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Introduction: Audio event detection, the application of scientific methods to

analyze audio recordings, can be helpful in examining and analyzing audio

recordings to preserve, analyze, and interpret sound evidence. Furthermore, it

can be helpful in safety and compliance, security, surveillance, maintenance,

and predictive analysis. Audio event detection aims to recover meaningful

information from audio recordings, such as determining the authenticity of the

recording, identifying the speakers, and reconstructing conversations. However,

filtering out noise for better accuracy in audio event detection is a major

challenge. A greater sense of public security can be achieved by developing

automated event detection systems that are both cost-e�ective and real-time.

Methods: In response to these challenges, this study presented a method for

identifying anomalous events based on noisy audio evidence and a real-time

scenario to help the audio event detection investigator during the investigation.

This study created a large audio dataset containing both noisy and original audio.

The dataset includes diverse environmental background settings (e.g., o�ce,

restaurant, and park) and some abnormal events (e.g., explosion, car crash,

and human attack). This study used an ensemble learning model to conduct

experiments in an active learning environment. Nine methods are employed to

create the feature vector.

Results: The experiments show that the proposed ensemble learning model

using the active learning settings obtained an accuracy score of 99.26%, while

the deep learning model obtained an accuracy of 95.35%. The proposed model

was tested using noisy audio evidence and a real-time scenario.

Discussion: The experiment results show that the proposed approach can

e�ciently detect abnormal events from noisy audio evidence and a real-time

scenario in real-time.

KEYWORDS

audio event detection, forensics investigation, deep learning, machine learning, noisy

data

1 Introduction

Audio event detection is essential in assuring effectiveness, safety, and compliance

in the industrial sector because it uses scientific methods to analyze audio recordings

(Ross et al., 2020). Detecting anomalies in production line operations or machine sounds

offers real-time quality control, ensuring that the products satisfy the necessary criteria
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(Abbasi et al., 2022). Additionally, continuously tracking audio data

makes predictive maintenance possible, enabling businesses to plan

maintenance of pricey failures. Audio event detection is used in

various fields, including law enforcement, legal investigations, and

security (Abbasi et al., 2022). Audio recordings may provide crucial

evidence in criminal investigations, such as eyewitness accounts,

confessions, or incriminating Statements (Hamza et al., 2022; Iqbal

et al., 2022). In civil and family court cases, audio recordings can

be evidence for harassment, custody, or property disputes. Audio

event detection may monitor and analyze communication to detect

and prevent security threats.

The emergence of numerous uses for audio event detection

(AED) in areas like audio-based forensics investigation and audio

anomaly detection has made it an essential topic in recent years.

Many academics have looked into different AED approaches to

raise the accuracy of detection rates. One method for enhancing

detection performance is using deep learning to detect auditory

events (Greco et al., 2020; Zhang et al., 2021). An accurate AED

model can be used for various audio events but is challenging

to construct (Mesaros et al., 2021). So, if one wants your

AED to function better in a particular situation, it is smart to

build a model tailored to that circumstance. The lack of clear

separation between audio events in feature space hinders the

detection accuracy of traditional machine learning methods. To

do this, deep learning methods such as convolutional neural

networks (CNNs) trained on spectral images (Sharan and Moir,

2019), deep neural networks (DNNs) trained on feature extraction

(Zhang et al., 2021), and RNNs trained on sequence capture

(Mesaros et al., 2021). Moreover, better audio event recognition

depends on a carefully chosen feature set. In particular, when

choosing features, it is crucial to consider factors like the selection

of temporal events, noise robustness of features, and minimal

computational complexity.

Time-frequency (T-F) cochleagram features, which use a

model of human auditory perception to determine when events

occurred, have recently gained traction among audio researchers

(Mondal and Barman, 2020). Cochleagram is an example of a

filter bank method that makes use of gammatone filters (Wang

and Brown, 2006). The usage of a mel-scale filter bank is also

mentioned in a couple of additional research papers (Vafeiadis

et al., 2020). For weak signal-to-noise ratio (SNR) environments,

gammatone features outperform mel-scale features regarding

robustness to noise (Mondal and Barman, 2022). As opposed to

spectrogram-based methods, filter bank approaches are shown

to be vastly superior (Mulimani and Koolagudi, 2019). In the

presence of noise, the significant spectral-domain granularity in the

spectrogram might occasionally mislead the system, but this can

be remedied by employing the filter bank technique. In addition,

spectrogram characteristics call for greater storage space due to

the increased computational load they impose. Therefore, the

features of a gammatone filter bank are well-suited for use in

real-time applications due to their minimal complexity and time-

frequency smoothness.

However, AED remains challenging because of the complexity

of real-world noises in audio and the challenging real-time task

involved in deploying various AED models (Mesaros et al., 2019).

In this paper, we propose a novel approach using an active learning

method to identify abnormal events from noisy audio and detect

abnormal events in a real-time environment.

This paper makes the following contributions.

• Create a large-benchmark dataset composed of noisy and

original audio signals to detect abnormal events from the

audio signal from the real world (i.e., explosion, sounds of a

machine gun, an assault by humans, a police siren, a car crash,

explosions, screams, footsteps, broken glass, a gunshot, and a

baby crying).

• Proposed an efficient active learning-based approach to

train the ensemble model, combining machine and deep

learning approaches to quickly assist the audio event detection

investigator in identifying anomalous events. Furthermore,

nine different feature extraction approaches are used to create

a single feature vector to assist the model during classification.

• A real-time automated AED system is developed to identify

abnormal events from different environments (noisy or

original audio). This system reduces event detection time

while requiring no human intervention.

The rest of the article is organized as follows. Section 2 goes

over the existing work. Section 3 contains a detailed overview

of the dataset. Section 4 outlines the proposed methodology

in detail. Section 5 provides the experimental results and

commentary. Section 6 shows the study’s conclusion, future work,

and limitations.

2 Literature review

This section discusses AED methods and analyzes

the importance of AED characteristics used in various

research studies.

2.1 Methods for audio event detection

Research within Automatic Event Detection employs deep

learning technology at an increasing rate. Wealth or scarcity

of deep learning methods does not affect how AED research

utilizes audio-derived features as represented in Mesaros et al.

(2016); Gemmeke et al. (2017). The production of these feature

representations follows three primary methodologies, which

include manual feature extraction techniques together with deep

learning-generated feature representations and integrated methods

that unite these two strategies.

The audio signal is typically converted into the frequency

domain, and manual procedures obtain approximate coefficients.

The mel-domain and the log-mel-domain are popular

representations of an audio signal derived from its spectrogram

(Eutizi and Benedetto, 2021; Kothinti et al., 2019; Wang et al.,

2021). On the other hand, the learning-based approaches aim to

acquire the optimal features for the AED purpose. Two common

approaches are: (i) training a feature set using self-supervised or

unsupervised learning techniques like auto-encoders (Çakir and
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Virtanen, 2018), and (ii) training a separate network specifically for

the AED task using the extracted features (Lee et al., 2017).

Hybrid approaches combine features developed by hand with

those discovered through machine learning to achieve the best of

both worlds (Lee et al., 2017). Context-aware features are learned

through a training technique and applied to a specific task, whereas

handcrafted features are taken from an algorithm and are founded

on expert knowledge. Early or late fusion is preferable in the feature

extraction phase because learned features are hard to interpret,

and handcrafted features are limited in scope. The classification

accuracy greatly increases when the normal handcrafted features

are merged with the learned feature representations.

Authors in Zaman et al. (2023) investigated multiple deep

learning architectures that include CNNs, RNNs, transformers

and hybrid models to perform audio classification functions. The

research findings establish deep learning as a superior approach

compared to traditional classification methods because it produces

better accuracy alongside scalability and adaptability benefits.

Large dataset requirements for maximum performance act as

a central focus within this study while the researchers identify

overfitting problems along with computational resource needs.

The author of the paper (Rehman et al., 2021) establishes a

cutting-edge method for surveillance detection through the

joint processing of audio and visual information. Visual analysis

through optical flow techniques, particle swarm optimization

and social force model, together with audio features based on

MFCCs and spectral features, and RF classification, produce

this method. The research shows that applying different data

sources together enhances system reliability, particularly when

one source fails or experiences performance degradation.

A new reference dataset has been introduced for the dual

purpose of anomaly detection and uncommon audio event

classification by the authors in the paper (Abbasi et al., 2022).

The system performs feature extraction through MFCC while

using principal component analysis for feature selection and

various machine-learning classification models. Testing different

machine learning systems across various environments verifies

the dataset through research and achieves superior anomaly

detection capabilities.

2.2 Researches analyzing features for AED

Research on AED advancement remains superficial about

specific approaches to represent these features, whereas the AED

problem deserves greater attention to effective representations.

These analyses typically only cover a specific proportion of

the literature’s widely accepted feature extraction methods.

Furthermore, the existing studies do not thoroughly study

the approaches’ hyper-parameters (see Table 1). For instance,

the study’s author (Piczak, 2015) employed 60 mel-band-log-

melspectrogram features with a 25 ms window size and 10

ms hop size. Log-mel-spectrogram characteristics with a 40 ms

window size, a 20 ms hop size, and 40 mel bands were used

in this study (Cakır et al., 2017). Additionally, they utilized

MFCC characteristics with a 40 ms window, 20 ms hop, and 40

mel bands.

2.3 Literature review and our contributions
summary

Most previous research has focused on a single feature

extraction method for AED, optimizing its settings for maximum

efficiency. One can see how they evaluate performance by selecting

an extraction technique and focusing on their architecture in

Table 1. No study compares popular feature extraction techniques

using various parameter settings with the same dataset, as shown in

the Table. In contrast to the previous studies, we focused on AED

from original and noisy audio evidence and created a feature vector

using multiple feature extraction methods.

3 Dataset creation

An automated surveillance application requires the proposed

system to identify the abnormality in the observed environment.

Sounds of a machine gun, an assault by humans, a police

siren, a car crash, explosions, screams, footsteps, broken glass,

a gunshot, and a baby crying may all be heard. Monitoring for

unusual sounds in real time helps protect people and property

from hazards like explosions and car accidents. In light of this,

this study developed a database for detecting anomalous audio

occurrences called abnormal event detection in audio forensics

(AEDAF). Forensics experts can use the AEDAF, a collection

of audio based on unexpected abnormal events and diverse

background environmental scenes, to better spot these anomalies.

We compile the dataset by combining 15 separate background-

sound files and 10 important abnormal events. The entire dataset

contains ten abnormal events. The Python script integrated these

abnormal events at different positions with 15 different background

environments. A normal distribution is used in this research to

include random noise in the input data. This method ensures

that the noise level remains proportionate to the maximum value

of the input data, resulting in realistic noise of varying levels.

Adding events at varying times and decibel (db) levels complicates

the data. In total, there are 2, 790 audio samples of background

scenes (beach, bus, cafe/restaurant, car, city center, forest path,

grocery store, home, library metro station, office, park, residential

area, train, and tram); a python script artificially augments this

with a variety of abnormal audio events, creating a new dataset

of 10, 960 audios. Firstly, this dataset contains the original audio;

however, the audio noise in the dataset is added using the Python

script to make it a more challenging and complex dataset and

to obtain the effectiveness of the active learning approach. The

technique employs Equations 1, 2 to add the synthetic noise to the

dataset. Here, NV represents noise value, 0.015 is the scaling factor,

r represents random value, max(data) represents the maximum

value in the dataset and N (0, 1) represents a standard normal

distribution (Gaussian noise).

NV = 0.015× r ×max(data) (1)

data′ = data+ NV ×N (0, 1) (2)

The size of the dataset has also increased (21, 920 audio), and

the final dataset includes both original and noisy audio. The dataset
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TABLE 1 A comparison of feature representation in audio-based event detection studies.

Ref. Spectrogram Mel-Spectrogram Log-Mel
Spectrogram

MFCC

Cakır et al. (2017) X

Li et al. (2017) X X

Çakir and Virtanen (2018) X X

Shah et al. (2018) X

Becker et al. (2018) X

Dinkel et al. (2018) X

Kothinti et al. (2019) X

Zhang et al. (2019) X

Turpault and Serizel (2020) X

Sun and Ghaffarzadegan (2020) X

Kong et al. (2020) X

Kwak and Chung (2020) X

Maria and Jeyaseelan (2021) X

Eutizi and Benedetto (2021) X

Wang et al. (2021) X

This paper X X X X

FIGURE 1

Dataset distribution.

is not publicly available online but can be provided upon request.

The distribution of the final dataset is shown in Figure 1.

4 Proposed approach

The audio event detection investigator takes a long time to

determine the anomalous events from audio evidence based on

the noisy surroundings. The researchers are still having trouble

identifying anomalous events in noisy audio. This study suggested

a technique that will assist the audio event detection investigator in

quickly distinguishing these events from a noisy environment.

This section provides a complete description of the processes

and procedures that form the basis of our suggested strategy.

The proposed approach is presented in Figure 2. The proposed

approach mainly consists of three primary stages: Data generation,

feature extraction and active ensemble learningmodel development

for real-time prediction. The dataset used in this study contains

a mixture of both noisy audio and original audio. The abnormal

event is presented in each audio for the final model training.

Various preprocessing steps are performed to get insights from
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the audio. Feature extraction converts raw input data into a

more meaningful representation for model training. Feature

extraction seeks to isolate a dataset’s most salient and instructive

characteristics that can be used to predict a target variable.

This study proposes the feature vector by combining the

features extracted from nine different audio feature extraction

methods. Finally, the active learning-based approach is applied.

The ensemble learning model proposed in this study uses

the active learning approach during the experiments. The

proposed Active Ensemble Learning Model (AELM) combines

machine learning and deep learning models. The model is

developed to detect abnormal events from the testing set and

a real-time environment. In our application, the ensemble-

based technique is optimized for real-time performance, allowing

quick decision-making with minimal latency. This efficiency is

achieved in various ways, including methodology selection based

on effectiveness, streamlined implementation, and computational

resource optimization. By using these efficiencies, the ensemble

may swiftly integrate outputs from several approaches and offer a

timely response in seconds, making it ideal for real-time systems

that require speedy decision-making.

4.1 Data pre-processing

The performance output of AI models highly relies on

effective pre-processing methods. Data framing represents the first

procedure in audio processing, which transforms acoustic signals

into numeric data that a machine can understand. The audio must

be divided into separate frames, and users should keep all sampling

rates consistent at 44.1 kHz for our system. A compilation of sample

amplitudes from different time points serves as fundamental data

for obtaining features. The calculation of audio file frame quantity

depends on the sampling rate into the length of the audio as shown

in Equation 3. The AEDAF database includes audio samples with a

30-second duration, which frame rates can be determined through

Equation 4, the sampling rate is 44.1kHz, and the length of the

audio is 30 seconds. The data framing method maintains a uniform

sample rate during the whole processing period.

Frames = Sampling rate× Time of an audio (3)

AEDAF(file1) = 44.1kHz × 30 = 1, 323, 000 (4)

The audio signal moves from time-based representations to

frequency-based representations during the extraction process. A

spectrogram displays frequency content evolution through time to

detect significant acoustic components. This spectrogram shows

a single event, such as footsteps in Figure 3, while representing

time through the horizontal axis and frequencies from 0 to

10 kHz through the vertical axis. The recorded sound level

uses purple color variations to show sound intensity. When

specific data points should be reconstructed, we implement linear

interpolation (Equation 5) for deriving estimates from current

measured values, here {x1, x2} and {y1, y2} are two known data

points, x is an intermediate value between {x1, x2} and y is the

estimated value. Standardization plays a vital role in the process

of implementing uniform feature scaling. We implement Standard

Scaler to standardize features by normalizing both their mean value

to zero and standard deviation to one according to Equation 6,

where X is the original feature value, X_mean is the mean of

the value X, X_std is the standard deviation of X and X
′
is

the standardized value. The encoding process for categorical data

uses one-hot encoding techniques, which results in numerical

representations. The one hot encoding creates a binary (0,1)

column for each category that prepares data for the Machine

learning models (Choong and Lee, 2017).

y =
y1 + (y2 − y1)× (x− x1)

(x2 − x1)
(5)

X
′

=
(X − X_mean)

X_std
(6)

We validate the dataset through these steps: spectrogram and

waveform analysis in addition to quality evaluation using data

distribution analysis and correlation structure evaluation alongside

outlier detection. The dataset’s integrity is confirmed by domain

expert validation. The team takes ethical and privacy aspects

into account during the dataset utilization process to guarantee

responsible usage. As per their evaluation, Experts were provided

with a subset of annotated audio samples from different classes.

They independently verified the accuracy of labels and sound

categories using a blind evaluation method, where the original

labels were hidden. The model’s output was compared to real

samples using MFCCs. The dataset was analyzed for temporal

patterns (event duration, frequency distribution over time) and

spatial diversity (background noise variations). We ensured that

the dataset complies with GDPR and ethical guidelines for audio

data collection. Audio samples containing personal identifiers or

sensitive content were manually reviewed and excluded from

the dataset.

4.2 Feature extraction

In many circumstances, feature extraction approaches noise

reduction in some way, particularly when focused on spectral

centroid bandwidth, spectral bandwidth, and zero-crossing rate.

These features typically capture signal aspects that are less

influenced by noise. Furthermore, approaches such as spectral

contrast and chroma STFT can create robust audio signal

representations by focusing on frequency bands or harmonic

content. This helps in limiting the influence of noise.

Every sound stream has a wide variety of features and qualities.

However, feature extraction from the event is required before we

can do this detection. Firstly, we employ Mel-Frequency Cepstral

Coefficients (MFCC) to extract suitable features from the audio

signal. This study draws on 40 MFCC-extracted features. In the

realm of audio processing, MFCC features are most often employed

in the context of speech recognition. In this investigation, MFCC

is employed to aid in identifying abnormal sound events. Along

with the MFCC features, the feature vector includes (zero crossing

rate features, spectral roll-off features, spectral centroid features,

spectral contrast features, spectral bandwidth features, chroma stft
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FIGURE 2

Proposed approach for AEDAF creation and abnormal event detection.

FIGURE 3

Audio spectrogram representation.

features, RMS features, and Mel spectrogram features). The feature

vector extracted 288 features from individual audio. These features

are further passed to the AELM classifier. The primary purpose

of this feature vector is to extract the most optimal features from

the noisy audio signal and reduce the processing time for model

training and prediction.

4.3 Comparison with other datasets

The ESC-50, alongside DCASE, provides datasets that

consist mainly of environmental sounds but do not contain

forensic-specific classes like natural events or diverse acoustic

scenes. The large database of AudioSet contains numerous

sounds, but its insufficient forensic labeling hinders its usefulness

in applications that need distinct categorization of relevant

audio events. The proposed dataset has been designed to

include specific classes of forensic sounds, which include

police sirens together with explosions and baby cries, for

applications in forensic investigations, emergency systems,

and security monitoring. The proposed dataset provides

feature vectors already extracted from audio samples to users

instead of the raw files users would need for the ESC-50

and AudioSet datasets. The proposed feature representation

technique lowers computational requirements while keeping

training costs down. Thus, it works well for deep learning

and machine learning models, especially when resources
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are limited. The structured feature data in the dataset

combines complete fidelity with the elimination of extensive

preprocessing requirements.

The proposed dataset stands out because it contains more

sample data than ESC-50. Due to its 21,920 samples, the proposed

dataset exceeds ESC-50 by a factor of more than ten, which

enhances the robustness of the deep learning model training.

The millions of samples in AudioSet remain unreliable for

forensic applications since its poor annotation quality combines

with inherent noise to diminish its accuracy in precise task

assignments. The proposed dataset stands out as the best choice

for security and law enforcement research because its curated

selection process creates higher-quality annotations with forensic

importance. The quality of data remains a primary issue for large-

scale datasets based on YouTube metadata, including AudioSet.

The labeling approach generates unreliable annotations because

it creates inconsistent data and noisy labels, which decreases its

fitness for use in forensic work. The proposed dataset consists

of manually checked and curated data points that guarantee

higher precision since forensic models depend on highly accurate

annotation for their function. The proposed dataset does not have

an equivalent in the DCASE challenges since they concentrate

on environmental sound classification and acoustic scene analysis.

The DCASE effort includes diverse real-world soundscapes but

lacks specific content related to important forensic sounds,

including gunshots, alarms, emergency sirens, and explosions. The

proposed dataset solves this problem by delivering specialized,

high-quality forensic audio classification data that specifically

fulfills the needs of applications centered on exact forensic sound

recognition processes.

4.4 Active learning approach

For evaluation of the proposed method’s ability to detect

abnormal events from a raw signal and report our findings.

The ensemble model based on machine learning (ML) and deep

learning (DL) is used in this study to identify abnormal events

in noisy audio. Using the entropy-based method described in

this article (see Algorithm 1, lines 1–4), data distribution is

chosen from a set of unlabeled data. This model employs an

evolutionary algorithm-based optimization technique to discover

generalizations from limited data. From Algorithm 1’s line 6, we

can see that the initial training set consists of a limited dataset and

an entropy-based approach. The goal is to choose data points for

the training set based on their entropy. Based on the pool size, the

model decides how many instances are given out, as shown in lines

6 and 7 of the Algorithm 1. This score is based on the uncertainty

sample. At the start of each cycle, the pool values are reset. They

are incorporated into the training set so an alternative model can

be trained using this data. This procedure is repeated until all the

unlabeled data has been transformed. All the data used to train the

final model is listed on line 9 of Algorithm 1. The proposed method

could help reduce the amount of time spent annotating data and

identify anomalous audio in a short amount of time.

The active learning approach, which generates new occurrences

by selecting from the same distribution as the training set, can

be used to generate new examples following the uncertainty of a

model. We are training a second model with data generated by

an existing model. This process will continue until all the data

is used to train the model. On the other hand, active learning

does not make any assumptions about what is being studied.

One problem with active learning is that model training takes

longer because the model has to be retrained every time a new

example is made. To mitigate the increased training time in

active learning, the study most likely used approaches like batch

mode active learning and efficient feature selection to reduce

computing complexity. These approaches seek to reduce the impact

of retraining on model training time while ensuring that the

advantages of adding new examples are realized. Amodel combines

two data sets: training and test sets. Each item in the training set

has a label, but none in the test set does. A model successfully

separates the training data from the test data using the two

datasets. A genetic algorithm was used to tune the parameters

of the proposed semi-supervised learning method to improve the

model’s performance.

1: Input:

2: Xlabeled,ylabeled {Initially labeled dataset}

3: Xpool,ypool {Unlabeled dataset (pool)}

4: Xtest,ytest {Test dataset}

5: clf {Classifier model}

6: max_iterations {Maximum number of iterations}

7: min_accuracy {Desired accuracy threshold}

8: for i = 1 to max_iterations do

9: Train classifier on labeled data:

clf.fit(Xlabeled,ylabeled)

10: Predict labels for pool set: ypred =

clf.predict(Xpool)

11: Compute accuracy: accuracy =

∑
(ypred==ypool)

len(ypool)

12: if accuracy ≥ min_accuracy then

13: Break {Stop if accuracy threshold is met}

14: end if

15: Compute prediction probabilities: P =

clf.predict_proba(Xpool)

16: Compute entropy for each sample: H(x) =

−
∑

P(x)logP(x)

17: Select most uncertain sample: x∗ = argmaxH(x)

18: Add uncertain sample to labelled set:

19: Xlabeled = Xlabeled ∪ {Xpool[x
∗]}

20: ylabeled = ylabeled ∪ {ypool[x
∗]}

21: Remove selected sample from pool:

22: Xpool = Xpool \ {Xpool[x
∗]}

23: ypool = ypool \ {ypool[x
∗]}

24: end for

25: Predict on test set: ytest_pred = clf.predict(Xtest)

26: Compute confusion matrix: cm =

confusion_matrix(ytest,ytest_pred)

27: Compute classification report: cr =

classification_report(ytest,ytest_pred)

28: Output: Trained classifier, confusion matrix,

classification report

Algorithm 1. Selection of uncertainty pool using active learning.
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TABLE 2 Model architecture with layer details.

Layer (type) Output shape Param #

Dense (dense) (None, 1,000) 289,000

Dense (dense_1) (None, 750) 750,750

Dense (dense_2) (None, 500) 375,500

Dense (dense_3) (None, 250) 125,250

Dense (dense_4) (None, 100) 25,100

Dense (dense_5) (None, 50) 5,050

Dense (dense_6) (None, 10) 510

Total parameters: 1,571,160

Trainable parameters: 1,571,160

Non-trainable parameters: 0

4.5 Machine/deep ensemble learning
approach

This study deploys ensemble learning to construct a new

model through the integration of machine and deep learning

systems. This research applied the voting classifier to select a

method from the sklearn library. The research with random

forest among machine learning systems along with deep learning

models named multilayer feedforward. The selection of ML and

DL models for audio event classification relied on different criteria,

such as the data characteristics together with task complexity

and available computational resources, as well as prior research

results. Random forest was selected due to their straightforward

nature, good accuracy on datasets of small to medium scale, and

easily interpretable capabilities. The multilayer feedforward neural

network was selected among DL methods because it efficiently

detects complex patterns in audio data and frequently achieves

great results in similar classification scenarios. Performance

alongside interpretability and computational efficiency led to

our decision to incorporate multiple ML and DL techniques

despite numerous available options because of research boundaries

and objectives. A composite model system helps evaluate the

performance strengths between both ML and DL methods within

a unified network scheme. Models proceed with their established

default settings. The deep learning component applies 500 batch

size and executes 100 epochs with Adam optimizer and categorical

cross-entropy loss. Table 2 describes the architecture used for the

proposed approach.

Aspect-based decision-making involves entropy measurements

to evaluate model uncertainty for selecting optimal choices during

the decision-making stage. Model prediction confidence levels

get evaluated through entropy measurement tools since entropy

delivers information theory uncertainty evaluations. It is computed

as follows in Equation 7:

H(x) = −
∑

i

P(yi|x) logP(yi|x) (7)

The calculated prediction probability for class yi takes the form

of P(yi|x) from an input data point x. A prediction becomes

less certain when entropy values grow higher, but lower values

indicate more confident predictions. The incorporation of entropy

in ensemble systems helps voting strategies lower the effects of

imprecise predictions when generating final recommendations.

The implementation of entropy produces better classification

results when dealing with situations under uncertainty. Following

is a representation of the voting strategy shown in the Equation 8:

y = argmax
i

n∑

i=1

ZiAx(Vi(x) = i) (8)

In the Equation above, y is the final predicted label determined

by selecting the label i that receives the highest weighted vote,

denoted by argmaxi. The process has n number of voting classifiers;

each is assigned a weight of Zi. To check the validity of the vote, a

function Ax is used, and Vi stands for the voting classifier.

4.6 Model justification

RF delivered an ideal selection due to its robustness in

handling high-dimensional data and its ability to capture complex

patterns effectively through ensemble learning. RF provides

an outstanding trade-off between interpretability and strong

classification performance, making it a reliable choice compared

to other tree-based methods. The few characteristics of the dataset

support RF selection since it demonstrates strong resistance

to overfitting and effective management of various features.

Gradient Boosting or Extra Trees are ensemble-based methods,

but Random Forest was selected over other options because of

its ability to handle large datasets at high speed and its excellent

scalability attributes. RF achieves superior performance compared

to boosting methods in different situations because it reduces

overfitting risks by combining multiple trees for aggregation.

RF exhibits exceptional suitability for practical applications

because it eliminates the need for time-consuming hyperparameter

parameterization. Dense models necessitate large datasets for

their effectiveness, but Bayesian models successfully apply prior

information to handle limited training data. Risks of overfitting are

minimized in Bayesian models because they generate probabilistic

outputs that enhance predictive confidence in classification tasks.

The implemented selection criteria established an equilibrium

between accuracy, interpretability, and computational efficiency,

aligning with our research objectives.

5 Experimental results and discussion

The results and methods of the experiments are explained in

this section. As can be seen in Figure 4, there are two phases to the

AED algorithm: feature extraction and classification. The proposed

AELM receives a feature vector constructed with several distinct

feature extraction techniques. Using AELM, a voting strategy-

based model, we trained the feature subset with the optimal

classification model and hyperparameters for the proposed AEDAF

benchmark dataset, which included 21,920 audios. 60% (14,028

audios) data is used for training the model, 20% (3,508) data

is utilized throughout the active learning process during model
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FIGURE 4

Audio event detector.

TABLE 3 Computing environmental setup.

Specifications Values

Framework Jupyter notebook

Operating system Windows 10 professional

CPU Core(TM) i5-8300H CPU 2.30GHz

GPU NVIDIA GetForce GTX 1050

RAM 16GB

Programming language & Version Python 3.8.8

training, and the remaining twenty per cent is used once the AELM

model has been fully trained and is ready to test on a new dataset.

The experiments were performed in two phases: (i) In the first

phase, we evaluated the trained AELM on an unseen dataset, and

(ii) In the second phase, the proposed AELM was evaluated using

the real-time scenario.

The five essential evaluation metrics were employed in this

study. These important evaluation metrics (accuracy, precision,

recall, F1-score, and confusion matrix) were employed to

determine the ability of the proposed model to test data.

The precision, recall and F1-score can be measured using the

Equations 9–11.

Precision =
True Positive

False Positive + True Positive
(9)

Recall =
True Positive

False Negative + True Positive
(10)

F1−measure = 2×
(Precision× Recall)

(Precision+ Recall)
(11)

Table 3 displays the setup used in the experiment. Several major

programming libraries (Pandas, Matplotlib, Numpy, and Sklearn)

were also used to aid the studies.

5.1 Results

The experimental results were measured using the testing and

new data for the proposed AELM after completing the training

using an active learning approach. The proposed Active Ensemble

Learning Model results are shown in Table 4 and of Deep Learning

are shown in Table 5. The experiments show each class’s precision,

recall, and F1 score results. The proposed AELM obtained a 99.26%

accuracy score using the unseen dataset. Meanwhile, the deep

learning model could only reach up to 95%. The support shows

the number of audio samples used in the experiments. The model

obtained 99.26% accuracy by predicting 4,384 audio samples. The

precision, recall, and F1-score outcomes were calculated using the

additional two evaluation measures (Macro average and weighted

average). When deciding between a macro average and a weighted

average, it is important to consider the weights assigned to each

model. The weighted average considers the relative relevance of

each model, while the macro average treats them all the same.

The impressive precision, recall, and F1 score, all reaching 99%

for AELM, indicate a robust overall performance. However, the

presence of misclassifications suggests the existence of limitations

in certain situations or classes. Examining these misclassifications

can yield valuable insights into the model’s limitations and

opportunities for enhancement.

The precision, recall and F1-score of the proposed model is

99.26%. The confusion matrix of the proposed model is shown in

Figure 5. Elements on the diagonal of a confusion matrix represent

the proportion of correct predictions made by the proposed model,

while those off the diagonal represent the proportion of incorrect

predictions. The proposed method worked well, as shown by a

confusion matrix value indicating that the audio samples were

correctly classified. It is critical to assess the supplied data in

light of general and specific patterns and provide justification for

achieving these results. Discussing general trends entails looking

for overarching patterns or tendencies across multiple metrics

(e.g., accuracy, recall, and F1-score) and classes. This debate may

highlight consistent strengths or drawbacks in the proposed Active

Ensemble Learning Model (AELM) across several elements of

categorization performance. Moving on to specific trends, digging

further into individual class performance and detecting significant

differences or inequalities is critical. According to the confusion

matrix, this research reveals the classes that the model excels

at accurately identifying and which provide more difficulty. The
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TABLE 4 Proposed AELM results.

Parameters Precision Recall F1-score Support

Human assault 0.99 1.00 0.99 450

Baby cry 0.96 1.00 0.98 422

Car crash 1.00 1.00 1.00 420

Explosion 0.99 0.99 0.99 455

Footsteps 0.98 1.00 0.99 424

Glass break 1.00 0.96 0.97 426

Gunshot 0.98 0.91 0.99 394

Machine gun 1.00 0.99 1.99 569

Police siren 1.00 1.00 1.00 413

Scream 1.00 0.98 1.00 411

AELM accuracy - - 0.99 4384

Macro average 0.99 0.99 0.99 4384

Weighted

average

0.99 0.99 0.99 4384

TABLE 5 Classification report of DL model.

Parameter Precision Recall F1-Score Support

Human assault 0.92 0.98 0.95 450

Baby cry 0.96 0.98 0.97 422

Car crash 0.96 0.90 0.93 420

Explosion 0.96 0.83 0.89 455

Foot steps 0.91 0.95 0.93 424

Glass break 0.94 0.92 0.93 426

Gunshot 0.89 0.91 0.90 394

Machine gun 0.94 0.98 0.96 569

Police siren 0.99 0.98 0.99 413

Scream 0.96 0.98 0.97 411

Accuracy - - 0.94 4384

Macro average 0.94 0.94 0.94 4384

Weighted

average

0.94 0.94 0.94 4384

confusionmatrix can also help identify class imbalance or improper

data distribution by analyzing the classification results.

5.2 Discussion

The proposed AELM model outperforms previous studies

based on accuracy levels, which appear in Table 6. The assessed

accuracy of AELM reached 0.99.26 while surpassing the findings

of earlier research studies. The accuracy scores reported by Wang

et al. (2021), Kothinti et al. (2019), and Çakir and Virtanen (2018)

were 0.70, 0.75, and 0.60 respectively. AELM shows superior ability

in the identification of abnormal events that occur within audio

data. The proposed approach demonstrates significant accuracy

improvement because it successfully identifies relevant features

while delivering good generalization to new data, thus establishing

itself as a stronger solution than existing approaches.

AELM shows outstanding results against state-of-the-art audio

event detection approaches due to its superior accuracy alongside

its robustness to noise and efficient operation. The performance

metrics of AELM reached 99.26% accuracy, which surpassed the

Convolutional Recurrent Neural Network (CRNN) proposed by

Cakir et al. since their best F1 score marked only 66.4%. The

CRNN model attempted to extract time-frequency representations

directly from waveforms but failed to achieve results better than

spectrogram features that experts handcrafted. The analysis by

Kothinti et al. for the DCASE 2019 Challenge used supervised along

with unsupervised learning approaches to boost the F1-score by

11% against baseline measures yet had less precision compared to

AELM. AELM delivers its main strength from an active learning

procedure that continuously selects the most doubtful examples to

improve the model performance while operating on low amounts

of labeled data.

The deep learning models implemented different methods

to boost their ability to perform under noise conditions.

According to Cakir et al., the log-mel spectrogram features

demonstrated better resistance to noise compared to end-to-

end feature learning in the 0–3 kHz frequency range, which

held the most meaningful data. The approach of Kothinti et al.

incorporated event detection based on salience while using

Kalman filters to monitor audio signal changes, which enabled

their system to adapt to noisy conditions. AELM achieves

better acoustic environment generalization by using iterative

refinement and uncertainty sampling to choose informative

samples regardless of whether they include dedicated noise-

mitigation approaches. Additional research should investigate

the integration of spectrograms or hybrid approaches to noise

reduction methods, which would improve AELM’s performance

quality in actual operational environments.

The strong computational capability of AELM provides

practical benefits for real-world use that surpass deep learning

models. The CRNN-based method from Cakir et al. needed

extensive computational power because of its deep feature

extraction process along with its recurrent layers. The DCASE 2019

Challenge hybrid approach combined supervised and unsupervised

learning methods through pseudo-labeling and consistency losses,

which increased model complexity and execution time. AELM

implements Random Forest with active learning as its classifier

while maintaining lower computational costs when compared to

other models. By employing the query-by-uncertainty method,

AELM minimizes labeling tasks by concentrating on uncertain

samples that provide maximum information, thus offering

an efficient solution to performance quality and resource

management needs. AELM proves better than traditional and

deep learning-based audio event detection techniques through

its superior accuracy, practical noise resistance, and efficient

computational processing. Modern deep learners demonstrate

significant advancement, yet they continue to need major datasets

and significant computing power. AELM functions as an effective

practical model which performs better in situations when labeled

data availability is limited along with efficiency requirements.
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FIGURE 5

Confusion matrix of the proposed AELM and DL Model. (a) AELM. (b) DL.

TABLE 6 Comparison of proposed AELMmodel with previous papers.

Papers models Accuracy

Wang et al. (2021) 0.70

Kothinti et al. (2019) 0.75

Çakir and Virtanen (2018) 0.60

AELM 99.26

Future development should incorporate noise-resistant processing

techniques together with hybrid feature extraction systems to

enhance performance in noisy acoustic conditions.

5.3 Ablation study

The evaluation of the Active Ensemble Learning Model

(AELM) employed Random Forest as its classifier through an active

learning technique which enhanced its classification precision in

successive iterations. The research examined performance changes

and adaptive capabilities of the model through modifications in

ensemble tree numbers. A single set of active learning parameters

was retained as researchers executed three experimental trials by

selecting a distinct number of estimators for each trial. Amaximum

of ten active learning cycles and five selected samples at each cycle

determined the operation of the model, which performed selections

based on sample uncertainty to acquire labels before retraining

until reaching the defined accuracy threshold of 95%.

The Random Forest model established a 99.26% accuracy

with its 100 estimators because its large ensemble enabled an

excellent capture of complex patterns as well as strong decision

boundaries. When the number of estimators decreased to 10,

the model accuracy dropped to 97.86%, thus showing diminished

performance, though the model continued functioning effectively.

A model using five estimators reached 95.44% accuracy during

the third trial, demonstrating that decreased tree numbers

impact the data representation stability and produce unpredictable

predictions. We set the Random Forest classifier to test split

quality using Gini impurity to achieve both strong performance

and efficient processing. The state 42 randomized settings served

as our standard for duplicate tests, and the bootstrap sampling

method made our model more stable. An algorithm splits up

to the root number of total features to stop tree growth before

overfitting. The algorithm remained at its basic setup for minimum

samples per split, which gave the model flexibility in its decision

tree expansion process.

A larger ensemble size produces better results in future

applications but requires more computing power to operate. After

decreasing the number of estimators, the system processed more

easily but achieved less precise results. Using active learning

techniques helped the model succeed because it picked up only

the best training samples across all estimator counts. Data point

selection through active learning became the key factor for

preserving high-accuracy performance across all experimental

conditions. The model utilized Shannon entropy metrics for

uncertainty evaluation by choosing the five least certain samples

per execution to boost its training process. Probabilities generated

by the model were employed to determine prediction confidence

levels, which ensured the selection of unclear samples.

5.4 Real time prediction

We used the Flask framework to build the web-based

application for real-time prediction. The trained model was saved

using the joblib python library. We created a Python application

programming interface (API) in the Flask framework. Figure 6

shows the developed application interface and real-time AED.

Figure 6a depicts the interface of the application. The user can

either use the online audio link to submit the audio or select it

from the local machine for analysis (Figures 6b, c). The proposed
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FIGURE 6

Real-time AED. (a) Interface of the application. (b) Event detection from audio in local machine. (c) Event detection from audio link.
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approach can detect an event from noisy or original audio quickly.

The model takes audio evidence as input. The Flask API starts the

process by cleaning the audio and extracting the features. Then,

the efficient model identifies the abnormal events from the audio.

The proposed AED System can identify multiple audio events from

audio simultaneously. A higher probability is assigned to an event

if it occurs more frequently in the audio. Existing forensics toolkits

analyze audio manually, listing it with high and low volumes to

discover abnormal events. Human beings require a lot of time

and effort to follow this procedure. The primary benefit of AEDs

is that they can immediately identify abnormal occurrences in

audio, which aids the forensics team and saves time, human effort,

and cost.

In a real-time system, genetic evolution generally requires

numerous generations to optimize, but we used the Flask

framework to create a web-based application for real-time

prediction. We optimized the event detection procedure from

audio by saving the trained model with the joblib Python package

and implementing a Python API in Flask. Our algorithm can

quickly recognize aberrant occurrences in noisy and original audio

inputs, saving time and effort compared to manual analysis. This

automated approach helps forensic teams by quickly recognizing

odd occurrences, saving time, human work, and money.

6 Conclusion

The practice of audio event detection has expanded rapidly in

recent times because audio technology improvements coincide with

the escalating adoption of digital audio devices like smartphones

and digital recorders. The rising demand for audio event detection

experts created a need for specialized and advanced approaches

in the field. Enhancing public safety depends on creating low-

cost systems which automatically detect events in real-time.

The researchers devised a method to identify abnormal events

from imperfect sound recordings in actual operational settings.

The proposed technique serves forensic auditors who need to

recognize unusual events in noisy environments. For the research,

a mass audio dataset was created that included both modified

recordings and unmodified audio files. All of the data is split

into 15 different locations and contains 10 abnormal incidents.

A model based on ensemble learning operated in an active

learning framework to execute experiments through nine different

approaches for creating feature vectors. The proposed ensemble

learning model succeeded in reaching 99.26% accuracy as an

active learning solution. The testing phase involved real-world

data as well as noisy audio evidence, which proved that the

model effectively detected abnormal events when used in real-

time situations. The study has one main issue because it does

not establish exact times for abnormal event occurrences. The

research team plans to improve the model precision for event

localization so new dependable automatic event detection systems

can be developed.
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