
TYPE Original Research

PUBLISHED 25 July 2025

DOI 10.3389/fcomp.2025.1516410

OPEN ACCESS

EDITED BY

Hongji Yang,

University of Leicester, United Kingdom

REVIEWED BY

Manolis Tzagarakis,

University of Patras, Greece

Kunal Rao,

NEC Laboratories America Inc, United States

*CORRESPONDENCE

Kevin Lano

kevin.lano@kcl.ac.uk

RECEIVED 24 October 2024

ACCEPTED 08 July 2025

PUBLISHED 25 July 2025

CITATION

Siala H and Lano K (2025) A comparison of

large language models and model-driven

reverse engineering for reverse engineering.

Front. Comput. Sci. 7:1516410.

doi: 10.3389/fcomp.2025.1516410

COPYRIGHT

© 2025 Siala and Lano. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

A comparison of large language
models and model-driven
reverse engineering for reverse
engineering

Hanan Siala and Kevin Lano*

Informatics Department, King’s College London, London, United Kingdom

Large language models (LLMs) have been extensively researched for

programming-related tasks, including program summarisation, over recent

years. However, the task of abstracting formal specifications from code using

LLMs has been less explored. Precise program analysis approaches based on

model-driven reverse engineering (MDRE) have also been researched, and in

this paper we compare the results of the LLM and MDRE approaches on tasks

of abstracting Python and Java programs to the OCL formal language. We also

define a combined approach which achieves improved results.

KEYWORDS

program abstraction, reverse engineering, LLMS, model-driven reverse engineering

(MDRE), Object Constraint Language

1 Introduction

Reverse-engineering is the extraction of design, specification or requirements

level information from software applications, including abstractions or models of

the application semantics, which may be expressed as textual explanations, formal

specifications, or repositories of information about program elements (Bowen J. et al., 1993;

Marco et al., 2018; Sneed and Jandrasics, 1987; Sneed, 2011).

Re-engineering applies forward engineering to the reverse-engineered abstractions of a

source application, in order to produce a new target version, in a different programming

language or on a modernized platform (Bowen J. P. et al., 1993), and may include design

refactorings or design transformations for quality improvements (Lano and Malik, 1999).

In this paper we focus upon reverse engineering to derive formal specifications from

programs, in particular, our goal is to produce specifications in the OCL formal language

used within the UML (OMG, 2014). We evaluate and compare model-based and machine

learning (ML) approaches for this reverse engineering task, in terms of their semantic

quality and in terms of their utility as part of a re-engineering process. The outcome

is a detailed analysis of the relative strengths and weaknesses of the approaches for the

extraction of OCL specifications from Java and Python code.

Model-driven reverse engineering (MDRE) (Siala et al., 2024), is a reverse-engineering

approach which extracts software models from programs, including visual models such

as UML class diagrams and state machines. The Object Management Group (OMG)

has defined standard modeling representations for MDRE as part of its Architecture-

driven Modernization (ADM) re-engineering approach (Krasteva et al., 2013; Perez-

Castillo et al., 2010, 2011). These include the Knowledge Discovery Metamodel (KDM) for

representing source code elements and their inter-relationships, and the Abstract Syntax

Tree Metamodel (ASTM) for source code representation as parse trees. The intention of

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1516410
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1516410&domain=pdf&date_stamp=2025-07-25
mailto:kevin.lano@kcl.ac.uk
https://doi.org/10.3389/fcomp.2025.1516410
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1516410/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

the ADM process is that language-specific parsers produce ASTM

models, which are then abstracted to KDM models by reverse-

engineering model transformations between the respective models.

However, the use of ADM implies the establishment of a full

model-driven engineering (MDE) process with supporting tools,

requiring reverse-engineers to have MDE skills and knowledge of

the specialized metamodels (KDM and ASTM) involved, and thus

to date most of the use of ADM has been in research projects such

as REMICS and MoDisco. An alternative to ADM is a lightweight

MDRE process, such as AMDRE (Lano and Siala, 2024a; Lano

et al., 2024), which performs an abstraction transformation from

program code to UML and OCL specifications using pattern

matching on abstract syntax trees (ASTs), without the need for

metamodelling knowledge.

Machine learning (ML) approaches have been applied

extensively for the task of program translation: translating a

program in one programming language into a semantically

equivalent version in another programming language. This can

be regarded as a specialized form of re-engineering, however

in such approaches the intermediate abstraction is usually not

explicitly created or accessible to users. To date, there have been

few reverse engineering approaches using ML for the production

of a formal specification from program code (Siala et al., 2024).

Although general code-aware LLMs such as GPT-4 and Mistral can

be directly used for the task of extracting OCL specifications from

code, they have limitations, such as imperfect knowledge of OCL,

hallucinations (production of plausible but incorrect output) and

unreliability (Ouyang et al., 2023; Zhao et al., 2023). In our initial

work on the baseline capabilities of LLMs, we found that they also

tend to produce abstract and implicit OCL specifications, which

are not suitable for use in forward engineering without manual

refinement (Siala and Lano, 2025).

To improve the quality and utility of OCL production by LLMs

used for reverse engineering, we propose the use of LLM fine-

tuning to adapt a general-purpose LLM to the reverse engineering

task (Siala, 2024). The resulting fine-tuned model is termed

LLM4Models. We apply this LLM for the reverse-engineering of

OCL specifications from Java (versions 5 to 8) and Python (versions

2.7 and 3.*) source codes.

In Section 2 we define the MDRE and LLM-based techniques

which we use for reverse engineering, and we identify the

evaluation criteria used to compare them. The criteria evaluate

both the semantic accuracy of the extracted OCL specifications,

with respect to the source programs, and the utility of these

specifications for forward engineering.

In Section 3 we compare the selected MDRE approach with

general purpose and fine-tuned LLMs for the task of extracting

OCL specifications from code.

In Section 4 we survey related work, and consider how the

work presented here may be extended and how the specification

extraction process can be further enhanced.

2 Material and methods

In this section we describe the specific reverse-engineering

technologies used in our work, how they are applied, and the critera

used to compare them.

2.1 LLMs for reverse engineering

Large Language Models (LLMs) are a specific type of machine

learning (ML) technology that can learn a variety of knowledge

representations from large and complex datasets (Zhao et al., 2023).

Once trained, the LLM can be utilized to accomplish specific

downstream tasks by using additional specialized training (fine-

tuning) on demonstration examples of the specialized task. Widely

known examples of LLMs include GPT3&4, Bard, LLaMA, Mistral,

BERT, and T5. LLMs have had a major impact on many fields,

including software engineering, where researchers have explored

using them for a variety of tasks (Hou et al., 2023).

Code-aware LLMs such as Mistral and GPT4 can be used

directly for reverse-engineering of Java and Python to OCL,

however the results are often unsatisfactory for use in re-

engineering, because the produced specifications contain errors

in OCL usage, are too abstract and implicit, or make simplifying

assumptions that are not present in the code (Siala and Lano, 2025).

For example, a search algorithm that searches a specified portion of

a list may be abstracted to a simplified version that only searches

the entire list.

Thus we considered improvement of a pre-trained LLM

by fine-tuning using datasets of (i) Python programs and

corresponding OCL specifications; (ii) Java programs and

corresponding OCL specifications.

LLMs come in different sizes, where larger models may be

more accurate, but also require more processing power, memory,

training times, and other resources. GPT4 is the most widely-used

current LLM for SE tasks, and we therefore selected this as the

example untrained general LLM for reverse engineering. However,

fine-tuning of GPT4 requires significant resources. Therefore we

selected Mistral-7B-v0.3
1 as the baseline LLM for fine-tuning

because of limited financial and computational resources. In

addition, the performance of Mistral-7B is better than Llama 2 13B

(Jiang et al., 2023), which was the other main LLM we considered

for fine-tuning.

We considered three main ways to fine-tune an LLM for the

reverse engineering task using supervised fine-tuning (SFT), which

are: (i) Full fine-tuning, (ii) LoRA (Hu et al., 2022), and (iii) QLoRA

(Dettmers et al., 2024). Full fine-tuning is expensive, because it

involves possible modification of all the weights in the pre-trained

LLM by the re-training. In LoRA, some extra weights (adapters)

in some layers are added and trained while freezing most of the

parameters of the selected LLM to reduce the cost of training the

original weights and to prevent catastrophic forgetting that may

occur during full fine-tuning (Zhao et al., 2023). QLoRA is a

quantized version of LoRA, which optimizes LoRA to reduce the

resources used. We selected QLoRA as our approach to fine-tune

the LLM.

Source Java and Python programs for the training dataset were

collected from sources such as the CoTran (Jana et al., 2023) and

AVATAR datasets.2 The sources were pre-processed to put them in

a consistent format. AgileUML was then applied to produce OCL

specifications for each source program. The pairs of Java code and

1 https://huggingface.co/mistralai/Mistral-7B-v0.3

2 https://github.com/wasiahmad/AVATAR

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://github.com/wasiahmad/AVATAR
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

corresponding OCL specifications formed the dataset for LLM fine-

tuning for Java reverse engineering, and the pairs of Python code

and corresponding OCL specifications formed the dataset for LLM

fine-tuning for Python reverse-engineering.

Following standard practice in ML, each fine-tuning dataset

was divided into three sets:

1. Training examples,∼80% of the total.

2. Validation examples,∼10% of the total.

3. Test examples, also 10% of the total.

For Java, there were 20,580 samples, divided into: training data

= 16,670 cases; validation data = 1,852 cases; test data = 2,058

cases.

For Python, there were 25,684 samples, divided into: training

data = 20,805 cases; validation data = 2,311 cases; test data = 2,568

cases.

The training set is directly used to fine-tune the model.

The validation set is used to monitor and optimize the model

performance during training for each epoch or for a specified

number of iterations using metrics such as loss and accuracy. At

this stage, changes may be applied to the model’s hyperparameters

or to the training process to improve performance. The test set is

used to evaluate the LLM performance on unseen data.

The training was distributed over four GPUs where PyTorch

FSDP and Q-LoRA were utilized. The resulting fine-tuned LLM is

referred to as LLM4Models.
The LLM prompt used to abstract Java program code to OCL is:

"""<s>[INST] Below is an instruction that describes
a task,
paired with an input that provides further context.
Write a response that appropriately solves the
following Task:

Instruction:
Generate an Object Constraint Language (OCL)
specification for

the provided Java code. The output should:
1. Ensure no repeated or redundant operations or
classes.
2. Include only the OCL code for the provided
Java code.
3. Do not include statements for items not found in
the Java code.

Input:
... source code ...
[/INST]

Response: """"

The same prompt, with “Python” instead of “Java," is

used for Python abstraction. These prompts were determined

through a systematic process of prompt engineering to identify

the most appropriate instructions to obtain accurate and

high-quality results.

2.2 AgileUML

AgileUML is an Eclipse MDE toolset3 that supports the agile

methodology and MDRE. It provides visual and textual editing

of specifications using UML class diagrams and OCL constraints.

These specifications can be analyzed and forward engineered to

generate code in Java, Python, Swift, C++, C#, Go, and ANSI C.

For MDRE, the AgileUML toolset uses a set of manually-

coded pattern-matching rules in the CSTL notation to abstract

UML class diagrams and OCL constraints from the abstract

syntax trees of Java, Python, C, JavaScript, VB, COBOL, and

Pascal programs (Lano and Siala, 2024a). Also, it defines various

supporting OCL library components not found in standard OCL,

in order to represent programming language facilities, such as

dates, times, iterators, files, and exceptions. The OCL extensions

and libraries supported by the AgileUML toolset are detailed in

Lano et al. (2022) and Lano and Siala (2024b). The resulting

specifications are expressed in an explicit style of OCL, with

computational steps defined using a procedural extension of

OCL, similar to the SOIL formalism (Buttner and Gogolla,

2014).

We selected AgileUML as the example MDRE approach

because it is one of the most accurate and versatile MDRE tools,

with superior performance compared to other approaches for

program translation and other forms of re-engineering (Lano and

Siala, 2024a; Lano et al., 2024).

In our work, AgileUML is utilized firstly to provide a

baseline MDRE approach to compare with untrained and fine-

tuned LLMs for the Java and Python reverse engineering tasks.

Secondly, it is used to create training datasets for LLM fine-

tuning for reverse engineering. The datasets are produced by

applying the AgileUML reverse engineering process to the

selected Java and Python programs. This provides two datasets:

(i) of pairs of Java programs and their corresponding OCL

specifications; (ii) of pairs of Python programs and corresponding

OCL specifications.

These training datasets are then used to fine-tune a pre-trained

LLM, in our case Mistral, in order that the LLM (i) can create

specifications in the same explicit style as AgileUML, but for a

wider range of input programs, and (ii) so that the LLM can

use the AgileUML extended OCL and OCL libraries to produce

simpler and more concise specifications than those expressed in

standard OCL. In this work, we opted to use the extended OCL

introduced by AgileUML in our approach because this provides

many aspects needed to represent program semantics that are

missing from standard OCL. For example, the OCL standard

provides Integer and Real to represent mathematical numeric

datatypes, but AgileUML provides int, long, and double as basic

types, which are more aligned with program datatypes. Likewise, an

extensive set of file operations are provided by the OclFile library,

which are not provided by standard OCL.

3 https://projects.eclipse.org/projects/modeling.agileuml (Accessed

August 1, 2024).

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://projects.eclipse.org/projects/modeling.agileuml
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

2.3 Object Constraint Language

The following are the elements of standard OCL (OMG, 2014)

specifications:

1. Data types: Different types of data are included in OCL

constraints, including:

• Primitive types: Integer, Real, String, enumeration

types and Boolean.

• Collection types: Bag, Set, Sequence, and OrderedSet.

• User-defined types: User-defined types represent classes

and their attributes. For example:

context Student

These types correspond in general to types in Java and

Python. For example, array or list types in Java and list types in

Python can be represented using OCL Sequence types.

2. Operators and operations: OCL operations include:

• Standard operators: Standard operators for numbers,

strings, Booleans, and collections include +, -, *, / on

numbers, substring and concat on strings, and, or, not

on Booleans, and →exists(), →forAll(), and →size() on

collections.

• User-defined operations: User-defined operations of classes

can be represented as, for example:

context Person::walk()

These elements also correspond to Python and Java

elements. For example, any Col in Python corresponds to

Col→exists(x | x = true) in OCL.

3. Expressions: Java and Python expressions can in principle

be abstracted to OCL expressions. Program constraints and

conditions may be expressed as arithmetic expressions

(e.g., self .balance + amount), Boolean expressions

(e.g., self .age ≥ 18), or collection expressions [e.g.,

self .retiredPeople→forAll(c | c.age >= 65)].

Standard OCL was found to be inadequate for use to express

the semantics of program code, and various extensions were added

in AgileUML to support MDRE (Lano and Siala, 2024b):

1. Map and function types, together with operators such as lambda

abstraction: lambda x : T in expr and function

application f->apply(x).

2. Statements: procedural OCL statements based on those of SOIL

(Buttner and Gogolla, 2014) (Table 1).

3. OCL extension libraries OclFile, OclRandom, OclProcess,

MathLib, StringLib,MatrixLib, and others (Lano et al., 2022).

2.4 Program abstraction rules

The following rules (Tables 2, 3) are encoded in theCSTL scripts

used by AgileUML for the MDRE of Python and Java programs to

UML/OCL. They are also used to generate the datasets to fine-tune

Mistral to produce the LLM4Models LLM.

TABLE 1 AgileUML structured activities: procedural OCL statements.

Statement Meaning

x := e Assignment

var x : t Variable declaration

s1 ; s2 Sequencing

if e then s1 else s2 Conditional

while e do s Unbounded loop

repeat s until e Unbounded loop

for ident : e do s Bounded loop

return Return statement

return e Return value statement

(s) Statement group

break Break statement

continue Continue statement

e Operation call, e is obj.op(pars), ClassName.op(pars) or

op(pars)

skip No-op

2.5 Correctness and quality measures

We evaluate the syntactic correctness of the results produced

by each reverse-engineering approach by attempting to parse them

using the ANTLR OCL parser.4

For semantic correctness, we evaluate firstly the completeness of

each reverse engineering approach, where completeness is defined

as the proportion of source code elements that are correctly

represented as UML/OCL elements in the generated specifications.

This is the ratio

TP

TP + FN

where a true positive (TP) is an element correctly translated from

code to OCL, and a false negative (FN) is an element that is not

translated, or is translated incorrectly. Completeness in this sense is

also known as recall.

Secondly we evaluate the consistency of each approach, where

this is the proportion of elements in the generated specifications

which are correctly derived from elements in the source programs.

Consistency is important for ensuring traceability and alignment of

the derived specification with respect to the source.

Consistency is also referred to as precision, the ratio

TP

TP + FP

where a false positive (FP) is an element that appears in

the specification that is not correctly derived from a source

code element.

Completeness measures the extent to which the abstraction

process correctly processes source elements, whilst consistency

4 https://github.com/antlr/grammars-v4

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://github.com/antlr/grammars-v4
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

TABLE 2 Abstraction rules from Python to UML/OCL.

Python element UML/OCL

Program Package and main class

Class Class

Inheritance Inheritance

Global variable Attribute of main class

Instance-scope attribute Non-static attribute

Class-scope attribute Static attribute

Local variable Local variable

Function Operation

Assignment Assignment/declaration

Sequencing, blocks Sequencing, blocks

Function calls Operation calls

Object creation x = C() Call x : = C.newC()

If, for, while if, for, while

Continue, break, pass continue, break, skip

Raise, try, except Error, try, catch

Assert Assert

With Try/catch

Int/float Int/double

Str/bool String/Boolean

List, tuple types Sequence types

Numpy matrix Nested sequences

Dict type Map type

Set type Set type

Files OclFile

measures the quality of the generated specification in terms of

absence of spurious elements not derived from the source.

A combined measure is the F1 metric
2∗recall∗precision
recall+precision

.

The specifications produced by the reverse engineering of

program code can also be expressed in different styles, and at

different levels of formality. We distinguish several cases for

UML/OCL specifications:

1. Informal—Specifications expressed using natural language.

2. Semi-formal—Specifications partly expressed using natural

language and partly with formal OCL constraints.

3. Fully formal Specifications, which can be subdivided into:

(a) Implicit—Formal specifications expressed at a high level of

abstraction, specifying properties of a computational result,

but not the process of constructing the result.

(b) Explicit—Formal specifications which define explicitly how

results are computed, using OCL and procedural OCL.

To facilitate re-engineering, fully formal and explicit

specification forms are preferred, although for other purposes,

such as code explanation or summarisation, implicit, semiformal

or informal forms may be more appropriate.

TABLE 3 Abstraction rules from Java to UML/OCL.

Java element UML/OCL

Program Specification

Package Package

Class, abstract class Class, abstract class

Interface Interface

Extends, implements Extends, implements

Nested classes Associated classes

Generic classes Generic classes

Field, static field Attribute, static attribute

Method, static method Operation, static operation

Generic method Generic operation

Constructor C(pars) Static operation newC(pars)

This, super Self, super

Method overriding, overloading Operation overriding, overloading

Assignment, sequencing, blocks Assignment, sequencing, blocks

If, while, do, return If, while, repeat, return

Expression statements Operation calls/assignments

General for loop For, while

Enhanced for loop For

Switch If

Simple continue, break Continue, break

Int, short, byte Int

Long long

Double, float Double

String, char, StringBuffer String

Object, Class OclAny, OclType

Simple enum definitions Enumerated types

Classlike enum definitions Classes

Array types, Vector, List, etc Sequence types

Set, HashSet, TreeSet, etc Set types

Map, HashMap, TreeMap, etc Map types

Function, Predicate Function types

3 Results

We evaluated and compared the AgileUML, untrained LLM

and LLM4Models approaches for program abstraction on 20

randomly-selected Python and Java examples from the test sets

of the training datasets. We evaluated the syntactic correctness,

completeness and consistency of the approaches (Tables 4, 5). We

also evaluated the quality of the produced specifications, in terms of

their level of formality and explicitness. The percentage of explicit

specifications is shown in the final columns of Tables 4, 5. All other

produced specifications were implicit in style.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

The AgileUML Java abstractions were produced by using the

ANTLR version 4 command line

grun Java compilationUnit -tree

to produce an abstract syntax tree of a source Java program, and

then by applying the Java to UML CSTL abstraction script via the

command

cgtl cg/cgJava2UML.cstl output/ast.txt

where ast.txt contains the abstract syntax tree from the first step.

Likewise, for Python, the commands

grun Python file_input -tree

and

cgtl cg/python2UML.cstl output/ast.txt

are used to obtain a UML/OCL specification from Python source

code.

All examples, training data and analysis results can be obtained

from the repository (https://zenodo.org/records/14988622).

Tables 4, 5 show that the LLM4Models LLM has substantially

improved syntax correctness, completeness, consistency and F1

measures compared to the untrained LLM, for both Java and

Python abstraction. In addition, the completeness improves on that

of AgileUML for Java abstraction. The specifications produced by

LLM4Models are all explicit in style, which represents a significant

improvement over the untrained LLM.

Figures 1, 2 give a detailed comparison of the three reverse-

engineering approaches for Python.

It can be seen that for 13 of 14 Python cases, the LLM4Models

completeness and consistency are lower or equal to that obtained

by AgileUML. However, for 12 of 14 cases, the LLM4Models

completeness and consistency is at least as high as that obtained

by the untrained LLM.

Figures 3, 4 give a detailed comparison of the three reverse-

engineering approaches for Java.

It can be seen that for all Java cases, the LLM4Models

completeness is at least as high as that obtained by AgileUML,

whilst the LLM4Models consistency is always lower or equal to

that obtained by AgileUML. For each Java case, the AgileUML and

LLM4Models completeness and consistency are always greater than

or equal to the values obtained using the untrained LLM.
An example of Java abstraction is given by the following CoTran

dataset example (Java evaluation case number 3):

public class EQUILIBRIUM_INDEX_OF_AN_ARRAY_1 {
static int M209(int arr[], int n) {

int sum = 0;
int leftsum = 0;
for (int i = 0; i < n; ++i)

sum += arr[i];
for (int i = 0; i < n; ++i) {

sum -= arr[i];
if (leftsum == sum)

return i;
leftsum += arr[i];

}
return -1;

}
}

AgileUML produces the following explicit specification in UML
and procedural OCL:

class EQUILIBRIUM_INDEX_OF_AN_ARRAY_1 {
static operation M209(arr : Sequence(int), n : int)
: int
pre: true
post: true
activity: (

var sum : int ; sum := 0 ;
var leftsum : int ; leftsum := 0 ;
for i : Integer.subrange(0, (n)-1) do (

sum := sum+(arr[i+1])
) ;

for i : Integer.subrange(0, (n)-1) do (
(sum := sum-(arr[i+1]) ;

if (leftsum = sum) then
return i else skip ;

leftsum := leftsum+(arr[i+1]))
) ;

return -1
);

}

An almost identical specification (using while loops instead of

for loops) is produced by LLM4Models. These specifications are

explicit and semantically correct.
However, the untrained LLM (GPT4) produces an implicit-

style specification with semantic errors:

context EQUILIBRIUM_INDEX_OF_AN_ARRAY_1::M209
(arr: Sequence(Integer),

n: Integer) : Integer
pre: n > 0 -- The array must have at least one element
post: if result <> -1 then

-- If an equilibrium index is found, the sum of
elements to the left
-- of index i should equal the sum of elements
to the right

arr->subSequence(1, result - 1)->sum() =
arr->subSequence(result + 1, n)->sum()

else
-- If no equilibrium index is found, the result is -1

true
endif

Here, the value of result is only expressed implicitly in the

postcondition. Moreover, a precondition that n ≤ arr→size() is

needed in order that this specification has the same functionality as

the source code.
For more complex cases, a simple implicit specification is not

possible. For example, consider the following CoTran Java case
(number 6 in the Java evaluation examples):

public class TOTAL_NUMBER_OF_NON_DECREASING_
NUMBERS_WITH_N_DIGITS_1{
static long aaa(int n){

int N=10;
long count=1;
for(int i=1;i<=n;i++){

count=(int)count*(N+i-1);
count=(int)count/i;

}
return count;

}
}

The untrained LLM produces a procedural version using the OCL
→iterate operator:

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://zenodo.org/records/14988622
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

TABLE 4 Evaluation of approaches for Python abstraction.

Approach Syntax Completeness Consistency F1 Explicit

AgileUML 86% 98% 97% 0.975 100%

Untrained LLM 36% 60% 68% 0.64 64%

LLM4Models 79% 88% 85% 0.865 100%

TABLE 5 Evaluation of approaches for Java abstraction.

Approach Syntax Completeness Consistency F1 Explicit

AgileUML 83% 87% 99% 0.93 100%

Untrained LLM 33% 65% 71% 0.68 83%

LLM4Models 83% 96% 96% 0.96 100%

FIGURE 1

Completeness results for Python examples, numbered 1 to 14.

FIGURE 2

Consistency results for Python examples, numbered 1 to 14.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

FIGURE 3

Completeness results for Java examples, numbered 1 to 6.

FIGURE 4

Consistency results for Java examples, numbered 1 to 6.

-- Context: TOTAL_NUMBER_OF_NON_DECREASING
_NUMBERS_WITH_N_DIGITS_1 class
context TOTAL_NUMBER_OF_NON_DECREASING_NUMBERS_
WITH_N_DIGITS_1

-- Operation: aaa(n: Integer): Long
inv:

let N: Integer = 10 in
let count: Long = 1 in
count = self.aaa(n)

-- The operation specification in OCL
context TOTAL_NUMBER_OF_NON_DECREASING_
NUMBERS_WITH_N_DIGITS_1::

aaa(n: Integer): Long
pre: n > 0 -- The number of digits (n) must

be positive
post:

result = (Sequence{1..n}->iterate(i; count:
Long = 1 |

(count * (N + i - 1)) / i)) -- Iterative
calculation of count

Apart from the use of iterate, another issue with this specification

is that the let statements are ineffective and redundant: count is

initialized to 1 in the iterate loop, and N should be passed as a

parameter of the aaa operation.
In contrast to the GPT-4 solution, the AgileUML and

LLM4Models tools produce program abstractions which use for
or while loop constructs, which are more familiar to software
practitioners in general than iterate:

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

class TOTAL_NUMBER_OF_NON_DECREASING_NUMBERS_
WITH_N_DIGITS{

static operation aaa(n : int) : long
pre: true
post: true
activity: (

var N : int ; N := 10 ;
var count : long ; count := 1 ;
for i : Integer.subrange(1, n) do (
(count := count->oclAsType(int) * (N + i - 1) ;

count := count->oclAsType(int) / i)
) ;
return count

);
}

in the case of AgileUML, and:

class TOTAL_NUMBER_OF_NON_DECREASING_NUMBERS_
WITH_N_DIGITS_1 {

static operation aaa(n : int) : long
pre: true
post: true
activity: (

var N : int ; N := 10 ;
var count : long ; count := 1 ;
var i : int ; i := 1 ;
while i <= n do (
count := count->oclAsType(int) * (N + i - 1) ;
count := count->oclAsType(int) / i ;
i := i + 1) ;

return count
);

}

in the case of LLM4Models.

Similar issues arise with Python program abstraction. For

simple cases, the untrained LLM can produce accurate and useful

abstractions, but more complex cases lead to errors or poorly-

aligned specifications.

One example is the Python program:

i = 0

while i < 100 :

i = i + 1

print(i*i)

This is the Python evaluation case 13.

AgileUML and LLM4Models produce the output:

class FromPython {

operation initialise()

pre: true post: true

activity:

var i : int := 0 ;

while i < 100 do (

i := i + 1 ;

execute (i * i)->display());

}

This is a correct semantic representation of the source code, and

can directly be used for forward engineering.
However the untrained LLM produces a more declarative and

implicit specification of the same program:

-- Context: Describing the behavior of the loop
and its constraints

context LoopOperation

-- Initial condition: i starts at 0
inv Initialization:

i = 0

-- Loop invariant: While i is less than 100, the
loop continues

inv LoopCondition:
i >= 0 and i <= 100

-- Postcondition: After each iteration, i is
incremented by 1

post Increment:
i = i@pre + 1

-- Iteration constraint: For each iteration,
-- print the square of the current i
inv Iteration:

i >= 0 and i <= 100 implies print(i * i)

-- Final state: Once i reaches 100, the
loop terminates

post FinalState:
i = 100

This describes the computation, rather than explicitly expressing its

semantics, and is not in a form suitable for forward engineering.

AgileUML and LLM4Models tend to make similar mistakes

to each other, for example, both fail to deduce the types of

Python variables in many cases. However, LLM4Models can be

more creative than AgileUML, for example, introducing new

OCL operators (such as →capitalize for strings or →mean for

collections) which are needed to represent the program semantics

of examples that have not been seen in the LLM training data.

4 Discussion

In this section we give a detailed comparison of the reverse-

engineering methods, survey related work, relate our work to

the state of the art, consider threats to validity, summarize our

contributions, and consider future areas for further development

and extension of our research.

4.1 Detailed comparison of methods

The three reverse engineering approaches have different

strengths and weaknesses for reverse engineering. Table 6 gives

the frequencies of different types of errors that arise in reverse

engineering of the Python test cases to OCL.

The principal cause of incompleteness in AgileUML and

the trained LLM is the difficulty of deriving types for untyped

variables in Python. The untrained LLM also omits other forms

of information, particularly procedural information about the

sequencing of processing. The untrained LLM is also more prone

to introduce spurious elements, particularly additional invariants

or constraints which are more restrictive than those in the source

code. For example, introducing a spurious constraint that an

integer-typed variable is non-negative. Overall, the untrained LLM

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

TABLE 6 Flaws in Python reverse-engineering.

Approach Incompleteness Hallucination Spurious
elements

AgileUML 0.14 0 0.14

Untrained LLM 0.36 0.14 0.43

LLM4Models 0.14 0.07 0.28

produces results which are further removed in structure and

content from the source, compared to the other two approaches,

which may impair traceability. However, in some cases the

untrained LLM can infer higher-level abstractions, for example, it

produces the declarative result

c o n t e x t A : I n t e g e r

inv : l e t B : I n t e g e r =

i f A > 10 then

A ∗ A

e l s e i f A > 0 then

A ∗ A ∗ A

e l s e

−A

end i f

e n d i f

for the Python program

A = 11

i f A > 10 :

B = A∗A

e l i f A > 0 :

B = A∗A∗A

e l s e :

B = −A

p r i n t (B)

In contrast the other two approaches produce a procedural

version that closely imitates the source:

o p e r a t i o n i n i t i a l i s e ()

pre : t r u e po s t : t r u e

a c t i v i t y :

v a r A : i n t := 11 ;

i f A > 10 then (

va r B : i n t := A ∗ A

)

e l s e (i f A > 0 then

(

B := A ∗ A ∗ A

)

e l s e (

B := −A

)) ;

e x e c u t e (B)−> d i s p l a y () ;

}

This version needs further post-processing in order to conform to

OCL semantics (the declaration of B needs to be moved to the outer

scope of the operation activity).

TABLE 7 Flaws in Java reverse-engineering.

Approach Incompleteness Hallucination Spurious
elements

AgileUML 0.33 0 0

Untrained LLM 0.33 0 0.67

LLM4Models 0.17 0 0

The situation for the abstraction of Java to OCL is similar.

Table 7 lists the types of errors that arise in the different abstraction

methods when applied to Java programs.

Again, the main problem with the untrained LLM is

the production of spurious invariants, preconditions or

postconditions. It is difficult to automatically detect such

errors, and hence correction of the output would need to involve

human expertise.

4.2 Related work

In this section we review related work in MDRE

and ML-based program translation and code abstraction

approaches.

4.2.1 Model-driven reverse engineering
Early work on MDRE considered the extraction of formal

specifications from code, either represented in state-based formal

languages such as Z, or in other formalisms such as algebraic

specification languages (Bowen J. et al., 1993; Liu et al.,

1997).

MDRE was combined with model-driven forward engineering

to support model-driven modernization (MDM) (Bowen J. P.

et al., 1993; Lano and Malik, 1999). MDM was standardized by

the Object Management Group (OMG) in their Architecture-

driven modernization (ADM) framework (Perez-Castillo et al.,

2011). ADM supports in principle a “horseshoe modernization

model" whereby the starting point is the legacy system source

artifacts at a low level of abstraction, these are then reverse-

engineered to higher levels of abstraction, e.g., Platform-specific,

Platform-independent and Computation independent models

(PSMs, PIMs, CIMs), and then forward-engineered to a target

platform (Deltombe et al., 2012; Perez-Castillo et al., 2011).

MDM in general enablesmulti-lingual translation betweenmultiple

programming languages, with some degree of assurance of

semantic preservation (Krasteva et al., 2013; Lano and Siala,

2024a; Lano et al., 2024). However, as with other forms

of model-driven engineering, MDM and MDRE requires the

availability of practitioners with appropriate MDE knowledge

and skills, including metamodelling and model transformation

development. Thus, despite the potential of MDRE and MDM

for supporting highly rigorous re-engineering, there has been

limited use of MDRE and MDM in practice. Instead, customized

re-engineering processes have been used, specifically created

for each re-engineering project (Marco et al., 2018; Sneed,

2011).

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

4.2.2 ML approaches for program translation and
abstraction

Based on the successful use of ML for neural machine

translation (NMT) of natural languages, similar NMT approaches

were applied to the translation of software languages (Nguyen

et al., 2015; Chen et al., 2018). However, these approaches

used supervised learning and required the existence or creation

of large scale parallel code datasets. A key advance was

the application of unsupervised language modeling training to

program translation in Transcoder (Lachaux et al., 2020). This

enabled the use of large monolingual code datasets to train an ML

model with knowledge of the individual programming languages

together with knowledge of language correspondences. Specifically,

masked language modeling and denoising auto-encoding learning

objectives were used together with coupled target-to-source and

source-to-target training. The result was a pre-trained language

model (PLM) with significantly higher translation performance

than manually-coded program translators. Nevertheless, such an

approach has limitations: it utilizes common syntactic anchor

points between programming languages, such as similar keywords

if , while, etc., in different languages, and operates in a stochastic

manner. It is noticeable that the Transcoder translation accuracy

is lower for more dissimilar languages (such as Python and Java)

compared to more similar pairs (Java and C++). The scale of

the back-translation training grows quadratically with the number

of languages being considered. Deficiencies with the Transcoder

results are discussed by Malyaya et al. (2023).

Subsequent PLM approaches to program translation include

GraphCodeBERT (Guo et al., 2021), the Transcoder-IR approach

of Szafraniec et al. (2023), the CoTran approach of Jana et al.

(2023), and approaches utilizing fine-tuning of PLMs (Ahmad

et al., 2023; Zhu et al., 2022). GraphCodeBERT uses data

flow information to enable a PLM to learn more semantically-

meaningful programming knowledge during pre-training. In

Szafraniec et al. (2023), pre-training is enriched by the use of

compiler intermediate representations, to increase the semantic

awareness of the trained model. CoTran (Jana et al., 2023)

incorporates semantic equivalence into the training objective by

utilizing automated test case generation. In order to improve the

accuracy of Java-Python translation, a large parallel dataset for fine-

tuning (supervised re-training) of a PLM was created by Ahmad

et al. (2023). A similar fine-tuning approach was applied with a

dataset of 7 programming languages in Zhu et al. (2022). These

approaches produced improved results compared to Transcoder,

but still focussed on relatively similar pairs or groups of languages

such as Java, JavaScript, C++, Go, Rust, Python, C#, etc, all with a

common C-based heritage.

The advent of large language models (PLMs with at least 10

billion parameters (Zhao et al., 2023)) brought a further change

to the program translation landscape. Although LLMs are typically

pre-trained on large general purpose datasets, and with simple

language modeling objectives such as next token prediction, they

have proven to be capable of carrying out diverse tasks as well as,

or better, than specialized smaller-scale PLMs (Zhao et al., 2023).

Apart from their baseline capabilities for program translation,

general purpose LLMs such as ChatGPT can be enhanced for this

task by fine-tuning, prompt tuning or refinement (Li et al., 2024;

Gandhi et al., 2024).

ML approaches can also be used to derive specification-level

documentation from programs by automated code summarisation,

whereby natural language explanations are generated from

program code (Zhang et al., 2022). Code summarisation techniques

have mainly focussed upon modern programming languages,

and there is a lack of datasets and tools for COBOL and VB

(Gandhi et al., 2024). The approach of Boronat and Mustafa

(2025) derives UML class diagram models from Java code using

Retrieval-Augmented Generation (RAG) techniques to reduce

LLM errors. This approach does not generate explicit semantic

representations of the code, so it is mainly applicable to enhance

code comprehension at a structural level, rather than as a basis for

code migration.

4.3 Threats to validity

Threats to validity include bias in the construction of

the evaluation, inability to generalize the results, inappropriate

constructs and inappropriate measures.

4.3.1 Instrumental bias
This concerns the consistency of measures over the course of

the analysis. To ensure consistency, all analysis andmeasurement of

the results was carried out in the samemanner by a single individual

(the second author) on all cases. Analysis and measurement for

the results of Tables 4, 5 were repeated in order to ensure the

consistency of the results.

4.3.2 Selection bias
For the training datasets we chose Java and Python examples

which covered the core statements and features of the languages.

The source codes were taken from established datasets such as

AVATAR (Ahmad et al., 2023) and CoTran (Jana et al., 2023) which

have been used in other research. In addition we created our own

examples to ensure completeness of grammar coverage. Care was

taken to ensure that there was no duplication of examples within

the training datasets.

4.3.3 Generalization to di�erent samples
We found a high degree of consistency of our results

across different examples, as shown in Figures 1–4. Since these

were randomly-chosen examples, this consistency in the relative

performance of the approaches also suggests that the same relations

would hold between the approaches when applied to other random

subsets of the test data.

4.3.4 Inexact characterization of constructs
We have used established metrics such as precision, recall

and F1 measure in our evaluation, in order to measure the

completeness, consistency and quality of the reverse-engineering

process. These metrics however involve a subjective aspect (the

human evaluator has to determine if program elements have

been translated correctly or not). Alternative and more objective

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

measures, such as equivalent behavior on a set of test cases, could

also be considered for future work, however there is currently no

means to directly execute AgileUML OCL specifications. Thus an

execution-basedmeasure such as computational accuracy (Lachaux

et al., 2020) or runtime equivalence (Jana et al., 2023) could not

be used.

4.3.5 Relevance
The LLM4Models reverse engineering approach has been

shown to be applicable to the analysis of Java (Java versions

from 5 to 8) and Python (versions 2.7 and 3.*). In principle,

reverse engineering of other versions of these languages, or other

programming languages, could be addressed by using the same

model training procedures.

4.3.6 Representativeness
The Java and Python examples were selected to be

representative of real-world Java and Python coding, rather

than artificial examples constructed by the authors. The

datasets used included programmer solutions from websites

of programming tasks/solutions, such as AtCoder, used by

AVATAR. The examples considered in Section 3, such as

EQUILIBRIUM_INDEX_OF_AN_ARRAY_1, are of this kind.

4.3.7 Threats to conclusion validity
The consistency of our comparison results across different

examples, as shown in Figures 1–4 demonstrates that there are

consistent differences in the results of the three different reverse-

engineering approaches.

4.4 Relation to the state of the art

AgileUML is one of the leading MDE approaches for program

translation in terms of semantic accuracy, and it also exhibits higher

translation accuracy than ML-based approaches such as CoTran

(Lano et al., 2024). This indicates that AgileUML also has high

semantic accuracy as a MDRE approach abstracting from code

to UML/OCL. Our evaluation results in Section 3 support this

claim, and also show that the AgileUML abstraction rules have

been successfully transferred to the Mistral LLM via fine-tuning,

to produce an LLM, LLM4Models, with similar abstraction quality

to AgileUML, and substantially improving on the quality of an

untrained LM.

Although the untrained LLM is able to produce formal

specifications for simple source programs, we found that

it had significant deficiencies for more general use in

program abstraction:

• Creation of implicit-style specifications which are not well-

suited for forward engineering.

• Incorrect use of OCL types and syntax. For example,

introducing a type Long, which is not in the OCL standard,

and using the notation

x^p

for exponentiation, which is also not in the OCL standard.

• Incompleteness, with only specific cases of the program

functionality being expressed in the derived OCL, or with

certain functions omitted. This particularly occurred with

program aspects (such as file processing) not covered by the

OCL standard.

• Spurious elements being introduced, particularly additional

restrictions on functionality via preconditions or invariants.

These issues were all reduced significantly by the use of fine-tuning

to produce the LLM4Models LLM.

LLM4Models has superior usability compared to AgileUML,

because no MDE technical knowledge is needed to use the LLM,

instead a user only needs to know how to query the LLM with the

standard prompt for reverse-engineering and the specific program

to be analyzed.

4.5 Summary of contributions

In this paper, we have:

1. Provided the first rigorous comparison of an MDRE program

abstraction approach with LLM-based program abstraction.

2. Used an MDRE approach to fine-tune a general purpose LLM

to enhance its accuracy and quality for reverse engineering in a

re-engineering context.

3. Enabled reverse-engineering practitioners to use an LLM with

a conversational interface for accurate program abstraction, in

place of MDRE tools requiring specialized skills to utilize.

4.6 Future work and extensions

The work presented here may be extended in various

directions:

• By using larger training datasets, a wider range of source

programs may be brought into the scope of LLM4Models, in

particular, Java or Python programs using specialized libraries

and facilities could be handled.

• The same approach could be used to address other source

programming languages, such as COBOL and VB, for which

AgileUML provides abstractors, but for which LLM program

translation or reverse-engineering support is currently lacking

(Gandhi et al., 2024).

• Further post-processing checks and corrections could be

applied to detect and remove spurious model elements

produced by the LLM, thus improving the consistency results.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

and accession number(s) can be found in the

article/supplementary material.

Author contributions

HS: Writing – original draft, Writing – review & editing. KL:

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Acknowledgments

Hanan Siala would like to thank the Libyan Ministry

of Higher Education and Scientific Research for its

financial support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ahmad, W., Tushar, M., Chakraborty, S., and Chang, K.-W. (2023). AVATAR:
a parallel corpus for Java-Python program translation. arXiv [Preprint].
arXiv:2108.11590. doi: 10.48550/arXiv.2108.11590

Boronat, A., and Mustafa, J. (2025). “MDRE-LLM: a tool for analysing and
applying LLMs in software reverse engineering,” in SANER ‘25 (Montreal, QC: IEEE).
doi: 10.1109/SANER64311.2025.00090

Bowen, J., Breuer, P., and Lano, K. (1993a). A compendium of formal techniques for
software maintenance. IEE/BCS Softw. Eng. J. 8, 253–262. doi: 10.1049/sej.1993.0031

Bowen, J. P., Breuer, P., and Lano, K. (1993b). Formal specifications in software
maintenance: from code to Z++ and back again. Inf. Softw. Technol. 35, 679–690.
doi: 10.1016/0950-5849(93)90083-F

Buttner, F., and Gogolla, M. (2014). On OCL-based imperative languages. Sci.
Comput. Program. 92, 162–178. doi: 10.1016/j.scico.2013.10.003

Chen, X., Liu, C., and Song, D. (2018). “Tree-to-tree neural networks for program
translation,” in Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18 (Red Hook, NY: Curran Associates Inc), 2552–2562.

Deltombe, G., Goaer, O. L., and Barbier, F. (2012). “Bridging KDM and ASTM for
model-driven software modernization,” in SEKE 2012 (Pau).

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2024). “QLoRA:
efficient fine-tuning of quantized LLMs,” in Advances in Neural Information Processing
Systems, Vol. 36 (Cambridge, MA: MIT Press).

Gandhi, S., Patwardhan, M., Khatri, J., Vig, L., and Medicherla, R. K.
(2024). “Translation of low-resource COBOL to logically-correct and readable Java
leveraging high-resource Java refinement,” in LLM4Code (New York, NY: IEEE).
doi: 10.1145/3643795.3648388

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., and Liu, S., et al. (2021).
“GraphCodeBERT: pre-training code representations with dataflow,” in ICLR 2021
(Cambridge, MA: Microsoft Research).

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., et al. (2023). LLMs for software
engineering: a systematic literature review. arXiv [Preprint]. arXiv:2308.10620.
doi: 10.48550/arXiv.2308.10620

Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., et al. (2022). “LoRA: low-
rank adaptation of large language models,” in ICLR 2022 (Cambridge, MA: Microsoft
Research).

Jana, P., Jha, P., Ju, H., Kishore, G., Mahajan, A., and Ganesh, V. (2023). Attention,
compilation, and solver-based symbolic analysis are all you need. arXiv [Preprint].
arXiv:2306.06755. doi: 10.48550/arXiv.2306.06755

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.
S., Casas, D., et al. (2023). Mistral 7b. arXiv [Preprint]. arXiv:2310.06825.
doi: 10.48550/arXiv.2310.06825

Krasteva, I., Stavru, S., and Ilieva, S. (2013). “Agile software modernization to the
service cloud,” in ICIW 2013 (Rome), 1–9.

Lachaux, M.-A., Roziere, B., Chanussot, L., and Lample, G. (2020). Unsupervised
translation of programming languages. arXiv [Preprint]. arXiv:2006.03511.
doi: 10.48550/arXiv.2006.03511

Lano, K., Haughton, H., Yuan, Z., and Alfraihi, H. (2024). Agile model-driven
re-engineering. Innov. Syst. Softw. Eng. 20, 559–584. doi: 10.1007/s11334-024-00568-z

Lano, K., Kolahdouz-Rahimi, S., and Jin, K. (2022). “OCL libraries for software
specification and representation,” inOCL 2022, MODELS 2022 Companion Proceedings
(New York, NY: ACM). doi: 10.1145/3550356.3561565

Lano, K., and Malik, N. (1999). Mapping procedural patterns to object-oriented
design patterns. Autom. Softw. Eng. 6, 265–289. doi: 10.1023/A:1008708927260

Lano, K., and Siala, H. A. (2024a). Using MDE to automate software language
translation. Autom. Softw. Eng. 31:20. doi: 10.1007/s10515-024-00419-y

Lano, K., and Siala, H. A. (2024b). “Using OCL for verified re-engineering,” in
MoDeVVa 2024, MODELS 2024 (New York, NY: ACM). doi: 10.1145/3652620.3687824

Li, X., Yuan, S., Gu, X., Chen, Y., and Shen, B. (2024). Few-shot code translation via
task-adapted prompt learning. J. Syst. Softw. 212:112002. doi: 10.1016/j.jss.2024.112002

Liu, X., Yang, H., and Zedan, H. (1997). “Formal methods for the re-
engineering of computing systems,” in Compsac ‘97 (Washington, DC: IEEE).
doi: 10.1109/CMPSAC.1997.625024

Malyaya, A., Zhou, K., Ray, B., and Chakraborty, S. (2023). On ML-based
program translation: perils and promises. arXiv [Preprint]. arXiv:2302.10812.
doi: 10.48550/arXiv:2302.10812

Marco, A. D., Iancu, V., and Asinofsky, I. (2018). “COBOL to Java and
newspapers still get delivered,” in Proceedings IEEE International Conference
on Software Maintenance and Evolution (Madrid: IEEE Press), 583–586.
doi: 10.1109/ICSME.2018.00055

Nguyen, A. T., Nguyen, T. T., and Nguyen, T. N. (2015). “Divide-and-conquer
approach for multi-phase statistical migration for source code,” in Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engineering, ASE ’15
(Lincoln, NE: IEEE Press), 585–596. doi: 10.1109/ASE.2015.74

OMG (2014). Object Constraint Language (OCL) 2.4 Specification. Milford, MA.

Ouyang, S., Zhang, J., Harman, M., and Wang, M. (2023). LLM is like a box of
chocolates: the non-determinism of ChatGPT in code generation. arXiv [Preprint].
arXiv:2308.02828. doi: 10.48550/arXiv.2308.02828

Perez-Castillo, R., de Guzman, I. G.-R., and Piattini, M. (2010). “Implementing
business process recovery patterns through QVT transformations,” in ICMT 2010
(Cham: Springer). doi: 10.1007/978-3-642-13688-7_12

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://doi.org/10.48550/arXiv.2108.11590
https://doi.org/10.1109/SANER64311.2025.00090
https://doi.org/10.1049/sej.1993.0031
https://doi.org/10.1016/0950-5849(93)90083-F
https://doi.org/10.1016/j.scico.2013.10.003
https://doi.org/10.1145/3643795.3648388
https://doi.org/10.48550/arXiv.2308.10620
https://doi.org/10.48550/arXiv.2306.06755
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2006.03511
https://doi.org/10.1007/s11334-024-00568-z
https://doi.org/10.1145/3550356.3561565
https://doi.org/10.1023/A:1008708927260
https://doi.org/10.1007/s10515-024-00419-y
https://doi.org/10.1145/3652620.3687824
https://doi.org/10.1016/j.jss.2024.112002
https://doi.org/10.1109/CMPSAC.1997.625024
https://doi.org/10.48550/arXiv:2302.10812
https://doi.org/10.1109/ICSME.2018.00055
https://doi.org/10.1109/ASE.2015.74
https://doi.org/10.48550/arXiv.2308.02828
https://doi.org/10.1007/978-3-642-13688-7_12
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Siala and Lano 10.3389/fcomp.2025.1516410

Perez-Castillo, R., de Guzman, I. G.-R., and Piattini, M. (2011). Knowledge
discoverymetamodel ISO/IEC 19506: a standard tomodernize legacy systems.Comput.
Standar Interfaces 33, 519–532. doi: 10.1016/j.csi.2011.02.007

Siala, H. A. (2024). “Enhancing model-driven reverse-engineering using
machine learning,” in Doctorial Symposium, ICSE 2024 (New York, NY: ACM).
doi: 10.1145/3639478.3639797

Siala, H. A., and Lano, K. (2025). “Using LLMs to extract OCL specifications from
Java and Python programs: an empirical study,” in Proceedings of the STAF 2025
Workshops: OCL 2025 (CEUR; RWTH).

Siala, H. A., Lano, K., and Alfraihi, H. (2024). Model-driven approaches for
reverse engineering-a systematic literature review. IEEE Access 12, 62558–62580.
doi: 10.1109/ACCESS.2024.3394732

Sneed, H. (2011). “Migrating from COBOL to Java: a report from the field,” in IEEE
Proc. of 26th ICSM (Timisoara: IEEE Press), 1–7. doi: 10.1109/ICSM.2010.5609583

Sneed, H., and Jandrasics, G. (1987). “Inverse transformation of software from
code to specification,” in IEEE Conf. Soft. Maintenance (Scottsdale, AZ: IEEE).
doi: 10.1109/ICSM.1988.10149

Szafraniec, M., Roziere, B., Leather, H., Charton, F., Labatut, P., and Synnaeve,
G. (2023). Code translations with compiler representations. arXiv [Preprint].
arXiv:2207.03578. doi: 10.48550/arXiv.2207.03578

Zhang, C., Wang, J., Zhou, Q., Xu, T., Tang, K., Gui, H., et al. (2022). A survey of
automated code summarization. Symmetry 14:471. doi: 10.3390/sym14030471

Zhao, W., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., et al. (2023). A survey of
large language models. arXiv [Preprint]. arXiv:2303.18223. doi: 10.48550/arXiv.2303.
18223

Zhu, M., Suresh, K., and Reddy, C. (2022). Multilingual code snippets
training for program translation. Proc. AAAI Conf. Artif. Intell. 36, 11783–11790.
doi: 10.1609/aaai.v36i10.21434

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1516410
https://doi.org/10.1016/j.csi.2011.02.007
https://doi.org/10.1145/3639478.3639797
https://doi.org/10.1109/ACCESS.2024.3394732
https://doi.org/10.1109/ICSM.2010.5609583
https://doi.org/10.1109/ICSM.1988.10149
https://doi.org/10.48550/arXiv.2207.03578
https://doi.org/10.3390/sym14030471
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.1609/aaai.v36i10.21434
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	A comparison of large language models and model-driven reverse engineering for reverse engineering
	1 Introduction
	2 Material and methods
	2.1 LLMs for reverse engineering
	2.2 AgileUML
	2.3 Object Constraint Language
	2.4 Program abstraction rules
	2.5 Correctness and quality measures

	3 Results
	4 Discussion
	4.1 Detailed comparison of methods
	4.2 Related work
	4.2.1 Model-driven reverse engineering
	4.2.2 ML approaches for program translation and abstraction

	4.3 Threats to validity
	4.3.1 Instrumental bias
	4.3.2 Selection bias
	4.3.3 Generalization to different samples
	4.3.4 Inexact characterization of constructs
	4.3.5 Relevance
	4.3.6 Representativeness
	4.3.7 Threats to conclusion validity

	4.4 Relation to the state of the art
	4.5 Summary of contributions
	4.6 Future work and extensions

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

