
Frontiers in Computer Science 01 frontiersin.org

Distributed caching system with
strong consistency model
Viktor Repin and Anatoly Sidorov *

Department of Data Processing Automation, Tomsk State University of Control Systems and
Radioelectronics, Tomsk, Russia

Modern distributed systems store thousands of gigabytes of information in persistent
relational database management systems. It is the core storage component for
microservice-based architectures. Due to the peculiarities of internal storage
mechanisms, the total query processing time may exceed the service level
agreement value. A common solution is to add a caching layer between the
database management system and the service. However, maintaining the cache
in a consistent state across all service replicas is a challenging task. We believe
we can design a caching system with a consensus algorithm to meet modern
service level agreement requirements. Firstly, we outline the role of caching in a
distributed systems context. Secondly, we clarify our consistency model choice.
Thirdly, we analyze existing distributed systems and their consistency guarantees to
outline the absence of a solution that can fit our requirements. Finally, we develop
the architecture of the caching system.

KEYWORDS

caching, distributed systems, linearizability, data consistency, fault tolerance, software
architecture, distributed caching, eviction policies

1 Introduction

Caching is widely used in software design and development as an element of optimization
under growing data volume. Among other things, it is widely used in fault-tolerant distributed
systems to speed up query processing and minimize interaction with persistent DBMSs.
Nevertheless, there are many challenges associated with cache implementation in distributed
systems. In particular, maintaining strong system consistency with caching, as well as maintaining
an acceptable query processing speed, is quite challenging. Existing solutions weaken one of the
dimensions. Some works (Hamdard University, 2017; Liu et al., 2019; Pang et al., 2019; Weitzel
et al., 2019; Cotroneo et al., 2020; Torabi et al., 2024) utilize subject matter specificity to maintain
low query processing latency and strong consistency. Existing general-purpose caching systems
such as Redis have quite extensive functionality, but they do not guarantee strong data consistency.
For this reason, designing an application software system is quite complex and requires additional
financial and human resources to embed caching (Leesatapornwongsa et al., 2016; Ganesan et al.,
2017; Berger et al., 2018; Lukman et al., 2019; Strati et al., 2024; Torabi et al., 2024).

The aim of this paper is to close the gap in distributed caching systems with strong
consistency. The paper presents the adaptation of Raft’s distributed consensus algorithm for
our caching system to achieve linearizability. We optimized Raft’s customization points with
respect to the general features of a general-purpose caching system. Next, we tested our system
and its Redis Cluster counterpart in a special environment that can simulate different types of
failures. Our results will help to make more informed decisions in the future when
implementing caching in distributed fault-tolerant systems. In particular, we believe that our
results will help in designing complex microservice-based architectures.

This paper is structured as follows. Section 2 describes the problem of distributed system
data consistency and justifies our consistency model choice. Section 3 describes our methodology

OPEN ACCESS

EDITED BY

Parma Nand,
Auckland University of Technology,
New Zealand

REVIEWED BY

Cheng Yunlong,
Chongqing University of Posts and
Telecommunications, China
Yanfeng Jiang,
Jiangnan University, China

*CORRESPONDENCE

Anatoly Sidorov
 anatolii.a.sidorov@tusur.ru

RECEIVED 14 October 2024
ACCEPTED 12 May 2025
PUBLISHED 30 May 2025

CITATION

Repin V and Sidorov A (2025) Distributed
caching system with strong consistency
model.
Front. Comput. Sci. 7:1511161.
doi: 10.3389/fcomp.2025.1511161

COPYRIGHT

© 2025 Repin and Sidorov. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 30 May 2025
DOI 10.3389/fcomp.2025.1511161

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1511161&domain=pdf&date_stamp=2025-05-30
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1511161/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1511161/full
mailto:anatolii.a.sidorov@tusur.ru
https://doi.org/10.3389/fcomp.2025.1511161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1511161

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 02 frontiersin.org

to design the architecture of distributed caching. Section 4 describes the
results obtained and provides a discussion of the results. Section 5,
Conclusion, gives suggestions for practical applications of our results.

2 The role of caching in distributed
systems

2.1 Distributed information systems and
caching

Modern software products are developed taking into account their
possible failure. A failure means that the information system is
unavailable for communication for a long period of time. Fault
tolerance defines the types and number of failures a system can
survive. There are different ways to achieve the desired level of fault
tolerance. The basic element of all such mechanisms is replication.
Replication allows the system to survive a finite number of failures. It
is quite easy to implement in systems that do not store internal state,
i.e., data that can affect the processing of a request. This data is stored
in a persistent DBMS (Database Management System) that guarantees
that all instances of the service operate on the same copy of the data.
An example of such a system is applications built on the basis of
microservice architecture. Figure 1 shows a model of a distributed
application with no internal state.

Figure 1 represents three service instances. Each instance runs the
same application business logic. The key point of this architecture is
the absence of internal state on service nodes. All state is stored in the
persistent DBMS. It should be noted that Figure 1 does not include the
network communication protocol as well as the load balancer, since
they do not significantly affect the model. This approach has the
following advantages:

 • The ability to discreetly change the configuration: input and
output of service instances;

 • High fault tolerance: if N instances of the service are put into
operation, the system can survive N-1 failures.

The advantages outlined above make this architectural style the
most popular. At the same time, one of its main disadvantages is a high
latency when working with a database of large sizes. Cache is a
common solution to improve the performance of the previously
mentioned model. Cache allows faster interaction with a large-sized
database. Figure 2 shows a model that utilizes the caching technique.

The model uses in-memory storage of key-value type as a cache.
The model has the advantage that the issue of data consistency is left to
the third-party software. Typically, the third-party software is deployed
as a separate process. Figure 3 presents a model of such a service.

Such a model adds internal state in the form of a local cache copy
to the service. This internal state can lead to data consistency violation.
To avoid this, it is necessary to choose a consistency model. The model
must satisfy the requirements of distributed storage. As a result, the
requirements for the system under development are formulated
as follows:

 • Transparency to outside observers: a user or a third party sending
a request to the system should not be able to distinguish between
execution with and without the cache;

 • The implemented system must introduce the lowest possible
overhead; otherwise, the use of the cache will be unjustified.

Thus, the system should be a distributed data structure, a hash table,
with which it will be as easy to work as with the usual, unallocated data
structure. Any distributed caching system is designed for strictly defined
purposes. For example, the work (Rodriguez et al., 2021) deliberately
eschews cache replication in favor of sharding, as the main goal in the
work is scaling and load balancing depending on the demand for writes.
The main requirement for Google Zanzibar is to preserve the order of
user transactions (Liu et al., 2019; Pang et al., 2019). This property is
critical for authorization services. As failure to preserve the order can

FIGURE 1

A common microservice model.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 03 frontiersin.org

lead to arbitrary access to sensitive data by an unauthorized user. The
Zanzibar system uses caching for “hot” data, where each server replica
has a transaction cache. And the entire system provides strict
consistency guarantees. However, the cache architecture relies on unique
features of the authorization system. For this reason, the Zanzibar cache
design cannot be easily adapted to other software solutions.

2.2 Consistency models

The consistency model distinguishes acceptable behavior from
incorrect behavior. Behavior is usually described as a history of

observed system events. Typical events are reading and writing a
value. In addition, the consistency model captures the level of system
availability shaped by the following weaknesses of distributed systems:

 • Node failure;
 • Brain split;
 • Node operation delay (node may process a request for a long

time, i. e., garbage collector may delay operation or operating
system may preempt process from execution).

Explicit identification of such problems is non-trivial and
complicates the implementation of the consistency model. At the same

FIGURE 2

The model with the cache.

FIGURE 3

The model with the embeded cache.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 04 frontiersin.org

time, the occurrence of any of them in most cases leads to a significant
delay in the cluster operation. Therefore, for simplicity in consistency
models, a node can be in one of two states: available or unavailable
for communication.

Figure 4 shows the relation of consistency models adapted from
(Bailis et al., 2013; Viotti and Vukolić, 2017). The left branch of
consistency models is of interest for systems implementing distributed
transactions. As an example, relational database management systems
use distributed transactions. However, distributed transactions are not
typical for caches. Therefore, they are not considered here. The models
from the right branch are used in various kinds of data warehouses or
data processing services. The characteristic of the right branch models
is presented in Table 1.

In our case, the main goal is to prefer real-time ordering of
operations. It is an essential feature of our system, since the system
must modify cache data. In consequence, we chose to use the
“Linearizability” model to implement the cache. The main reason
behind our decision is the ability of a linearizable system to preserve
operation order. Additionally, a linearizable system is composite. This
means that we can easily integrate our caching system with other
linearizable components. In this way, the whole system will provide
linearizable consistency. Note that the practical implementation of any
linearizable system is built on a quorum collection operation. To
guarantee that a value is reliably stored on replicas, it is necessary to
send queries to all cluster members and wait for a response from the
majority of nodes. For example, in the case of three servers, it is
necessary to wait for the result of two queries; in the case of five, three
results are needed, etc. Hence, the system has overhead for network
requests at the stage of selecting a consistency model. Therefore, the
final system may not be suitable for low-latency software products. An
example of such a product is video streaming applications.

2.3 Linearizability

The construction of a linearizable system reduces to solving a
consensus problem. The essence of consensus is to choose some value
by all nodes of the system. The chosen value must satisfy the properties
of agreement, validity, and finiteness/completeness. The agreement
means that all nodes have chosen the same value at the next iteration.
The finiteness property states that the consensus algorithm must
return a result in a deterministic time interval and cannot run
indefinitely. Validity is that the value chosen by the algorithm must
be offered by some consensus participant.

Currently, there are two main algorithms to solve this problem:
Paxos and Raft. The Paxos algorithm is the very first variant of
providing consensus. It is used in such DBMSs as Neo4j and Cassandra
to select the replication leader. This algorithm has many customization
points. For example, Paxos does not require a leader in a cluster, nor
does it describe a sequence for changing the composition of its nodes.
Paxos distinguishes two node roles: accepting node and offering node.
The offering node processes the client request while the receiving node
commits the value. The algorithm uses two phases to make a decision:
collecting the willing to accept the next value and committing that
value. The Paxos algorithm is more of a protocol template. Thus, the
final algorithm needs to be thoroughly designed for industry-scale use.

The main advantage of the Raft algorithm is the existence of a
clear specification of both the algorithm itself and its implementation.
This algorithm fills in the customization points that Paxos has. For
example, Raft fixes the stage of replication leader selection. The
algorithm defines the following node roles:

 • Candidate for becoming a leader in case the current leader fails;
 • Replication leader who makes the decisions;

FIGURE 4

The consistency models relationship.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 05 frontiersin.org

 • Follower, i.e., replication node.

As part of the algorithm’s operation, candidates send their
identifiers to all nodes, signaling that they are in a working state. In
case of leader failure, the candidate sends a special message to the
others. This special message signals an attempt to become a cluster
leader. Each node responds with an acknowledgment or rejection.
The reply message always contains a field with the address of the
current leader. Thus, the race of candidates for cluster leader status is
eliminated in the system (Ongaro and Ousterhout, 2014). Based on
the presented arguments, we can conclude that the Raft algorithm is
the most suitable for the realization of the caching system, since there
are reference implementations and open-source tools. It allows us to
test the correctness of the system based on it.

2.4 Production caching systems

Quite a large number of organizations and enthusiasts are engaged
in research and development of distributed caching systems (Hamdard
University, 2017; Berger et al., 2018; Abdi et al., 2021; Strati et al., 2024;
Torabi et al., 2024). The most well-known industrial variants are
Memcached, Redis, Memcache, Dragonfly, and KeyDB. The following
criteria were chosen for their analysis:

 • Provided consistency model;
 • Supported data structures;
 • Provided client libraries and SDKs for various

programming languages;
 • Provided deployment process.

The consistency model allows selecting the appropriate product
for the needs of a particular application. Supporting the necessary

model at the level of the final product reduces development costs.
Hence, when the developer designs or implements the system, it is
possible to eliminate the stage of introducing additional components
to achieve the necessary consistency guarantees. Supported structures
allow increasing the scope of the product application. Because of that,
the end user does not have to build the necessary data structures on
top of the basic key-value storage. Support for various programming
languages allows the systems to be applied to complex software
products. It is particularly important since software products may
accumulate a large technology stack. The complex deployment model
affects the maintenance and support of the software product. When
separate deployment units are required to implement a cacheable
system, one has to add monitoring of yet another component. This can
have a negative impact on the whole system.

Memcached stores key-value data in RAM. It is essentially a server
with associative data storage. The product supports client libraries for
most programming languages. A server binary and configuration file
are required for deployment. Memcached within a single server
guarantees the strongest consistency, while maintaining a cluster in
the required state falls on the end user. Memcached is the simplest and
fastest solution compared to other analogs.

The popular Redis Cluster provides storage with various data
structures (strings, lists, hash tables, ordered containers, and
geo-reference index). The product uses client–server architecture. For
its operation, it is necessary to deploy a separate server to which
requests from applications are received. Redis Cluster supports client
libraries for most programming languages. The basic version
guarantees strong consistency within a single node but does not
guarantee it for a cluster of servers. Thus, Redis guarantees finite
consistency and cannot be used in linearizable systems. Deployment
follows a typical client–server model. There is a separate server
consisting of replicas where user data is stored. And there is a client
library that allows sending requests to the server.

TABLE 1 Description of consistency models.

The model Description

Read your writes The model guarantees that a process that makes a write w and then performs a read r will see the write w. This model does not require processes to see

each other’s records.

Monotonic

Writes

The model guarantees that if a process has executed record w1 and then executed record w2, other processes observe record w1 before record w2. This

model does not require an order relation between records of different processes.

Monotonic

Reads

The model ensures that if a process performs a read r1 and then a read r2, the read r2 cannot observe the records preceding the records reflected in r1,

i.e., the read cannot go backwards. Also, like the previous models, monolithic reads do not extend to reads from different processes, focusing only on

reads from a single process.

Writes follow

reads

The model ensures that if a process reads a value that came about because of a write w1 and then performs a write w2, the effect of w2 must be seen after

w1, i.e., once something is read, one cannot change a past read.

Pipeline Random

Access Memory

The model is introduced to relax stricter coherent memory models to achieve more efficient and performant parallelism; it ensures that any pair of writes

made by one process is observed by any other processes in the order in which they are executed by the executing process, but writes executed by different

processes may be observed in different orders.

Causal

consistency

The model supports the order of operations. There is a causality important to the application that is observable by all processes, but the order for

operations between which there is no causality will not be the same for all processes.

Sequential

consistency

The model guarantees that the order of operation execution occurs in some linear sequence. This sequence is consistent with the order of operations on

each individual process. However, it does not guarantee linear order among all nodes, i.e., at any given time a process may be overtaking or lagging

behind others.

Linearizability The model guarantees that each operation occurs atomically, in some order consistent with the order of these operations in real time; linearizability is

composite: if a system consists of many linearizable modules, then the whole system is linearizable as well.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 06 frontiersin.org

Memcached, unlike Redis Cluster, has no built-in replication
mechanism and is used to implement Memcache-type systems
(Cotroneo et al., 2020). The latter works on the principle of third-party
cache. The application first checks the presence of data in the cache.
In case of a cache miss, it accesses the persistent storage. The main
architectural emphasis is on reducing the number of queries to the
persistent database. Applications use a special library to interact with
the system, hiding all cache logic. Thus, Memcache allows you to
independently vary the number of cache servers, replicas, database
management system types, and services. This variety allows meeting
the needs of a particular application. Memcache supports only the
key-value data structure. The main advantage of Memcache over Redis
Cluster is the built-in leasing mechanism. Leasing solves a well-known
problem in distributed systems called “thundering herd.” The problem
arises when many threads or processes try to work with a resource.
However, only one of these processes can access the resource. In a
caching system, it occurs when services detect the absence of the same
data and try to insert them into the cache, having received them from
an external source beforehand. This situation can offset all the benefits
of caching by multiplying the load on the external source. The leasing
mechanism eliminates this disadvantage. Memcache facilities issue a
special token to one client, which grants the right to only one service
to update the cache.

Deployment of the system is non-trivial as it is not a final product
unlike Redis and Memcached. Instead, Memcache is a set of utilities
and tools on top of Memcached. To deploy it, you need a Memcached
executable and a client library for the programming language. You also
need to run a program that polls replicas for their state. A database
management system-specific plugin is required to reduce the
inconsistency window. The plugin sends a delete request to
Memcached replicas if data changes.

The KeyDB product is relatively new and is fully compatible with
Redis. It differs from its analogs by supporting multithreaded query
processing. This feature allows KeyDB to increase throughput. KeyDB
supports replication mode with multiple leader nodes, unlike Redis
Cluster. It permits writing data from an arbitrary node of the cluster.
Backward compatibility with Redis makes it possible to replace KeyDB
with Redis Cluster while making minimal changes to the application
code. KeyDB does not provide a strict consistency guarantee.
However, the project team is trying to introduce linearizability into its
software product.

A special feature of the Dragonfly solution is a lock scheduler. The
lock scheduler is able to efficiently allocate locks when there is high

query competition. This efficiency is achieved through the lightweight
concurrency mechanics that Dragonfly uses. It is the main difference
with its counterparts that use pessimistic concurrency control (Ren
et al., 2015).

All analogs guarantee finite consistency at best. But all of them
strive to minimize the window of inconsistency. An example of finite
consistency is when a user can read outdated data if he accesses a
replica that has not been reached by a deletion request. Redis Cluster
tools guarantee consistency if the client is working with the same
replica. Otherwise, the consistency model is not documented. Table 2
shows the results of the peer comparison.

An important criterion for choosing any software product is to
support target functions “out of the box.” This greatly simplifies the
development cycle. Within a distributed caching system. It is desirable
to support the target consistency model “out of the box,” as well as to
have a wide set of libraries for application programming and
performance analysis. Redis Cluster and KeyDB have such properties.
Both systems are complete software products. However, it should
be noted that Redis Cluster is more widely used in industrial systems,
so its features have been studied and tested in real conditions much
more thoroughly. The entire focus of the Memcache architecture is to
minimize interaction with the database. For the same reason,
Memcache supports only one programming language and has a
complex deployment architecture. The KeyDB product is similar to
Redis Cluster except for one aspect: KeyDB supports multithreaded
query processing. The main disadvantage of KeyDB is the lack of
client libraries. All communication is done through a text-based
network protocol. The Dragonfly product provides a built-in cluster
failure detection mechanism that allows it to automatically recover
from failures. Otherwise, Dragonfly is fully compatible with Redis
Cluster. None of the counterparts provide strong consistency
guarantees, and accordingly, none of them can be used in critical
infrastructure systems.

3 The distributed cache architecture

3.1 High-level architecture

Redis Cluster, Memcache, KeyDB, and Dragonfly solutions
guarantee eventual consistency of data. The eventual consistency
model allows replica data to differ temporarily. Hence, cluster
synchronization is achieved only if the system does not receive

TABLE 2 Comparison of caching system analogs.

Solution Consistency model Supported data
structures

Clients and SDK Deployment

Memcached Linearizability among single server Key-value The majority of modern

programming languages

Single server

Redis Cluster Eventual consistency Key-value, list, hash-table. The majority of modern

programming languages

Cluster of servers

Memcache Eventual consistency Key-value PHP Cluster of servers, service for detecting

failures, plugin for DBMS

Dragonfly Eventual consistency Key-value, list, hash-table. Go, Python, Java Cluster of servers

KeyDB Linearizability with one leader, eventual

consistency at leader failure

Key-value, list, hash-table. Go, Text-based protocol RESP Cluster of servers

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 07 frontiersin.org

modification requests for a certain period of time. Otherwise,
consistency is guaranteed in case of a client communicating with
the same node. Therefore, for a user, the “world picture” is defined
by the replica with which he is working. For systems where the
causality of actions is important (observance of the order of
operations initiated by the user or an external application), the
model with eventual consistency is unacceptable. As a result,
additional components need to be designed and implemented to
achieve the necessary guarantees. Besides, some analogs presented
above are not a single product but consist of a set of basic
components and additional modules. These components and
modules require a full cycle of software development. Based on the
comparison of analogs in Table 2, we can formulate the
requirements for the mechanisms (tools) of the designed system:

 • Support for different eviction policies from the cache;
 • Support for different programming languages is required, as the

final implementation environment may use different technologies.

The client library architecture of the target system is divided into
two levels. This division is due to the fact that the logic of working
with the cluster is identical for all programming languages. Only the
specificity of the means of expression differs. For example, Python and
C# use coroutines and the await operator to work with asynchronous
operations, while Java uses threads without special language syntax.
The first level of client libraries is implemented in the C++
programming language and contains the basic algorithms and data
structures for interacting with replicas of the caching system. The
second level is a “wrapper” for the target programming language that
works with the first level using cross-lingual interaction mechanisms.
Based on the TIOBE rating, three target variants for which “wrappers”
are implemented are chosen: Java, C#, and Python. The client and
server contain much similar logic. Because of the logic similarity,
we designed and implemented a library of common components with
the requirements listed below:

 • Support for different I/O multiplexing mechanisms; each
platform has its own specialized I/O facilities. Not all runtime
environments accept third-party networking solutions;

 • The ability to change the algorithm for scheduling asynchronous
operations and their handlers, taking into account the specifics
of the programming language runtime environment, for example,
in Python, additional synchronization is required to meet the
requirements of the language standard regarding thread safety of
the executable code, while in other programming languages such
a requirement either does not exist or can be defined by the
library user.

Figure 5 shows the class diagram of the I/O module of the library.
The EventLoop class provides a high-level interface to work with

the I/O multiplexing mechanism. All system calls must
be synchronized, i.e., their competitive execution is prohibited.
Violation of this requirement can lead to a program crash at best.
Therefore, the EventLoop class hides the synchronization of these
system calls behind its interface. A thread is associated with each
object of this type. The user must explicitly run one of the Run,
RunOnce, or RunForever methods to initiate an event loop. If some
I/O logic needs to be scheduled, the RunInEventLoopThread method
is provided, whose only parameter is the function scheduled for
execution in the event loop thread. The EventLoopNotification-Queue
class is used to securely pass handler functions between threads. It is
important to note that the RunInEventLoopThread method
implements an asynchronous message-passing pattern. The method
adds a function to the queue and sends a notification to wake up the
event loop if necessary. The notification is sent using the Notifier
abstract class. The EventLoopBackend, Event, and Notifier classes hide
the platform-dependent implementation of I/O multiplexing
mechanisms, thus allowing easy integration of the client library into
different programming languages and platforms. For example, the
classes are shown in Figure 6.

Depending on the platform, the implementation of some types
may vary. For example, for newer versions of the Linux kernel, the
io_uring mechanism is supported, which allows efficient operation
not only with networking but also with file I/O (Joshi et al., 2024).
Therefore, this implementation is preferred but is only available for
kernel versions above 5.11. For older kernel versions, the
implementation uses system calls of the epoll family to handle
networking and a separate thread pool to handle files on the hard disk.

FIGURE 5

The core IO module class diagram.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 08 frontiersin.org

FIGURE 7

Server components.

3.2 The server architecture

The server performs the main data handling operations:
replication, eviction of obsolete records, and integrity checking. In
addition, the main task of the server is the ability to handle the load
generated by users while effectively utilizing the resources of the
environment in which it operates. Therefore, the server architecture
emphasizes the ability to modify mechanisms for working with
external memory, networking, and query execution scheduling
algorithms. Figure 7 presents a diagram of the server components.

The client interacts with the server through gRPC technology. The
QueryProcessor component contains the logic for processing gRPC
calls. To efficiently process incoming requests, QueryProcessor uses
the interfaces provided by the core component. The consensus
component is responsible for data replication and reliable storage of
metainformation for recovery in case of failure. The storage module is
used to store data on disk.

Figure 8 shows an interaction diagram that describes the sequence
of calls when processing a request from a client.

When a request is received, the following steps are performed.
First, the request data is written to disk to allow recovery in case of
failure. Second, the data is sent to replicas via the CollectMajority
method. Third, a successful response is awaited from the majority.
Finally, the response to the client’s request is sent. It should be noted
that most of the request processing time is spent waiting for a response
from the cluster. The consensus module implements the Raft
algorithm. The module reliably replicates all cache data, as well as
metadata necessary for the eviction algorithm used. The module
periodically evicts redundant data from the disk. The consensus
module evicts the information about evicted or deleted keys and
their values.

To be able to interact with the server, client libraries and tools have
been designed in SDK format for different programming languages.
There are two main approaches to client SDK development:

FIGURE 6

Core IO class implemantations.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 09 frontiersin.org

 • Using the network protocol, client libraries are fully implemented
in the target programming language;

 • Using cross-lingual interaction, the main logic of the client’s work
is realized in one programming language, and a wrapper is
written for other languages using cross-lingual
interaction technologies.

We chose the second option. The main reason for this choice is the
lower development and release costs of new library versions. The code
in the target programming language, in fact, only wraps the main
component, so when making changes that do not affect the API, it is
enough to replace one file of the dynamic library. Given that all cross-
lingual communication mechanisms use dynamic libraries to handle
code in a third-party programming language, swapping out an
application’s dynamic library file is sufficient to release a new version.
Figure 9 shows the components of a client library for Python.

As mentioned above, designed wrappers have one goal: to separate
the core part implementing communication with a cluster from the
part containing language-specific details.

4 Results and discussion

We compared our linearizable cache with Redis Cluster to evaluate
the performance of the designed cache. Redis Cluster is a popular
distributed caching system with eventual consistency. Eventual
consistency, by definition, can process requests faster than a
linearizable system. We compared the performance of both systems,
and their fault-tolerance behavior. To emulate faulty node operation,
we designed the testing tool based on Docker. Every node is deployed
in a separate docker-container with a TCP-proxy. This allows us to set
up a faulty environment directly in the test code. Table 3 summarizes
the node failure cases and their implementation.

Table 4 summarizes the read operation benchmark for each
system. The benchmark sends read requests with a randomly
generated key and a fixed-size value. The random key generation is
introduced to load on the key eviction component.

As can be seen, the read time in the Redis Cluster product is about
20 ms slower than the proposed solution. This difference is due to the
peculiarity of the operation implementation. More specifically, every
operation involves a consensus algorithm invocation. The invocation
is needed to make sure that the requested value is relevant. In
particular, it is necessary to find out the value of the key from other
nodes and return the value corresponding to the majority.

The read operations do not involve modifications to the node’s
internal state. Conversely, write operations involve heavy modification
steps to the internal node state. We measured write request processing
latency (Table 5).

The write operation timing of our system is significantly slower
compared to Redis Cluster. This timing difference is due to the
peculiarities of the consensus protocol: the need to synchronously write
data to disk, as well as to wait for a response from the majority of replicas.

We compared the behavior of systems under different failures to
show the difference in consistency guarantees. Table 6 shows the
results of the fault tolerance tests.

The Redis Cluster solution seems to be prone to data loss in case
of a node failure. More specifically, if data is stored on the failed nodes,
it is very likely to be lost. Furthermore, splitting the network into two
clusters results in two Redis Cluster leaders, each replicating different
records to the available nodes. Once the network is restored, the
cluster is in a non-consistent state, and the client’s “world picture”
depends on the node from which it reads data. The proposed solution
is devoid of these shortcomings as it uses a more rigorous consistency
model. Consequently, our model affects the level of system availability;
i.e., in case of failure of the majority of cluster nodes, the system under
test becomes completely unavailable. Particularly, it means the system
is unable to process client requests. Under the same conditions, the
Redis Cluster is able to process requests if at least one node is
functioning. Based on evaluation results, we can outline the following
advantages of our distributed cache design:

 • Strong consistency guarantees;
 • Acceptable request processing timings, taking into account the

heavy synchronization algorithm.

FIGURE 8

Request processing steps.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 10 frontiersin.org

We also compared the behavior of our system with different cluster
configurations. Read and write operations were compared in clusters
consisting of three, five, and seven nodes. We tested the cluster on a
single machine where each node was running in a docker-container.
Figure 9 presents the read operation’s quantiles in milliseconds.

The read operation appears to be highly scalable. We noticed that
the absence of a key in the system and its presence do not significantly
affect the read operation performance. To fully understand the cluster
size impact on the performance, we compared the quantiles of the
write operation. Figure 10 shows the results.

The request timings are quite higher than those of read operations.
Notably, our test environment is local, meaning network latency does not
cause the timings. The performance of the seven-node cluster in the
ninety-ninth percentile is interesting. This cluster underperforms the
other cluster setups by almost 50 milliseconds. Currently, we are

investigating the reasons for this high latency. However, we concluded
that the main reason flaws in our storage system. All seven nodes were
heavily writing to the same underlying storage device on a single machine.

The authors are aware of the shortcomings of the environment in
which the system is tested. The presented docker-based testing
framework is far from real production-scale clusters or cloud
environments. Our testing model cannot simulate all real-world
distributed system problems, such as fiber optic cable failure, data
center outage, and others. We also recognize the lack of high load in
our test environment. We are currently investigating ways to address
these shortcomings of our test environment. We have reserved a
Kubernetes cluster in Yandex Cloud to deploy our system. The authors
are currently developing algorithms and tools to create a load on our
system similar to a real production scale environment.

5 Conclusion

The authors of the paper have designed a system whose main
purpose is to become an intermediate link between a distributed DBMS
and a microservice. This system will improve the query processing time
while maintaining strict consistency of data. We designed the runtime
part of the cache to make integration more flexible. We have also
designed the client application to interact with the caching system. The
test results indicated that our system is slightly inferior in performance

FIGURE 9

The read operation percentiles comparison.

TABLE 3 Failure implementation.

Failure type Docker operation

Node failure Stopping the docker container

Network partition Creating a second docker network and moving

some containers to it

Network delay TCP-proxy command for packet delay

Disk failure Changing write permissions in a container

TABLE 4 Percentiles of reading request processing time, ms.

Benchmark Delay percentiles, ms

P25 P50 P80 P90 P99

Redis Cluster 17 26 53 70 150

Testing solution 18 30 65 95 171

TABLE 5 Percentiles of time for processing write requests, ms.

Benchmark Request processing timing percentiles

P25 P50 P80 P90 P99

Redis Cluster 20 31 63 83 162

Testing solution 30 49 82 113 230

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 11 frontiersin.org

to Redis Cluster. More specifically, if the number of writes is significantly
less than the number of reads, our system is almost as efficient as Redis
Cluster. These results mean that consensus-based caches can
be integrated into production environments with read-heavy loads.

We are planning to investigate more extensively the place of the
developed system among analogs and other consistency models. For
this purpose, metrics, indicators, and algorithms for their collection
are currently being developed. It will help to obtain a more accurate
and rigorous picture of the distributed caching system operation.

Data availability statement

The datasets presented in this article are not readily available due
to access restrictions. Requests to access the datasets should
be directed to hiddenstmail@gmail.com.

Author contributions

VR: Conceptualization, Data curation, Investigation, Resources,
Software, Validation, Visualization, Writing – original draft. AS:
Conceptualization, Formal analysis, Funding acquisition,

Investigation, Methodology, Project administration, Supervision,
Validation, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded
by Ministry of Science and Higher Education of the Russian
Federation; project FEWM-2023-0013.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of
this manuscript.

TABLE 6 Fault-tolerance tests.

Solution Leader failure Replica
failure

Splitting the cluster into two
networks

High latency in
single node
operation

Failure of the
majority of
nodes

Redis Cluster Data loss Data loss Presence of two leaders, data consistency violation Normal operation Normal operation

Tested solution Normal operation Normal operation Normal cluster operation in a network with a large

number of nodes

Normal operation Failure

FIGURE 10

The write operation percentiles comparison.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
mailto:hiddenstmail@gmail.com

Repin and Sidorov 10.3389/fcomp.2025.1511161

Frontiers in Computer Science 12 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Abdi, M., Mosayyebzadeh, A., Hossein, H. M., EUgur, K., Turk, A., Rudolph, L., et al.

(2021). “A community cache with complete information.” in 19th USENIX Conference
on File and Storage Technologies (FAST 21). USENIX Association, 323–340

Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, I. (2013).
Highly available transactions: virtues and limitations. Proc. VLDB Endowment 7,
181–192. doi: 10.14778/2732232.2732237

Berger, D. S., Berger, D. S., Berg, B., Zhu, T., Harchol-Balter, M., and Sen, S. (2018).
“RobinHood: tail latency aware caching – dynamic reallocation from cache-rich to cache-
poor” in 13th USENIX symposium on operating systems design and implementation (OSDI
18). ed. C. A. Carlsbad (Carlsbad, CA, USA: USENIX Association), 195–212.

Cotroneo, D., Natella, R., and Rosiello, S. (2020). Dependability evaluation of
middleware Technology for Large-scale Distributed Caching. arXiv. doi:
10.48550/arXiv.2008.06943

Ganesan, A., Alagappan, R., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H.
(2017). “Redundancy does not imply fault tolerance: analysis of distributed storage
reactions to single errors and corruptions” in 15th USENIX conference on file and
storage technologies (FAST 17). ed. C. A. Santa Clara (Santa clara, CA, USA: USENIX
Association), 149–166.

Hamdard University (2017). Data cache with distributed cache: a design approach.
Int. J. Comput. Sci. Eng. 4, 17–23. doi: 10.14445/23488387/IJCSE-V4I6P104

Joshi, K., Gupta, A., Gonz´lez, J., Kumar, A., Kanth Reddy, K., George, A., et al.
(2024). “I/O Passthru: upstreaming a flexible and efficient I/O path in Linux.” in
22nd USENIX Conference on File and Storage Technologies (FAST 24). Santa Clara,
CA: USENIX Association, 107–121(Torabi, Khazaei and Litoiu, 2024)

Leesatapornwongsa, T., Lukman, J. F., Lu, S., and Gunawi, H. S. (2016). “TaxDC: a
taxonomy of non-deterministic concurrency bugs in datacenter distributed systems.” in
Proceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ‘16: Architectural support for
programming languages and operating systems, Atlanta Georgia USA: ACM, 517–530.

Liu, Z., Bai, Z., Liu, Z., Li, X., Kim, C., Braverman, V., et al. (2019). “DistCache:
provable load balancing for large-scale storage systems with distributed caching.” in 17th

USENIX conference on file and storage technologies (FAST 19). Boston, MA: USENIX
Association. pp. 143–157

Lukman, J. F., Suminto, R. O., Simon, D., Priambada, S., Feng Ye, C. T.,
Leesatapornwongsa, T., et al. (2019). “FlyMC: highly scalable testing of complex Interleavings
in distributed systems.” in Proceedings of the fourteenth EuroSys conference 2019. EuroSys
‘19: Fourteenth EuroSys conference 2019, Dresden Germany: ACM, 1–16.

Ongaro, D., and Ousterhout, J. (2014). “In search of an understandable consensus
algorithm” in 2014 USENIX annual technical conference (USENIX ATC 14). ed. P. A.
Philadelphia (Philadelphia, PA: USENIX Association), 305–319.

Pang, R., Caceres, R., Burrows, M., Chen, Z., Dave, P., Germer, N., et al. (2019).
“‘Zanzibar: Google’s Consistent” in Global authorization system’, in 2019 USENIX
annual technical conference (Renton, WA: USENIX ATC 19). ed. W. A. Renton
(USENIX Association), 33–46.

Ren, K., Thomson, A., and Abadi, D. J. (2015). VLL: a lock manager redesign for main
memory database systems. VLDB J. 24, 681–705. doi: 10.1007/s00778-014-0377-7

Rodriguez, L. V., Yusuf, F., Lyons, S., Paz, E., Rangaswami, R., Liu, R., et al. (2021)
‘Learning cache replacement with CACHEUS’, In 19th USENIX conference on file and
storage technologies (FAST 21). USENIX Association. pp. 341–354

Strati, F., Mcallister, S., Phanishayee, A., Tarnawski, J., and Klimovic, A. (2024).
DéjàVu: KV-cache streaming for Fast, fault-tolerant generative LLM serving’. arXiv. doi:
10.48550/arXiv.2403.01876

Torabi, H., Khazaei, H., and Litoiu, M. (2024). “A learning-based caching mechanism
for edge content delivery.” in Proceedings of the 15th ACM/SPEC International Conference
on Performance Engineering. pp. 236–246.

Viotti, P., and Vukolić, M. (2017). Consistency in non-transactional distributed
storage systems. ACM Comput. Surv. 49, 1–34. doi: 10.1145/2926965

Weitzel, D., Zvada, M., Vukotic, I., Gardner, R., Bockelman, B., Rynge, M., et al.
(2019). “StashCache: a distributed caching Federation for the Open Science Grid.” in
Proceedings of the practice and experience in advanced research computing on rise of
the machines (learning), 1–7.

https://doi.org/10.3389/fcomp.2025.1511161
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.48550/arXiv.2008.06943
https://doi.org/10.14445/23488387/IJCSE-V4I6P104
https://doi.org/10.1007/s00778-014-0377-7
https://doi.org/10.48550/arXiv.2403.01876
https://doi.org/10.1145/2926965

	Distributed caching system with strong consistency model
	1 Introduction
	2 The role of caching in distributed systems
	2.1 Distributed information systems and caching
	2.2 Consistency models
	2.3 Linearizability
	2.4 Production caching systems

	3 The distributed cache architecture
	3.1 High-level architecture
	3.2 The server architecture

	4 Results and discussion
	5 Conclusion

	References

