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Introduction: Physics simulation has emerged as a promising approach to

generate virtual Inertial Measurement Unit (IMU) data, o�ering a solution to

reduce the extensive cost and e�ort of real-world data collection. However, the

fidelity of virtual IMU depends heavily on the quality of the source motion data,

which varies with motion capture setups. We hypothesize that improving virtual

IMU fidelity is crucial to fully harness the potential of physics simulation for virtual

IMU data generation in training Human Activity Recognition (HAR) models.

Method: To investigate this, we introduce WIMUSim, a 6-axis wearable IMU

simulation framework designed to accurately parameterize real IMU properties

when deployed on people. WIMUSim models IMUs in wearable sensing using

four key parameters: Body (skeletal model), Dynamics (movement patterns),

Placement (device positioning), and Hardware (IMU characteristics). Using

these parameters, WIMUSim simulates virtual IMU through di�erentiable vector

manipulations and quaternion rotations. A key novelty enabled by this approach

is the identification of WIMUSim parameters using recorded real IMU data

through gradient descent-based optimization, starting from an initial estimate.

This process enhances the fidelity of the virtual IMU by optimizing the parameters

to closely mimic the recorded IMU data. Adjusting these identified parameters

allows us to introduce physically plausible variabilities.

Results: Our fidelity assessment demonstrates that WIMUSim accurately

replicates real IMU data with optimized parameters and realistically simulates

changes in sensor placement. Evaluations using exercise and locomotion

activity datasets confirm that models trained with optimized virtual IMU

data perform comparably to those trained with real IMU data. Moreover,

we demonstrate the use of WIMUSim for data augmentation through two

approaches: Comprehensive ParameterMixing, which enhances data diversity by

varying parameter combinations across subjects, outperforming models trained

with real and non-optimized virtual IMU data by 4–10 percentage points (pp);

and Personalized Dataset Generation, which customizes augmented datasets to

individual user profiles, resulting in average accuracy improvements of 4 pp, with

gains exceeding 10 pp for certain subjects.

Discussion: These results underscore the benefit of high-fidelity virtual IMU

data and WIMUSim’s utility in developing e�ective data generation strategies,

alleviating the challenge of data scarcity in sensor-based HAR.
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1 Introduction

The field of Human Activity Recognition (HAR) from wearable

Inertial Measurement Units (IMUs) has experienced significant

growth, driven by diverse applications across healthcare, fitness,

and entertainment (Lara and Labrador, 2012; Liu et al., 2021). A

challenge in this domain is the scarcity of high-quality ground truth

data, which is particularly pronounced when using deep learning-

based approaches (Plötz and Guan, 2018; Nweke et al., 2018).

This challenge is compounded by the inherent variabilities in real-

world usage, including differences in sensor placements, individual

wearer body morphology, and hardware discrepancies (Roggen

et al., 2010; Banos et al., 2014; Stisen et al., 2015; Mathur et al., 2018;

Khaked et al., 2023). Collecting annotated datasets that encompass

these variabilities is costly and time-consuming, requiring extensive

participation from human subjects and laborious data annotation

(Bulling et al., 2014; Plötz and Guan, 2018). As a result, datasets

confined to controlled experimental conditions generally fail to

capture the broad spectrum of real-world variabilities, making it

difficult to create models that generalize well across diverse real-

world settings (Garcia-Gonzalez et al., 2020, 2023). This highlights

the need for more efficient and scalable data collection approaches.

Physics-based virtual IMU simulation has emerged as a

promising approach to alleviate the cost of data collection by

leveraging the vast amount of motion data available from other

modalities (Kwon et al., 2020; Xia and Sugiura, 2022, 2023; Leng

et al., 2023). Additionally, physics simulations can incorporate

various realistic variabilities, including different sensor placements,

diverse body morphologies, and varying hardware characteristics.

Existing virtual IMU simulation methods generate synthetic IMU

data using motion information from sources like motion capture

systems or videos. However, the fidelity of the generated IMU

data is fundamentally constrained by the quality of the source

motion data. Lower fidelity introduces a domain shift between

real and virtual IMU data, limiting the ability of HAR models

trained with virtual IMU data to generalize to real-world scenarios.

We hypothesize that improving the fidelity of virtual IMU data

can significantly enhance its effectiveness in training HAR models,

enabling better generalization by fully leveraging the ability of

physics simulations to model realistic variabilities.

In this paper, we demonstrate that minimizing discrepancies

between real and virtual IMU data is crucial for fully harnessing

the potential of physics simulation in flexibly emulating real-world

variabilities and generating virtual IMU data for training HAR

models. For this purpose, we introduce WIMUSim, a wearable

IMU simulation framework, which is designed to accurately

parameterize real-world IMU properties when deployed on people

and simulate realistic variabilities through physics simulation,

thereby enhancing data collection efficiency and reducing the need

for extensive data collection.

WIMUSim models wearable IMU data using four key

parameters: Body (B), Dynamics (D), Placement (P), and

Hardware (H). These parameters are designed to reflect the

real-world variabilities that affect wearable IMU data, offering

an intuitive and physically plausible wearable IMU simulation

framework. B represents the human skeletal model as a directed

tree, detailing each joint’s position relative to its parent joint at

the default posture. D describes the temporal evolution of body

movement, with a sequence of rotation quaternions for each joint

specifying relative orientation to its parent joint and a sequence

of 3D vectors for the body’s translation. P specifies each virtual

IMU’s position and orientation relative to its parent joint, enabling

the simulation of IMU data from any location of the body. H

characterizes each IMU’s specific behaviors, such as noise levels

and sensor biases. Based on these parameters, consisting of 3D

vectors and quaternions, WIMUSim generates 6-axis virtual IMU

data through differential vector manipulations and quaternion

rotations. This design allows us to identify the parameters of real

IMUs as they are deployed in specific wearable sensing scenarios

using the B, D, P, and H parameters through gradient descent-

based optimization, and introduce realistic variations to the virtual

IMU data by varying the parameters around their identified

point. Furthermore, WIMUSim is implemented in PyTorch, which

enables fast simulation and seamless integration into the model

training process, allowing for online data generation during the

training of deep learning models.

WIMUSim is designed to be used as follows:

1. Data collection: prepare real IMU data and preliminary

WIMUSim parameters. The B and D can be derived from

various motion capture technologies, including optical-based,

IMU-based, or video-based techniques. The P is manually

specified to indicate where the real IMU is placed. The H

can be obtained from device specifications or data collected

at stationary positions. At this point, these parameters can be

rough estimates.

2. High fidelity parameter identification: optimize these

preliminary parameters by minimizing the error between the

real and virtual IMU data to ensure that WIMUSim accurately

parametrizes the real IMU data. This optimization is performed

using a gradient descent-based method to minimize the error

between the real and virtual IMU data.

3. Realistic parameter transformation: adjust the parameters

around their identified points to introduce physically plausible

variabilities, generating virtual IMU data that reflects a broad

range of realistic conditions. This allows for the creation of

diverse and enriched datasets, enhancing the training of HAR

models without requiring extensive new data collection.

To illustrate the utility of WIMUSim, we present two use

cases: (1) Comprehensive Parameter Mixing (CPM): This approach

is designed to simulate a broad spectrum of possible variabilities

by changing the combination of the WIMUSim parameter sets

obtained from different subjects’ data, aiming to enhance the

diversity of the dataset. (2) Personalized Dataset Generation (PDG):

This approach is designed to create datasets that are customized to

individual profiles by selectively adjusting simulation parameters,

thereby enhancing the personalization of HAR models.

We demonstrate the ability of WIMUSim to accurately

parameterize real wearable IMU data and its effectiveness in

improving HAR model training through a series of experiments

using an in-house dataset and two public datasets, REALDISP

and REALWORLD. Our evaluations are structured around two

principal objectives: (1) Assessing the fidelity of WIMUSim in

accurately replicating real IMU data and (2) Demonstrating the
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effectiveness of virtual IMU data generated with WIMUSim in

enhancing HAR model performance in real-world scenarios.

The primary contributions of this work are as follows:

1. Review of virtual IMU simulation in HAR: we review virtual

IMU simulation approaches in the context of wearable IMU-

based HAR, examining their potential to address the data

scarcity issue. We discuss the advantages and limitations

of existing methods, highlighting the unique opportunities

presented by virtual IMU simulation (Section 2).

2. Introduction of WIMUSim: we present WIMUSim: a wearable

IMU simulation framework that simulates wearable IMU data

based on B, D, P, and H parameters. Its implementation

in PyTorch enables real-time data generation and seamless

integration into deep learning model training pipelines. The

implementation ofWIMUSim is available at https://github.com/

STRCWearlab/WIMUSim.git (Section 3).

3. Gradient descent-based parameter identification method: we

design a gradient descent-based optimizationmethod to identify

WIMUSim parameters of real IMU data to closely align virtual

IMU data with real IMU data, which enhances the realism of the

generated virtual IMU data (Section 4).

4. Evaluation of the fidelity of virtual IMU data: we evaluate the

fidelity of virtual IMU data generated byWIMUSim by assessing

how accurately WIMUSim can parameterize real IMU data

and how effectively modifications to the WIMUSim parameters

reflect real-world changes in the wearable IMU data. This

evaluation demonstrates the close alignment between the real

and virtual IMU data (Section 6.1).

5. Evaluation of the effectiveness of WIMUSim in real-world

scenarios: we evaluate the effectiveness of WIMUSim in

improvingHARmodel performance in real-world scenarios.We

test CPM to assess its potential to alleviate the need for extensive

real-world data collection while enhancingmodel generalization

to real-world variabilities. We also explore PDG for fine-tuning

personalized models. These evaluations demonstrate significant

enhancements in HAR model performance, highlighting the

utility of WIMUSim (Section 6.2).

2 Related work

Virtual IMU generation using physics simulation typically

involves placing virtual IMUs on an animated 3D human

body model obtained from motion capture systems. Geometric

transformations are then applied to the trajectories of these virtual

IMUs to simulate inertial measurements (e.g., acceleration, angular

velocity, and sometimes including magnetic field) that would be

observed at the specified positions in the real world (Young et al.,

2011; Asare et al., 2013; Lago et al., 2019; Pellatt et al., 2021). The

flexibility of physics-based simulations to modify various settings

enables researchers to conduct rigorous experiments, allowing

them to explore and evaluate different scenarios in a controlled

virtual environment, such as testing different configurations and

optimizing sensor placements (Xia and Sugiura, 2021).

With advancements in pose estimation techniques in the vision

domain, it has become possible to extract 2D and 3D poses from

more easily accessible RGB videos, whereas traditionally, obtaining

high-quality human motion data required specialized setups, such

as optical motion capture, IMU-based motion capture, or depth

cameras. Consequently, researchers have started leveraging the vast

amount of human motion data available in RGB videos to address

the scarcity of large labeled datasets by simulating virtual IMUs

(Kwon et al., 2020, 2021; Rey et al., 2019, 2021).

To further enhance the diversity of virtual IMU data, Xia and

Sugiura (2022) proposed a simulation-based data augmentation

method using a virtual sensor module in Unity that utilizes

spring joints. This module is designed to introduce variations,

especially in acceleration in the vertical direction of the body,

aiming to mimic accelerometer readings from the dynamic vertical

movements typical of aerobic exercises. Moreover, Leng et al.

(2023) have explored integrating generative models into virtual

IMU simulation, leveraging T2M-GPT (Zhang et al., 2023), a

model that generates various 3D human motion sequences from

textual descriptions, to produce virtual IMUdata withmoremotion

variations.

However, a significant discrepancy still exists between real and

virtual IMU data, as shown in previous studies (Kwon et al., 2020;

Leng et al., 2023) where HAR models trained exclusively on virtual

IMU data perform 10 to 20 percentage points lower—particularly

when using deep learning models—compared to baselines trained

on real IMU data. To address this gap, researchers have explored

various approaches.

For instance, several works have explored leveraging shared

features between real and virtual IMU data to train traditional

machine learning models, improving performance despite the

discrepancy between real and virtual IMU (Kang et al., 2019; Xia

and Sugiura, 2022). Additionally, many studies incorporate virtual

IMU data into their pipelines, either by mixing it with real IMU

data or by pre-training on virtual data before fine-tuning with

real data (Kwon et al., 2020; Rey et al., 2021; Leng et al., 2023).

Notably, Multi3Net (Fortes Rey et al., 2024) adopts a multi-modal,

multi-task, and multi-sensor framework to learn a shared latent

representation across video descriptions, pose data, and synthetic

IMU signals, addressing the limitations of poor-quality virtual IMU

data. The pre-trained model is then fine-tuned with real IMU data,

demonstrating improved performance, particularly for fine-grained

activity recognition involving wrist-worn IMUs.

To enhance the fidelity of virtual IMU, CROMOSim (Hao et al.,

2022) employs a BiLSTM-based model trained to map imperfect

motion trajectories (e.g., from motion capture or video data) to

realistic IMU readings. Similarly, Vi2IMU (Santhalingam et al.,

2023) improves the fidelity of wrist-worn IMU data, specifically

for American Sign Language (ASL) recognition, by incorporating

two deep learning models into the simulation process: the first

estimates wrist orientation by analyzing hand and arm joint

positions extracted from pose estimation; then, the second predicts

accelerometer and gyroscope signals by combining the estimated

wrist orientation with motion dynamics specific to ASL gestures.

Both methods demonstrate improved performance on HAR or

ASL classification tasks, highlighting the importance of fidelity

improvements in enhancing downstream applications.

These approaches provide promising solutions to address the

scarcity of training data for wearable IMU-based HAR. However,
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FIGURE 1

Visualization of WIMUSim’s simulation environment, showcasing a humanoid model equipped with IMUs, generated and animated according to the

Body, Dynamics, Placement, and Hardware parameters. The graphs on the right display virtual IMU readings from the right lower arm (RLA) and left

lower arm (LLA).

little research has explored how improving the fidelity of virtual

IMU data can fully leverage physics simulations to flexibly emulate

real-world variations and generate virtual IMU data for training

HAR models. To explore this, we introduce WIMUSim. Unlike

methods such as CROMOSim and Vi2IMU, which rely on pre-

trained deep learning models to deal with the misalignment

between real and virtual IMU data, WIMUSim takes a fully

analytical approach. It utilizes concurrently recorded real IMU and

motion data to identify the B, D, P, and H parameters through

gradient-descent optimization. This approach enables the accurate

replication of real IMU data within the simulation environment

while introducing realistic variability by adjusting the identified

parameters.

3 WIMUSim framework

In this section, we explain how WIMUSim models and

simulates 6-axis wearable IMUs using the Body (B),Dynamics (D),

Placement (P), andHardware (H) parameters:

• Body (B) defines the structural characteristics of the human

body model, specifying the length of each limb to construct a

skeletal representation as a directed tree. These measurements

can be manually entered or derived from anthropometric

databases (Gordon et al., 2014; OpenErg.com, 2020) for

default values.

• Dynamics (D) represents the temporal sequence

of movements using rotation quaternions for

each joint, depicting their orientation over time

relative to parent joints, alongside a sequence of

3D vectors for overall body translation. This can be

extracted from motion capture data, whether sourced

from IMUs or optical systems or analyzed from

video sequences.

• Placement (P) specifies the position and orientation of the

virtual IMUs relative to their associated body joints. This

parameter is specified manually based on expected sensor

placement in the target environment, but it may also be varied

to simulate different sensor placement scenarios.

• Hardware (H) models each IMU’s specific operational

characteristics, such as sensor biases and noise levels. By

incorporating these parameters, WIMUSim ensures that the

generated virtual IMU data accurately reflects real-world IMU

performances. These parameters can be manually specified

based on device specifications.

The simulation of wearable IMUs in WIMUSim is

fundamentally encapsulated in the following function:

X̂IMU = f (B,D, P,H), where X̂IMU represents the virtual

IMU data simulated based on the parameters B, D, P, and H.

Figure 1 provides a visualization of the simulation environment

to provide an overview of the WIMUSim simulation framework.

The subsequent subsections will detail how each parameter—B,

D, P, and H—contribute to the wearable IMU data simulation

step by step as follows: Section 3.1 Animate the humanoid

model defined by B using D, Section 3.2 Determine IMU

position and orientation using P, and Section 3.3 Simulate

IMU data from the determined sequence of IMU’s positions,

orientations, and H.
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3.1 Animate the humanoid model defined
by B using D

The Body (B) parameter in WIMUSim captures variations in

human physiques through a skeletal model using a tree structure

of joints. It outlines the connections between joints, specifying

their relative positions when all the joints are aligned to the world

frame. By adjusting the B parameter, we can simulate virtual IMU

data generated for a variety of humanoid body sizes. Formally, the

skeletal tree is defined as B = (J,E), where J is the set of joints,

and E is the set of edges. Each edge e ∈ E corresponds to a parent-

child pair (jp, jc), where jc, jp ∈ J. For each joint pair, the relative

position B
(jp ,jc)
rp is specified as a 3D vector from the parent joint jp

to its child jc. Also, the range of motion (ROM) can be specified for

each of themovable joints. Figure 2 visualizes this skeletal structure,

illustrating the tree structure and the role of each joint within

the system. This configuration can be customized to meet specific

research needs or to reflect the granularity of available motion data.

For example, additional joints may be added between the pelvis and

the clavicles to reflect more detailed upper-body movements.

The Dynamics (D) parameter in WIMUSim is used to animate

the skeletal model defined by the B parameter, simulating the

temporal dynamics of human movement. For each movable joint

j ∈ J, Dj specifies a series of quaternions representing the

orientation of joint j over time {q
j
0, q

j
1, . . . , q

j
|T|−1}, each relative to

its parent joint’s orientation, where |T| is the total number of time

steps. Additionally, for the BASE joint, a distinct componentDBASE
(xyz)

provides a sequence of 3D vectors that specify the translational

movement of the humanoid within the simulation environment.

For each joint j ∈ J, WIMUSim computes the position p
j
t and

orientation q
j
t at every timestep t, starting from the root (BASE)

joint and progressing through each child joint:

Position calculation at time t: The position of a child joint p
jc

t

at time t is calculated by applying the orientation of the parent joint

q
jp
t to the relative position vector defined in B, and then adding it to

the parent joint’s position:

p
jc
t = p

jp
t + q

jp
t B

(jp ,jc)
rp q

jp
t

−1
(1)

Note that the position of the BASE pBASEt joint is directly defined

by DBASE
t,(xyz)

, accommodating for translational movements within the

simulation environment.

Orientation calculation at time t: Each child joint’s orientation

q
jc
t at time t is determined by applying its relative orientation D

jc
t to

the current orientation of its parent joint q
jp
t :

q
jc
t = q

jp
t D

jc
t (2)

By applying these calculations to each joint in the body model,

we now have the position and orientation for each joint at each

time step t to animate the body. This animation process transforms

the static posture derived from the B parameters into a dynamic

representation of human motion, integrating the temporal aspects

of movement as defined by the D parameters.

3.2 Determine IMU position and
orientation with P

The Placement (P) parameter determines the positioning of

IMUs on the human body. For each IMU ui placed on the

humanoid associated with a parent joint jp ∈ J, P
(jp ,ui)
rp and P

(jp ,ui)
ro

specify the IMU’s relative position and orientation in 3D vector and

orientation quaternion from jp to ui, respectively.

The global position of an IMU p
ui
t at time t is determined

by transforming its relative position vector P
(jp ,ui)
rp using the

orientation of its associated parent joint q
jp
t . This transformation

aligns the relative position vector to the world frame orientation of

the parent joint, and then it is added to the world frame position of

the parent joint:

p
ui
t = p

jp
t + q

jp
t P

(jp ,ui)
rp q

jp
t

−1
(3)

The global orientation of an IMU ui at time t is computed by

applying its relative orientation P
(jp ,ui)
ro to the current world frame

orientation of its parent joint q
jp
t :

q
ui
t = q

jp
t P

(jp ,ui)
ro (4)

Figure 3 demonstrates a simplified arm model with IMUs

placed on the lower arm, showcasing how the B, D, and P

parameters determine sequences of IMU positions and orientations

over time. This visualization illustrates how these parameters

impose reasonable constraints on the IMU’s possible trajectories,

anchoring the simulationwithin the physical limits dictated by their

attachment to the human body.

3.3 Simulate IMU data from position,
orientation, and hardware characteristics

The Hardware (H) parameter specifies the specific operational

characteristics of IMU sensors. WIMUSim models it through a

combination of bias vectors and standard deviations of the noise

for each IMU sensor. Specifically, the H parameter includes bias

vectors baccui
for accelerometers and b

gyro
ui for gyroscopes, as well as

standard deviations of the Gaussian noise, σ acc
ui

for accelerometers

and σ
gyro
ui for gyroscopes, represented as N(0, σ 2

ui
) for each IMU ui.

WIMUSim generates virtual 6-axis IMU data (3-axis

accelerometer and 3-axis gyroscope) for each IMU based on

the sequence of positions and orientations determined by B, D, and

P, with the H parameter introducing sensor-specific variations.

The resulting IMU measurements are adjusted according to the

specified biases and noise levels for each device, as detailed in the

following:

Accelerometer simulation: the accelerometer simulation

captures both linear and gravitational acceleration. The linear

acceleration of an IMU ui in the world frame, a
ui ,w
t , is computed

as the second derivative of its position pui :

a
ui ,w
t =

d2pui

dt2
(5)
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FIGURE 2

Example of the B parameter configuration, illustrating the skeletal tree structure. Each node represents a joint, detailing its relative position and range

of motion (ROM) relative to its parent. All joints are aligned with the world frame, representing their default positions.

This is then adjusted for the IMU’s local frame, factoring in

gravitational acceleration g and the IMU’s orientation, as well as

the hardware-specific parameters—bias b
ui
acc and Gaussian noise

N(0, σ
ui
acc

2
):

a
ui
t = q

ui
t
−1

(a
ui ,w
t − g)q

ui
t + buiacc + N(0, σ ui

acc
2) (6)

Gyroscope simulation: the gyroscope simulation focuses on

measuring angular velocity. For each IMU ui, the angular velocity

ω
ui ,w
t in the world coordinate system is calculated based on the

change in orientation from q
ui
t−1 to q

ui
t over time:

ω
ui ,w
t =

dqui

dt
=

q
ui
t q

ui
t−1

−1

Tt − Tt−1
(7)

This angular velocity is then transformed to the IMU’s local frame,

and adjusted for the gyroscope’s bias b
ui
gyro and Gaussian noise

N(0, σ
ui
gyro

2
):

ω
ui
t = q

ui
t
−1

ω
ui ,w
t q

ui
t + buigyro + N(0, σ ui

gyro
2) (8)

By incorporating these hardware-specific parameters,

WIMUSim aims to model the real-world imperfections and

variability observed in real IMUs, providing a flexible foundation

for generating virtual IMU data that reflects real-world conditions.

While WIMUSim enables a flexible simulation of wearable

IMUs using the parameters B, D, P, and H, these parameters

must be carefully chosen to ensure high fidelity of virtual IMU

data. In the next section, we explain how WIMUSim leverages

its differentiable simulation process to iteratively refine these

parameters, minimizing the discrepancy between virtual and real

IMU data through gradient descent.

4 High fidelity parameter
identification

WIMUSim simulates 6-axis wearable IMUs through differential

vector manipulations and quaternion rotations. This simulation

process is fully differentiable across all four key parameters: B,

D, P, and H. By leveraging this differentiability, we propose a

high-fidelity wearable IMU parameter identification method that

refines these parameters through gradient descent optimization

using real IMU and motion data collected concurrently. Initial

estimates for the B and D parameters can be derived from motion

capture methods, including optical-based, IMU-based, or video-

based techniques, while P is manually specified based on the target

sensor placement, and H is obtained from device specifications

or stationary data collection. Although these initial parameters

may be rough estimates, they are to be optimized using real-

world measurements to minimize the discrepancy between real and

virtual IMU data. Through gradient descent, WIMUSim ensures

that the generated virtual IMU data X̂IMU = f (B,D, P,H) closely

matches real IMU measurements XIMU.

To achieve this, we design a loss function that minimizes the

error between virtual and real IMU data while maintaining physical

plausibility by incorporating regularization terms specific to each

WIMUSim parameter. The loss function used in this optimization
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FIGURE 3

Visualization of IMU position and orientation generation based on B, D, and P parameters. This figure illustrates the simulation of an IMU’s position

and orientation on a right arm model, assuming the right shoulder joint is positioned at (0, 0, 0) in the world coordinate system, with an orientation of

(0.7071, 0, 0.7071, 0) — indicating a rotation of 90 degrees from the default orientation along the Z-axis. (A) Right arm model with an IMU placed on

the right wrist, moving the R_ELBOW joint 90 degrees around its Z axis from t0 to t1. (B) Transition of RWR’s position and orientation.

process is defined as follows:

Ltotal = LRMSE + λ1LD-ROM + λ2LB-range + λ3LP-range + λ4LH-range

+λ5LB-sym + λ6LD-temp + λ7LH-dist (9)

The following details each component within this combined loss

function.

4.1 RMSE loss

The primary objective is to minimize the discrepancy between

the simulated IMU data and the target real IMU data. We use

the RMSE as our metric of choice to quantify this discrepancy,

penalizing larger errors more than smaller ones. The RMSE loss is

defined as:

LRMSE =

√

√

√

√

1

|T|

∑

i∈{x,y,z}

∑

t∈T

[

α(xAcct,i − x̂Acct,i )2 + β(x
Gyro
t,i − x̂

Gyro
t,i )2

]

(10)

where xAcct,i and x
Gyro
t,i represent real IMU acceleration and

gyroscopic data components along the axis i, x̂Acct,i and x̂
Gyro
t,i

represent their simulated IMU data components along the axis i,

and α and β are weighting coefficients to account for the different
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scales of acceleration and gyroscopic data. |T| is the total number

of time steps.

While the RMSE loss quantifies the discrepancy between

simulated and real IMU data, optimizing WIMUSim parameters

based solely on minimizing RMSE could result in unrealistic

parameters. Therefore, the RMSE loss is supplemented with

regularization terms designed to enforce physical realism and

ensure that the optimized parameters remain reasonable within the

context of wearable IMU simulations.

4.2 Parameter range regularization

Parameter range regularization is designed to ensure that

the WIMUSim parameters stay within realistic boundaries. By

integrating these regularization terms into the loss function, we

guide the parameter tuning process to respect pre-defined limits,

allowing us to inject prior knowledge about these parameters and

making the simulated data more relevant to specific real-world

scenarios.

Range of motion regularization: ROM regularization is

calculated for each joint j within the set J, ensuring that the joint

orientations in D remain within the specified range of motion

(ROM) defined in the B parameter. Since the ROMs are defined in

terms of Euler angles, joint orientations, originally represented as

quaternions, are converted to Euler angles for this calculation. The

ROM regularization term is formulated as follows:

LROM = 1
|T|

∑

j∈J

∑

i∈{x,y,z}

∑

t∈T

[

max(0, quat2euler(D
(j)
t , i)

−B
(j)
max,i)+max(0,B

(j)
min,i − quat2euler(D

(j)
t , i))

]

(11)

where J is the set of joints; i denotes the individual x, y, and z

component of the Euler angles; T represents the time steps;

quat2euler(D
(j)
t , i) represents the angle of joint j around axis i at

time t, converted to Euler angles from its original quaternion

representation; B
(j)
max,i and B

(j)
min,i are the maximum and minimum

limits for each dimension of joint j, defining the joint’s ROM.

Body, placement and hardware range regularization: similar

to the ROM regularization, LB-range, LP-range, and LH-range penalize

deviations of the B, P, and H parameters outside their predefined

limits. This regularization ensures that these parameters remain

within realistic and physically plausible ranges.

For example, LB-range penalizes deviations of each body

parameter b ∈ B beyond its allowed range as follows:

LB-range =
∑

b∈B

∑

i∈{x,y,z}

[

max(0, bi − bmax,i)+max(0, bmin,i − bi)
]

(12)

where bi is the i-th component of the B parameter’s relative position

vector b, and bmax,i and bmin,i denote the upper and lower limits for

each component, respectively.

Similarly, LP-range penalizes relative position vectors and

relative orientation quaternions that fall outside predefined limits,

and LH-range penalizes hardware-specific parameters (e.g., bias and

standard deviation terms) outside of their expected operational

range.

4.3 Symmetry regularization

In the WIMUSim framework, B parameters are defined

independently for each side to account for potential misalignments

between the left and right sides of the body. Although human

limbs are generally similar in length, variations do occur, influenced

by both genetic and behavioral factors (Auerbach and Ruff,

2006). While acknowledging these natural differences, it is also

important to prevent the optimization process from exaggerating

limb asymmetry beyond realistic and functional boundaries. This

regularization term is thus designed to accommodate possible

bilateral asymmetries while ensuring that their divergence remains

within realistic limits. The symmetry regularization term is

formulated as follows:

LB-sym =
∑

(jR ,jL)∈Jpair

||B
(jR)
rp −mirror(B

(jL)
rp )|| (13)

where Jpair is the set of key pairs representing corresponding points

on the right and left sides of the body (e.g., right and left shoulders);

jR and jL represent keys in the B parameter corresponding to a joint

on the right and left side of the body, respectively; B
(j)
rp denotes the

relative position vector of the joint j in the B parameter; the function

mirror(B
(jL)
rp ) mirrors the left side position B

(jL)
rp across the sagittal

plane to compare it with its right-side counterpart.

4.4 Temporal regularization

Temporal regularization smooths changes in joint orientations

and humanoid translations over time, mitigating rapid and

unrealistic fluctuations in the D parameter. This is formulated as:

LD-temp =
1

|T|

∑

j∈J

∑

t∈T

||1nD
(j)
t ||2 (14)

where J is the set of joints; T represents the time steps and |T| is the

number of time steps; 1n represents the n-th difference operation

over time; D
(j)
t indicates the joint parameters (either orientation

or translation) of joint j at time t; n is the order of the difference

(e.g., n = 3 for a third-order difference to target the smoothness of

acceleration changes, avoiding jerky or abrupt transitions in joint

movements), which specifies how many time steps are considered

for calculating the change in joint parameters.

4.5 Noise distribution regularization

Noise distribution regularization is designed to estimate the

noise characteristics of the target IMU data accurately. During

parameter identification, we explicitly model the noise in the

acceleration and gyroscopic signals as temporal noise matrices

of shape [T, 3], where T represents the number of time steps,

matching the shape of the target IMU data. These matrices

are optimized to meet the following two conditions for each

channel (x, y, and z): (1) the noise should follow a Gaussian

distribution N(0, σ 2) with zero mean and standard deviation

within a predefined range; and (2) the noise should be uniformly
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distributed across all frequencies, reflecting the properties of

random white noise typically found in real IMU sensors. The noise

distribution regularization term is formulated as follows:

LH-dist =
∑

u∈IMUs

∑

s∈{Acc,Gyro}

∑

c∈{x,y,z}

[

||µ
u,s,c
noise||

2 + std(F(noiseu,s,c))
mean(F(noiseu,s,c))

]

(15)

where µ
u,s,c
noise is the mean of the noise matrices for IMU u,

sensor type s (either accelerometer or gyroscope), and channel

c (x, y, or z), enforced to remain close to zero, ensuring zero-

mean noise for each channel. F(noiseu,s,c) represents the Fourier

transform of the noise vector for each IMU, sensor type, and

channel, used to evaluate the spread of the noise frequencies.

std(F(noiseu,s,c)) is the standard deviation of the energy of the

noise’s frequency components, and mean(F(noiseu,s,c)) is the mean

energy of these frequency components. The ratio std(F(noiseu,s,c))
mean(F(noiseu,s,c))

promotes uniform distribution across all frequencies for each

channel, encouraging the extracted noise to resemble a random

white noise pattern.

After identifying these noise characteristics, only the estimated

standard deviations of the learned noise matrices are used in the

generation phase to produce realistic random noiseN(0, σ 2) during

virtual IMU generation.

5 Realistic parameter transformation

Here, we illustrate how transforming WIMUSim parameters

can introduce realistic variability into the simulated IMU data. By

adjusting the parameters identified by the high-fidelity parameter

identification, we generate virtual IMU data that reflects a

broad range of realistic conditions. We present two use cases

for applying realistic parameter transformation: Comprehensive

Parameter Mixing (CPM) and Personalized Dataset Generation

(PDG). These approaches showcase the flexibility and practicality

of WIMUSim’s parametric approach in generating diverse and

enriched datasets, supporting both extensive data augmentation for

broad generalization and fine-tuned personalization for subject-

specific model refinement.

5.1 Comprehensive parameter mixing

CPM expands the dataset’s diversity by changing the

combinations of existing WIMUSim parameter sets—B, D, P,

and H—collected from different subjects to augment the dataset

without the need for complex manual intervention. This approach

effectively introduces variations in body morphology, movement

patterns, sensor placements, and hardware characteristics,

generating diverse datasets aimed at improving the robustness of

HAR models in real-world scenarios.

For example, CPM enables the simulation of scenarios where

one subject’s body size is combined with another’s activity

dynamics, a third subject’s sensor placement preferences, and

a fourth subject’s hardware characteristics. Consider a dataset

comprising n subjects, each having unique sets of WIMUSim

parameters: B, D, P, and H. The number of possible combinations

through parameter mixing can be quantified as n4, significantly

increasing the size of the dataset and enriching variability without

additional data collection. Figure 4A depicts a scenario involving

three subjects, each providing distinct parameter sets. In this

example, CPM generates 81 unique virtual IMU scenarios from just

three subjects’ data, demonstrating the scalability of this approach

for expanding datasets.

5.2 Personalized dataset generation

PDG tailors the simulation to reflect individual profiles by

selectively adjusting WIMUSim parameters. By fixing subject-

specific B, P, and H parameters while varying D, PDG captures

unique physical characteristics and typical sensor-wearing patterns

for a given subject across a broad range of movement scenarios.

This method maintains personal relevance while introducing

controlled variability in movement dynamics. Figure 4B provides a

visual example of a scenario customized for an individual subject’s

specific body configuration, sensor placement, and the hardware

used. This approach is designed for fine-tuning machine learning

models.

6 Evaluations and results

In this section, we present evaluations conducted to assess the

capabilities of WIMUSim in both simulating realistic virtual IMU

data and enhancing HAR model performance through CPM and

PDG. Our evaluations are twofold: Firstly, we assess the fidelity

of virtual IMU data using our in-house dataset, focusing on the

effectiveness of the parameter identification method to ensure

its alignment with real-world data (Section 6.1). Secondly, we

measure the impact of utilizing virtual IMU data generated with

WIMUSim on the performance of HAR models using REALDISP

and REALWORLD datasets, highlighting the benefits of high-

fidelity virtual IMU data and the flexibility of physics simulation

in simulating realistic variabilities (Section 6.2).

6.1 Fidelity assessment: sim-to-real
alignment of WIMUSim virtual IMU data

We have conducted a fidelity assessment to verify WIMUSim’s

capability to accurately replicate real IMU data using the four

sets of parameters: B, D, P, and H parameters. To facilitate this

evaluation, an in-house dataset was collected to establish a reliable

ground truth, detailed in Section 6.1.1. Subsequently, in Section

6.1.2, we describe the initial setup of theWIMUSim parameters and

the configuration for optimization. The fidelity assessment is then

carried out through two analyses:

1. Error analysis of virtual IMUdata with optimized parameters:

this analysis evaluates the accuracy of the optimized virtual

IMU data by comparing the simulated data against real IMU

data before and after parameter optimization. We quantify how

closely WIMUSim can replicate actual IMU readings through
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FIGURE 4

Visualization of (A) Comprehensive Parameter Mixing, illustrating the mixing of simulation parameters from three distinct subjects to enrich the

variability of the dataset, and (B) Personalized Dataset Generation, depicting the tailored adjustment of simulation parameters to create personalized

datasets.

the parameter identification process using error metrics such

as Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE) and supplement this quantitative assessment with visual

comparisons (Section 6.1.3).

2. Sim-to-real alignment analysis via placement modification:

this analysis examines how adjustments to the WIMUSim’s

Placement parameters effectively mirror real-world sensor

movements, highlighting WIMUSim’s close sim-to-real

alignment (Section 6.1.4).

6.1.1 In-house digit drawing dataset
Our in-house digit drawing dataset features a single subject

performing digit-drawing gestures, from 0 to 9, using their

right arm. This selection of the task effectively isolates the

intended motion by focusing exclusively on right arm movements,

minimizing the influence of extraneous body movements. Data was

collected using four BlueSense (Roggen et al., 2018) 9-axis IMUs

positioned on the torso (TRS), right upper arm (RUA), and two on

the right wrist (RWR1 and RWR2) at 100 Hz. Each IMU includes

an accelerometer, gyroscope, and magnetometer, and also reports

its orientation in quaternion format, which was utilized to derive

initial D parameters for the simulation.

To assess the sim-to-real alignment when sensor displacement

occurs, including shifts and rotations, the placements of RWR1

and RWR2 were adjusted for three experimental configurations:

initially, with stacked IMUs on the right wrist to establish a

baseline of nearly identical signals, followed by configurations

where RWR2 was either rotated or shifted to mirror potential real-

world displacements. Figure 5 illustrates these three configurations.

The subject repeated each digit-drawing gesture, which takes about

3 s, at least three times, resulting in a total duration of 90 s for each

sensor placement configuration.

6.1.2 WIMUSim parameter preparation and
optimization

Here, we describe how the initial WIMUSim parameters were

defined for the evaluation. In this evaluation, we focus on right arm

movements, limiting the B parameters to five joints: BASE, PELVIS,

R_CLAVICLE, R_SHOULDER, and R_ELBOW, and defining P

parameters for the TRS, RUA, and RWR1 IMUs. The B and P

parameters are detailed in Tables 1, 2. Note that in Table 2, the

relative orientations of the P parameter are presented in Euler

angles for easier interpretation, although they are actually defined

in quaternion format. The H parameters were initialized with a

bias of (0, 0, 0), the mean of (0, 0, 0) and the standard deviation of

(0.05, 0.05, 0.05) for each IMU sensor. TheD parameter was derived

from quaternion readings of the IMUs. This can be done in the

reverse process of the virtual IMU simulation. In the simulation,

we project joint dynamics into simulated sensor orientations.

Conversely, here, we use actual sensor readings to backtrack and

estimate the joint orientations. For each joint j ∈ J associated

with an IMU uj, we first compute its global orientation as qj =

qujP
(j,uj)
ro

−1
, derived from Equation 4. The local orientation for each

joint j is then determined by transforming the global orientation

relative to its parent joint jp in the kinematic chain, calculated

as Dj = (qjp )−1qj, derived from Equation 2. In this dataset, the

quaternions of TRS, RUA, and RWR1 IMUs correspond to the

orientation of PELVIS, R_SHOULDER, and R_ELBOW joints,

respectively; other joints’ initial relative orientations are set to a unit

quaternion (1, 0, 0, 0).

For parameter identification, the Adam optimizer was used

with learning rates set to 0.0001. The optimization was applied

to B, P, D, and H parameters for the data collected in each

of three IMU placement configurations: stacked, rotated, and

shifted. The primary goal of the parameter identification was

to align the three virtual IMU data (TRSsim, RUAsim, RWR1sim)

as closely as possible with the real-world counterparts. The

coefficients for the loss function were adjusted to balance

the scales between different regularizers and set as follows:

λ1 = 10−3, λ2 = 102, λ3 = 103, λ4 = 100, λ6 =

102, and λ7 = 10−2. λ5, corresponding to the symmetry

regularization term, was not used in this experiment as it involved

only the right arm. These values were chosen to ensure a

balanced optimization process across the varying scales of the

regularization terms.
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FIGURE 5

Illustration of IMU placement configurations used in the in-house dataset for fidelity assessment. (A) Stacked: Two IMUs are positioned directly on

top of each other on the right wrist (RWR). (B) Rotated: The top IMU (RWR2) is rotated 10 degrees clockwise relative to the bottom IMU. (C) Shifted:

The top IMU (RWR2) is displaced 3 cm toward the elbow from the original stacked position.

TABLE 1 Initial relative positions of body parameter in meters.

(Parent joint, child joint) Initial relative position Range X Range Y Range Z

(BASE, PELVIS) (0.00, 0.00, 0.00) (–0.03, 0.03) (–0.03, 0.03) (–0.03, 0.03)

(PELVIS, R_CLAVICLE) (0.00, 0.00, 0.43) (–0.03, 0.03) (–0.03, 0.03) (0.40, 0.60)

(R_CLAVICLE, R_SHOULDER) (0.22, 0.00, 0.00) (0.15, 0.35) (–0.10, 0.00) (–0.03, 0.03)

(R_SHOULDER, R_ELBOW) (0.27, 0.00, 0.00) (0.20, 0.30) (–0.03, 0.03) (–0.03, 0.03)

TABLE 2 Initial relative positions and orientations of Placement parameter.

(Parent joint, IMU) Initial values (X,Y ,Z) Range X Range Y Range Z

Position (meters)

(PELVIS, TRS) (0.00, 0.10, 0.24) (–0.03, 0.03) (–0.05, 0.10) (0.20, 0.50)

(R_SHOULDER, RUA) (0.24, 0.00, 0.06) (0.05, 0.25) (–0.03, 0.03) (0.03, 0.08)

(R_ELBOW, RWR) (0.23, 0.00, 0.04) (0.10, 0.30) (–0.03, 0.03) (0.02, 0.06)

Orientation (degrees)

(PELVIS, TRS) (–90, 0, 0) (–95, 85) (–5, 5) (–5, 5)

(R_SHOULDER, RUA) (0, 0, 0) (–5, 5) (–10, 0) (–5, 5)

(R_ELBOW, RWR) (0, 0, 0) (–5, 5) (–5, 5) (–5, 5)

6.1.3 Error analysis of virtual IMU data with
identified parameters

In this analysis, we assess WIMUSim’s capability to replicate

real-world IMU data accurately, focusing on the “stacked”

placement configuration. This evaluation compares the simulation

accuracy of pre- and post-optimization for TRS, RUA, and RWR1.

Additionally, for a reference of desired accuracy, we compare the

data from two actual sensors, RWR1 and RWR2, placed on the right

wrist.We quantify the degree of accuracy achieved using RMSE and

MAE, alongside visual comparisons of real and simulated data, to

detail the discrepancies and alignments between them.

Table 3 presents the comparison of RMSE and MAE values

for acceleration and gyroscope data at the TRS, RUA, and RWR

positions, both before and after optimization, alongside the real

IMU comparison for RWR1 vs. RWR2. Notably, the optimization

process results in a significant reduction in errors at the RWR

position, with the post-optimization values for RWR1 vs. RWR1sim
(post-opt) even lower than those between the two real IMUs,

RWR1 and RWR2, while maintaining high accuracy for TRS and

RUA placements. These results underscore the capability of the

WIMUSim framework in replicating real-world IMU data placed

in different positions. Furthermore, Figure 6 visually compares the

real and simulated IMU data at RWR1. The visual comparison

underscores the close alignment of virtual IMU after optimization.

6.1.4 Sim-to-real alignment analysis via
placement modification

We extend our fidelity assessment by examining WIMUSim’s

capability to simulate sensor placement changes, such as rotations

and shifts, that mirror real-world modifications. Referring to the

“rotated” and “shifted” configurations depicted in Figures 5B, C,
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TABLE 3 Comparison of RMSE and MAE values for Acceleration (Acc) and Gyroscope (Gyro) data across di�erent IMU positions, including

pre-optimization and post-optimization of virtual IMU parameters and real IMU comparisons (for RWR).

Combination RMSE (Acc) RMSE (Gyro) MAE (Acc) MAE (Gyro)

TRS vs TRSsim (pre-opt) 0.266 0.074 0.192 0.058

TRS vs TRSsim (post-opt) 0.084 0.039 0.065 0.031

RUA vs RUAsim (pre-opt) 1.130 0.386 0.841 0.289

RUA vs RUAsim (post-opt) 0.246 0.042 0.188 0.033

RWR1 vs RWRsim (pre-opt) 2.022 0.441 1.517 0.386

RWR1 vs RWRsim (post-opt) 0.135 0.059 0.106 0.044

RWR1 vs RWR2 0.456 0.143 0.350 0.104

Bold values indicate the smallest RMSE or MAE for each IMU (TRS, RUA, RWR), highlighting the improvement achieved through optimization.

FIGURE 6

Visual comparisons between real RWR1 data and simulated IMU data with pre- and post-parameter optimization. X,Y, and Z axes from top to

bottom, respectively; excerpts of 12 s, which corresponds to the motion of drawing digits from 2 to 5. This visualization highlights the close

alignment achieved post-optimization, illustrating WIMUSim’s capability in replicating real IMU data. (A) Accelerometer. (B) Gyroscope.

we applied a 10-degree clockwise rotation and a 3-cm shift toward

the elbow on the identified P parameter for RWR1. Note that these

modifications were directly applied to the P parameter without re-

optimizing it using RWR2 data, allowing us to test WIMUSim’s

sim-to-real alignment against actual sensor displacements. We

then compared the modified RWR1sim+rotate and RWR1sim+shift

against the real world counterparts, the rotated and shifted RWR2,

respectively.

Table 4 presents the RMSE and MAE comparisons for the

rotated and shifted configurations across three scenarios: RWR2 vs

RWR1, RWR2 vs RWR1sim, and RWR2 vs RWR1sim+modified. The

results show consistent error reductions when the placement values

were modified to reflect the real-world changes, with the RMSE

and MAE comparable to those observed between two stacked real

IMUs in the previous experiment (in Table 3), indicating successful

sim-to-real alignment. Additionally, Figure 7 contrasts the real and

simulated IMU data pre- and post-rotation, visually demonstrating

the sim-to-real alignment.

6.2 Performance assessment: impact of
virtual IMU data on HAR model
performance

In this section, we evaluate the effectiveness of WIMUSim

in improving HAR model performance by examining the impact

of optimized virtual IMU data through a series of experiments.

Our objective is to explore WIMUSim’s utility for generating

realistic virtual IMU data that bridges the gap between real and

simulated data.

We use the REALDISP and REALWORLD datasets to

conduct our evaluations. In Section 6.2.1, we describe the

datasets in detail and outline their role in the experiments.

Our performance assessment is structured around three

key experiments:

1. Examining the effectiveness of optimized virtual IMU on

HAR model performance: this experiment assesses how the

optimization of WIMUSim parameters can minimize the

performance discrepancies caused by the differences between

virtual and real IMU data, comparing HAR models trained

on real IMU data with those trained on optimized or non-

optimized virtual IMU data (Section 6.2.2).

2. Evaluating parameter mixing for reducing the data collection

cost: this experiment investigates how much Comprehensive

Parameter Mixing can effectively increase data diversity and

enhance model performance, reducing the need for extensive

real-world data collection (Section 6.2.3).

3. Testing fine-tuning with personalized augmented dataset:

we examine the effectiveness of fine-tuning HAR models with

Personalized Dataset Generation, assessing how well the models

adapt to individual variations in sensor placements and body

configurations (Section 6.2.4).
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TABLE 4 RMSE and MAE Comparison for Acceleration (Acc) and Gyroscope (Gyro): real IMU (RWR2) vs. simulated IMU (RWR1sim) pre- and

post-modification, demonstrating the close alignment between changes made in the real world and in WIMUSim.

Scenario Combination RMSE (Acc) RMSE (Gyro) MAE (Acc) MAE (Gyro)

Rotated

RWR2 vs RWR1 0.614 0.244 0.462 0.158

RWR2 vs RWR1sim 0.635 0.246 0.487 0.167

RWR2 vs RWR1sim+rotated 0.392 0.132 0.312 0.099

Shifted

RWR2 vs RWR1 0.722 0.148 0.582 0.109

RWR2 vs RWR1sim 0.721 0.153 0.580 0.109

RWR2 vs RWR1sim+shifted 0.546 0.153 0.464 0.109

Bold values indicate the smallest RMSE or MAE for each scenario (Rotated or Shifted). Gyroscope values are note bolded in the Shifted scenario because they remain unchanged due to the rigid

body assumption in the simulation.

FIGURE 7

Visual comparison of real and simulated IMU data before and after applying −10 degrees rotation around Z axes to P parameter of RWR1,

demonstrating the precise alignment between RWR2 and RWR1sim+rotated. X,Y, and Z axes from top to bottom, respectively; excerpts of 6 s. (A)

Accelerometer. (B) Gyroscope.

6.2.1 Datasets used in performance assessment
Realistic sensor displacement (REALDISP) dataset aims to

investigate the effects of sensor displacement in HAR. It includes

data from 33 fitness activities recorded with nine IMUs on 17

participants in three placement scenarios: (1) “ideal placement,”

where the expert places the IMUs at desired positions with specific

orientations; (2) “self-placement,” where the participants place the

IMUs by themselves without specific instruction hence introducing

natural placement variability, and (3) “mutual displacement,” where

the expert explicitly displaces the IMUs. IMUs are placed on the

back, upper arms, lower arms, thighs, and shins. For more details

about the dataset, refer (Baños et al., 2012).

We use the dataset in two distinct scenarios:

1. User-independent scenario: “Ideal placement” data from

subjects 1 to 10 are used for training, subjects 11 and 12 for

validation, and subjects 13–17 for testing to evaluate the model’s

performance on unseen subjects.

2. Sensor displacement scenario: “Ideal placement” data from

all subjects (1–17) are used for training. To assess the model’s

robustness against sensor displacement, “self-placement” data

are used, with subjects 14–17 for validation, and subjects 1–5

and 7–12 for testing. Subjects 6 and 13 are excluded due to data

unavailability in the self-placement setting.

In preparation for these experiments, we extracted the D

parameters from the “ideal” placement data for all subjects,

following the methods described in Section 6.1.2. For the B and

P parameters, we estimated rough values from (Baños et al.,

2012), using these same values for all subjects. The H parameters,

including biases and noise levels, were initialized to zero by default.

Subsequently, we optimized the B, D, P, and H parameters using

the real IMU measurements. The coefficients for the loss function

were adjusted to balance the scales between different regularization

terms and set as follows: λ1, λ4, λ7,= 100, λ2 = 102, λ3 = 103, λ5 =

101, andλ6 = 10−2.

Throughout the experiments, we focus on accelerometer and

gyroscope data from the Right Lower Arm (RLA) and Left

Lower Arm (LLA) IMUs due to the commonality of these sensor

placements. Both real and virtual data were downsampled from 50

to 25 Hz.

REALWORLD dataset is used to explore the applicability of

virtual IMU data generated from 3D pose estimations extracted

from RGB videos. It consists of sensor data collected from 15

participants (mean age 31.9± 12.4, eight males and seven females)

performing eight distinct activities: walking, running, sitting,

standing, lying, climbing stairs up, climbing stairs down, and

jumping. Each activity was recorded for ∼10 min per participant,

except for jumping (up to 1.7 min) due to the physical exertion

involved. The dataset includes data from seven IMU sensors placed

on the head, chest, waist, upper arm, wrist, thigh, and shin, as

well as corresponding video recordings for each session. For more

details about the dataset, refer to (Sztyler and Stuckenschmidt,

2016).

In our experiments, we extracted the D parameters from these

videos using MotionBERT (Zhu et al., 2023). The B parameters

were obtained by first estimating each limb length ratio from the
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3D pose estimation, followed by rescaling based on the subject’s

height information. The P parameters were manually set based on

references to the photos provided in the dataset. TheH parameters,

including biases and noise levels, were initialized to zero by default.

To synchronize the sensor data, we aligned acceleration and

gyroscope measurements across IMUs by maximizing the cross-

correlation of acceleration magnitudes, followed by resampling the

data to 30 Hz. We then synchronized the sensor data with the

video recordings through cross-correlation minimization, again

using acceleration magnitudes. Subsequently, we optimized the B,

D, P, and H parameters using the real IMU measurements. The

coefficients for the loss function were all set to 100 except for

λ6, which corresponds to the temporal regularization on the D

parameters. For stationary activities, such as lying, standing, and

sitting, λ6 was set to 100, while for other activities, λ6 was reduced

to 10−2 to account for increased movement dynamics.

For our evaluation, we adopted a single-subject hold-out split,

following the setting used in (Kwon et al., 2020). Specifically,

subjects 1–13 were used for training, subject 15 for validation, and

subject 14 for testing. We used all of the seven devices, but only

acceleration data was used for training the HAR models.

6.2.2 Examining the e�ectiveness of optimized
virtual IMU on HAR model performance

This experiment assesses how the optimization of WIMUSim

parameters can minimize the HAR model performance

discrepancies caused by the differences between virtual and

real IMU data. To evaluate this, we prepared training datasets with

three distinct configurations in REALDISP’s user-independent

scenario and sensor displacement scenario, and REALWORLD’s

user-independent scenario:

• Real IMU (baseline): uses actual IMU data for training.

• Virtual IMU w/o Opt: uses virtual IMU data generated with

the non-optimized WIMUSim parameters.

• Virtual IMU w/ Opt: utilizes optimized WIMUSim

parameters for generating the virtual IMU dataset.

We trained the DeepConvLSTM (Ordóñez and Roggen, 2016)

chosen for its relevance in HAR studies across these settings. The

training was conducted with a batch size of 256 and for 100 epochs,

using a sliding windowwith a window size of 100 (corresponding to

4 s of data after downsampling to 25 Hz) with a stride of 25 for the

REALDISP scenarios and a window size of 30 with a stride of 15 for

the REALWORLD scenario. An initial learning rate of 0.001 with a

decay factor of 0.9 was applied, employing Adam as the optimizer.

We selected the best-performing model on the validation set for

final evaluation, focusing on the macro F1 score. The results were

averaged over three different trials with different random seeds.

Table 5 showcases the macro F1 scores from employing the

three training dataset configurations with the DeepConvLSTM

model. This result confirms that virtual IMU data generated from

optimized parameters can be used to train deep learning models

to achieve classification performance comparable to that using

real IMU data, thereby validating the efficacy of our WIMUSim’s

wearable IMU model and parameter identification method. It also

establishes a foundation for the development of simulation-based

data augmentation techniques using the optimized parameters for

B, D, P, and H.

Interestingly, in the REALDISP and REALWORLD user-

independent scenarios, models trained on virtual IMU data

generated with optimized parameters slightly outperformed those

trained on real IMU data. This outcomemay be due toWIMUSim’s

regularization effect on the training dataset, producing more

consistent signals regulated by WIMUSim’s simulation process,

compared to the real IMU data, which likely contains local noise

and some inconsistencies. As a result, the optimized virtual IMU

data helped avoid overfitting to some specific patterns in the real

training data, improving overall generalization.

In contrast, for the REALDISP dataset, virtual IMU data

generated from non-optimized parameters underperformed by 15–

18 percentage points (pp) compared to the real IMU data. For

the REALWORLD dataset, the disparity in performance with non-

optimized virtual IMU data was much more pronounced, with

a drop in macro F1 score to 0.2035. This sharp decline can

be attributed to the poor quality of pose data extracted from

RGB videos, resulting from issues such as (1) camera movement

unrelated to the subject’s movement, (2) body segments being

occluded ormoving out of the camera’s view, and (3) inaccuracies in

pose estimation. Additionally, the REALWORLD dataset includes

activities like walking, running, and jumping, where ground contact

forces affect the IMU readings significantly—information that

cannot be reliably inferred from the pose data alone. Since no

optimization or refinement was applied to address these challenges,

the resulting virtual IMU data could not effectively replicate

the real-world dynamics, making it ineffective for training HAR

models.

6.2.3 Enhancing inter-subject data diversity
through comprehensive parameter mixing

This experiment explores the potential of Comprehensive

Parameter Mixing (CPM) as a data augmentation technique

to reduce the reliance on extensive real-world data collection

for training robust HAR models. The primary objective is to

demonstrate how CPM can effectively increase the diversity of

training data, thereby enhancing model performance and reducing

the need for costly, large-scale data collection.

We evaluated CPM within the REALDISP and REALWORLD

user-independent scenarios. We created augmented virtual IMU

datasets by varying the number of subjects involved in the mixing

process, ranging from 1 to 10 for the REALDISP dataset and

from 1 to 13 for the REALWORLD dataset. Unique sets of

parameters—B, D, P, and H—were combined to simulate varied

body configurations, movement patterns, sensor placements, and

hardware characteristics. For each epoch, 256 unique parameter

combinations were randomly sampled from the pool, generating

the virtual IMU data online during training. For training, both the

real and the augmented virtual IMU datasets were used.

Additionally, we generated another virtual IMU dataset using

the same parametermixingmethod but with non-optimized default

D parameters. For the REALDISP dataset, B and P were still

optimized to add variations, and for the REALWORLD dataset,
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TABLE 5 Comparison of HAR model performance (macro F1 score): assessing the e�ectiveness of parameter optimization.

Scenario Real IMU Virtual IMU w/o Opt Virtual IMU w/Opt

REALDISP

user-independent

0.6782± 0.0157 0.5241± 0.0075 0.6929± 0.0159

REALDISP

sensor-displacement

0.6024± 0.0128 0.4390± 0.0114 0.5913± 0.0130

REALWORLD

user-independent

0.7838± 0.0236 0.2035± 0.0258 0.7993± 0.0254

initial B parameters set for each subject were used. The H

parameters were kept at their default zero values. This comparison

was implemented to assess the impact of parameter optimization

within the CPM strategy, particularly the influence of accurate D

parameters on HAR model performance.

The DeepConvLSTMmodel was trained for each scenario. The

training was conducted with a batch size of 256 for the REALDISP

dataset and 1,024 for the REALWORLD dataset over 100 epochs,

retaining the model with the highest validation performance

for testing. Other configurations remained consistent with those

described in Section 6.2.2. We used the macro F1 score to measure

performance.

Figure 8 illustrates how performance transitions as the number

of subjects used in training for both datasets increases, contrasting

those trained with the baseline dataset (without CPM), the dataset

augmented with CPM optimized or non-optimized. The error

bars represent standard deviations. For both datasets, the models

trained with CPM-augmented virtual IMU data show substantial

improvements over the baseline, demonstrating the effectiveness

of CPM in enhancing model performance. Notably, the use of

optimized parameter combinations yields superior results across

all configurations. This indicates that leveraging the diversity

in subjects’ body sizes, movement dynamics, sensor placements,

and hardware properties significantly enhances the generalization

capability of the HAR models.

For the REALDISP dataset (Figure 8A), the benefits of CPM

with optimized parameters are observed consistently, with roughly

10 pp improvement when trained on data from just two to four

subjects compared to the baseline. This trend continues, and

the model trained using CPM with optimized parameters on

just five subjects achieves performance comparable to the best

baseline model trained with 10 subjects, resulting in a substantial

reduction in the amount of real-world data required to reach

similar performance. Even when all 10 subjects are included, CPM

maintains a consistent six percentage point advantage over the

baseline. This suggests that CPM can effectively reduce the need

for extensive data collection by creating diverse synthetic training

data that closely approximates the true distribution.

For the REALWORLD dataset (Figure 8B), the improvements

are even more pronounced. Models trained with optimized CPM

data consistently outperform the baseline. Specifically, a model

trained with CPM data from just six subjects surpasses the best

baseline performance, which required data from 10 subjects,

reducing the need for real-world data by roughly half. Moreover,

when using optimized CPM, the model achieves more than a 10

pp higher F1 score compared to both the best baseline and CPM

with non-optimized parameters, highlighting the significant impact

of high-fidelity simulation. Also, it is important to note that CPM

with non-optimized parameters shows less consistent performance,

with some initial gains over the baseline diminishing as the number

of real IMU data used for training increases. This is likely due to the

lower quality of D parameters extracted from videos, leading to less

reliable virtual IMU data.

Overall, these results demonstrate the effectiveness of CPM in

enhancing HAR model performance across datasets, significantly

reducing the need for extensive real-world data collection in

training scenarios. Moreover, the findings also emphasize the

importance of maintaining high fidelity in virtual IMU data,

particularly in scenarios like the REALWORLD dataset where

available motion data quality is lower. Ensuring accurate parameter

identification is essential formaximizing the benefits of virtual IMU

dataset.

6.2.4 Fine-tuning with personalized augmented
dataset

This experiment explores the potential of Personalized Dataset

Generation (PDG) as detailed in Section 5.2. We aim to enhance

HAR model performance by fine-tuning HAR models with

personalized datasets tailored to individual subjects’ body size and

sensor placement preferences in the sensor displacement scenario

of the REALDISP dataset.

For each subject, except for subjects 6 and 13, due to data

unavailability, we generated personalized datasets using PDG. This

process utilized the optimized B parameters for each specific subject

and theD parameters from all training subjects (1–17) in the “ideal”

placement scenario. The P parameters were extracted through

an optimization process on the data from the “self ” placement

scenario, considering its relative ease of acquisition in real-world

settings. We acknowledge that data leakage occurs during the P

parameter extraction process; however, in this experiment, our

focus is to demonstrate the potential benefits of PDG under the

assumption that the user’s placement preferences are known.

To establish a baseline for comparison, we first trained

a generalized DeepConvLSTM model using both real IMU

data and a virtual IMU dataset simulating a wide range of

sensor displacements. For the virtual IMU data, a set of sensor

misalignments was created using systematic rotations of 0◦, 20◦,

and –20◦ along each axis (x, y, z), forming 33 = 27 unique

rotations. Additionally, extreme misalignments such as 180◦

rotations along each axis and ± 90◦ rotations along the x-axis

were included to model more extreme placement deviations. This

resulted in a total of 32 distinct rotations (27 + 3 + 2), ensuring

that the dataset comprehensively covers both minor and significant
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a. b.

FIGURE 8

Performance Trends of HAR Models: The graphs (A) REALDISP and (B) REALWORLD illustrate macro F1 score transition as the number of subjects

used in training increases. The blue line with circle markers represents the baseline with no augmentation, the orange line with triangle markers

shows the performance with comprehensive parameter mixing (CPM), and the gray line illustrates the performance when using CPM with

non-optimized D parameters.

TABLE 6 Comparison of HAR model performance (macro F1 scores)

before and after fine-tuning with personalized datasets generated using

Personalized Dataset generation.

Pre-finetuning Post-finetuning

Subject 1 0.9144± 0.0026 0.9236± 0.0055

Subject 2 0.8178± 0.0127 0.9298± 0.0092

Subject 3 0.7811± 0.0292 0.8385± 0.0073

Subject 4 0.8071± 0.0312 0.9085± 0.0085

Subject 5 0.8071± 0.0280 0.8630± 0.0165

Subject 7 0.8932± 0.0105 0.8889± 0.0185

Subject 8 0.8595± 0.0023 0.8909± 0.0171

Subject 9 0.9301± 0.0052 0.9128± 0.0103

Subject 10 0.8983± 0.0126 0.9048± 0.0095

Subject 11 0.8739± 0.0172 0.8501± 0.0229

Subject 12 0.7590± 0.0817 0.8600± 0.0090

Average 0.8492± 0.0549 0.8883± 0.0296

Bold values indicate improved macro F1 score after fine-tuning with personalized datasets.

misalignments. This model was expected to perform reasonably

well across different subjects without specific personalization.

Following baseline training, we then fine-tuned the entire

network of the baseline model for each subject using the

personalized datasets. Given the adequate size of the personalized

datasets, we chose not to freeze any part of the model during

fine-tuning to allow comprehensive learning and adaptation to the

unique characteristics and preferences of each subject. Due to the

lack of dedicated validation data for each subject, we monitored

model performance using a separate validation set (subjects 14–

17 in the “self ” placement scenario), determining that 150 epochs

were a suitable cutoff, with a batch size of 1,024. Performance was

evaluated based on the macro F1 score.

Table 6 demonstrates significant benefits from fine-tuning with

personalized datasets generated with WIMUSim. DeepConvLSTM

models showed an average macro F1 score improvement of 4 pp.

Notably, some subjects experienced performance boosts exceeding

10 pp. A few cases showed slight declines; this might be due to

the sub-optimal extraction of the P parameter from the “self ”

placement data or the need for improved validation methodologies

during training.

These findings confirm the utility of WIMUSim in generating

personalized datasets for fine-tuning HARmodels, attributed to the

WIMUSim parameters’ flexibility and reusability. By incorporating

individual characteristics and potential variations extracted from

the dataset, these personalized datasets provide highly relevant

training data to specific subjects.

7 Discussion and limitations

The results of our experiments have demonstrated the

effectiveness of WIMUSim in generating high-fidelity virtual

IMU data through parameter identification and its utility in

HAR model training. However, certain aspects of WIMUSim’s

implementation and the current modeling choices present

limitations that need to be addressed for broader applicability. This

section begins by comparing WIMUSim with IMUTube (Kwon

et al., 2020) and CROMOSim (Hao et al., 2022) and discusses

WIMUSim’s positioning within HAR research. We then discuss

the current limitations of WIMUSim and highlight potential future

opportunities to enhance movement variability, wearable IMU

modeling, and applicability beyond its reliance on real IMU data.

7.1 Positioning and benchmarking of
WIMUSim against IMUTube and
CROMOSim

To contextualize the performance of WIMUSim, we compared

our results against IMUTube (Kwon et al., 2020) and CROMOSim

(Hao et al., 2022). Following the protocols outlined in these papers,

we conducted additional experiments on the REALWORLD

dataset, the Opportunity dataset for a 4-class locomotion

classification task (stand, walk, sit, and lie), and the PAMAP2

dataset for a reduced 8-class activity classification task (stand, walk,

sit, lie, run, ascend stairs, descend stairs, and rope jump). For

the REALWORLD dataset, virtual IMU data was generated using
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concurrently collected IMU and video data. For the Opportunity

and PAMAP2 datasets, virtual IMU data was generated using

video data from the REALWORLD dataset. The parameters

identified from the REALWORLD dataset were used as a basis,

with adjustments made to the P parameters to match the sensor

configurations of these datasets. Although this setting goes beyond

WIMUSim’s originally intended use case, it allows us to evaluate

how virtual IMUdata generated withWIMUSim performs in cross-

dataset scenarios, positioning WIMUSim among existing virtual

IMU simulation methods. The reduction in PAMAP2’s activity

classes was made to align with the activity labels available in the

REALWORLD dataset, which includes walking, running, sitting,

standing, lying, climbing stairs (up and down), and jumping.

The evaluation compared three configurations: R2R (Real-to-Real),

V2R (Virtual-to-Real), and M2R (Mixed-to-Real).

The sensor placement settings varied across themethods for the

Opportunity and PAMAP2 datasets. For the Opportunity dataset,

IMUTube extracted virtual IMU data from 11 accelerometers.

CROMOSim, in contrast, generated data from seven 6-axis

IMUs. For the PAMAP2 dataset, IMUTube used 3 accelerometer

placements on the chest, dominant wrist, and dominant ankle,

while CROMOSim generated data from three 6-axis IMUs at the

same locations. In our experiments with WIMUSim, we generated

virtual IMU data for four 6-axis IMUs (left lower arm, left upper

arm, back, and left foot) for Opportunity, as the D parameters

were optimized only for the center and left side of the body using

the REALWORLD dataset. For PAMAP2, we generated virtual

IMU data for three 6-axis IMUs (chest, left ankle, and left wrist).

For the V2R configuration of WIMUSim, we used virtual IMU

data generated directly from the originally identified parameter

sets without additional variation. For M2R, we applied CPM to

introduce variations in virtual IMU data. For the rest of the

configurations, we followed the same settings as explained in

(Kwon et al., 2020), including CDF-based distribution mapping for

virtual IMU data.

Table 7 presents the results of WIMUSim, IMUTube, and

CROMOSim across three datasets: REALWORLD, Opportunity,

and PAMAP2. Results for IMUTube and CROMOSim correspond

to the scores reported in (Kwon et al., 2020; Hao et al., 2022).

Due to differences in preprocessing and sensor placement

settings, our baseline results differed from those reported for the

other methods. For the REALWORLD dataset, where WIMUSim

achieved 5 pp higher performance, this discrepancy can be

attributed to differences in preprocessing. In our study, we

employed cross-device synchronization to align IMU signals from

multiple devices, ensuring consistent movement patterns for

parameter identification. IMUTube, by contrast, did not explicitly

mention such alignment, which may have contributed to less

consistent training data and lower baseline performance. For the

OPPORTUNITY and PAMAP2 datasets, differences in sensor

placement settings may have also contributed to variations in these

results.

For the V2R configuration, WIMUSim consistently

outperformed the other methods, with particularly strong results

on the PAMAP2 dataset. For the REALWORLD dataset, this

performance is attributed to the parameter identification process,

as detailed in Section 6.2.2. Remarkably, on the PAMAP2 dataset,

WIMUSim even exceeded its R2R performance, underscoring the

utility of high-fidelity virtual IMU data generated by WIMUSim.

This result demonstrates that the realism of WIMUSim’s

virtual IMU data can contribute to superior performance,

even in cross-dataset scenarios with differing data collection

configurations.

For the M2R configuration, WIMUSim demonstrated

significantly better performance on the REALWORLD dataset,

where paired real IMU and video data were available. However, the

performance gains were less pronounced on the Opportunity and

PAMAP2 datasets. This may be due to the distribution mapping

process, which aligns the distribution of the virtual IMU data to

that of the real IMU dataset but could reduce the influence of the

variations introduced by WIMUSim.

Overall, these results highlight WIMUSim’s strength in

generating high-fidelity virtual IMU data while capitalizing on

the flexibility of virtual IMU simulation, particularly in scenarios

where paired real IMU and motion data are available. Unlike

deep learning-based virtual IMU simulation methods such as

CROMOSim, which require substantial amounts of paired motion

and IMU data for pre-training, WIMUSim avoids this dependency.

This makes it especially advantageous for new sensor positions

or devices, where such datasets are often scarce. For new

applications—such as HAR models for rings, earbuds, or other

emerging wearable devices, which are not well-represented inmany

existing datasets—it is reasonable to expect that real IMU data

would be collected alongside video or pose estimation data during

initial testing and evaluation. In these cases, WIMUSim can utilize

this paired data to generate high-quality virtual IMU datasets

with realistic variations, thereby reducing the need for extensive

real-world data collection and enabling precise fine-tuning that is

better aligned with specific use cases. In contrast, existing methods

like IMUTube and CROMOSim are designed to leverage large-

scale video datasets to generate virtual IMU data. These studies

highlight the potential of utilizing lower-fidelity virtual IMU data

in combination with real IMU data. Together, these approaches

offer complementary roles for advancing the field of virtual IMU

simulation for HAR.

7.2 Current limitations and future
opportunities

Unexplored potential for simulating movement variability:

While the two use cases of WIMUSim presented in this study—

Comprehensive Parameter Mixing and Personalized Dataset

Generation—successfully demonstrated their effectiveness in

training HAR models, WIMUSim’s potential for generating diverse

movement patterns remains largely underexplored. Techniques

such as time scaling, magnitude warping, and time warping

could be applied directly to the Dynamics parameter to simulate

variations in movement intensity and speed, thereby enhancing

the diversity of the generated data and making it more reflective of

real-world variations. Implementing these transformations would

allow WIMUSim to capture a broader spectrum of IMU patterns

observed in natural activities. Exploring such augmentation

strategies could unlock the full potential of physics-based
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TABLE 7 Comparison of HAR model performance (F1 Score) across REALWORLD, Opportunity, and PAMAP2 datasets using IMUTube, CROMOSim, and

WIMUSim for R2R (Real-to-Real), V2R (Virtual-to-Real), and M2R (Mixed-to-Real) configurations.

Dataset Method R2R V2R M2R

REALWORLD IMUTube 0.730± 0.007 0.546± 0.008 0.778± 0.007

CROMOSim 0.729± 0.007 0.593± 0.012 0.821± 0.003

WIMUSim 0.784± 0.024 0.799± 0.025 0.916± 0.046

Opportunity IMUTube 0.887± 0.007 0.788± 0.010 0.884± 0.007

CROMOSim 0.864± 0.008 0.803± 0.011 0.879± 0.008

WIMUSim 0.885± 0.001 0.825± 0.004 0.888± 0.009

PAMAP2 IMUTube 0.700± 0.016 0.552± 0.010 0.702± 0.016

CROMOSim 0.702± 0.021 0.689± 0.012 0.769± 0.009

WIMUSim 0.736± 0.029 0.750± 0.022 0.772± 0.004

Bold values indicate the best performance achieved in V2R and M2R configurations for each dataset. R2R results are included for reference and are not bolded, as the primary focus of the

experiment is on virtual IMU data peformance.

simulation, extending WIMUSim’s utility and further reducing the

need for extensive real-world data collection.

Expanding the wearable IMU model for further flexibility:

currently, the Body parameter uses rigid bodies to model the

human body, and the Placement parameter is fixed to the relative

positions and orientations of the IMUs with respect to their parent

joints. This simple modeling enables efficient simulation and has

achieved satisfactory performance for our experiments; however,

it may not sufficiently address the complexity of how wearable

IMUsmove in some real-world settings. For example, when sensors

are embedded in loose clothing, as explored in recent studies

such as (Jayasinghe et al., 2023), IMUs do not always move with

their associated body joints, which cannot be accurately modeled

using our current modeling approach. Addressing such scenarios

would require more sophisticated models that account for the

interaction between IMUs, clothing, and the body surface. This

limitation highlights the need for more expansive validation across

a broader range of activities and placements, as well as future

work to investigate the potential benefits of a more complex model

for accurately simulating virtual IMU data and enhancing HAR

performance.

Streamlining coefficient selection process: the seven weight

coefficients in Equation 9 are designed to allow researchers to tailor

the parameter identification process based on prior knowledge

of the dataset. For example, in controlled settings like the digit

drawing dataset, larger coefficients (λ2 = 102, λ3 = 103)

were applied to strictly penalize deviations in B (Body) and

P (Placement) parameters, reflecting higher confidence in their

initial estimates. Conversely, for datasets like REALWORLD, where

parameter ranges were less certain, default values of 1 were used in

most cases. The only adjustment was to λ6, which was decreased

from 1 to 10−2 for non-stationary activities to better accommodate

fluctuations in Dynamics parameters (D-temp). However, the

selection of these coefficients remains subjective, as no standardized

guidelines currently exist for determining their values. This

subjectivity reflects the intent to balance RMSE minimization

with the physical plausibility of the identified parameters, rather

than to maximize HAR performance. Future work could focus

on developing systematic or automated methods for selecting

coefficients to reduce the reliance on manual tuning.

Exploring the broader applicability of WIMUSim: the

current WIMUSim framework relies on simultaneously collected

real IMU data and motion data to identify its parameters—

Body, Dynamics, Placement, and Hardware. This dependency can

constrain WIMUSim’s applicability to settings where such paired

data is available. Though we have identified unique opportunities

for WIMUSim in scenarios where small amounts of paired data

can be collected, it would still be beneficial to explore methods

for expanding its applicability. For example, in the M2R setting

in Section 7.1, WIMUSim’s CPM demonstrated less pronounced

advantages for the Opportunity and PAMAP2 datasets, likely due to

the distribution mapping method we used. To address this, future

work could explore domain adaptation techniques that preserve

the benefits of WIMUSim’s flexibility in introducing meaningful

variabilities into the virtual IMU data while improving its ability

to generalize across diverse datasets.

8 Conclusion

In this work, we investigated the impact of improving the

fidelity of virtual IMU data in training HAR models. To address

the discrepancies between real and virtual IMU data, we introduced

WIMUSim, a 6-axis wearable IMU simulation framework that

models and simulates wearable IMU data using four parameters—

Body, Dynamics, Placement, and Hardware. The fundamental

novelty of our approach lies in leveraging gradient descent

optimization to identify parameters that closely replicate real IMU

data within the simulation environment, enabling the realistic

simulation of variabilities in wearable IMU signals through physics-

based modeling.

Our fidelity assessment (Section 6.1) using an in-house dataset

demonstrated that WIMUSim could accurately replicate real

IMU data through parameter optimization, achieving RMSE of

0.135 [m/s2] for acceleration and 0.106 [rad/s] for angular velocity

for the IMU placed on the wrist. These results confirmWIMUSim’s

ability to generate realistic sensor outputs and accurately simulate

changes such as shifts and rotations in sensor placements,

validating its close sim-to-real alignment.
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Our evaluations on the REALDISP and REALWORLD datasets

demonstrated that HAR models trained on optimized virtual

IMU data achieved performance comparable to those trained on

real IMU data. In addition, we explored two primary use cases

for WIMUSim: Comprehensive Parameter Mixing (CPM) and

Personalized Dataset Generation (PDG). CPM improved HAR

model performance by 6 pp on the REALDISP dataset and by 12

pp on the REALWORLD dataset compared to the baseline trained

with real IMU data, while outperforming models trained with

non-optimized virtual IMU data by 4–10 pp. PDG, designed for

fine-tuning personalized models, achieved average improvements

of 2–4 pp, with gains exceeding 10 pp for certain subjects in the

sensor-displacement setting of REALDISP dataset.

These findings demonstrate the value of improving the fidelity

of virtual IMU to fully leverage the flexibility of physics simulation

for training HAR models and highlight the utility of WIMUSim in

producing high-fidelity virtual IMU data. Our research showcases

the benefits of improving the fidelity of virtual IMU data and

positionsWIMUSim as a tool for training HARmodels in scenarios

where real IMU data is collected alongside video recordings

or other forms of pose information. Furthermore, WIMUSim

offers the potential for developing more physically plausible

data augmentation strategies that incorporate realistic variabilities

influencing wearable IMU data, thereby contributing to mitigating

the data scarcity issue in sensor-based HAR.
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