

Currently, there are two main algorithms to solve this problem: 
Paxos and Raft. The Paxos algorithm is the very first variant of 
providing consensus. It is used in such DBMSs as Neo4j and Cassandra 
to select the replication leader. This algorithm has many customization 
points. For example, Paxos does not require a leader in a cluster, nor 
does it describe a sequence for changing the composition of its nodes. 
Paxos distinguishes two node roles: accepting node and offering node. 
The offering node processes the client request while the receiving node 
commits the value. The algorithm uses two phases to make a decision: 
collecting the willing to accept the next value and committing that 
value. The Paxos algorithm is more of a protocol template. Thus, the 
final algorithm needs to be thoroughly designed for industry-scale use.

The main advantage of the Raft algorithm is the existence of a 
clear specification of both the algorithm itself and its implementation. 
This algorithm fills in the customization points that Paxos has. For 
example, Raft fixes the stage of replication leader selection. The 
algorithm defines the following node roles:

 • Candidate for becoming a leader in case the current leader fails;
 • Replication leader who makes the decisions;

FIGURE 4

The consistency models relationship.
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 • Follower, i.e., replication node.

As part of the algorithm’s operation, candidates send their 
identifiers to all nodes, signaling that they are in a working state. In 
case of leader failure, the candidate sends a special message to the 
others. This special message signals an attempt to become a cluster 
leader. Each node responds with an acknowledgment or rejection. 
The reply message always contains a field with the address of the 
current leader. Thus, the race of candidates for cluster leader status is 
eliminated in the system (Ongaro and Ousterhout, 2014). Based on 
the presented arguments, we can conclude that the Raft algorithm is 
the most suitable for the realization of the caching system, since there 
are reference implementations and open-source tools. It allows us to 
test the correctness of the system based on it.

2.4 Production caching systems

Quite a large number of organizations and enthusiasts are engaged 
in research and development of distributed caching systems (Hamdard 
University, 2017; Berger et al., 2018; Abdi et al., 2021; Strati et al., 2024; 
Torabi et  al., 2024). The most well-known industrial variants are 
Memcached, Redis, Memcache, Dragonfly, and KeyDB. The following 
criteria were chosen for their analysis:

 • Provided consistency model;
 • Supported data structures;
 • Provided client libraries and SDKs for various 

programming languages;
 • Provided deployment process.

The consistency model allows selecting the appropriate product 
for the needs of a particular application. Supporting the necessary 

model at the level of the final product reduces development costs. 
Hence, when the developer designs or implements the system, it is 
possible to eliminate the stage of introducing additional components 
to achieve the necessary consistency guarantees. Supported structures 
allow increasing the scope of the product application. Because of that, 
the end user does not have to build the necessary data structures on 
top of the basic key-value storage. Support for various programming 
languages allows the systems to be  applied to complex software 
products. It is particularly important since software products may 
accumulate a large technology stack. The complex deployment model 
affects the maintenance and support of the software product. When 
separate deployment units are required to implement a cacheable 
system, one has to add monitoring of yet another component. This can 
have a negative impact on the whole system.

Memcached stores key-value data in RAM. It is essentially a server 
with associative data storage. The product supports client libraries for 
most programming languages. A server binary and configuration file 
are required for deployment. Memcached within a single server 
guarantees the strongest consistency, while maintaining a cluster in 
the required state falls on the end user. Memcached is the simplest and 
fastest solution compared to other analogs.

The popular Redis Cluster provides storage with various data 
structures (strings, lists, hash tables, ordered containers, and 
geo-reference index). The product uses client–server architecture. For 
its operation, it is necessary to deploy a separate server to which 
requests from applications are received. Redis Cluster supports client 
libraries for most programming languages. The basic version 
guarantees strong consistency within a single node but does not 
guarantee it for a cluster of servers. Thus, Redis guarantees finite 
consistency and cannot be used in linearizable systems. Deployment 
follows a typical client–server model. There is a separate server 
consisting of replicas where user data is stored. And there is a client 
library that allows sending requests to the server.

TABLE 1 Description of consistency models.

The model Description

Read your writes The model guarantees that a process that makes a write w and then performs a read r will see the write w. This model does not require processes to see 

each other’s records.

Monotonic 

Writes

The model guarantees that if a process has executed record w1 and then executed record w2, other processes observe record w1 before record w2. This 

model does not require an order relation between records of different processes.

Monotonic 

Reads

The model ensures that if a process performs a read r1 and then a read r2, the read r2 cannot observe the records preceding the records reflected in r1, 

i.e., the read cannot go backwards. Also, like the previous models, monolithic reads do not extend to reads from different processes, focusing only on 

reads from a single process.

Writes follow 

reads

The model ensures that if a process reads a value that came about because of a write w1 and then performs a write w2, the effect of w2 must be seen after 

w1, i.e., once something is read, one cannot change a past read.

Pipeline Random 

Access Memory

The model is introduced to relax stricter coherent memory models to achieve more efficient and performant parallelism; it ensures that any pair of writes 

made by one process is observed by any other processes in the order in which they are executed by the executing process, but writes executed by different 

processes may be observed in different orders.

Causal 

consistency

The model supports the order of operations. There is a causality important to the application that is observable by all processes, but the order for 

operations between which there is no causality will not be the same for all processes.

Sequential 

consistency

The model guarantees that the order of operation execution occurs in some linear sequence. This sequence is consistent with the order of operations on 

each individual process. However, it does not guarantee linear order among all nodes, i.e., at any given time a process may be overtaking or lagging 

behind others.

Linearizability The model guarantees that each operation occurs atomically, in some order consistent with the order of these operations in real time; linearizability is 

composite: if a system consists of many linearizable modules, then the whole system is linearizable as well.
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Memcached, unlike Redis Cluster, has no built-in replication 
mechanism and is used to implement Memcache-type systems 
(Cotroneo et al., 2020). The latter works on the principle of third-party 
cache. The application first checks the presence of data in the cache. 
In case of a cache miss, it accesses the persistent storage. The main 
architectural emphasis is on reducing the number of queries to the 
persistent database. Applications use a special library to interact with 
the system, hiding all cache logic. Thus, Memcache allows you  to 
independently vary the number of cache servers, replicas, database 
management system types, and services. This variety allows meeting 
the needs of a particular application. Memcache supports only the 
key-value data structure. The main advantage of Memcache over Redis 
Cluster is the built-in leasing mechanism. Leasing solves a well-known 
problem in distributed systems called “thundering herd.” The problem 
arises when many threads or processes try to work with a resource. 
However, only one of these processes can access the resource. In a 
caching system, it occurs when services detect the absence of the same 
data and try to insert them into the cache, having received them from 
an external source beforehand. This situation can offset all the benefits 
of caching by multiplying the load on the external source. The leasing 
mechanism eliminates this disadvantage. Memcache facilities issue a 
special token to one client, which grants the right to only one service 
to update the cache.

Deployment of the system is non-trivial as it is not a final product 
unlike Redis and Memcached. Instead, Memcache is a set of utilities 
and tools on top of Memcached. To deploy it, you need a Memcached 
executable and a client library for the programming language. You also 
need to run a program that polls replicas for their state. A database 
management system-specific plugin is required to reduce the 
inconsistency window. The plugin sends a delete request to 
Memcached replicas if data changes.

The KeyDB product is relatively new and is fully compatible with 
Redis. It differs from its analogs by supporting multithreaded query 
processing. This feature allows KeyDB to increase throughput. KeyDB 
supports replication mode with multiple leader nodes, unlike Redis 
Cluster. It permits writing data from an arbitrary node of the cluster. 
Backward compatibility with Redis makes it possible to replace KeyDB 
with Redis Cluster while making minimal changes to the application 
code. KeyDB does not provide a strict consistency guarantee. 
However, the project team is trying to introduce linearizability into its 
software product.

A special feature of the Dragonfly solution is a lock scheduler. The 
lock scheduler is able to efficiently allocate locks when there is high 

query competition. This efficiency is achieved through the lightweight 
concurrency mechanics that Dragonfly uses. It is the main difference 
with its counterparts that use pessimistic concurrency control (Ren 
et al., 2015).

All analogs guarantee finite consistency at best. But all of them 
strive to minimize the window of inconsistency. An example of finite 
consistency is when a user can read outdated data if he accesses a 
replica that has not been reached by a deletion request. Redis Cluster 
tools guarantee consistency if the client is working with the same 
replica. Otherwise, the consistency model is not documented. Table 2 
shows the results of the peer comparison.

An important criterion for choosing any software product is to 
support target functions “out of the box.” This greatly simplifies the 
development cycle. Within a distributed caching system. It is desirable 
to support the target consistency model “out of the box,” as well as to 
have a wide set of libraries for application programming and 
performance analysis. Redis Cluster and KeyDB have such properties. 
Both systems are complete software products. However, it should 
be noted that Redis Cluster is more widely used in industrial systems, 
so its features have been studied and tested in real conditions much 
more thoroughly. The entire focus of the Memcache architecture is to 
minimize interaction with the database. For the same reason, 
Memcache supports only one programming language and has a 
complex deployment architecture. The KeyDB product is similar to 
Redis Cluster except for one aspect: KeyDB supports multithreaded 
query processing. The main disadvantage of KeyDB is the lack of 
client libraries. All communication is done through a text-based 
network protocol. The Dragonfly product provides a built-in cluster 
failure detection mechanism that allows it to automatically recover 
from failures. Otherwise, Dragonfly is fully compatible with Redis 
Cluster. None of the counterparts provide strong consistency 
guarantees, and accordingly, none of them can be used in critical 
infrastructure systems.

3 The distributed cache architecture

3.1 High-level architecture

Redis Cluster, Memcache, KeyDB, and Dragonfly solutions 
guarantee eventual consistency of data. The eventual consistency 
model allows replica data to differ temporarily. Hence, cluster 
synchronization is achieved only if the system does not receive 

TABLE 2 Comparison of caching system analogs.

Solution Consistency model Supported data 
structures

Clients and SDK Deployment

Memcached Linearizability among single server Key-value The majority of modern 

programming languages

Single server

Redis Cluster Eventual consistency Key-value, list, hash-table. The majority of modern 

programming languages

Cluster of servers

Memcache Eventual consistency Key-value PHP Cluster of servers, service for detecting 

failures, plugin for DBMS

Dragonfly Eventual consistency Key-value, list, hash-table. Go, Python, Java Cluster of servers

KeyDB Linearizability with one leader, eventual 

consistency at leader failure

Key-value, list, hash-table. Go, Text-based protocol RESP Cluster of servers
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modification requests for a certain period of time. Otherwise, 
consistency is guaranteed in case of a client communicating with 
the same node. Therefore, for a user, the “world picture” is defined 
by the replica with which he is working. For systems where the 
causality of actions is important (observance of the order of 
operations initiated by the user or an external application), the 
model with eventual consistency is unacceptable. As a result, 
additional components need to be designed and implemented to 
achieve the necessary guarantees. Besides, some analogs presented 
above are not a single product but consist of a set of basic 
components and additional modules. These components and 
modules require a full cycle of software development. Based on the 
comparison of analogs in Table  2, we  can formulate the 
requirements for the mechanisms (tools) of the designed system:

 • Support for different eviction policies from the cache;
 • Support for different programming languages is required, as the 

final implementation environment may use different technologies.

The client library architecture of the target system is divided into 
two levels. This division is due to the fact that the logic of working 
with the cluster is identical for all programming languages. Only the 
specificity of the means of expression differs. For example, Python and 
C# use coroutines and the await operator to work with asynchronous 
operations, while Java uses threads without special language syntax. 
The first level of client libraries is implemented in the C++ 
programming language and contains the basic algorithms and data 
structures for interacting with replicas of the caching system. The 
second level is a “wrapper” for the target programming language that 
works with the first level using cross-lingual interaction mechanisms. 
Based on the TIOBE rating, three target variants for which “wrappers” 
are implemented are chosen: Java, C#, and Python. The client and 
server contain much similar logic. Because of the logic similarity, 
we designed and implemented a library of common components with 
the requirements listed below:

 • Support for different I/O multiplexing mechanisms; each 
platform has its own specialized I/O facilities. Not all runtime 
environments accept third-party networking solutions;

 • The ability to change the algorithm for scheduling asynchronous 
operations and their handlers, taking into account the specifics 
of the programming language runtime environment, for example, 
in Python, additional synchronization is required to meet the 
requirements of the language standard regarding thread safety of 
the executable code, while in other programming languages such 
a requirement either does not exist or can be defined by the 
library user.

Figure 5 shows the class diagram of the I/O module of the library.
The EventLoop class provides a high-level interface to work with 

the I/O multiplexing mechanism. All system calls must 
be  synchronized, i.e., their competitive execution is prohibited. 
Violation of this requirement can lead to a program crash at best. 
Therefore, the EventLoop class hides the synchronization of these 
system calls behind its interface. A thread is associated with each 
object of this type. The user must explicitly run one of the Run, 
RunOnce, or RunForever methods to initiate an event loop. If some 
I/O logic needs to be scheduled, the RunInEventLoopThread method 
is provided, whose only parameter is the function scheduled for 
execution in the event loop thread. The EventLoopNotification-Queue 
class is used to securely pass handler functions between threads. It is 
important to note that the RunInEventLoopThread method 
implements an asynchronous message-passing pattern. The method 
adds a function to the queue and sends a notification to wake up the 
event loop if necessary. The notification is sent using the Notifier 
abstract class. The EventLoopBackend, Event, and Notifier classes hide 
the platform-dependent implementation of I/O multiplexing 
mechanisms, thus allowing easy integration of the client library into 
different programming languages and platforms. For example, the 
classes are shown in Figure 6.

Depending on the platform, the implementation of some types 
may vary. For example, for newer versions of the Linux kernel, the 
io_uring mechanism is supported, which allows efficient operation 
not only with networking but also with file I/O (Joshi et al., 2024). 
Therefore, this implementation is preferred but is only available for 
kernel versions above 5.11. For older kernel versions, the 
implementation uses system calls of the epoll family to handle 
networking and a separate thread pool to handle files on the hard disk.

FIGURE 5

The core IO module class diagram.
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FIGURE 7

Server components.

3.2 The server architecture

The server performs the main data handling operations: 
replication, eviction of obsolete records, and integrity checking. In 
addition, the main task of the server is the ability to handle the load 
generated by users while effectively utilizing the resources of the 
environment in which it operates. Therefore, the server architecture 
emphasizes the ability to modify mechanisms for working with 
external memory, networking, and query execution scheduling 
algorithms. Figure 7 presents a diagram of the server components.

The client interacts with the server through gRPC technology. The 
QueryProcessor component contains the logic for processing gRPC 
calls. To efficiently process incoming requests, QueryProcessor uses 
the interfaces provided by the core component. The consensus 
component is responsible for data replication and reliable storage of 
metainformation for recovery in case of failure. The storage module is 
used to store data on disk.

Figure 8 shows an interaction diagram that describes the sequence 
of calls when processing a request from a client.

When a request is received, the following steps are performed. 
First, the request data is written to disk to allow recovery in case of 
failure. Second, the data is sent to replicas via the CollectMajority 
method. Third, a successful response is awaited from the majority. 
Finally, the response to the client’s request is sent. It should be noted 
that most of the request processing time is spent waiting for a response 
from the cluster. The consensus module implements the Raft 
algorithm. The module reliably replicates all cache data, as well as 
metadata necessary for the eviction algorithm used. The module 
periodically evicts redundant data from the disk. The consensus 
module evicts the information about evicted or deleted keys and 
their values.

To be able to interact with the server, client libraries and tools have 
been designed in SDK format for different programming languages. 
There are two main approaches to client SDK development:

FIGURE 6

Core IO class implemantations.
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 • Using the network protocol, client libraries are fully implemented 
in the target programming language;

 • Using cross-lingual interaction, the main logic of the client’s work 
is realized in one programming language, and a wrapper is 
written for other languages using cross-lingual 
interaction technologies.

We chose the second option. The main reason for this choice is the 
lower development and release costs of new library versions. The code 
in the target programming language, in fact, only wraps the main 
component, so when making changes that do not affect the API, it is 
enough to replace one file of the dynamic library. Given that all cross-
lingual communication mechanisms use dynamic libraries to handle 
code in a third-party programming language, swapping out an 
application’s dynamic library file is sufficient to release a new version. 
Figure 9 shows the components of a client library for Python.

As mentioned above, designed wrappers have one goal: to separate 
the core part implementing communication with a cluster from the 
part containing language-specific details.

4 Results and discussion

We compared our linearizable cache with Redis Cluster to evaluate 
the performance of the designed cache. Redis Cluster is a popular 
distributed caching system with eventual consistency. Eventual 
consistency, by definition, can process requests faster than a 
linearizable system. We compared the performance of both systems, 
and their fault-tolerance behavior. To emulate faulty node operation, 
we designed the testing tool based on Docker. Every node is deployed 
in a separate docker-container with a TCP-proxy. This allows us to set 
up a faulty environment directly in the test code. Table 3 summarizes 
the node failure cases and their implementation.

Table  4 summarizes the read operation benchmark for each 
system. The benchmark sends read requests with a randomly 
generated key and a fixed-size value. The random key generation is 
introduced to load on the key eviction component.

As can be seen, the read time in the Redis Cluster product is about 
20 ms slower than the proposed solution. This difference is due to the 
peculiarity of the operation implementation. More specifically, every 
operation involves a consensus algorithm invocation. The invocation 
is needed to make sure that the requested value is relevant. In 
particular, it is necessary to find out the value of the key from other 
nodes and return the value corresponding to the majority.

The read operations do not involve modifications to the node’s 
internal state. Conversely, write operations involve heavy modification 
steps to the internal node state. We measured write request processing 
latency (Table 5).

The write operation timing of our system is significantly slower 
compared to Redis Cluster. This timing difference is due to the 
peculiarities of the consensus protocol: the need to synchronously write 
data to disk, as well as to wait for a response from the majority of replicas.

We compared the behavior of systems under different failures to 
show the difference in consistency guarantees. Table  6 shows the 
results of the fault tolerance tests.

The Redis Cluster solution seems to be prone to data loss in case 
of a node failure. More specifically, if data is stored on the failed nodes, 
it is very likely to be lost. Furthermore, splitting the network into two 
clusters results in two Redis Cluster leaders, each replicating different 
records to the available nodes. Once the network is restored, the 
cluster is in a non-consistent state, and the client’s “world picture” 
depends on the node from which it reads data. The proposed solution 
is devoid of these shortcomings as it uses a more rigorous consistency 
model. Consequently, our model affects the level of system availability; 
i.e., in case of failure of the majority of cluster nodes, the system under 
test becomes completely unavailable. Particularly, it means the system 
is unable to process client requests. Under the same conditions, the 
Redis Cluster is able to process requests if at least one node is 
functioning. Based on evaluation results, we can outline the following 
advantages of our distributed cache design:

 • Strong consistency guarantees;
 • Acceptable request processing timings, taking into account the 

heavy synchronization algorithm.

FIGURE 8

Request processing steps.
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We also compared the behavior of our system with different cluster 
configurations. Read and write operations were compared in clusters 
consisting of three, five, and seven nodes. We tested the cluster on a 
single machine where each node was running in a docker-container. 
Figure 9 presents the read operation’s quantiles in milliseconds.

The read operation appears to be highly scalable. We noticed that 
the absence of a key in the system and its presence do not significantly 
affect the read operation performance. To fully understand the cluster 
size impact on the performance, we compared the quantiles of the 
write operation. Figure 10 shows the results.

The request timings are quite higher than those of read operations. 
Notably, our test environment is local, meaning network latency does not 
cause the timings. The performance of the seven-node cluster in the 
ninety-ninth percentile is interesting. This cluster underperforms the 
other cluster setups by almost 50 milliseconds. Currently, we  are 

investigating the reasons for this high latency. However, we concluded 
that the main reason flaws in our storage system. All seven nodes were 
heavily writing to the same underlying storage device on a single machine.

The authors are aware of the shortcomings of the environment in 
which the system is tested. The presented docker-based testing 
framework is far from real production-scale clusters or cloud 
environments. Our testing model cannot simulate all real-world 
distributed system problems, such as fiber optic cable failure, data 
center outage, and others. We also recognize the lack of high load in 
our test environment. We are currently investigating ways to address 
these shortcomings of our test environment. We  have reserved a 
Kubernetes cluster in Yandex Cloud to deploy our system. The authors 
are currently developing algorithms and tools to create a load on our 
system similar to a real production scale environment.

5 Conclusion

The authors of the paper have designed a system whose main 
purpose is to become an intermediate link between a distributed DBMS 
and a microservice. This system will improve the query processing time 
while maintaining strict consistency of data. We designed the runtime 
part of the cache to make integration more flexible. We  have also 
designed the client application to interact with the caching system. The 
test results indicated that our system is slightly inferior in performance 

FIGURE 9

The read operation percentiles comparison.

TABLE 3 Failure implementation.

Failure type Docker operation

Node failure Stopping the docker container

Network partition Creating a second docker network and moving 

some containers to it

Network delay TCP-proxy command for packet delay

Disk failure Changing write permissions in a container

TABLE 4 Percentiles of reading request processing time, ms.

Benchmark Delay percentiles, ms

P25 P50 P80 P90 P99

Redis Cluster 17 26 53 70 150

Testing solution 18 30 65 95 171

TABLE 5 Percentiles of time for processing write requests, ms.

Benchmark Request processing timing percentiles

P25 P50 P80 P90 P99

Redis Cluster 20 31 63 83 162

Testing solution 30 49 82 113 230
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to Redis Cluster. More specifically, if the number of writes is significantly 
less than the number of reads, our system is almost as efficient as Redis 
Cluster. These results mean that consensus-based caches can 
be integrated into production environments with read-heavy loads.

We are planning to investigate more extensively the place of the 
developed system among analogs and other consistency models. For 
this purpose, metrics, indicators, and algorithms for their collection 
are currently being developed. It will help to obtain a more accurate 
and rigorous picture of the distributed caching system operation.
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TABLE 6 Fault-tolerance tests.

Solution Leader failure Replica 
failure

Splitting the cluster into two 
networks

High latency in 
single node 
operation

Failure of the 
majority of 
nodes

Redis Cluster Data loss Data loss Presence of two leaders, data consistency violation Normal operation Normal operation

Tested solution Normal operation Normal operation Normal cluster operation in a network with a large 

number of nodes

Normal operation Failure

FIGURE 10

The write operation percentiles comparison.
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