
TYPE Original Research

PUBLISHED 17 July 2025

DOI 10.3389/fcomp.2025.1518128

OPEN ACCESS

EDITED BY

David Aldabass,

Nottingham Trent University, United Kingdom

REVIEWED BY

Yongquan Fu,

National University of Defense Technology,

China

Maikel Lázaro Pérez Gort,

Ca’ Foscari University of Venice, Italy

Jorge E. López De Vergara,

Autonomous University of Madrid, Spain

*CORRESPONDENCE

Yulong Wang

wangyulong@caep.cn

RECEIVED 28 October 2024

ACCEPTED 18 June 2025

PUBLISHED 17 July 2025

CITATION

Ye K, Zeng T, Duan Y, Han J, Zhong G, Chen Z

and Wang Y (2025) Obfuscated malicious

tra�c detection based on data enhancement.

Front. Comput. Sci. 7:1518128.

doi: 10.3389/fcomp.2025.1518128

COPYRIGHT

© 2025 Ye, Zeng, Duan, Han, Zhong, Chen

and Wang. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Obfuscated malicious tra�c
detection based on data
enhancement

Ke Ye, Tao Zeng, Yubing Duan, Jun Han, Guoxin Zhong,

Zhi Chen and Yulong Wang*

Institute of Computer Application, China Academy of Engineering Physics, Mianyang, China

As the proportion of encrypted tra�c increases, it becomes increasingly

challenging for network attacks to be discovered. Although existing methods

combine unencrypted statistical features, e.g., average packet length, with

machine learning algorithms to achieve encrypted malicious tra�c detection,

it is di�cult to escape the influence of artificially forged noise, e.g., adding

dummy packets. In this study, we propose a novel encrypted malicious tra�c

detection method named RobustDetector (RD) for obfuscated malicious tra�c

detection. The core of the proposed method is to use the dropout mechanism

to simulate the process of original features being disturbed. By introducing noise

during the training phase, the robustness of the model is improved. To validate

the e�ectiveness of RobustDetector, we conducted extensive experiments

using public datasets. Our results demonstrate that RobustDetector achieves

an average F1-score of 90.63% even when random noise is introduced to the

original tra�c with a probability of 50%. This performance underscores the

potential of our proposed method in addressing the challenges of obfuscated

malicious tra�c detection.

KEYWORDS

network anomaly detection, obfuscated malicious tra�c detection, encrypted tra�c

classification, network attack and defense, deep learning

1 Introduction

With the continuous development of network technology, more services are

connected to the Internet, bringing convenience to transportation, medical care,

education, entertainment, etc. Meanwhile, the exponential growth of network scale is also

accompanied by the proliferation of cyber attacks. The traditional cyber attack detection

methods attempt to find features in the traffic packet payload, e.g., special strings that only

exist in malicious traffic. However, with the development of Secure Socket Layer/Transport

Layer Security (SSL/TLS), the packet payload becomes invisible, which ensures the security

of the information transmission process. However, it not only brings privacy to users

but also increases concealment for attackers. According to the Zscaler ThreatLabz 2023

Ransomware Report (Zscaler, 2024), 85.9% of threats are delivered over encrypted

channels, and encryptionmalware has become one of the most serious threats to enterprise

organizations, accounting for 78.1% of all observed attacks.

To solve the problems of encrypted malicious traffic detection, existing works (Arora

et al., 2014; Zhang et al., 2018; Meghdouri et al., 2018; Ahmed et al., 2022; Xu et al.,

2020) attempt to extract traffic features from packet headers (e.g., TCP payload length,

timestamps, and TCP flags) and combine these features with machine learning algorithms

to build classifiers for encrypted traffic detection. However, the method based on fixed

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1518128
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1518128&domain=pdf&date_stamp=2025-07-17
mailto:wangyulong@caep.cn
https://doi.org/10.3389/fcomp.2025.1518128
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1518128/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

features may be bypassed by attackers, who obfuscate the original

traffic by adding manual noises. For example, they may modify

the header field of packets, adding random time latency, injecting

dummy packets, etc. This obfuscated traffic can significantly reduce

the effectiveness of existing methods (Liu et al., 2022).

In this study, we propose RoubustDetector, a novel encrypted

malicious traffic detection method. We convert the raw traffic

into sequence features, i.e., packet length, packet direction, and

packet inter-arrival-time sequences. The sequences are regarded

as the input of the model, which consists of a feature extraction

module and a clustering module. The feature extraction module

includes two CNN models with identical structures, the only

difference being that one of the CNN models has enabled the

random dropout. The identical sample is input into two models

simultaneously, and the output of the two models is regarded as the

features of the sample. The feature extracted through the dropout

simulates the process of attackers destroying the original features

randomly. The clustering module clusters the output of the feature

extraction module according to the label, and the distance between

each feature and its cluster center point serves as the loss of the

feature extraction module. In the detection process, we confirm the

category of traffic by calculating the distance between features and

each cluster center point.

We summarize our contributions as follows:

• We propose the RobustDetector, a novel encrypted malicious

traffic detection method for evasion attack detection. Through

the feature extraction module, we use features disrupted by

artificial noise to simulate obfuscated traffic. Through the

clustering module, we calculate the loss to reduce the distance

between original traffic and obfuscated traffic features, which

enhances the robustness of the model, making it effective in

obfuscated malicious traffic detection.

• We simulate various ways in which attackers add noise,

i.e., adding random time delays, injecting dummy packets,

modifying the port number, and adding random payloads.

By regulating the probability of noise addition, we generated

encrypted malicious traffic with varying obfuscation degrees.

• Using the representative public dataset

CICIDS2017 (Sharafaldin et al., 2018), we conduct

thorough experiments. From the results of the experiment,

RobustDetector can achieve an average F1-score of 90.63%

in the detection of evasion attacks, which indicates that it is

robust in the classification of obfuscated traffic.

The rest of this article is organized as follows. We introduce the

threat model and related work in Section 2. Then, we present the

proposed RobustDetector in Section 3. Next, we conduct extensive

experiments to evaluate the performance of RobustDetector in

Section 4. Finally, we discuss the limitations and conclude this

article in Section 5.

2 Threat model and related work

In this section, we first present the threat model for evasion

attack detection, followed by a review of related work in encrypted

malicious traffic detection.

2.1 Threat model

There are usually two factions in the scenario of malicious

traffic detection, i.e., the detector and the attacker, as shown in

Figure 1.

The attacker launches attacks on one or more devices in a

local area network. The detector can collect attack traffic on the

gateway or terminal devices. To avoid detection, the attack traffic

is usually encrypted by the attacker, and the detector cannot obtain

the payload in plain text (Shen et al., 2022). To further confuse the

detector, the attackermay add random artificial noise to the original

traffic (Liu et al., 2022). We assume that artificial noise includes the

following types, i.e., adding random time delays, injecting dummy

packets, modifying the port number, and adding random payloads,

which will be introduced in detail in Section 3.4.

The attacker can randomly select both the method and

parameters for noise injection, while the detector has neither

prior knowledge of the noise generation strategy nor the ability to

anticipate where noise will be inserted.

2.2 Related work

Prior research has investigated various machine learning

approaches for malicious traffic detection, including Decision Tree

(DT), Random Forest (RF), K-Nearest Neighbor (k-NN), and

Support Vector Machine (SVM).

Chen et al. (2018) proposed a mobile malware detection

method using highly imbalanced network traffic. The six statistical

features are extracted from downlink and uplink traffic metrics,

including the number of bytes in bidirectional flows. By leveraging

multiple machine learning algorithms (i.e., SVM, C4.5, Gradient

Boosting, Na"ive Bayes, BayesNet, and Adaboost) across varying

imbalance ratios, they demonstrate malicious traffic detection

performance on imbalanced datasets. Lashkari et al. (2017)

collected real smartphone traffic to construct a malware traffic

dataset. Their detection framework employs statistical features

and machine learning, utilizing feature selection techniques

(i.e., Information Gain and CFS Subset) combined with SVM

to identify optimal feature subsets. The selected features are

then integrated with classifiers, such as RF, DT, and k-NN,

for malware identification. Rahmat et al. (2019) developed an

ensemble framework using bagging and boosting. The approach

partitions datasets into subsets, trains base learners, and aggregates

predictions through model voting. The experiments compare

five ensemble learners with four single learners, and the results

show that XGBoost achieves the highest accuracy. Zhao and Ma

(2024) proposed a tree-based model for fine-grained unknown

attack detection in network traffic. They leverage isolation forest

techniques to split the data distribution hyperplane, enabling fine-

grained classification of both known and unknown attacks. It

also supports incremental model updates to adapt to changing

legitimate traffic through growing and retiring mechanisms,

demonstrating superior performance in dynamic environments.

Traditional machine learning methods face limitations due to

traffic feature diversity, particularly their reliance on manually

engineered features requiring domain expertise. This constraint

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

FIGURE 1

The threat model for tra�c anomaly detection.

motivates the adoption of deep learning for automated feature

extraction in encrypted malicious traffic detection.

Bader et al. (2022) introduced MalDIST, extending encrypted

traffic classification to malware detection. Based on Aceto et al.

(2021), they extracted 14 statistical features from the first 32 packets

as input for a hybrid LSTM-CNN model. From the results of

the experiment, the proposed method performs better than the

baseline methods. Fu et al. (2022) proposed ST-Graph, a multi-

stream framework that leverages multiple features from spatial and

temporal perspectives for encryptedmalware traffic detection. They

design an attribute-heterogeneous graph to capture traffic features,

and demonstrate that ST-Graph achieves superior performance

in encrypted malware detection. Han et al. (2022) proposed a

lightweight encrypted malware traffic detection method using

autoencoders and k-means. Building on the existing feature set

(Anderson and McGrew, 2017), they extract six types of statistical

features, including packet size, TCP window size, and inter-

packet timing. To enhance detection accuracy, an autoencoder is

employed for feature compression, followed by k-means clustering

on the refined features. Their unsupervised approach outperforms

supervised methods, such as SVM, XGBoost, and LSTM, in

experimental evaluations. Fallah and Bidgoly (2022) proposed an

Androidmalware detectionmethod utilizing LSTMnetworks. They

extracted a feature vector containing 75 elements, which is fed

into the model for automated feature optimization. Experimental

results indicate that this deep learning-based approach achieves

higher accuracy in classifyingmalicious software families compared

to traditional methods. Yang and Lv (2022) proposed an enhanced

intrusion detection system (IDS) for Internet of Things (IoT)

networks by integrating deep learning and knowledge graph

techniques to address the limitations of existing IDS solutions.

The primary focus is on improving the detection of malicious

activities through feature extraction and semantic relationship

analysis among network traffic features. Jung (2024) proposed

an enhanced encrypted traffic analysis method leveraging Graph

Neural Networks (GNNs) and optimized feature dimensionality

reduction. It classifies malicious network traffic by analyzing

key features, such as IP address, port, CipherSuite, MessageLen,

and JA3, within TLS session data. Shi (2025) presented an in-

network malicious traffic detection system that supports continual

adaptation to emerging attacks. They employ Supervised Mixture

Prototypical Learning (SMPL) to learn class prototypes and

transform them into priority-guided matching rules for efficient

deployment on programmable switches. Zhou and Xu (2025)

proposed an efficient pre-trained model for traffic data analysis

named Traffic-Former. They leverage unsupervised pre-training

to learn fundamental traffic semantics from unlabeled data and

incorporate a fine-grained multi-classification task during pre-

training to capture packet direction and order information,

enhancing traffic representation. They employ a data augmentation

technique, Random Initialization Field Augmentation (RIFA), to

focus on key information by randomizing certain packet fields.

Although existing malicious traffic detection methods achieve

high accuracy in experimental settings, their effectiveness remains

unverified against evasion attacks where original traffic is perturbed

by artificial noise. According to the experimental results of Liu

et al. (2022), both traditional machine learning models (e.g., LR,

SVM, and DT) and deep learning architectures (e.g., 1D CNN and

2D CNN) exhibit vulnerability to adversarial perturbations such

as destination port modification and junk data insertion. In their

study, five types of noise were systematically injected, leading to

accuracy degradation across all tested methods. To address this

limitation, we propose RobustDetector, a novel framework for

evasion attack detection in malicious traffic analysis.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

3 The proposed RobustDetector

In this section, we first present the system overview of

RobustDetector and then describe the design details.

3.1 System overview

To address the challenge of detecting obfuscated malicious

traffic, we enhanced model robustness by simulating noise

injection during training. Specifically, dropout layers are employed

to randomly mask original traffic features, mimicking attackers’

random feature corruption. We propose a loss function that

simultaneously minimizes intra-class feature distances and

maximizes inter-class feature separation. The overall framework,

illustrated in Figure 2, comprises three core components, i.e.,

traffic representation module, feature extraction module, and

clustering module.

For traffic representation, we convert the first N packets of

traffic into sequence features. The packet length, packet direction,

and packet inter-arrival-time are extracted as features. In the

sequence feature, we do not consider packet header fields, as these

features are easily altered.

At the heart of the framework lies the feature extraction

module, comprising two structurally similar CNN networks with

critical functional differences. Compared to the first CNN network,

the second model introduces a strategically placed dropout

layer that randomly nullifies neuron activations during forward

propagation, i.e., setting their output to 0. This architecture enables

systematic simulation of feature corruption.

The clustering module calculates cluster centroids for each

class and computes sample-to-center displacements, which

are formulated as a joint loss function to train the feature

extraction module.

3.2 Feature extraction module

Dropout is proposed by Hinton et al. (2012). When a complex

feedforward neural network is trained on a small dataset, it is prone

to overfitting. To prevent this, the performance of neural networks

can be improved by preventing the collective action of neurons.

Dropout can be seen as a bagging method. During the training

phase, some neurons are hidden with a random probability, and

during testing, all neurons are used. It is like multiple base

models working together to obtain a prediction result. The forward

propagation process with dropout is shown in Figure 3.

In other scenarios, dropout can also be seen as data

augmentation. Due to the absence of some neurons during forward

propagation, some local features will not be reflected in the output

feature vector. This is like adding random noise, hiding some

information from the original sample. Adding noise is commonly

used to generate data augmentation samples. Dropout achieves

a similar effect to adding noise by masking partial features. In

contrastive learning, the distance between the original sample and

the data augmentation sample is calculated as the loss.

For each traffic flow, we only truncate its first N packets and

convert them to sequence features, containing packet length, packet

direction, and packet inter-arrival-time sequences. The sequence

features are regarded as the input of the feature extraction module.

In themodule, we leverage dropout to generate an obfuscated traffic

feature vector. The feature extraction module contains two CNN

networks with similar structures, named model 1 and model 2. The

structure of the CNN network is shown in Figure 4. Compared

to model 1, model 2 introduces a dropout layer (probability

= 0.4) before the fully connected layer. This design aims to

disrupt the original features as extensively as possible within a

controlled range to enhance model robustness, while avoiding

excessive distortion of traffic feature semantics that could lead to

the learning of degenerate patterns. Notably, since the training

methodology requires output consistency between the two models,

over-destruction of features in model 2 may degrade the feature

similarity in outputs relative to model 1, ultimately resulting in

ineffective model training.

3.3 Clustering module

Considering the design goal of the framework, in the clustering

module, we need to make the output distances between model

1 and model 2 closer for samples of the same class, and

farther for samples of different classes. Cosine similarity is

used to measure the distance, which is defined in Equation 1:

dis(a, b) =
< a, b >

||a|| · ||b||
(1)

where a is the output of model 1 and b is

the output of model 2, < a, b > represents

the dot product of two vectors, ||a|| =
√

a21 + a22 + ...+ a2n.

The loss of the framework is divided into two parts, i.e., within-

class distance and between-class distance. The within-class distance

is defined in Equation 2.

WD =

L
∑

l=1

Nl
∑

i=1

Nl
∑

j=1,j6=i

dis(i, j) (2)

where L is the number of classes, Nl is the number of samples in

class l. The between-class distance is defined in Equation 3.

BD =

L
∑

i=1

L
∑

j=1,j6=i

dis(Cj,Cj) (3)

where Ci is the center point of class i. We design a loss function

(Equation 4) to make the feature vectors of samples in the same

class closer and those of different classes farther apart.

loss = WD+
1

BD
(4)

We update the model parameters of the feature extraction

module to reduce the loss gradually and record the information

of the cluster center points in each training epoch. The

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

FIGURE 2

The system overview of RobusetDetector.

FIGURE 3

The forward propagation process with dropout. (a) Standard neural network. (b) Neural network added dropout layer.

features of the original traffic extracted by the feature extraction

module become closer to those of the obfuscated traffic,

achieving detection of obfuscated malicious traffic. In testing,

we only use model 1 for feature extraction. The output feature

vectors are compared with the cluster center points recorded

during the training process. The label of the cluster center

point closest to the feature vector is considered to be the

detection value.

3.4 Obfuscated malicious tra�c
generation

To prove the effectiveness of the framework, in addition to

simulating random noise through the dropout layer, we also

generate real obfuscated traffic samples. We assume that the

artificial noise includes four types, as these are commonly used

features in existing encrypted traffic analysis works (Liu et al.,

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

FIGURE 4

The forward propagation process with dropout.

2022). We will provide a detailed introduction to the methods for

adding each type of noise.

3.4.1 Adding random time delay
For the attacker, adding random delay is one of the most

covert forms of artificial noise. As even without the interference

of attackers, the inter-arrival time of packets can easily change

due to network conditions, making this noise difficult to perceive.

However, when the attacker adds randomness, the time delay

must follow the condition that each packet needs to be sent in

its original order; otherwise, it may cause the receiving end to

receive packets out of order. Under this assumption, we provide

an algorithm for adding a random time delay in Algorithm 1 with

probabilistic execution control. The noise intensity parameter a%

specifies that each packet independently faces an a% probability of

being delayed. If the packet is not the terminal unit in the sequence,

its added delay must adhere to a strict temporal constraint, i.e.,

the manipulated arrival time cannot exceed the timestamp of its

immediate successor packet. For the terminating packet, we impose

an upper bound of 1 s on artificial delay injection to maintain

protocol-compliant timeout thresholds.

3.4.2 Injecting dummy packets
Dummy packet injection serves as an active countermeasure

against traffic analysis by perturbing multiple discriminative

features, including packet sizes and directions. Our implementation

Input: A flow T = {p1, · · · ,pn}, the probability of noise

generation a%.

Output: The obfuscated flow T
′

1: T
′
= []

2: for i ∈ N do

3: R = randit(1,10)

4: if R ≤ 10 ∗ a% then

5: if i 6= N then

6: t = randit(0,pi+1.timestamp− pi.timestamp)

7: pi.timestamp = pi.timestamp+ t

8: else

9: t = randit(0,1)

10: pi.timestamp = pi.timestamp+ t

11: end if

12: end if

13: Append pi to T
′

14: end for

15: return T
′

Algorithm 1. Adding random time delay.

specifies that all dummy packets adhere to TCP protocol standards,

with IP/port quintuple alignment matching the host flow. Payload

content contains randomized alphanumeric strings (length: 0–

20 bytes) generated through cryptographically secure methods.

The formalized injection mechanism in Algorithm 2 operates

under these constraints. The noise parameter b% indicates an

independent per-packet insertion probability. Before transmitting

each legitimate packet, the attacker independently executes dummy

packet injection with probability b%.

Input: A flow T = {p1, · · · ,pn}, the probability of noise

generation b%.

Output: The obfuscated flow T
′

1: T
′
= []

2: for i ∈ N do

3: R = randit(1,10)

4: if R ≤ 10 ∗ b% then

5: p = new TCP packet

6: S = random string from {a,b,..,z,A,B,...Z}

7: p.TCPPaylaod = S

8: Appand p to T
′

9: end if

10: Append pi to T
′

11: end for

12: return T
′

Algorithm 2. Injecting dummy packets.

3.4.3 Modifying the port number
In practical situations, attackers only need to replace

communication ports to achieve significant interference.

Unfortunately, ports are one of the commonly used features

in existing works. In Algorithm 3, for all packets in a traffic, we

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

uniformly modify the source port to a random value ranging from 0

to 65,535, simulating the attacker changing communication ports.

Input: A flow T = {p1, · · · ,pn}

Output: The obfuscated flow T
′

1: T
′
= []

2: sport = randit(1,65535)

3: dport = randit(1,65535)

4: for i ∈ N do

5: pi.sport = sport

6: pi.dport = dport

7: Append pi to T
′

8: end for

9: return T
′

Algorithm 3. Modifying the port number.

3.4.4 Adding random payload
Although the added payload itself will not have any impact

on encrypted traffic detection methods, as existing methods are

not based on payload decryption, it will affect the packet length,

which is a key feature. Meanwhile, several studies that extract

features solely from the first N bytes of a flow face feature space

degradation due to strategic payload padding. In Algorithm 4, we

assume that each packet has a c% probability of adding a random

payload, whose length varies between 0 and 20 bytes, with the

payload generated through random sampling from a 52-character

mixed-case alphabet (26 uppercase + 26 lowercase ASCII letters).

Input: A flow T = {p1, · · · ,pn}, the probability of noise

generation c%.

Output: The obfuscated flow T
′

1: T
′
= []

2: for i ∈ N do

3: R = randit(1,10)

4: if R ≤ 10 ∗ c% then

5: payload = pi.lastlayer.load

6: S = random string from

{a,b,...,z,A,B,...,Z}

7: new_payload = payload+ random_str

8: pi.lastlayer.load = new_payload

9: end if

10: Append pi to T
′

11: end for

12: return T
′

Algorithm 4. Adding random payload.

4 Performance evaluation

In this section, we conduct experiments to evaluate the

effectiveness of the proposed method. We first introduce the

experimental setting and the performance metrics. Then, according

to the experiment results, we analyze the confusion of four types of

noise and the robustness of the proposed model.

4.1 Experiment setting and performance
metrics

To validate the effectiveness of these methods, we use the

well-known public dataset CICIDS2017 (Sharafaldin et al., 2018).

It contains benign and the most up-to-date common attacks,

which resemble real-world data. We select five types of malicious

traffic with sufficient samples in the dataset, i.e., DOS, FTP-

Patator, portscan, SSH-Patator, and DDOS-LOIT. We constructed

the dataset by randomly selecting 2,000 samples per malicious

traffic category and 8,000 benign traffic samples. The training set

comprises 6,400 benign samples and 1,600 malicious samples per

category, while the test set contains 1,600 benign samples and 400

malicious samples per category. All traffic payloads have undergone

supplementary cryptographic processing.

We select two types of methods as comparative models, i.e.,

deep learning methods and traditional machine learning methods.

The first type of method uses sequence features as well as the

type of features we used in this study, which eliminates the need

for manual feature selection. The second type of methods uses

manually extracted features, e.g., statistical features.

• 1D-CNN (Zeng et al., 2019). It takes the grayscale map of

traffic as features. It can learn from raw traffic without feature

extraction. The CNN framework extracts critical features from

raw data directly. We chose it as a comparative method to

demonstrate the ability of the framework, which combines raw

features with deep learning models, to resist noise.

• MalDIST (Bader et al., 2022) The system extracts three distinct

feature categories: the initial 784 bytes of the traffic flow,

directional patterns/sizes/inter-arrival times/TCP window

sizes of the first 32 packets, and statistical characteristics

derived from these 32 packets. Employing a hybrid

architecture integrating CNN, GRU, and bidirectional

LSTM for contextual analysis, the processed feature vectors

are concatenated into a unified traffic representation that

drives the final classification through dense layers with

softmax activation.

• Traditional machine learning methods. Referring to

commonly used statistical features in existing methods,

we select features, such as average, maximum, and minimum

packet length, average inter-arrival-time, average TTL, the

total number of packets, port number, and the duration

of traffic, as feature representation. We choose the most

commonly used machine learning models, i.e., random forest

and k-NN, as representatives, which combine statistical

features with traditional machine learning methods.

Our experimental framework implements four adversarial

traffic perturbations: (1) adding random time delay (IAT), (2)

injecting dummy packets (Pkt), (3) modifying the port number

(Port), and (4) adding random payload (Pld). Through adjustable

noise probability parameters p, we systematically quantify feature

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

TABLE 1 The experiment results with di�erent noise types and noise values.

Noise value (%) Noise type 1D-CNN (%) RF (%) k-NN (%) MalDist (%) RD (%)

None 89.87 97.77 97.47 94.43 97.58

10

Port 89.86 97.19 80.72 94.18 97.58

Pkt 49.83 72.11 62.20 83.39 84.10

Pld 89.45 97.37 92.91 88.12 97.92

IAT 82.93 97.78 93.52 87.18 97.57

Avg 78.02 91.11 82.34 88.22 94.29

20

Port 89.86 97.19 80.72 94.18 97.58

Pkt 49.21 71.29 61.60 81.95 83.00

Pld 89.43 97.10 91.62 87.73 97.62

IAT 77.43 96.63 89.56 87.07 96.46

Avg 76.48 90.55 80.88 87.73 93.67

30

Port 89.86 97.19 80.72 94.18 97.58

Pkt 89.43 96.83 90.07 87.66 97.58

IAT 75.21 96.21 89.49 86.95 96.20

Avg 75.04 86.92 78.30 84.34 92.62

50

Port 89.86 97.19 80.72 94.18 97.58

Pkt 39.21 43.37 40.07 66.56 72.16

Pld 89.39 96.24 89.95 87.65 97.43

IAT 69.34 95.56 88.92 86.43 95.33

Avg 71.95 83.09 74.92 83.71 90.63

The bolded parts in the table represent the average detection performance of the model for different types of obfuscated traffic.

corruption levels while simulating detection robustness across

adversarial scenarios.

To evaluate the detection performance of the model, we select

the F1-score and the confusion matrix as the performance metrics.

F1-score is the harmonic average of precision and recall. The

confusion matrix is a square matrix of (n, n), where n represents

the number of classes. In the confusion matrix, columns represent

the predicted classification results of the model, and rows represent

the actual ground truth classification results.

4.2 Experiment results

The experiment results are shown in Table 1. We designed

four types of artificial noise, and the amount of added noise

is controlled through the probability. Taking the added dummy

packets as an example, we modify the probability value b to

ensure that there is a b% probability of each packet being inserted

into the dummy packet before it. The noise value column in

the table represents the probability; we set the values as 10,

20, 30, and 50. It should be noted that the interference we

add to ports is not affected by probability. Once an attacker

chooses this type of noise, she will replace both the source and

destination ports of each packet, which is more in line with

reality. Overall, from the results, we can observe that our method

performs best compared with others, and the 1D-CNN model

performs poorly. When there is no noise added, the RF, k-

NN, and RobustDetector (RD) all achieve an F1-score of ∼97%.

Among them, the F1-score of RF is slightly higher than that

of RD, which may be due to interference added during the

training process.

When noise is added, the F1-score of 1D-CNN decreases

rapidly, while RF and RD perform relatively better. When the

probability of noise increases by 50%, the F1-score of RD is

90.63%, which is ∼7% higher than RF and MalDIST. It proves

that our method still has robustness even when traffic features

are highly disturbed. Especially for adding dummy packets, when

the probability is 30%, the F1-score of MalDIST has dropped to

68.58%, while the F1-score of RD is 79.12%, which is 11% higher

than MalDIST.

From the experimental results, we can also see the interference

of different types of noise on the model. Adding a random

time delay, as well as modifying the port number, has minimal

interference on the model. Perhaps the proportion of port

numbers in traffic features is relatively small. For example, in

1D-CNN, it uses grayscale images as traffic representation, and

the changes of port numbers have little effect on the grayscale

images. For our method, our feature sequence did not take into

account port numbers, so the changes of port numbers have

no impact on RD. The F1-score of k-NN decreases by ∼17%

when the port number changes, indicating that the port number

is not suitable as a statistical feature for traditional machine

learning methods.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

FIGURE 5

The experiment results with the noise value of 50% for RD. The experiment results for (a) Adding random time delay to data packets in the original

tra�c (IAT). (b) Adding random extra fields to the original packet payload (Pld). (c) Injecting dummy packets in the original tra�c (Pkt). (d) Modifying

the port number (Port). The probability of all noise being added is 50% refering to algorithms in Section 3.4.

The most significant impact on the model F1-score is the

addition of dummy packets. When adding dummy packets, 1D-

CNN is most affected, and it basically lacks classification ability

as 1D-CNN leverages a grayscale image as traffic representation,

which uses the first N bytes of traffic. This noise will cause the

original traffic characteristics to be lost, as the added noise in

the middle occupies the space of the original traffic features.

Adding dummy packets also brings great challenges to RF, k-NN,

and MalDIST. The addition of dummy packets will change the

values of most statistical features, such as the packet length, packet

number, and duration of traffic. For RD, as shown in Figure 5,

adding redundant data packets also has an impact on it, but it

is less affected than other methods. In this figure, we describe

in detail the performance of RD under different artificial noise.

The horizontal axis of each image represents the model detection

result, and the vertical axis represents the true label. From 1 to

5, representing the traffic of five types of attacks in sequence, i.e.,

DDOS-LOIT, DOS, FTP-Patator, portscan, SSH-Patator, and label

0, represents normal traffic. Among the five categories of attack

traffic, DDoS-LOIT and portscan exhibit the highest classification

complexity. This challenge arises from the critical factor that

both attack types generate sessions with extremely low packet

volumes per flow, severely limiting detectable feature dimensions.

Moreover, redundant packet injection compounds this issue, which

compresses the feature space.

To demonstrate the effectiveness and robustness of the

proposed method, we designed ablation experiments for

comparison. Compared to the proposed method, the comparison

model, named RobustDetector-W/O did not use the dropout

mechanism to generate noise samples, which means that no

noise is introduced during the training process. The comparison

method named RobustDetector-grayscale leverages a grayscale

image instead of sequence features as a traffic representation. The

experiment results are shown in Table 2.When the noise value is 50,

the F1-score of the RobustDetector (90.63%) is better than that of

the RobustDetector-W/O (86.32%) and RobustDetector-grayscale

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

TABLE 2 The ablation experiment results with di�erent noise types and noise values.

Noise value (%) Noise type RD-WO (%) RD-greyscale (%) RD (%)

None \ 95.83 94.13 97.58

10

Port 95.83 93.98 97.58

Pkt 73.46 74.17 84.10

Pld 95.89 93.86 97.92

IAT 94.73 88.45 97.57

Avg 89.98 87.62 94.29

20

Port 95.83 93.98 97.58

Pkt 72.25 68.13 83.00

Pld 95.87 93.82 97.62

IAT 94.52 86.21 96.46

Avg 89.62 85.54 93.67

30

Port 95.83 93.98 97.58

Pkt 67.64 64.78 79.12

Pld 95.74 93.73 97.58

IAT 94.02 84.65 96.20

Avg 88.31 84.29 92.62

50

Port 95.83 93.98 97.58

Pkt 60.70 60.10 72.16

Pld 95.71 93.65 97.43

IAT 93.03 82.95 95.33

Avg 86.32 82.67 90.63

The bolded parts in the table represent the average detection performance of the model for different types of obfuscated traffic.

(82.67%). During the training process of RobustDetector, due to

the dropout mechanism playing a role in data augmentation, the

number of training samples for RobustDetector is twice that of

RobustDetector-W/O. This has provided RobustDetector with

sufficient training. However, both models achieved good results

in terms of detection results for the original samples. Compared

with RobustDetector-grayscale, RobustDetector-W/O selects

important features from traffic flow sequences. The grayscale

images introduce a large amount of invalid information, reducing

classification accuracy.

In terms of detection accuracy, RobustDetector increases

the robustness of the model by introducing noise through the

dropout mechanism during the training phase. By associating the

original features with the obfuscated features, the ability to detect

obfuscated malicious traffic has been improved. Compared with

RobustDetector-W/O, the proposed method performs better when

artificial noise is introduced.

5 Conclusion

In this study, we proposed RobustDetector, a novel encrypted

malicious traffic detection method for obfuscated malicious traffic

detection. The core of the proposed method is to use the dropout

mechanism to simulate the process of original features being

disturbed to improve the robustness of the model. To verify the

performance of the model, we simulated four common types

of artificial noise by modifying the original PCAP file, i.e.,

adding random time delays, injecting dummy packets, modifying

the port number, and adding random payloads. From the

experiment results, RobustDetector performs better in obfuscated

malicious traffic classification. However, the scope of noise types

considered in this study is limited. In real-world scenarios, attackers

may further evade detection by employing targeted obfuscation

tactics (e.g., mimicking legitimate application protocols), or

injecting structured adversarial noise. Future work will expand

the investigation to more complex scenarios to comprehensively

validate detection robustness.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

KY: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Resources,

Validation, Visualization, Writing – original draft, Writing –

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

review & editing. TZ: Data curation, Formal analysis, Investigation,

Methodology, Writing – original draft. YD: Formal analysis,

Funding acquisition, Investigation, Methodology, Writing

– original draft. JH: Conceptualization, Formal analysis,

Investigation, Methodology, Writing – original draft. GZ:

Data curation, Formal analysis, Investigation, Methodology,

Resources, Writing – original draft. ZC: Conceptualization,

Formal analysis, Investigation, Methodology, Validation, Writing

– original draft. YW: Investigation, Methodology, Project

administration, Visualization, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. This study

was supported by the Research of Secrets Protection Project of

National Administration of State Secrets Protection (Grant No.

BMKY2023B07) and the Presidential Foundation of CAEP (Grant

No. YZJJZQ2023026).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aceto, G., Ciuonzo, D., Montieri, A., and Pescapé, A. (2021). Distiller: encrypted
traffic classification via multimodal multitask deep learning. J. Netw. Comput. Appl.
183:102985. doi: 10.1016/j.jnca.2021.102985

Ahmed, A. A., Jabbar, W. A., Sadiq, A. S., and Patel, H. (2022). Deep learning-based
classification model for botnet attack detection. J. Ambient Intell. Humaniz. Comput.
13, 3457–3466. doi: 10.1007/s12652-020-01848-9

Anderson, B., and McGrew, D. (2017). “Machine learning for encrypted malware
traffic classification: accounting for noisy labels and non-stationarity," in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (New York, NY: ACM), 1723–1732. doi: 10.1145/3097983.30
98163

Arora, A., Garg, S., and Peddoju, S. K. (2014). “Malware detection using network
traffic analysis in android based mobile devices," in 2014 Eighth International
Conference on Next Generation Mobile Apps, Services and Technologies (Oxford: IEEE),
66–71. doi: 10.1109/NGMAST.2014.57

Bader, O., Lichy, A., Hajaj, C., Dubin, R., and Dvir, A. (2022). “Maldist: from
encrypted traffic classification to malware traffic detection and classification," in 2022
IEEE 19th Annual Consumer Communications & Networking Conference (CCNC) (Las
Vegas, NV: IEEE), 527–533. doi: 10.1109/CCNC49033.2022.9700625

Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., et al. (2018). Machine
learning based mobile malware detection using highly imbalanced network traffic. Inf.
Sci. 433, 346–364. doi: 10.1016/j.ins.2017.04.044

Fallah, S., and Bidgoly, A. J. (2022). Android malware detection using network
traffic based on sequential deep learning models. Softw. Pract. Exp. 52, 1987–2004.
doi: 10.1002/spe.3112

Fu, Z., Liu, M., Qin, Y., Zhang, J., Zou, Y., Yin, Q., et al. (2022). “Encrypted
malware traffic detection via graph-based network analysis," in Proceedings of the 25th
International Symposium on Research in Attacks, Intrusions and Defenses (New York,
NY: ACM), 495–509. doi: 10.1145/3545948.3545983

Han, S., Wu, Q., Zhang, H., and Qin, B. (2022). “Light-weight unsupervised
anomaly detection for encrypted malware traffic," in 2022 7th IEEE International
Conference on Data Science in Cyberspace (DSC) (Guilin: IEEE), 206–213.
doi: 10.1109/DSC55868.2022.00034

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
arXiv [Preprint]. arXiv:1207.0580. doi: 10.48850/arXiv.1207.0580

Jung, I.-S., Song, Y.-R., Jilcha, L. A., Kim, D.-H., Im, S.-Y., Shim, S.-W., et al.
(2024). Enhanced encrypted traffic analysis leveraging graph neural networks and
optimized feature dimensionality reduction. Symmetry 16:733. doi: 10.3390/sym160
60733

Lashkari, A. H., Kadir, A. F. A., Gonzalez, H., Mbah, K. F., and Ghorbani, A.
A. (2017). “Towards a network-based framework for android malware detection and
characterization," in 2017 15th Annual Conference on Privacy, Security and Trust (PST)
(Calgary, AB: IEEE), 233–233. doi: 10.1109/PST.2017.00035

Liu, J., Xiao, Q., Jiang, Z., Yao, Y., and Wang, Q. (2022). “Effectiveness evaluation
of evasion attack on encrypted malicious traffic detection," in 2022 IEEE Wireless
Communications and Networking Conference (WCNC) (Austin, TX: IEEE), 1158–1163.
doi: 10.1109/WCNC51071.2022.9771726

Meghdouri, F., Zseby, T., and Iglesias, F. (2018). Analysis of lightweight
feature vectors for attack detection in network traffic. Appl. Sci. 8:2196.
doi: 10.3390/app8112196

Rahmat, S., Niyaz, Q., Mathur, A., Sun, W., and Javaid, A. Y. (2019).
“Network traffic-based hybrid malware detection for smartphone and traditional
networked systems," in 2019 IEEE 10th Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON) (New York, NY: IEEE), 0322–0328.
doi: 10.1109/UEMCON47517.2019.8992934

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). “Toward
generating a new intrusion detection dataset and intrusion traffic characterization,”
Proceedings of the 4th International Conference on Information Systems Security
and Privacy - ICISSP, Vol. 1 (Funchal), 108–116. doi: 10.5220/000663980108
0116

Shen, M., Ye, K., Liu, X., Zhu, L., Kang, J., Yu, S., et al. (2022). Machine
learning-powered encrypted network traffic analysis: a comprehensive survey.
IEEE Commun. Surv. Tutor. 25, 791–824. doi: 10.1109/COMST.2022.320
8196

Shi, Z., Zhao, D., Zhu, Y., Xie, G., Li, Q., and Jiang, Y. (2025). “Helios:
learning and adaptation of matching rules for continual in-network malicious traffic
detection," in ACM Web Conference 2025 (WWW ’25) (New York, NY: ACM).
doi: 10.1145/3696410.3714742

Xu, G., Guo, B., Su, C., Zheng, X., Liang, K., Wong, D. S., et al. (2020). Am I
eclipsed? A smart detector of eclipse attacks for Ethereum. Comput. Secur. 88:101604.
doi: 10.1016/j.cose.2019.101604

Yang, X., Peng, G., Zhang, D., Lv, Y. (2022). An enhanced intrusion detection system
for iot networks based on deep learning and knowledge graph. Secur. Commun. Netw.
2022, 1–21. doi: 10.1155/2022/4748528

Zeng, Y., Gu, H., Wei, W., and Guo, Y. (2019). deep− full − range: a deep learning
based network encrypted traffic classification and intrusion detection framework. IEEE
Access 7, 45182–45190. doi: 10.1109/ACCESS.2019.2908225

Zhang,W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., Zhu, H., et al. (2018). “Homonit:
Monitoring smart home apps from encrypted traffic," in Proceedings of the 2018

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://doi.org/10.1016/j.jnca.2021.102985
https://doi.org/10.1007/s12652-020-01848-9
https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1109/NGMAST.2014.57
https://doi.org/10.1109/CCNC49033.2022.9700625
https://doi.org/10.1016/j.ins.2017.04.044
https://doi.org/10.1002/spe.3112
https://doi.org/10.1145/3545948.3545983
https://doi.org/10.1109/DSC55868.2022.00034
https://doi.org/10.48850/arXiv.1207.0580
https://doi.org/10.3390/sym16060733
https://doi.org/10.1109/PST.2017.00035
https://doi.org/10.1109/WCNC51071.2022.9771726
https://doi.org/10.3390/app8112196
https://doi.org/10.1109/UEMCON47517.2019.8992934
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/COMST.2022.3208196
https://doi.org/10.1145/3696410.3714742
https://doi.org/10.1016/j.cose.2019.101604
https://doi.org/10.1155/2022/4748528
https://doi.org/10.1109/ACCESS.2019.2908225
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ye et al. 10.3389/fcomp.2025.1518128

ACM SIGSAC Conference on Computer and Communications Security (New York, NY:
ACM), 1074–1088. doi: 10.1145/3243734.3243820

Zhao, Z., Li, Z., Xie, X., Yu, J., Zhang, F., and Zhang, R. (2024). Foss: towards fine-
grained unknown class detection against the open-set attack spectrum with variable
legitimate traffic. IEEE/ACM Trans. Netw. 32, 3945–3960. doi: 10.1109/TNET.2024.
3413789

Zhou, G., Guo, X., Liu, Z., Li, T., Li, Q., Xu, K., et al. (2025). “Trafficformer: an
efficient pre-trained model for traffic data," in IEEE Symposium on Security and Privacy
(SP) (San Francisco, CA: IEEE). doi: 10.1109/SP61157.2025.00102

Zscaler (2024). Zscaler ThreatLabz 2023 State of Encrypted Attacks Report. Available
online at: https://info.zscaler.com/resources-industry-reports-threatlabz-2023-state-
of-encrypted-attacks-report (Accessed February 28, 2024).

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1518128
https://doi.org/10.1145/3243734.3243820
https://doi.org/10.1109/TNET.2024.3413789
https://doi.org/10.1109/SP61157.2025.00102
https://info.zscaler.com/resources-industry-reports-threatlabz-2023-state-of-encrypted-attacks-report
https://info.zscaler.com/resources-industry-reports-threatlabz-2023-state-of-encrypted-attacks-report
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Obfuscated malicious traffic detection based on data enhancement
	1 Introduction
	2 Threat model and related work
	2.1 Threat model
	2.2 Related work

	3 The proposed RobustDetector
	3.1 System overview
	3.2 Feature extraction module
	3.3 Clustering module
	3.4 Obfuscated malicious traffic generation
	3.4.1 Adding random time delay
	3.4.2 Injecting dummy packets
	3.4.3 Modifying the port number
	3.4.4 Adding random payload

	4 Performance evaluation
	4.1 Experiment setting and performance metrics
	4.2 Experiment results

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

