
TYPE Original Research

PUBLISHED 21 March 2025

DOI 10.3389/fcomp.2025.1519437

OPEN ACCESS

EDITED BY

Hongji Yang,

University of Leicester, United Kingdom

REVIEWED BY

Bruno Gadelha,

Federal University of Amazonas, Brazil

Mohd Sameen Chishti,

Norwegian University of Science and

Technology, Norway

*CORRESPONDENCE

Sobhan Y. Tehrani

sobhan.tehrani@ucl.ac.uk

RECEIVED 29 October 2024

ACCEPTED 28 February 2025

PUBLISHED 21 March 2025

CITATION

Hemmat A, Sharbaf M, Kolahdouz-Rahimi S,

Lano K and Tehrani SY (2025) Research

directions for using LLM in software

requirement engineering: a systematic review.

Front. Comput. Sci. 7:1519437.

doi: 10.3389/fcomp.2025.1519437

COPYRIGHT

© 2025 Hemmat, Sharbaf, Kolahdouz-Rahimi,

Lano and Tehrani. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Research directions for using
LLM in software requirement
engineering: a systematic review

Arshia Hemmat1, Mohammadreza Sharbaf1,

Shekoufeh Kolahdouz-Rahimi2, Kevin Lano3 and

Sobhan Y. Tehrani4*

1Department of Software Engineering, University of Isfahan, Isfahan, Iran, 2School of Arts, University of

Roehampton, London, United Kingdom, 3Department of Informatics, King’s College London, London,

United Kingdom, 4Department of Computer Science, University College London, London,

United Kingdom

Introduction: Natural Language Processing (NLP) and Large Language Models

(LLMs) are transforming the landscape of software engineering, especially in the

domain of requirement engineering. Despite significant advancements, there

is a notable lack of comprehensive survey papers that provide a holistic view

of the impact of these technologies on requirement engineering. This paper

addresses this gap by reviewing the current state of NLP and LLMs in requirement

engineering.

Methods: We analyze trends in software requirement engineering papers,

focusing on the application of NLP and LLMs. The review highlights their e�ects

on improving requirement extraction, analysis, and specification, and identifies

key patterns in the adoption of these technologies.

Results: The findings reveal an upward trajectory in the use of LLMs for

software engineering tasks, particularly in requirement engineering. The review

underscores the critical role of requirement engineering in the software

development lifecycle and emphasizes the transformative potential of LLMs in

enhancing precision and reducing ambiguities in requirement specifications.

Discussion: This paper identifies a growing interest and significant progress

in leveraging LLMs for various software engineering tasks, particularly in

requirement engineering. It provides a foundation for future research and

highlights key challenges and opportunities in this evolving field.

KEYWORDS

software development, requirement engineering, Large Language Models (LLMs),

systematic literature review, requirement specification

1 Introduction

Large Language Models (LLMs) are powerful AI systems trained on extensive text

datasets to produce human-like language. They are commonly applied in areas such

as machine translation, content creation, chatbots, and summarizing information across

various sectors. More recently, they have opened up transformational possibilities in

many spheres of Software Requirement Engineering (SRE). As a discipline, Requirements

Engineering (RE) plays a critical role in the software development lifecycle by bridging

stakeholder needs and technical implementations, ensuring that final software products

meet specified objectives and quality standards. LLMs, with their transformative

potential, can fundamentally improve the RE process by automating tasks such as

requirement elicitation and specification, which have historically been time-consuming

and error-prone.

With natural language processing capabilities, LLMs have now become an active

partner in Requirements Engineering, powering automation in elicitation, specifications

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1519437
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1519437&domain=pdf&date_stamp=2025-03-21
mailto:sobhan.tehrani@ucl.ac.uk
https://doi.org/10.3389/fcomp.2025.1519437
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1519437/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

generation, quality assurance, and many other aspects of the

requirements. These are state-of-the-art architectures, including

GPT, BERT, and their domain-specific variants, each of which

has different advantages with respect to structured text analysis

and generation and, therefore, are very helpful in Requirement

Engineering (RE) activities where the requirements are written

in a natural language, such as Wang et al. (2024), Krishna et al.

(2024), and Ma et al. (2024). Therefore, LLMs have begun to attract

attention as a tool that can help RE processes becomemore efficient

and accurate and cover the gap between high-level requirements

and technical implementation.

They bring generative and analytical strengths to RE tasks, from

creating UML diagrams to supporting formal specifications and

verification. In this respect, models such as Codex and ChatGPT

have been used in generating code snippets, verifying requirements,

and enabling automated test case generation that alleviates

human engineers’ work and rushes project timelines accordingly

(Wang et al., 2024; Luitel et al., 2024; Li et al., 2024). Besides

mere generation, their contribution in generating formalized

specifications and integrating requirements with domain-specific

constraints has given more depth and relevance to the RE

documentation, such as those found in Kogler et al. (2024), Gomez

et al. (2024), and Frydenlund et al. (2024). Not all challenges have

been resolved, however. Some examples include LLMs’ difficulty

with domain-specific subtleties of languages, hallucination, and

inability to comprehend complex dependencies in various RE

contexts (Alhanahnah et al., 2024; Rahman and Zhu, 2024; Sarsa

et al., 2022). Various tuning and prompt engineering methods have

been carried out to optimize the performance of LLMs for RE.

Fine-tuning techniques include LoRA and prompt tuning,

which have proved to be very effective in making LLM outputs

align with the requirements of RE and thus have enabled even

complex specifications to be processed with higher relevance and

accuracy (Lee et al., 2024; Bhattacharya et al., 2023). Few-shot and

iterative prompting are some of the most important techniques

in prompt engineering for structured input to LLMs, which could

yield responses according to the RE standards. Refer to Mandal

et al. (2023), Lubos et al. (2024), and White et al. (2024) for

examples. Evaluation metrics such as precision and recall, along

with expert-based assessments, also play an important role in

validating generated outputs by LLMs to ensure reliability and

usability in the SRE environment. Despite this, other factors remain

potential barriers to the wide adoption of SRE for LLMs.

Common issues include problems with processing domain

requirements, the effectiveness of prompts, and technical inability

to handle structured RE inputs that mainly cause inconsistencies

and errors in output (Zhang et al., 2023b; Xie et al., 2023; Abukhalaf

et al., 2024). This implies the need for more robust frameworks

and evaluation techniques that handle SRE-specific requirements.

These gaps have been addressed through the emergence of

research on hybrid approaches, such as combinations of LLMs

with traditional RE tools or human-in-the-loop systems that

further enhance the reliability and accuracy of the LLM-generated

outputs (Wu et al., 2023; Hasan et al., 2023). In particular, these

advances point to a range of key challenges and opportunities

for natural language processing and LLM technologies: from

improving the precision of requirement extraction to orchestrating

collaborative workflows where both machine and human expertise

can contribute to higher-quality software designs.

In this article we present a systematic mapping study

which reviews current applications, challenges, and optimization

techniques for LLMs in SRE. The different types of LLMs used

in RE are classified in detail, input-output mechanisms are

considered, and their relevance for specific RE tasks. Strategies

related to tuning and prompt engineering, which help optimize

the performance of LLMs in SRE, will be discussed. The rest

of the paper details these elements and sets up a base for

future work on leveraging LLMs effectively within SRE. It also

informs both researchers and practitioners about methodologies

for maximizing the potential of LLMs while working around their

existing limitations.

The rest of this paper is organized as follows. Section 3 briefly

explains the research goals and methodology for performing this

study. Section 4 reports the extracted results based on the research

questions. Section 5 provides an overall discussion of the results

to clarify the open directions and research challenges. Finally,

Section 6 concludes the paper and highlights areas for future work.

2 Survey of related work on LLMs and
software requirements

The integration of Large Language Models (LLMs) into

Software Engineering, particularly in the context of Requirements

Engineering (RE), has been the focus of several studies. To

provide a comprehensive overview, this section categorizes

and analyzes surveys under three themes: Surveys on NLP

in Software Engineering, Surveys on LLMs in Software

Engineering, and Surveys on LLMs in Software Engineering

Requirements. Each theme highlights the contributions,

strengths, limitations, and emerging trends of relevant studies

(Al-Hossami and Shaikh, 2022; Necula et al., 2024; Fan et al.,

2023).

2.1 Surveys on NLP in Software
engineering

Natural Language Processing (NLP) has played a pivotal

role in bridging human-readable requirements and technical

implementations in Software Engineering. A significant

contribution in this area includes an extensive taxonomy for

Code Intelligence (CI), emphasizing the role of conversational

agents in software development and education (Al-Hossami

and Shaikh, 2022). Studies in this domain chronicle three

decades of deep learning techniques applied to source code,

capturing the evolution of NLP applications in Software

Engineering. However, these studies often lack a focus on

specialized domains like Requirements Engineering, limiting their

utility for such specific tasks. Another comprehensive review

highlights trends and applications of NLP in Requirements

Engineering over a period spanning from 1991 to 2023

(Necula et al., 2024). While offering actionable insights and

identifying emerging directions, these studies primarily address

classical NLP methods with minimal focus on advancements in

LLMs.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

2.2 Surveys on LLMs in software
engineering

Large Language Models represent a transformative

advancement in Software Engineering, offering capabilities

that span across automation, code generation, and design. Surveys

in this domain explore the utility of LLMs in tasks such as

coding, design, and requirements, while identifying challenges

and opportunities for future research (Fan et al., 2023; Zhang

et al., 2023a). These works provide a detailed review of LLM

technologies, including pre-training objectives, downstream

evaluations, and their applications in software testing and

deployment. Despite their technical depth, these surveys often lack

practical guidance for applying LLMs specifically in Requirements

Engineering. Some studies also unify the perspectives of NLP

and Software Engineering, discussing the role of LLMs in testing,

deployment, and operations, thus offering a broader outlook on

their impact (Zhang Z. et al., 2023). However, the absence of

detailed analysis tailored to requirements engineering use cases

limits the applicability of these findings for RE-specific tasks.

2.3 Surveys on LLMs in software
engineering requirements

Requirements Engineering is a critical phase in software

development, and recent studies have begun exploring the

potential of LLMs in this domain. One notable study conducts a

SWOT analysis of LLMs in requirements elicitation, analysis, and

validation, providing a structured assessment of their strengths

and weaknesses (Arora et al., 2023). Another study offers practical

guidelines for leveraging LLMs in RE tasks, focusing on task-

specific recommendations (Vogelsang and Fischbach, 2024). While

these works provide valuable insights, they often lack empirical

evidence to support their proposed methodologies. Additionally,

theoretical discussions on integrating formal methods with LLMs

underscore the importance of validating LLM-generated outputs

but offer limited practical implementation guidance (Spoletini

and Ferrari, 2024). A systematic literature review further extends

the understanding of generative AI in RE processes, although it

highlights challenges related to implementation and practical use

cases (Cheng et al., 2024).

2.4 Emerging trends and research
opportunities

The reviewed surveys collectively highlight broader trends

and significant research opportunities. An increasing adoption

of LLMs is evident across various stages of software engineering,

particularly in coding and design (Fan et al., 2023; Zhang et al.,

2023a). However, practical integration of LLMs in Requirements

Engineering remains underexplored, with empirical studies

addressing real-world applications being limited (Vogelsang

and Fischbach, 2024; Arora et al., 2023). Key challenges include

the validation of LLM-generated requirements, addressing

issues like hallucination and consistency, and enhancing fine-

tuning techniques for domain-specific RE tasks (Spoletini

and Ferrari, 2024; Cheng et al., 2024). Future research should

focus on developing robust frameworks for validating and

optimizing LLM outputs tailored to the nuanced demands of

Requirements Engineering.

While these surveys provide valuable insights into the

integration of NLP and LLMs in Software Engineering and

Requirements Engineering, gaps remain in focused research on

LLMs tailored specifically for RE tasks. Nonetheless, the field

demonstrates significant upward momentum, with promising

opportunities for advancing methodologies and addressing existing

challenges (Fan et al., 2023; Zhang et al., 2023a; Arora et al., 2023).

3 Methods

To conduct this systematic mapping study, we followed the

guidelines presented by Brereton et al. (2007) and Petersen et al.

(2015). The goal of this study is to answer the following research

questions.

Q1. (Role of LLM in RE process): what roles do Large Language

Models (LLMs) serve in the requirement engineering (RE)

process?

Q2. (Evaluation techniques for LLM in RE): what Techniques are

used to optimize and evaluate the LLMs in software requirement

engineering?

Q3. (Trend and opportunities): what are the challenges and

directions for utilizing LLMs in requirement engineering?

We carried out a literature review of published studies covering

the use of LLMs for requirement engineering in the last five years

(2020–2024). This provides a broad range of information on the

prevalence and application of LLMs in the RE process.We provided

a complete replication package to enable the easy reproduction of

our systematic review. The prepared package that has been made

publicly available1 includes a spreadsheet containing a list of filtered

articles, the classification of primary studies, and extracted data.

We started the search process by selecting the electronic

repositories we used for the search, such as IEEE Xplore,2

ACM Digital Library,3 Science Direct,4 Google Scholar,5 Wiley

Online Library,6 and Springer Link.7 We identified keywords and

formulate appropriate search strings from research questions and

a broad investigation of known primary studies. After a series of

test executions and refinements, we grouped keywords into two sets

include keywords that defined “Requirement Engineering Process”

and related to “LLMs” as are described in Table 1. Every search

string must contain at least one keyword from each term set.

Moreover, to reduce the likelihood of bias, we provide inclusion (I)

and exclusion (E) criteria as follows:

1 https://github.com/MSharbaf/LLMs_in_RE

2 http://ieeexplore.ieee.org

3 http://dl.acm.org

4 http://www.sciencedirect.com

5 https://scholar.google.com/

6 https://onlinelibrary.wiley.com

7 http://www.springer.com

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://github.com/MSharbaf/LLMs_in_RE
http://ieeexplore.ieee.org
http://dl.acm.org
http://www.sciencedirect.com
https://scholar.google.com/
https://onlinelibrary.wiley.com
http://www.springer.com
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

TABLE 1 Search string keywords.

Term set Keywords

Set1 Requirement Engineering Process, Requirement

Specification, Requirement Formalization RE, Software

Requirement Engineering, Requirements Elicitation,

Software Specification

Set2 Large Language Model, LLM, Pre-trained Language

Model, Transformer Model Deep Learning Model,

Generative Language Model, AI Language Model

• I1: Papers published between January 2020 and September

2024.

• I2: Publications that describe the use of LLMs for

extracting/specifying software requirements

• I3: Publications in peer-reviewed journals, conferences, and

workshops

• I4: Publication in English

• E1: Publications not written in English

• E2: Summary, survey, or review publications

• E3: Publications not focusing on RE process

Figure 1 outlines our search and selection process. This process

involved an initial automatic database search and a subsequent

iterative snowballing-based search. We performed the defined

search queries on each repository to acquire a set of relevant articles

based on the search string, which was configured to result only

in research papers, such as journal articles, conference papers,

and workshop papers. This activity yielded 287 articles, where

the number of articles obtained from each repository is shown in

Figure 1. The initial pool of studies, comprising 73 articles, was

generated after collecting all the relevant papers and eliminating

duplicates. In the next step, an initial filtering was applied by

inspecting the title, abstract, introduction, and conclusion. To

further enhance the precision of article selections, we applied

inclusion and exclusion criteria, resulting in 28 articles. Then,

we employed backward and forward snowballing-based search to

guarantee thorough coverage of the study’s extensive scope. The

snowballing process was repeated in three iterations, with the newly

included articles leading to the identification of 6 new articles that

met the selection criteria In the next step, we reviewed the full

texts of the 34 obtained articles and selected 29 of them through a

manual screening process as primary studies to identify and collect

from them the appropriate and relevant information to answer our

research questions.

4 Results

In this section, we report the classification results of the

investigated approaches for each research question.

4.1 Q1: What roles do LLMs serve in RE
process?

This research investigates how LLMs are integrated into RE

process, focusing on their contributions to Software Requirements

ACM DL 

(n = 45)

Wiley 

(n = 7)

Science 

Direct 

(n = 28)IEEE 

Xplore 

(n = 74)

Springer 

(n = 36)

Duplicate Removal

#ar!cles = 73

Applica!on of Selec!on &

Inclusion/Exclusion Criteria

#ar!cles = 28

Itera!ve Snowballing

#ar!cles = 34 (28+6)

Paper included a"er

Full-text Screening

#ar!cles = 29

Google 

Scholar

 (n = 97)

287 studies found

214 studies removed

73 studies remained

45 studies removed

28 studies remained

6 new studies added

5 studies removed

29 studies remained

FIGURE 1

Overview of search and selection process.

Engineering (SRE). The main question is divided into three sub-

questions:

• Q1.1: What types of LLM architectures are commonly

employed in SRE?

• Q1.2:What are the typical inputs provided to LLMs in the RE

process, and what outputs do they generate?

• Q1.3: Which stages of the RE process integrate LLMs most

effectively, and what roles do they fulfill?

Together, these questions provide a comprehensive overview of

the types of LLMs used, their input-output mechanisms, and their

functional roles across different stages of RE.

4.1.1 Q1.1: What types of LLM are commonly
employed in SRE?

The following subsections categorize the types of LLMs

employed in RE processes, focusing on their specific applications

and architecture, as presented in Table 2.

4.1.1.1 Generative pre-trained transformers (GPT)

Generative Pre-trained Transformers (GPT), including models

like ChatGPT and GPT-3, have seen wide usage in RE. These

models aid in generating requirement documents, system code,

and test cases, thereby facilitating automation in repetitive tasks

and accelerating documentation workflows. For instance, ChatGPT

has been employed to produce initial drafts of requirement

specifications and even code snippets, which were later refined by

human engineers. Additionally, GPT models support progressive

prompting techniques to enhance the relevance and specificity of

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

generated outputs iteratively. The output is a specification of the

maximum probability output from the model given the input text

(prompt + NL requirements) and the trained model parameters.

yi = GPT(xi) = argmaxP(y|x, θGPT)

Where xi is the input text (such as a user prompt), yi represents

the generated output, and θGPT represents the trained model

parameters.

4.1.1.2 Code-focused language models

Code-centric models, such as Codex, are designed explicitly for

programming-related tasks. In RE, Codex is often used to directly

translate natural language requirements into executable code, thus

bridging the gap between high-level requirements and specific

technical implementations. Codex also plays a crucial role in test

case generation, helping to validate requirements by automatically

creating test scripts based on initial requirement inputs, which

helps streamline the verification process.

Code = Codex(Requirement) = argmaxP(Code|Requirement,

θCodex)

where Requirement is the input requirement text, and Code is the

generated executable code.

4.1.1.3 Bidirectional encoder representations (BERT) and

variants

BERT and its derivatives provide significant advantages in

analyzing textual requirements due to their context-aware nature.

These models support RE by performing tasks such as requirement

classification, contradiction detection, and keyword extraction. For

example, BERT-based models can scan requirement documents to

identify conflicting requirements or to extract entities relevant to

the project, thereby ensuring consistency and quality.

4.1.1.4 Transformer-based models

Models like T5 and Llama 2 extend the use of transformer

architectures to tasks like paraphrasing and summarizing

requirements. This capability is essential in RE, where technical

language must often be translated into more accessible terms for

various stakeholders. Transformer-based models also enable the

summarization of extensive requirement documents, making it

easier for stakeholders to comprehend complex information.

Paraphrase = T5(x) = argmaxP(Paraphrase|x, θT5)

where x is the input text, such as a requirement statement, and

Paraphrase is the output.

4.1.1.5 Multimodal models

Multimodal models, which can process both text and visual

data, are particularly beneficial for RE tasks that involve diagrams

or visual aids. These models can integrate user interface sketches,

workflow diagrams, and other visual assets alongside text-

based requirements, enabling comprehensive understanding and

documentation. This is particularly useful in software projects that

require detailed graphical interfaces or workflow visualization.

TABLE 2 Detailed categorization of LLMs in requirement engineering.

Category #Studies Papers

Generative pre-trained

transformers (GPT)

23 P1, P2, P4, P5, P6, P7, P9,

P10, P11, P13, P14, P15,

P17, P18, P20, P21, P22,

P24, P25, P26, P27, P28,

P29

Code-focused language

models

14 P2, P3, P6, P8, P12, P15,

P16, P19, P21, P23, P26,

P27, P28, P29

Bidirectional encoder

representations (BERT)

and variants

5 P5, P11, P17, P23, P24

Transformer-based

models

10 P6, P7, P8, P14, P16, P19,

P21, P23, P25, P28

Multimodal models 6 P10, P13, P15, P16, P18,

P22

Specialized models 9 P1, P5, P11, P12, P15,

P18, P22, P24, P27

Vision-language models 7 P3, P8, P10, P13, P16,

P18, P25

Output = MultimodalModel(Text, Image)

Where Text and Image are inputs to the multimodal model,

producing a combined output.

4.1.1.6 Specialized models

Specialized models are tailored to meet the specific needs of

a given domain, such as finance, healthcare, or education. They

are trained on domain-specific data to better understand unique

terminology and nuances, providing more accurate interpretations

of requirements in specialized sectors. In RE, such models improve

requirement extraction and ensure precision in niche industries by

reducing ambiguity and misinterpretation.

P(y|x,D) = SpecializedModel(x,D)

where x is the input text, y is the output, and D denotes the

domain-specific dataset.

4.1.1.7 Vision-language models

Vision-language models bridge the gap between textual

requirements and visual design elements. These models are useful

in RE when the project involves visual requirements, such as

user interface design or physical system blueprints. These models

enhance clarity in design-related requirements by aligning visual

and text-based requirements and validate the alignment between

visuals and textual descriptions.

Output = VisionLangModel(Text, Visual)

where Text is the textual requirement and Visual is the

corresponding image or design input.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

TABLE 3 Overview of input categories for LLM4SE studies.

Input category #Studies Papers

Natural language

requirements

21 P1, P2, P3, P4, P5, P6, P8,

P10, P11, P12, P13, P14,

P15, P18, P19, P20, P21,

P25, P26, P27, P28

Technical

documentation

6 P7, P10, P11, P14, P22,

P28

Programming codes 7 P7, P16, P17, P18, P23,

P24, P25

Examples and sketches 1 P23

Model and formal

specifications

2 P9, P29

4.1.2 Q1.2: What are the typical inputs provided
to LLMs in the RE process, and what outputs do
they generate?

In the Requirement Engineering (RE) process, Large Language

Models (LLMs) are provided with a range of input types, each

tailored to produce specific outputs that meet the needs of software

engineering tasks. This section outlines the primary categories of

inputs and outputs, along with examples from studies that utilize

each type.

4.1.2.1 Input categories

As shown in Table 3, we define the following attributes to

categorize the input of LLMs identified in the investigated articles.

• Natural language requirements (e.g., P1, P2, P5):

natural language inputs include descriptions of software

requirements, user stories, and project goals. These inputs

help the model understand high-level objectives and generate

models, diagrams, or structured requirements. Studies

like P8, P13, P19 use natural language prompts to create

UML diagrams, while others generate detailed Software

Requirements Specifications (SRS).

• Technical documentation (e.g., P7, P10, P11): technical

documentation, such as project glossaries, specifications, or

structured documents, provides a foundation for generating

formal specifications or structured software requirements.

For example, P22 uses technical specifications to generate

formalized requirements that align with engineering

standards.

• Programming codes (e.g., P7, P16, P17): code inputs, such as

snippets or buggy programs, enable LLMs to generate formal

specifications, bug fixes, or refactored code. In P24 and P25,

models analyze code snippets to identify faults or generate

summaries of code functionalities.

• Examples and sketches (e.g., P23): example-based inputs

include sketches or examples provided as a basis for LLMs to

generate code or design structures. These inputs help guide

the model in generating structured outputs, as in P23, where

sketches are used to illustrate pseudo-code or code sketches.

• Model and formal specifications (e.g., P9, P29): these

inputs include formal language specifications like Alloy

models or other domain-specific languages (DSLs), allowing

LLMs to create structured code or models aligned with RE

TABLE 4 Overview of output categories for LLM4SE studies.

Output category #Studies Papers

Modeling and diagrams 5 P1, P4, P19, P20, P26

Software requirements

and specifications

9 P2, P11, P12, P13, P15, P21,

P22, P27, P28

Formal specifications

and DSL

4 P3, P7, P9, P29

Simulation and

predictions

3 P5, P6, P18

Code and pseudocode 6 P13, P16, P17, P23, P24, P25

standards. Studies like P29 use faulty Alloy specifications

as input, prompting the model to generate corrected formal

specifications.

4.1.2.2 Output categories

As shown in Table 4, we define the following attributes to

categorize the output of LLMs identified in the investigated articles.

• Modeling and diagrams (e.g., P1, P4, P19): LLMs generate

models and diagrams, including UML diagrams (use case,

class, sequence) based on natural language inputs or technical

documentation. These outputs, seen in studies like P20 and

P26, help visualize system structures and interactions.

• Software requirements and specifications (e.g., P2, P11,

P12): generated specifications include Software Requirements

Specifications (SRS), user stories, or functional requirements.

In P22 and P27, LLMs produce comprehensive specifications

that capture both functional and non-functional aspects of a

system.

• Formal specifications and DSL (e.g., P3, P7, P9): formal

outputs involve DSL or structured code that represents precise

specifications, such as JML (Java Modeling Language) or

Alloy code. Studies like P29 focus on generating or repairing

formal specifications in Alloy, ensuring syntactic and semantic

correctness.

• Simulation and predictions (e.g., P5, P6, P18): simulation

models, such as system dynamics or event-driven models,

are generated for tasks like testing or predictive analysis. In

P18, the model produces programming exercises with sample

solutions and code explanations, simulating educational or

training tasks.

• Code and pseudocode (e.g., P13, P16, P17): LLMs generate

code outputs, including corrected or refactored code snippets,

pseudocode, and bug fixes. For instance, P23 uses code

sketches as input to generate working code snippets, while P24

focuses on identifying faults and generating solutions in code.

Each of these input and output categories supports specific

tasks in RE, enabling LLMs to generate relevant outputs that align

with RE standards and requirements.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

TABLE 5 Overview of RE process stages utilizing LLMs in SE tasks.

RE process stage #Studies Papers

Requirements elicitation

and analysis

6 P5, P14, P19, P21, P27, P28

Requirements modeling

and specification

10 P1, P6, P7, P8, P12, P13, P18,

P19, P20, P22

Formal specification and

verification

5 P3, P7, P9, P12, P29

Validation and quality

assurance

10 P2, P10, P11, P13, P14, P15,

P16, P17, P23, P24

4.1.3 Q1.3: Which stages of the RE process
integrate LLMs most e�ectively, and what roles
do they fulfill?

In the Requirement Engineering (RE) process, Large Language

Models (LLMs) are applied across different stages to support

diverse tasks. Each stage leverages LLMs in unique ways, enabling

more efficient, accurate, and automated RE tasks. Below, we

detail the primary stages where LLMs are integrated, along

with examples from studies that use LLMs for each purpose

(see Table 5).

4.1.3.1 Requirements elicitation and analysis

Requirements elicitation and analysis involve identifying

and refining a project’s initial requirements. LLMs play

a significant role in this stage by processing natural

language inputs and generating initial requirement drafts

or analyses.

• LLMs assist in identifying missing terminology or critical

information in initial requirements, enhancing completeness

and accuracy (P5).

• During the elicitation process, models provide feedback on

requirement feasibility and clarity, as seen in studies like

P14, where they assess requirement appropriateness and

correctness.

• Models are used to convert user stories into structured

requirements, allowing for a smoother transition from high-

level descriptions to specific RE inputs (P19, P21).

• LLMs facilitate interactive requirement elicitation by

interpreting and analyzing inputs from stakeholders, as in

studies P27 and P28.

4.1.3.2 Requirements modeling and specification

This stage involves creating structured representations

of requirements, such as UML models or formalized

specifications. LLMs streamline this process by

generating, validating, or converting requirements into

structured formats.

• LLMs generate UML diagrams like use case, class, and

sequence diagrams based on natural language requirements,

as demonstrated in studies like P1, P8.

• In the modeling phase, models can also translate high-level

requirements into more formal or structured specifications,

enabling effective visualization and model verification

(P6, P12).

• Models like those in P7 support specification generation and

verification tasks, automating repetitive modeling processes in

the design phase.

• LLMs assist in creating architecture specifications from RTL

code, a critical part of the specification generation stage (P8).

• LLMs provide visualization of requirements through model

specifications, enabling clearer representation of system

functionalities, as explored in studies like P13, P18, P19, P22.

4.1.3.3 Formal specification and verification

In this stage, LLMs generate formalized requirements that

adhere to specific standards or programming languages. They are

often used to verify requirement correctness and consistency.

• LLMs translate natural language specifications into formal

code or Domain-Specific Language (DSL), enhancing

precision and enabling formal verification (P3).

• During verification, models assist in checking for syntactic

and semantic correctness, ensuring that the generated formal

specifications meet predefined standards (P7, P9).

• Studies like P12 explore how LLMs can be applied to generate

and verify formal specifications, enhancing system reliability

through rigorous validation.

• Models are used in debugging and repairing specifications,

such as Alloy models, where they provide automated repairs

to faulty code or models (P29).

4.1.3.4 Validation and quality assurance

Validation and quality assurance (QA) involve evaluating the

completeness, accuracy, and feasibility of requirements to ensure

they meet project standards and objectives. LLMs play a substantial

role in automating and enhancing these evaluations.

• In QA tasks, LLMs review and validate Software Requirements

Specifications (SRS), providing insights on completeness,

clarity, and correctness (P2, P10).

• Models can automate the review of technical documents,

identifying potential issues and generating suggestions for

improvement (P11, P15).

• Quality assessment tasks include evaluating requirements

based on dimensions such as appropriateness, feasibility, and

consistency, as seen in studies P14 and P17.

• LLMs are also applied to validate generated code, test case

specifications, and fault localization, ensuring outputs align

with RE standards and objectives (P13, P16, P24).

• In P23, models contribute to identifying code faults

and generating corrective patches, supporting quality

improvement in RE outputs.

Each of these RE process stages showcases the versatility of

LLMs, highlighting their ability to enhance the RE process through

automation, formal verification, quality assurance, and interactive

requirement elicitation.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

4.2 Q2: What techniques are used to
optimize and evaluate the LLMs in SRE?

Optimizing and evaluating Large Language Models for

Requirement Engineering (LLM4RE) involves a range of

specialized techniques to enhance model performance and

ensure the accuracy of outputs tailored to software engineering

(SE) tasks. This question explores these methods through three

subquestions:

• Q2.1 examines various tuning techniques that adjust model

parameters to better align with SE-specific tasks, helping LLMs

generate responses that are relevant, contextually accurate,

and aligned with requirements engineering goals.

• Q2.2 investigates prompt engineering techniques, which

optimize how inputs are structured to elicit high-quality,

targeted responses from LLMs in SE scenarios.

• Q2.3 focuses on the evaluation metrics used to assess the

performance of LLM4SE, detailing how these metrics help

measure the effectiveness, reliability, and precision of model

outputs in requirements engineering contexts.

Together, these subquestions provide a comprehensive

overview of the strategies that optimize LLM4RE, covering

both enhancement and assessment techniques to improve the

application of LLMs in SE tasks.

4.2.1 Q2.1: What tuning techniques are used to
enhance the performance of LLMs in SE tasks?

Optimizing large language models (LLMs) for Software

Engineering (SE) tasks, specifically in Requirement Engineering

(RE), employs various tuning techniques to enhance model

performance and align outputs with domain-specific needs. These

tuning strategies are designed to refine model parameters and

response behaviors to improve accuracy, relevance, and efficiency

in SE tasks. Below, we discuss the primary tuning strategies used in

LLM4RE, accompanied by references to relevant studies that utilize

each method (see Table 6).

• Full fine-tuning (e.g., P25): this comprehensive tuning

approach involves updating all model parameters using a

task-specific dataset. Full fine-tuning is resource-intensive, but

allows deep integration of SE knowledge into the model. By

adjusting all weights, full fine-tuning helps the model respond

with high specificity and adaptability to SE tasks, making

it highly effective for complex requirement generation and

analysis tasks.

• Prompt tuning (e.g., P2): prompt tuning is a parameter-

efficient method where only prompt embeddings are trained

while keeping other parameters unchanged. This strategy

allows for targeted modifications to the model’s responses

to SE-specific queries, enhancing its ability to interpret

and process SE prompts with minimal computational load.

Prompt tuning is ideal in scenarios where quick adjustments

are needed without altering the entire model structure.

TABLE 6 Overview of tuning strategies for LLM4SE.

Tuning strategy #Studies Papers

Full fine-tuning 1 P25

Prompt tuning 1 P2

Context tuning 1 P2

Low-rank adaptation 2 P10, P16

Custom decoder

fine-tuning

1 P11

Instruction fine-tuning 1 P16

Fine-tuning with domain

specific knowledge

1 P14

No tuning techniques 23 P1, P3, P4, P5, P6, P7, P8, P9, P12,

P13, P15, P17, P18, P19, P20, P21,

P22, P23, P24, P26, P27, P28, P29

• Context tuning (e.g., P2): context tuning involves

supplementing the input prompt with additional SE-specific

information, enabling the model to access a broader range of

relevant knowledge without changing its internal parameters.

By incorporating project context or SE-related terms, context

tuning enhances response relevance and improves the model’s

performance in specific requirements engineering tasks.

• Low-rank adaptation (LoRA) (e.g., P10, P16): LoRA

introduces low-rank matrices to fine-tune only a subset

of model parameters, which reduces memory usage

and computational cost. In Quantized LoRA (QLoRA),

quantization is applied to enhance efficiency further. This

technique has been applied to models like LLaMA2-13B in SE

contexts, providing adaptable performance in requirements

engineering without a complete overhaul of the model’s

architecture. LoRA is well-suited for large-scale SE tasks

requiring computational efficiency.

• Custom decoder fine-tuning (e.g., P11): in custom decoder

fine-tuning, the model’s decoder layer is adjusted to better

interpret and produce SE-specific language. This technique

tailors the output generation mechanism to the syntactic and

semantic demands of SE tasks, particularly helpful in tasks

such as specification synthesis. The model generates more

accurate, SE-focused outputs by customizing the decoding

process.

• Instruction fine-tuning (e.g., P16): instruction fine-tuning

trains the model on SE task-specific instructions, enabling

it to follow structured guidelines closely. This technique has

been applied to models like CodeUp-13B-Chat, making them

proficient in tasks where structured, step-by-step responses

are needed, such as documenting requirements or generating

test cases. By aligning the model’s responses to SE-specific

instructions, instruction fine-tuning helps achieve greater

accuracy in SE tasks.

• Fine-tuning with domain-specific knowledge (e.g., P14):

this approach involves training the model on datasets that

include SE-specific terminology and methodologies, such as

requirements engineering and test-driven development. By

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

TABLE 7 Overview of prompt engineering techniques for LLM4SE.

Prompt engineering
technique

#Studies Papers

Few-shot prompting 11 P3, P4, P5, P7, P8, P9,

P16, P19, P21, P25, P28

Zero-shot prompting 3 P9, P16, P21

Iterative prompts 10 P2, P4, P6, P7, P8, P13,

P15, P18, P20, P26

Contextual prompts 14 P1, P2, P3, P10, P11, P12,

P14, P17, P19, P22, P23,

P24, P27, P29

fine-tuning on domain-relevant data, the model incorporates

specialized knowledge that enhances its performance in SE

contexts, allowing it to generate accurate, domain-specific

responses for tasks like requirements analysis and system

design.

• No tuning techniques (e.g., P1, P3, P4, P5, P6, P7, P8,

P9, P12, P13, P15, P17, P18, P19, P20, P21, P22, P23,

P24, P26, P27, P28, P29): in some cases, LLMs are applied

directly to SE tasks without any tuning modifications, relying

on pre-trained capabilities. This approach provides a baseline

for evaluating the model’s natural adaptability to SE tasks.

While it may lack the specificity of tuned models, the baseline

performance offers insights into the inherent versatility of

LLMs and establishes a point of comparison for assessing the

effectiveness of tuning strategies.

Each of these tuning strategies contributes uniquely to

optimizing LLM4RE, allowing models to deliver more accurate,

context-sensitive, and resource-efficient responses tailored to

software engineering tasks. These techniques enable LLMs

to handle the complexities of requirements engineering with

increased precision and contextual alignment.

4.2.2 Q2.2: What prompt engineering techniques
are applied to improve the performance of LLMs
in SE tasks?

Prompt engineering is critical for guiding large language

models (LLMs) in Requirement Engineering (RE) tasks. It allows

precise control overmodel outputs by structuring inputs effectively.

This section details four key prompt engineering techniques

utilized to enhance LLM4RE and references relevant studies (see

Table 7).

4.2.2.1 Zero-shot prompting

Zero-shot prompting allows the model to generate responses

without any prior example in the prompt, relying solely

on the model’s pre-trained knowledge. In the context of

Software Engineering (SE), this approach is often used for more

straightforward tasks where minimal domain-specific context

is necessary, such as providing concise definitions, brief code

snippets, or summarizing short requirements. Because zero-shot

prompting does not supply the model with explicit examples, the

instructions must be sufficiently clear and well-structured to guide

the LLM effectively. Despite its simplicity, zero-shot prompting can

be surprisingly effective for simpler or standard tasks, but it may

require more careful prompt engineering or additional context for

more complex SE scenarios.

• Zero-shot prompting is often used in simpler SE tasks where

model responses are more predictable and can be generated

without specific examples (e.g., P9).

• This technique requires clear task instructions within the

prompt to guide the LLM effectively. For instance, P21

provides structured prompts for SE tasks to ensure clarity and

accuracy.

• In complex scenarios, zero-shot prompting is often combined

with context-rich instructions to improve response relevance

(e.g., P16).

4.2.2.2 Few-shot prompting

Few-shot prompting involves providing the model with a small

set of examples in the prompt to illustrate the task at hand. These

examples help the LLM understand the desired format, style, or

structure of the output, reducing ambiguity. In SE contexts, few-

shot prompts are particularly beneficial for tasks that require a

specific style of writing (e.g., user stories, requirement statements,

or test cases) or adherence to certain design patterns. By seeing

well-chosen examples, the model can more accurately infer how

to generate responses that align with SE standards or domain

conventions. Careful selection of representative examples, covering

typical use cases and edge cases, can significantly improve the

consistency and accuracy of the model’s outputs.

• Few-shot prompting can guide the model with relevant

examples, enabling it to mimic the patterns and syntax found

in the examples to generate accurate SE outputs (e.g., P3, P4,

P5).

• In P7, predefined examples were used in initial prompts

for specification generation, followed by feedback-driven

adjustments to improve results iteratively.

• Few-shot prompting combined with example-based

instructions helps the LLM interpret complex SE tasks,

such as generating Data Flow Diagrams (DFDs) and modeling

requirements (e.g., P19, P25).

• Studies like P16, P21 use few-shot prompting to

show examples of DSL (Domain-Specific Language)

syntax, helping LLMs produce outputs compatible with

SE frameworks.

4.2.2.3 Iterative prompts

Iterative prompting is a technique where the LLM is prompted

multiple times with progressively refined instructions, allowing the

model to improve its outputs iteratively. This approach is especially

useful for more complex or exploratory SE tasks, where the first

response may only be a draft or partial solution. Through iterative

prompting, users can analyze the LLM’s output, identify gaps or

inconsistencies, and provide additional guidance or corrections

in subsequent prompts. This feedback loop helps the model

converge toward higher-quality results. Common applications

in SE include refining requirement statements, incrementally

generating design models, or progressively clarifying ambiguities

within a specification.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

• This approach is beneficial for SE tasks requiring gradual

refinement, such as extracting requirements or refining system

models (e.g., P2, P4, P6).

• Iterative prompting can involve asking follow-up questions

or providing additional instructions based on previous

responses, improving output quality for tasks like generating

code or requirements summaries (e.g., P8, P13).

• Studies like P15, P18, P20 use iterative prompts to address

complex requirements engineering tasks, adjusting model

responses based on feedback or verification tools.

• In P26, path-based prompt augmentation was applied,

refining model outputs over multiple prompts to improve

specification accuracy.

4.2.2.4 Contextual prompts

Contextual prompts are designed to provide the model with

extensive information about the task or domain, enhancing

the model’s ability to produce relevant and accurate responses.

Such prompts typically include detailed background, domain-

specific terminologies, relevant standards (e.g., ISO 29148 for

requirements), or even partial SE artifacts like user stories or

architecture diagrams. By embedding this information directly into

the prompt, the model can leverage a richer context to generate

solutions that align more closely with project-specific needs or

conventions. Contextual prompting is especially powerful for

tasks where general knowledge is insufficient, and precise domain

context is critical–such as validating regulatory requirements,

generating UML diagrams with correct syntax, or adhering to

specific modeling notations.

• Contextual prompts typically include additional information,

such as user stories, design specifications, or SE project

descriptions, to clarify the model’s task (e.g., P1, P2, P3).

• In P10 and P14, prompts incorporated project-specific

terminology and quality characteristics based on ISO 29148,

guiding the LLM to respond accurately within a defined SE

framework.

• Providing context can help the model understand SE-specific

syntax or expected formats, such as DSL code or PlantUML,

and improve the relevance of generated outputs (e.g., P11,

P12).

• Contextual prompts are also used to create structured tasks

in SE, where prompts outline task descriptions, input formats,

and examples to guide the model’s understanding of expected

outputs (e.g., P19, P22, P23).

• Techniques like co-prompting and context-rich instructions

can enhance model adaptability, as seen in P27 and P29,

by incorporating multiple prompts that provide progressive

layers of context.

4.2.3 Q2.3: How are evaluation metrics utilized to
assess the performance of LLM4SE tasks?

Evaluation metrics are essential for assessing the effectiveness

and quality of LLMs in SE tasks. These metrics measure various

aspects of model performance, such as correctness, precision,

and overall reliability, ensuring that the models meet the specific

TABLE 8 Overview of evaluation metrics for LLM4SE.

Evaluation
metric category

#Studies Papers

Correctness and

completeness metrics

10 P1, P2, P3, P6, P7, P8, P9,

P13, P19, P20

Performance metrics 6 P7, P10, P17, P20, P24,

P25

Agreement and

consistency metrics

5 P11, P14, P16, P26, P29

Precision and recall

metrics

6 P5, P12, P14, P21, P22,

P28

Qualitative and

expert-based evaluation

5 P4, P8, P10, P15, P27

Code quality and

maintainability metrics

5 P6, P18, P23, P24, P29

requirements of SE tasks. Below, we detail the primary evaluation

metric categories and references to studies that apply each approach

(see Table 8).

4.2.3.1 Correctness and completeness metrics

Correctness and completeness metrics assess how accurately

and comprehensively LLMs perform SE tasks, ensuring that

generated outputs fully represent the specified requirements.

• These metrics evaluate if the generated outputs, like UML

models or requirements documents, are correct in structure

and completeness (e.g., P1, P2, P3).

• Studies like P6 and P8 assess correctness by comparing model

outputs to predefined requirements, examining factors like

adherence to system specifications.

• Completeness metrics are applied to ensure that all essential

elements of amodel or specification are present, such as actors,

relationships, or sequence steps in UML diagrams (e.g., P19,

P20).

• In some cases, correctness is evaluated based on successful

verification of generated specifications, where completeness is

measured by matching outputs with user stories or predefined

functional requirements (e.g., P7, P13).

4.2.3.2 Performance metrics

Performance metrics gauge the efficiency and reliability of LLM

outputs, particularly in tasks involving repetitive or large-scale

generation, like specification synthesis.

• These metrics assess the overall reliability of outputs,

including metrics like the number of specifications passing

verification (e.g., P7).

• In P10 and P17, performance metrics include the accuracy

of model responses across multiple iterations, particularly

focusing on the model’s ability to fulfill SE tasks consistently.

• Metrics like Correct@6, which measures the number of

correct outputs within six iterations, are used to benchmark

performance against other SE tools (e.g., P24, P25).

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

• Studies also use comparison-based metrics, evaluating the

LLM’s performance against other state-of-the-art SE tools,

such as ARepair or ICEBAR, providing insight into relative

efficiency (e.g., P20).

4.2.3.3 Agreement and consistency metrics

Agreement and consistency metrics evaluate how consistently

LLMs generate outputs in line with human assessments or

predefined standards, ensuring reliability across multiple runs.

• Agreement metrics, such as Cohen’s Kappa, measure the

alignment between model assessments and those of human

evaluators, quantifying consistency (e.g., P14).

• BLEU, ROUGE-L, METEOR, and BERTSim scores are

employed to evaluate output consistency in tasks that require

high linguistic similarity to human-generated texts (e.g., P29).

• In P16, agreement metrics help determine the LLM’s

accuracy in interpreting SE requirements, while consistency

metrics validate that outputs are reproducible across multiple

prompts.

• McNemar’s Test is sometimes used to validate model outputs

statistically, comparing consistency in fulfilling requirements

across different prompt variations (e.g., P26).

4.2.3.4 Precision and recall metrics

Precision and recall metrics are vital for evaluating the accuracy

and relevancy of LLM outputs in SE, especially in tasks requiring

high retrieval quality and minimal error rates.

• Precision measures the accuracy of model outputs by

calculating the ratio of correctly identified SE elements to all

identified elements, which is essential for tasks like identifying

terminology in requirements (e.g., P5, P12).

• Recall evaluates the model’s ability to capture all relevant

SE information by assessing the comprehensiveness of the

generated outputs. Recall is calculated as the ratio of correctly

identified relevant items to the total number of relevant items,

ensuring the model’s outputs cover all necessary aspects in RE

tasks (e.g., P21, P22).

• F1 scores, a harmonic mean of precision and recall, are

frequently used to balance accuracy and completeness in SE

tasks, ensuring both aspects are considered (e.g., P14, P28).

4.2.3.5 Qualitative and expert-based evaluation

Qualitative metrics, often derived from expert feedback, assess

the quality and usability of model outputs beyond quantitative

metrics, capturing human perceptions of usefulness and accuracy.

• Expert-based evaluations assess outputs based on relevance,

clarity, and adherence to requirements, allowing domain

experts to qualitatively gauge LLM performance (e.g., P4, P8).

• RUST (Readability, Understandability, Specifiability,

Technical aspects) scores are employed in studies like P10 to

evaluate user stories generated by the model.

• Feedback-based evaluations capture developer responses to

model outputs, assessing the LLM’s capability to meet real-

world SE needs (e.g., P15, P27).

4.2.3.6 Code quality and maintainability metrics

These metrics measure the technical quality of code generated

by LLMs, focusing on aspects like readability, maintainability, and

conformance to coding standards.

• Metrics such as the Jaccard index, Cosine Similarity, and

Validity@K assess generated code’s structural and syntactic

quality, comparing it to SE standards (e.g., P6, P18).

• Studies like P23 evaluate generated code based on quality

indicators such as maintainability and readability, ensuring

that outputs are correct and usable in long-term projects.

• Consistency metrics like Pass@k and Correctness@k assess

the model’s ability to generate correct and usable code

within specific tolerances, allowing for effective benchmarking

against SE requirements (e.g., P24, P29).

Each evaluation metric significantly assesses LLM4SE’s

performance and reliability, ensuring that models produce

outputs that meet the quality standards required for software

engineering tasks.

4.3 Q3: What are the challenges and
directions for utilizing LLMs in RE?

The utilization of Large Language Models (LLMs) in

Requirement Engineering (RE) brings both significant

opportunities and notable challenges. These challenges highlight

current limitations and complexities in adopting LLMs, while

future directions offer promising paths for improvement and

innovation. Below, we detail the primary challenges and directions,

with relevant studies for each category (see Tables 9, 10).

4.3.1 Challenges in utilizing LLMs in requirement
engineering

In the following, we discuss challenges in the use of LLMs in

the RE process, building upon our research results presented in

Section 4.

• Understanding and knowledge challenges (e.g., P3, P4,

P15): LLMs often struggle with domain-specific knowledge,

leading to errors or oversights in requirements interpretation.

Challenges include a lack of understanding of company-

specific rules and limited context in domain-specific tasks

(P22, P28).

• Output quality and completeness issues (e.g., P2, P6, P8):

quality challenges involve incomplete or vague outputs, often

resulting in requirements that lack detail or specificity. Studies

such as P10 and P11 report hallucination issues, where LLMs

generate misleading or incorrect information, necessitating

extensive manual corrections.

• Technical and procedural limitations (e.g., P4, P7, P12):

technical limitations include difficulties in handling structured

inputs and maintaining consistency across iterative tasks. For

example, P24 notes that LLMsmay fall short in tasks requiring

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

TABLE 9 Challenges in utilizing LLMs in requirement engineering.

Challenge
category

#Studies Papers

Understanding and

knowledge challenges

7 P3, P4, P15, P19, P21,

P22, P28

Output quality and

completeness issues

10 P2, P6, P8, P10, P11, P13,

P14, P18, P27, P29

Technical and

procedural limitations

5 P4, P7, P12, P24, P26

Challenges in code and

testing

6 P7, P15, P17, P18, P23,

P25

Prompting and input

challenges

6 P16, P20, P21, P23, P27,

P28

Empirical and

experimental limitations

3 P23, P24, P25

Formatting and

structural issues

2 P26, P29

complex programming language syntaxes or in generating

precise engineering models (P26).

• Challenges in code and testing (e.g., P7, P15, P17): LLMs

often struggle with generating complete test cases, patching

errors, or understanding code semantics. Studies like P18

indicate that only a fraction of generated test cases met testing

standards, while P25 notes challenges in program synthesis

and debugging.

• Prompting and input challenges (e.g., P16, P20): effective

prompt construction is critical, yet challenging due to the

limited token capacity of LLMs. Studies like P21 emphasize

issues with prompt effectiveness, while P28 highlights that

prompts lacking domain context may result in ill-formed or

incomplete requirements.

• Empirical and experimental limitations (e.g., P23, P24,

P25): empirical limitations include difficulties in setting

optimal hyperparameters and experimental setups, which may

affect the reliability of LLMs in RE. P23 points out that

experimental limitations can reduce LLM adaptability, with

some studies relying on empirically chosen settings that might

benefit from further tuning.

• Formatting and structural issues (e.g., P26, P29): formatting

issues arise due to LLMs generating outputs with structural

inconsistencies or syntax errors. For instance, P29 notes

struggles with structural issues in formal specifications,

including type mismatches and improper operator usage in

generated code.

4.3.2 Future directions for utilizing LLMs in RE
In the following, we discuss directions for future work on

utilizing LLMs for RE process, building upon our research results

presented in Section 4.

• Evaluation and metrics (e.g., P1, P3, P14): there is a need

for refining evaluation metrics to assess LLM outputs in RE

tasks accurately. For instance, P15 suggests increasing sample

TABLE 10 Future directions for utilizing LLMs in requirement engineering.

Direction
category

#Studies Papers

Evaluation and metrics 4 P1, P3, P14, P15

Model improvement and

fine-tuning

5 P2, P6, P10, P11, P12

Prompt engineering and

techniques

8 P4, P7, P17, P18, P19,

P21, P24, P27

Integration and

adaptation

4 P4, P8, P20, P24

Performance and

reliability

4 P7, P9, P13, P25

Hybrid approaches 4 P22, P26, P28, P29

sizes and utilizing diverse UML models to improve output

validation across various projects.

• Model improvement and fine-tuning (e.g., P2, P6, P10): fine-

tuning LLMs to handle RE tasks with domain-specific data

is a priority. Studies like P12 recommend using techniques

that allow models to handle complex specifications and longer

text sequences, while P11 focuses on improving fine-tuning to

reduce hallucinations.

• Prompt engineering and techniques (e.g., P4, P7, P17):

enhanced prompt engineering is critical for achieving high-

quality outputs. Future work emphasizes refining prompt

patterns and exploring advanced prompt structures to reduce

errors and improve output specificity (P18, P19).

• Integration and adaptation (e.g., P4, P8, P20): integrating

LLMs more effectively with existing RE tools and adapting

them for broader RE workflows is suggested. P24 discusses

the need for LLMs to adapt within complex software design

workflows, enhancing tool compatibility and task accuracy.

• Performance and reliability (e.g., P7, P9, P13): improving

LLM reliability and consistency in RE processes remains

a priority. Studies like P25 emphasize the importance of

enhancing generation efficiency, while P13 suggests methods

to improve reliability in code synthesis.

• Hybrid approaches (e.g., P22, P26, P28): hybridmethods that

combine LLMs with traditional RE tools or human-in-the-

loop validation are promising directions. For instance, P29

proposes integrating ChatGPT with conventional tools for

improved performance and accuracy, minimizing issues like

hallucinations and inconsistency.

Tables 9, 10 outline the challenges and future directions for

improving LLM performance and reliability in RE, emphasizing

the need for refined evaluation, enhanced model integration, and

hybrid approaches to optimize LLM application across RE tasks.

5 Discussion

In this section, we try to draw some conclusions based on the

results of each research question.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

5.1 The role of LLM in RE process

Our investigation into the roles of LLMs in RE highlights

several key patterns in their application and effectiveness across

various RE tasks. Below, we summarize the primary findings for

each subquestion.

5.1.1 Types of LLMs used in RE (Q1.1)
Across the studies, GGPT models are most frequently used

in RE, with notable applications in automating documentation,

code generation, and iterative refinement of requirements. This

preference is attributed to GPTmodels’ versatility and effectiveness

in handling natural language, which is central to the RE process.

Code-centric models like Codex and task-specific transformers

(e.g., BERT for classification) further complement GPT models,

addressing technical and analytical needs in RE. This combination

reflects a strategic use of LLMs where both generative and

specialized models are utilized to balance creativity and precision

in RE tasks.

5.1.2 Input and output mechanisms (Q1.2)
The studies reveal a reliance on natural language requirements,

technical documents, and code snippets as primary inputs, with

outputs ranging from UML diagrams and test cases to structured

requirement specifications. This diverse input-output handling

reflects LLMs’ flexibility in adapting to the varied nature of RE tasks,

supporting requirements elicitation, modeling, and validation. The

range of artifacts generated by LLMs, such as software specifications

and code snippets, highlights their broad applicability, indicating

an emerging pattern where LLMs serve as adaptable tools capable

of supporting multiple facets of RE workflows. However, challenges

persist regarding the quality and accuracy of the generated software

specifications, as LLMs can produce hallucinations–plausible yet

incorrect outputs–containing irrelevant or inappropriate elements.

Therefore, a thorough investigation is needed to address this issue

and develop solutions for the effective use of LLMs in requirements

engineering.

5.1.3 Stage-wise integration of LLMs (Q1.3)
LLMs are effectively integrated at different stages of the

RE process, particularly in requirements elicitation, modeling,

and validation. For example, LLMs assist in refining initial

requirements, generating formal models, validating specifications,

and highlighting their multi-stage utility. The pattern of stage-

wise integration underscores LLMs’ role in enhancing accuracy

and efficiency across the RE process, from initial requirements

gathering to quality assurance, demonstrating their potential as

comprehensive aids in end-to-end RE workflows. Although these

findings highlight the strategic potential of LLMs in RE, leveraging

their adaptability to navigate the complex, multi-stage nature of

the process, several challenges persist. These include the risk of

generating inaccurate or inconsistent results, reliance on high-

quality training data, and difficulties in interpreting or validating

complex outputs, all of which can impact their reliability and

necessitate careful oversight in critical RE tasks.

5.2 Techniques to optimize and evaluate
LLM4RE

Optimizing and evaluating LLM4RE employs various tuning,

prompt engineering, and evaluation techniques tailored to

software engineering needs. We summarize the key findings for

each subquestion.

5.2.1 Tuning techniques for SRE tasks (Q2.1)
Our findings indicate a preference for parameter-efficient

tuning techniques, such as Low-Rank Adaptation (LoRA) and

prompt tuning, which offer computationally economical methods

to adapt LLMs for SE-specific tasks. These techniques help

models generate relevant responses to SE contexts while preserving

computational efficiency. Full fine-tuning, though less common, is

selectively used in complex SE tasks, where complete parameter

adjustment can optimize model alignment with RE goals. This

balanced use of tuning approaches underscores a strategic focus on

efficiency without sacrificing model relevance in SE tasks.

Our analysis revealed that a substantial portion of the surveyed

models do not employ fine-tuning techniques in the context

of SRE. Several factors could explain this trend. First, fine-

tuning large language models can be computationally expensive,

requiring significant GPU resources and extended training times,

which might not be feasible for many research teams or industry

practitioners. Second, certain LLMs already possess robust baseline

capabilities that can produce adequate performance on simpler

requirement tasks without the added complexity of fine-tuning.

Furthermore, some researchers may perceive prompt engineering

as more flexible and cost-effective than adjusting internal model

weights, since prompts can be iteratively refined with far less

computational overhead. Lastly, licensing or data availability

concerns can also discourage fine-tuning, particularly when data is

confidential, limited, or requires a high level of preprocessing.

5.2.2 Prompt engineering techniques for SRE
tasks (Q2.2)

Prompt engineering emerges as essential for guiding LLM

responses in SE, with techniques such as few-shot prompting and

iterative prompting providing practical ways to structure inputs

for higher output quality. Few-shot prompting, which includes

examples within the prompt, is particularly beneficial in generating

SE-specific outputs, while iterative prompts allow continuous

refinement of responses. Contextual prompts further enhance

output accuracy by embedding domain-specific information. This

layered prompting strategy maximizes response relevance and

specificity in SE outputs. Notably, zero-shot prompting had the

least reported usage in SRE contexts, possibly because it lacks

the direct guidance from datasets or domain-specific examples

that the other three strategies incorporate. Requirements tasks

often demand precise understanding of domain constraints and

stakeholder needs–demands that are better met by few-shot,

iterative, or contextual prompts, each of which embeds domain

knowledge or partial requirement statements into the prompt.

By contrast, zero-shot prompts offer no tailored examples or

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

situational cues, making them less effective for SRE’s complexity,

terminology, and accuracy requirements. Consequently, it appears

more rational for researchers to adopt prompting methods that

leverage some form of guided input, suggesting that zero-shot

prompting alone is insufficient to handle the nuanced demands

of software requirement engineering tasks.

The following are real-world prompt engineering examples

applied in SRE, based on the work of Ronanki et al. (2024)

and White et al. (2023). These prompts focus on tasks

such as requirements classification, requirements tracing,

specification disambiguation, API generation, and change

request simulation.

Cognitive verifier (Ronanki et al., 2024): Classify the given list of requirements into functional (F) and non-functional requirements

(NF). Ask me questions if needed to break the given task into smaller subtasks. All outputs from smaller subtasks must be combined before

generating the final output.

Tracing cognitive verifier (Ronanki et al., 2024): List the IDs of requirements related to the [deprecated] feature in the requirements

specification document below. Ask me questions if needed to break down the task into smaller subtasks. Combine outputs before finalizing

the response.

Contextmanager (Ronanki et al., 2024):Classify the given list of requirements into functional (F) and non-functional requirements (NF).

When you provide an answer, explain the reasoning and assumptions behind your response. Address potential ambiguities or limitations.

Tracing context manager (Ronanki et al., 2024): List the IDs of requirements related to the [deprecated] feature in the requirements

document. Explain reasoning and assumptions. Address ambiguities for a more complete and accurate response.

Persona (Ronanki et al., 2024):Act as a requirements engineering domain expert and classify the given list of requirements into functional

(F) and non-functional requirements (NF).

Tracing persona (Ronanki et al., 2024): Act as an expert and list the IDs of requirements dependent on the [deprecated] feature in the

requirements document.

Question refinement (Ronanki et al., 2024): Classify the given list of requirements into functional (F) and non-functional requirements

(NF). If needed, suggest a better version of the question that incorporates information specific to this task and ask me if I would like to use

your question instead.

Tracing question refinement (Ronanki et al., 2024): List the IDs of requirements related to the [deprecated] feature from the requirements

document below. If needed, suggest a better version of the question to incorporate specific information.

Template (Ronanki et al., 2024): Read the following list of requirements and return the IDs of non-functional requirements only. Write

the result as a list like: (ID=X) (ID=Y) (ID=Z) where X, Y, and Z are IDs of non-functional requirements.

Tracing template (Ronanki et al., 2024): List the IDs of requirements related to the [deprecated] feature in the requirements document

below. Follow the provided template when generating the output: ID list: X.X.X.X; X.X.X.X; X.X.X.X etc.

Specification disambiguation pattern (White et al., 2023): Identify ambiguous areas in requirement specifications provided by

stakeholders and suggest refinements to clarify intent.

Example prompt: The following represents system requirements. Point out any areas that could be ambiguous or lead to unintended

outcomes. Provide suggestions to make the language more precise.

API generator pattern (White et al., 2023): Generate API specifications from natural language descriptions or requirement lists.

Example prompt: Generate an OpenAPI specification for a web application that would implement the listed requirements.

Change request simulation pattern (White et al., 2023): Analyze the impact of changes in requirements and architecture.

Example prompt: My software system uses the OpenAPI specification that you generated earlier. Simulate a change where a new

mandatory field needs to be added. List which functions and files will need modification.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

These prompts showcase how LLMs are effectively used

in white2023prompt, classification, and validation. By

leveraging structured prompt engineering techniques, researchers

and practitioners can optimize LLM responses to enhance

SRE workflows.

5.2.3 Evaluation metrics in LLM4SE (Q2.3)
Evaluation metrics applied in LLM4SE span correctness,

completeness, and qualitative assessments, emphasizing

quantitative precision and expert-driven feedback. Correctness

and performance metrics help validate model outputs against SE

standards, while agreement and qualitative metrics provide insights

into reliability and practical usability. This multidimensional

evaluation approach ensures a comprehensive assessment of LLM

performance, balancing technical accuracy with human-centric

evaluations that address practical requirements in SE contexts.

These findings underscore an optimization strategy that prioritizes

efficiency, relevance, and accuracy, enabling LLMs to effectively

meet RE’s rigorous demands. However, achieving consistent and

systematic improvements across various input cases requires the

establishment of standard benchmarks and evaluation criteria.

With many evaluation datasets from prior studies no longer

accessible, creating a centralized repository of standard cases,

methodologies, and evaluation procedures becomes essential–a

critical step for advancing the field and ensuring the reliability of

LLM-driven solutions in RE.

5.3 Challenges and future directions for
LLMs in requirement engineering

Our investigation into the challenges and future directions

for LLMs in RE reveals essential areas for improvement and

promising opportunities for advancing the field. Below, we discuss

key findings for each subquestion.

5.3.1 Challenges in utilizing LLMs in RE (Q3.1)
A major pattern identified is the difficulty LLMs face in

handling domain-specific knowledge and context, as seen in

issues like hallucination, incomplete outputs, and limitations in

addressing complex syntaxes or structured requirements. Output

quality and relevance remain significant challenges, especially in

tasks requiring detailed technical understanding. Additionally,

prompting limitations, empirical constraints, and formatting issues

further highlight the need for specialized tuning and prompt

engineering to improve LLM adaptability and response quality in

RE tasks.

5.3.2 Future directions for LLMs in RE (Q3.2)
Future directions indicate a focus on refining evaluation

metrics, enhancing model tuning with domain-specific

data, and improving prompt engineering techniques. There

is a push toward hybrid methods, integrating LLMs with

traditional tools or human-in-the-loop systems, which hold

promise for reducing hallucinations and boosting accuracy.

Additionally, advancements in model fine-tuning and structured

prompt patterns suggest that better alignment with RE-

specific contexts can significantly enhance LLM reliability

and performance.

Importantly, the findings indicate the need for continuous

model adaptation and robust evaluation frameworks to

maximize the utility of LLMs in RE, ensuring precise and

contextually relevant outputs in software engineering applications.

Therefore, a systematic approach is needed to enhance the

precision and reliability of transforming natural language

requirements into formal specifications. Validating outputs

across multiple LLMs and ensuring consistency with the

original requirements to enhance accuracy by identifying

and mitigating errors or inconsistencies, leading to more

reliable formalizations. Additionally, developing standardized

evaluation metrics and benchmarks will allow for a systematic

assessment of LLM effectiveness in software requirements

formalization, facilitating comparison and driving advancements

in future requirements engineering applications. These findings

underscore the need for continuous model adaptation and robust

evaluation frameworks to maximize the utility of LLMs in RE,

ensuring precise and contextually relevant outputs in software

engineering applications.

5.4 Threats to validity

5.4.1 Study search and selection bias
One key limitation is the potential for study search

and selection bias. To mitigate this concern, we adopted a

comprehensive approach following the guidelines established

by Petersen et al. (2015). We aimed to select relevant studies

to address these potential issues. We created a list of search

strings derived from various terms in the field and tailored

them for each digital repository and search engine. Additionally,

we conducted both backward and forward snowballing on

the selected articles to identify further relevant studies for

our research. We defined inclusion and exclusion criteria

to guide the initial selection of papers, which were then

manually verified.

5.4.2 Empirical knowledge bias
This systematic review incorporates findings from 29 pertinent

studies in the LLM4RE field and addresses three research

questions. This necessitates a thorough manual analysis and

comprehension of each study. During this process, biases may

arise due to subjective assessments and personal experience. To

mitigate potential errors, we conducted an extensive literature

review to establish predefined categories and details for each

research question.

6 Conclusion

In this paper, we surveyed the emerging field of LLM

applications in RE. We identified key publications, explored

current research areas, highlighted the challenges of using LLMs

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

in RE, and proposed future research directions to advance the

field. As LLMs continue to grow in power and user familiarity

with them increases, they are poised to significantly impact RE

performance, particularly in automating RE activities. One of the

significant findings is the demonstrated effectiveness of LLMs, such

as GPT-4 and CodeLlama, in generating and validating software

requirements specifications with a high degree of accuracy and

completeness. However, several challenges persist. The risk of

hallucinations–plausible but incorrect outputs–remains a critical

concern, as it can result in irrelevant or inappropriate elements

in generated specifications. Additionally, the reliance on high-

quality training data, difficulty in interpreting or validating

complex outputs, and the computational expense of fine-tuning

pose significant hurdles to the broader adoption of LLMs in RE.

These challenges highlight the need for a systematic approach

to improving the reliability, precision, and contextual relevance

of LLM outputs. Future directions emphasize refining evaluation

metrics, developing robust benchmarks, and enhancing model

tuning with domain-specific data to address these limitations.

Hybrid approaches, such as integrating LLMs with traditional

tools or human-in-the-loop systems, show promise for reducing

hallucinations and improving accuracy. Furthermore, structured

prompt engineering and advancements in fine-tuning techniques

are critical for aligning LLMs with the nuanced requirements

of RE tasks. Establishing centralized repositories of standard

cases, methodologies, and evaluation procedures will also be

essential to enable systematic comparisons and foster consistent

improvements across various use cases. Ultimately, the findings of

this study underscore the need for continuous model adaptation,

robust evaluation frameworks, and innovative hybrid solutions

to maximize the utility of LLMs in RE. By addressing the

outlined challenges and leveraging these advancements, LLMs

can evolve into reliable and transformative tools for software

requirements engineering.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

AH: Data curation, Formal Analysis, Investigation, Resources,

Software, Validation, Visualization, Writing – original draft,

Writing – review & editing. MS: Conceptualization, Data curation,

Investigation, Methodology, Validation, Visualization, Writing –

original draft,Writing – review& editing. SK-R: Conceptualization,

Investigation, Methodology, Project administration, Supervision,

Writing – review & editing. KL: Conceptualization, Project

administration, Supervision, Writing – review & editing. ST:

Conceptualization, Funding acquisition, Project administration,

Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Gen AI was used in the creation of

this manuscript. It was only used to check grammar and improve

the writing.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abukhalaf, S., Hamdaqa, M., and Khomh, F. (2024). “PathOCL: path-based prompt
augmentation for OCL generation with GPT-4,” in Proceedings of the 2024 IEEE/ACM
First International Conference on AI Foundation Models and Software Engineering
(FORGE ’24) (New York, NY: Association for Computing Machinery), 108–118.
doi: 10.1145/3650105.3652290

Alhanahnah, M., Hasan, M. R., and Bagheri, H. (2024). An empirical evaluation of
pre-trained large language models for repairing declarative formal specifications. arXiv
[preprint] arXiv:2404.11050. doi: 10.48550/arXiv.2404.11050

Al-Hossami, E., and Shaikh, S. (2022). A survey on artificial intelligence for
source code: a dialogue systems perspective. arXiv [Preprint]. arXiv:2202.04847.
doi: 10.48550/arXiv.2202.04847

Arora, C., Grundy, J., and Abdelrazek, M. (2023). Advancing requirements
engineering through generative ai: assessing the role of LLMS. arXiv [preprint]
arXiv:2310.13976. doi: 10.1007/978-3-031-55642-5_6

Bhattacharya, P., Chakraborty, M., Palepu, K. N., Pandey, V., Dindorkar, I.,
Rajpurohit, R., et al. (2023). Exploring large language models for code explanation.
arXiv [preprint] arXiv:2310.16673. doi: 10.48550/arXiv.2310.16673

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M.
(2007). Lessons from applying the systematic literature review process within the
software engineering domain. J. Syst. Softw. 80, 571–583. doi: 10.1016/j.jss.2006.
07.009

Cheng, H., Husen, J. H., Peralta, S. R., Jiang, B., Yoshioka, N., Ubayashi, N., et al.
(2024). Generative AI for requirements engineering: a systematic literature review.
arXiv [preprint] arXiv:2409.06741. doi: 10.48550/arXiv.2409.06741

Fan, A., Gokkaya, B., Harman,M., Lyubarskiy,M., Sengupta, S., Yoo, S., et al. (2023).
“Large language models for software engineering: survey and open problems,” in
2023 IEEE/ACM International Conference on Software Engineering: Future of Software
Engineering (ICSE-FoSE) (Melbourne: IEEE), 31–53.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://doi.org/10.1145/3650105.3652290
https://doi.org/10.48550/arXiv.2404.11050
https://doi.org/10.48550/arXiv.2202.04847
https://doi.org/10.1007/978-3-031-55642-5_6
https://doi.org/10.48550/arXiv.2310.16673
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.48550/arXiv.2409.06741
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

Frydenlund, E., Martínez, J., Padilla, J. J., Palacio, K., and Shuttleworth, D. (2024).
Modeler in a box: how can large language models aid in the simulation modeling
process? Simulation. 100, 727–749. doi: 10.1177/00375497241239360

Gomez, A. P., Krus, P., Panarotto, M., and Isaksson, O. (2024). Large
language models in complex system design. Proc. Design Soc. 4, 2197–2206.
doi: 10.1017/pds.2024.222

Hasan, M. R., Li, J., Ahmed, I., and Bagheri, H. (2023). Automated repair of
declarative software specifications in the era of large language models. arXiv [preprint]
arXiv:2310.12425. doi: 10.48550/arXiv.2310.12425

Kogler, P., Falkner, A., and Sperl, S. (2024). “Reliable generation of formal
specifications using large language models,” in SE 2024-Companion (Bonn: Gesellschaft
für Informatik eV), 141–153.

Krishna, M., Gaur, B., Verma, A., and Jalote, P. (2024). Using llms in
software requirements specifications: an empirical evaluation. arXiv [preprint]
arXiv:2404.17842. doi: 10.1109/RE59067.2024.00056

Lee, J., Jung, W., and Baek, S. (2024). In-house knowledge management using a
large language model: focusing on technical specification documents review. Appl. Sc.
14:2096. doi: 10.3390/app14052096

Li, M., Fang, W., Zhang, Q., and Xie, Z. (2024). Specllm: Exploring generation
and review of vlsi design specification with large language model. arXiv [preprint]
arXiv:2401.13266.

Lubos, S., Felfernig, A., Tran, T. N. T., Garber, D., El Mansi, M., Erdeniz, S. P., et al.
(2024). “Leveraging llms for the quality assurance of software requirements,” in 2024
IEEE 32nd International Requirements Engineering Conference (RE) (IEEE), 389–397.

Luitel, D., Hassani, S., and Sabetzadeh, M. (2024). Improving requirements
completeness: Automated assistance through large language models. Requirem Eng. 29,
73–95. doi: 10.1007/s00766-024-00416-3

Ma, L., Liu, S., Li, Y., Xie, X., and Bu, L. (2024). Specgen: automated generation
of formal program specifications via large language models. arXiv [preprint]
arXiv:2401.08807.

Mandal, S., Chethan, A., Janfaza, V., Mahmud, S., Anderson, T. A., Turek, J., et al.
(2023). Large language models based automatic synthesis of software specifications.
arXiv [preprint] arXiv:2304.09181.

Necula, S.-C., Dumitriu, F., and Greavu-Şrban, V. (2024). A systematic literature
review on using natural language processing in software requirements engineering.
Electronics 13:2055. doi: 10.3390/electronics13112055

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting
systematic mapping studies in software engineering: an update. Inform. Softw. Technol.
64, 1–18. doi: 10.1016/j.infsof.2015.03.007

Rahman, T., and Zhu, Y. (2024). Automated user story generation with test
case specification using large language model. arXiv [preprint] arXiv:2404.01558.
doi: 10.1109/RE59067.2024.00046

Ronanki, K., Cabrero-Daniel, B., Horkoff, J., and Berger, C. (2024). “Requirements
engineering using generative AI: prompts and prompting patterns,” inGenerative AI for
Effective Software Development, eds. A. Nguyen-Duc, P. Abrahamsson, and F. Khomh
(Cham: Springer Nature Switzerland), 109–127.

Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022). “Automatic generation
of programming exercises and code explanations using large language models,” in
Proceedings of the 2022 ACM Conference on International Computing Education
Research (New York: ACM), 27–43.

Spoletini, P., and Ferrari, A. (2024). “The return of formal requirements
engineering in the era of large language models,” in International Working Conference
on Requirements Engineering: Foundation for Software Quality (Cham: Springer),
344–353.

Vogelsang, A., and Fischbach, J. (2024). Using large language models for
natural language processing tasks in requirements engineering: a systematic
guideline. arXiv [preprint] arXiv:2402.13823. doi: 10.48550/arXiv.2402.
13823

Wang, B., Wang, C., Liang, P., Li, B., and Zeng, C. (2024). How llms aid
in uml modeling: an exploratory study with novice analysts. arXiv [preprint]
arXiv:2404.17739. doi: 10.1109/SSE62657.2024.00046

White, J., Hays, S., Fu, Q., Spencer-Smith, J., and Schmidt, D. C. (2023). ChatGPT
prompt Patterns for Improving Code Quality, Refactoring, Requirements Elicitation, and
Software Design.

White, J., Hays, S., Fu, Q., Spencer-Smith, J., and Schmidt, D. C. (2024). “ChatGPT
prompt patterns for improving code quality, refactoring, requirements elicitation, and
software design,” inGenerative AI for Effective Software Development (Cham: Springer),
71–108.

Wu, Y., Li, Z., Zhang, J. M., Papadakis, M., Harman, M., and Liu, Y. (2023).
Large language models in fault localisation. arXiv [preprint] arXiv:2308.15276.
doi: 10.48550/arXiv.2308.15276

Xie, D., Yoo, B., Jiang, N., Kim, M., Tan, L., Zhang, X., et al. (2023). Impact
of large language models on generating software specifications. arXiv [preprint]
arXiv:2306.03324. doi: 10.48550/arXiv.2306.03324

Zhang, Q., Fang, C., Xie, Y., Zhang, Y., Yang, Y., Sun, W., et al. (2023a). A survey
on large language models for software engineering. arXiv [preprint] arXiv:2312.15223.
doi: 10.48550/arXiv.2312.15223

Zhang, Q., Zhang, T., Zhai, J., Fang, C., Yu, B., Sun, W., et al. (2023b).
A critical review of large language model on software engineering: an example
from chatGPT and automated program repair. arXiv [preprint] arXiv:2310.08879.
doi: 10.48550/arXiv.2310.08879

Zhang, Z., Chen, C., Liu, B., Liao, C., Gong, Z., Yu, H., et al. (2023).
Unifying the perspectives of nlp and software engineering: a survey on language
models for code. arXiv [preprint] arXiv:2311.07989. doi: 10.48550/arXiv.2311.
07989

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://doi.org/10.1177/00375497241239360
https://doi.org/10.1017/pds.2024.222
https://doi.org/10.48550/arXiv.2310.12425
https://doi.org/10.1109/RE59067.2024.00056
https://doi.org/10.3390/app14052096
https://doi.org/10.1007/s00766-024-00416-3
https://doi.org/10.3390/electronics13112055
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1109/RE59067.2024.00046
https://doi.org/10.48550/arXiv.2402.13823
https://doi.org/10.1109/SSE62657.2024.00046
https://doi.org/10.48550/arXiv.2308.15276
https://doi.org/10.48550/arXiv.2306.03324
https://doi.org/10.48550/arXiv.2312.15223
https://doi.org/10.48550/arXiv.2310.08879
https://doi.org/10.48550/arXiv.2311.07989
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hemmat et al. 10.3389/fcomp.2025.1519437

SURVEYED PAPERS

[P1] Abukhalaf, S., Hamdaqa, M., and Khomh, F. (2024). Pathocl: Path-based
prompt augmentation for ocl generation with gpt-4. In Proceedings of the 2024
IEEE/ACM First International Conference on AI Foundation Models and Software
Engineering. 108–118.

[P2] Alhanahnah,M., Hasan,M. R., and Bagheri, H. (2024). An empirical evaluation
of pre-trained large language models for repairing declarative formal specifications.
arXiv [Preprint] arXiv:2404.11050.

[P3] Arora, C., Grundy, J., and Abdelrazek, M. (2024). Advancing requirements
engineering through generative ai: Assessing the role of llms. In Generative AI for
Effective Software Development (Springer). 129–148.

[P4] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan,
D., et al. (2021). Program synthesis with large language models. arXiv [Preprint]
arXiv:2108.07732.

[P5] Belzner, L., Gabor, T., and Wirsing, M. (2023). Large language model
assisted software engineering: prospects, challenges, and a case study. In International
Conference on Bridging the Gap between AI and Reality (Springer), 355–374.

[P6] Bhattacharya, P., Chakraborty, M., Palepu, K. N., Pandey, V., Dindorkar, I.,
Rajpurohit, R., et al. (2023). Exploring large language models for code explanation.
arXiv [Preprint] arXiv:2310.16673.

[P7] De Vito, G., Palomba, F., Gravino, C., Di Martino, S., and Ferrucci, F. (2023).
Echo: An approach to enhance use case quality exploiting large language models. In
2023 49th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) (IEEE), 53–60.

[P8] Frydenlund, E., Martínez, J., Padilla, J. J., Palacio, K., and Shuttleworth, D.
(2024). Modeler in a box: how can large language models aid in the simulation
modeling process? Simulation, 00375497241239360.

[P9] Gomez, A. P., Krus, P., Panarotto, M., and Isaksson, O. (2024). Large
language models in complex system design. Proceedings of the Design Society 4,
2197–2206.

[P10] Hasan, M. R., Li, J., Ahmed, I., and Bagheri, H. (2023). Automated repair of
declarative software specifications in the era of large language models. arXiv [Preprint]
arXiv:2310.12425.

[P11] Herwanto, G. B. (2024). Automating data flow diagram generation from user
stories using large language models. In 7th Workshop on Natural Language Processing
for Requirements Engineering.

[P12] Kogler, P., Falkner, A., and Sperl, S. (2024). Reliable generation of formal
specifications using large language models. In SE 2024-Companion (Gesellschaft für
Informatik eV), 141–153.

[P13] Krishna, M., Gaur, B., Verma, A., and Jalote, P. (2024). Using llms in software
requirements specifications: An empirical evaluation. arXiv [Preprint] arXiv:2404.
17842.

[P14] Lee, J., Jung, W., and Baek, S. (2024). In-house knowledge management using
a large language model: Focusing on technical specification documents review. Applied
Sciences 14, 2096.

[P15] Li, J., Li, G., Li, Y., and Jin, Z. (2023). Enabling programming thinking in large
language models toward code generation. arXiv [Preprint] arXiv:2305.06599.

[P16] Li, M., Fang,W., Zhang, Q., and Xie, Z. (2024). Specllm: Exploring generation
and review of vlsi design specification with large language model. arXiv [Preprint]
arXiv:2401.13266.

[P17] Lubos, S., Felfernig, A., Tran, T. N. T., Garber, D., El Mansi, M., Erdeniz, S.
P., et al. (2024). Leveraging llms for the quality assurance of software requirements.
In 2024 IEEE 32nd International Requirements Engineering Conference (RE) (IEEE),
389–397.

[P18] Luitel, D., Hassani, S., and Sabetzadeh, M. (2024). Improving requirements
completeness: Automated assistance through large language models. Requirements
Engineering 29, 73–95.

[P19] Ma, L., Liu, S., Li, Y., Xie, X., and Bu, L. (2024). Specgen: Automated
generation of formal program specifications via large languagemodels. arXiv [Preprint]
arXiv:2401.08807.

[P20] Mandal, S., 859 Chethan, A., Janfaza, V., Mahmud, S., Anderson, T. A.,
Turek, J., et al. (2023). Large language models based automatic synthesis of software
specifications. arXiv [Preprint] arXiv:2304.09181.

[P21] Rahman, T. and Zhu, Y. (2024). Automated user story generation with test
case specification using large language model. arXiv [Preprint] arXiv:2404.01558.

[P22] Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022). Automatic generation
of programming exercises and code explanations using large language models. In
Proceedings of the 2022 ACM Conference on International Computing Education
Research-Volume 1. 27–43.

[P23] Wang, B., Wang, C., Liang, P., Li, B., and Zeng, C. (2024). How llms
aid in uml modeling: An exploratory study with novice analysts. arXiv [Preprint]
arXiv:2404.17739.

[P24] Wei, B. (2024). Requirements are all you need: From requirements to code
with llms. arXiv [Preprint] arXiv:2406.10101.

[P25] White, J., Hays, S., Fu, Q., Spencer-Smith, J., and Schmidt, D. C. (2024).
Chatgpt prompt patterns for improving code quality, refactoring, requirements
elicitation, and software design. In Generative AI for Effective Software Development
(Springer). 71–108.

[P26] Wu, Y., Li, Z., Zhang, J. M., Papadakis, M., Harman, M., and Liu, Y. (2023).
Large language models in fault localisation. arXiv [Preprint] arXiv:2308.15276.

[P27] Xie, D., Yoo, B., Jiang, N., Kim, M., Tan, L., Zhang, X., et al. (2023a).
Impact of large language models on generating software specifications. arXiv [Preprint]
arXiv:2306.03324.

[P28] Xie, D., Yoo, B., Jiang, N., Kim, M., Tan, L., Zhang, X., et al. (2023b).
Impact of large language models on generating software specifications. arXiv [Preprint]
arXiv:2306.03324.

[P29] Zhang, Q., Zhang, T., Zhai, J., Fang, C., Yu, B., Sun,W., et al. (2023). A critical
review of large language model on software engineering: An example from chatgpt and
automated program repair. arXiv [Preprint] arXiv:2310.08879.

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1519437
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Research directions for using LLM in software requirement engineering: a systematic review
	1 Introduction
	2 Survey of related work on LLMs and software requirements
	2.1 Surveys on NLP in Software engineering
	2.2 Surveys on LLMs in software engineering
	2.3 Surveys on LLMs in software engineering requirements
	2.4 Emerging trends and research opportunities

	3 Methods
	4 Results
	4.1 Q1: What roles do LLMs serve in RE process?
	4.1.1 Q1.1: What types of LLM are commonly employed in SRE?
	4.1.1.1 Generative pre-trained transformers (GPT)
	4.1.1.2 Code-focused language models
	4.1.1.3 Bidirectional encoder representations (BERT) and variants
	4.1.1.4 Transformer-based models
	4.1.1.5 Multimodal models
	4.1.1.6 Specialized models
	4.1.1.7 Vision-language models

	4.1.2 Q1.2: What are the typical inputs provided to LLMs in the RE process, and what outputs do they generate?
	4.1.2.1 Input categories
	4.1.2.2 Output categories

	4.1.3 Q1.3: Which stages of the RE process integrate LLMs most effectively, and what roles do they fulfill?
	4.1.3.1 Requirements elicitation and analysis
	4.1.3.2 Requirements modeling and specification
	4.1.3.3 Formal specification and verification
	4.1.3.4 Validation and quality assurance


	4.2 Q2: What techniques are used to optimize and evaluate the LLMs in SRE?
	4.2.1 Q2.1: What tuning techniques are used to enhance the performance of LLMs in SE tasks?
	4.2.2 Q2.2: What prompt engineering techniques are applied to improve the performance of LLMs in SE tasks?
	4.2.2.1 Zero-shot prompting
	4.2.2.2 Few-shot prompting
	4.2.2.3 Iterative prompts
	4.2.2.4 Contextual prompts

	4.2.3 Q2.3: How are evaluation metrics utilized to assess the performance of LLM4SE tasks?
	4.2.3.1 Correctness and completeness metrics
	4.2.3.2 Performance metrics
	4.2.3.3 Agreement and consistency metrics
	4.2.3.4 Precision and recall metrics
	4.2.3.5 Qualitative and expert-based evaluation
	4.2.3.6 Code quality and maintainability metrics


	4.3 Q3: What are the challenges and directions for utilizing LLMs in RE?
	4.3.1 Challenges in utilizing LLMs in requirement engineering
	4.3.2 Future directions for utilizing LLMs in RE


	5 Discussion
	5.1 The role of LLM in RE process
	5.1.1 Types of LLMs used in RE (Q1.1)
	5.1.2 Input and output mechanisms (Q1.2)
	5.1.3 Stage-wise integration of LLMs (Q1.3)

	5.2 Techniques to optimize and evaluate LLM4RE
	5.2.1 Tuning techniques for SRE tasks (Q2.1)
	5.2.2 Prompt engineering techniques for SRE tasks (Q2.2)
	5.2.3 Evaluation metrics in LLM4SE (Q2.3)

	5.3 Challenges and future directions for LLMs in requirement engineering
	5.3.1 Challenges in utilizing LLMs in RE (Q3.1)
	5.3.2 Future directions for LLMs in RE (Q3.2)

	5.4 Threats to validity
	5.4.1 Study search and selection bias
	5.4.2 Empirical knowledge bias


	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References
	SURVEYED PAPERS


