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The process of creating high-quality software is always a significant challenge

for developers. Besides acquiring and honing the trained skills and knowledge

needed to fulfill this process successfully, they face the persistent need for

better methods and tools to understand and analyze software systems. This

research proposes a method for building metrics-based visual analytic tools

fully integrated into the development environment to enhance the capabilities

and convenience of these working environments. In particular, duplicate code

metrics allow developers to locate and correct potential threats to software

quality, understandability, maintainability, and scalability. Refactoring duplicate

code should help avoid duplication of e�ort during maintenance and decrease

the possibility of introducing errors and inconsistencies. The proposed approach

is demonstrated by programming a plugin component that detects and allows

the visual analysis of duplicate code in a working project. We developed this tool

for a well-known integrated development environment.
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1 Introduction

Code clones refer to fragments of source code that are identical or highly similar to each

other. They are often categorized into different types, ranging from exact textual duplicates

to purely semantic clones that share functionality but not syntax (Lei et al., 2022; Kaur and

Rattan, 2023; Zakeri-Nasrabadi et al., 2023). Exact or Type 1 clones consist of identical code

segments, where comments, layouts, and whitespace are ignored. Parameterized or Type 2

clones consist of Type 1 clones that may contain changes in identifiers, types, and literals.

Near-miss or Type 3 clones are Type 2 clones that may include the addition or removal of

statements. Semantic or Type 4 clones are code segments that are not syntactically similar

but perform the same functionality.

Clone detection research continues to be crucial for software maintenance, evolution,

and refactoring because unrefactored clones can propagate defects and increase technical

debt over time (Kanwal et al., 2022; Sundelin et al., 2025). Recent advances suggest a trend

toward using data-driven models and deep learning techniques to detect both syntactic

and semantic clones with improved accuracy (Zhang and Saber, 2025b; Hu et al., 2023;

Feng et al., 2024).

Clone detection approaches typically fall into one or more of the following categories:

textual, lexical or token-based, tree-based, graph-based, and embedding-based (Li et al.,

2023; Thaller et al., 2022; Wang et al., 2023; Xu et al., 2024). Textual techniques process

the source code as a stream of text. Token-based methods parse source code into tokens

and compare those token streams for near-duplicate segments. Tree-based approaches

transform source code into Abstract Syntax Trees (ASTs) to capture syntactic structures

more precisely. Graph-based methods employ control-flow or data-flow representations
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to detect semantically similar code. Embedding-based

techniques, including neural embeddings or transformer-

based representations, leverage large datasets of code to learn

generalizable features that are well suited to detecting near-miss or

semantic clones (Yahya and Kim, 2023; Zhang and Saber, 2025a;

Pinku et al., 2024).

Refactoring clone pairs or groups helps control maintenance

complexity by unifying duplicate logic. In particular, refactoring

operations such as the Extract Method can convert multiple clones

into a single shared function, mitigating the risk of missing bug

fixes or enhancements in one cloned location (AlOmar et al., 2024;

Lei et al., 2022). However, clone refactoring can be challenging in

large-scale systems, especially when clones occur across different

modules, repositories, or even programming languages (Kanwal

et al., 2022; Li et al., 2023). Cross-language clone detection and

management present additional hurdles, as equivalent functionality

may appear in distinct languages, each with its own APIs, idioms,

and libraries (Yahya and Kim, 2023; Khajezade et al., 2024). Despite

these challenges, recent work has begun to merge deep learning

with cross-language embeddings to detect functional similarity at

a higher level of abstraction (Alam et al., 2023; Zhang and Saber,

2025a).

The rise of transformer-based large language models (LLMs)

that have been trained on extensive code corpora—such as GPT or

CodeBERT—has opened new avenues for discovering non-trivial

clones and recommending potential refactorings (Zhang and Saber,

2025b; Feng et al., 2024). Researchers are currently investigating

how best to harness these models, for example, by fine-tuning them

on labeled clone datasets to capture both syntactic and semantic

relationships among code fragments (Xu et al., 2024; Pinku et al.,

2024). Although LLMs show promise in capturing deeper semantic

structures, they can also generate spurious matches or struggle

with domain-specific libraries, highlighting the need for further

investigation into model architectures and tokenization strategies

(Khajezade et al., 2024; Assi et al., 2025).

Beyond detection, clone management is another essential

area of study. Effective management involves ranking and

tracking clones throughout the software lifecycle, visualizing

their relationships, and prioritizing them for refactoring (Zakeri-

Nasrabadi et al., 2023; Kaur and Rattan, 2023). Some tools now

incorporate techniques like complexity metrics or usage frequency

to automatically suggest which clones should be refactored first

(Kanwal et al., 2022; Sundelin et al., 2025). In practice, decisions

about whether to refactor or keep duplicated code can also

depend on performance considerations, the developer’s workflow,

or domain-specific constraints.

Visual analysis is one emerging trend that can aid developers in

spotting andmanaging clones at scale. By rendering clone groups or

classes in an interactive graph or heatmap, developers can navigate

clusters of related code and quickly pinpoint large or complex

duplications (Zhang and Saber, 2025a; Zakeri-Nasrabadi et al.,

2023). Furthermore, integrating clone detection and refactoring

support directly into modern IDEs can facilitate a continuous

clone management process, alerting developers whenever they

introduce a new clone or significantly alter an existing one (AlOmar

et al., 2024; Hu et al., 2023). This model of “just-in-time,” clone

awareness supports more proactive handling of code duplication,

instead of relying on post-hoc analysis after technical debt

has accrued.

In this study, we propose a visual clone management approach

that builds upon these lines of research. By combining a hybrid

detection technique—one that integrates textual, lexical, and tree-

based features—with an interactive visualization layer, we aim

to provide both robust detection of near-duplicate code and

developer-friendly tools for prioritizing and refactoring high-

impact clones. To validate our approach, we compare detection

results against established benchmarks and demonstrate how visual

insights in the IDE can streamline clone analysis and management.

Our ultimate goal is to enhance maintainability by leveraging state-

of-the-art code similarity insights while placing the developer at

the center of the clone management loop (Wang et al., 2023; Pinku

et al., 2024).

Finally, we emphasize the growing need for cross-project or

cross-repository clone analysis, especially as organizations adopt

microservices architectures or polyglot development practices.

In that context, large-scale empirical evaluations with real-

world codebases are crucial for demonstrating the feasibility and

cost-effectiveness of advanced clone detection tools (Xu et al.,

2024; Lei et al., 2022). By presenting our tool’s design and

empirical outcomes, we hope to further the conversation on how

best to integrate clone detection and refactoring into everyday

development workflows,mitigating risks associated with duplicated

logic while helping developers maintain clear, consistent, and

evolvable software (Alam et al., 2023; Khajezade et al., 2024).

The repository for the source code is available on GitHub under

the account jnavas-tec, and the project is vizclone.

In the rest of this article, we first present the proposed method

in Section 2, followed by the validation of our proposed Clone

Detection Algorithm in Section 3. We present the results in Section

4, and Section 5 contains the discussion of the results.

2 Materials and methods

In this section, we present our proposed method for clone

management, which consists of two main stages: a screening and

detection stage described in Section 2.1, and a visualization and

analysis stage described in Section 2.2. The diagram in Figure 1

depicts the complete steps of the proposed method.

2.1 Clones screening and detection

Our method detects code clones at the method granularity

level, mainly because code clones are disseminated primarily across

methods. However, even those clone classes with many cloned

fragments across different methods represent a tiny fraction of

a software system’s total number of methods. Thus, comparing

every method in the system against every other method is a

time-wasting task. To avoid this, a fast and scalable algorithm

for finding similar items performs a screening of candidate

pairs of methods with a minimum expected probability of being

code clones. This algorithm implements the technique of Near-

Neighbor Search that combines the techniques of K-Shingles,
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Minhash Signatures, and Locality-Sensitive Hashing, as described

in Leskovec et al. (2020), and is a textual clone detection approach.

We succinctly explain our implementation of their algorithm

in Section 2.1.1. A Syntactic-Hierarchical Local-Global Sequence

Alignment Algorithm verifies the set of candidate pairs of code

clones returned by the screening algorithm. This verification

algorithm combines a syntactic-hierarchical analysis of methods

and their sentences with local and global sequence alignment, as

shown in Section 2.1.2. The local sequence alignment-based sub-

algorithm implements a lexical approach, while the global sequence

alignment-based sub-algorithm implements a tree-based approach.

We use the IDE internals to syntactically collect and

analyze all the methods in the project. The developer can

choose whether to compare the actual instances of literals and

identifiers (e.g., cloneList, 80.0, “a string”) or to compare them

by their token names (e.g., IDENTIFIER, FLOAT_LITERAL,

STRING_LITERAL). The methods are then represented

hierarchically as a sequence of sentences, with each sentence

being a sequence of tokens.

2.1.1 Near-neighbor search screening algorithm
The problem of detecting code clones can be considered

a subcase of finding similar documents from a large set of

documents. In the context of document similarity, we employ

the Jaccard similarity measure to determine how similar two

documents are. The Jaccard similarity between two sets A and B

is |A ∩ B|/|A ∪ B|.

Comments and extra white spaces are trimmed from the source

code. The signature of the method is also ignored. The algorithm

ignores the methods with fewer sentences than a minimum

threshold of sentences or fewer tokens than a minimum threshold

of tokens. The source code from the body of the methods is

represented as a set of k-shingles to identify similar sequences in

different methods. A shingle is a substring of length k extracted

from the code. The following text “Sample_text” contains the

following set of 5-shingles: {“Sampl”, “ample”, “mple_”, “ple_t”,

“le_te”, “e_tex”, and “_text”}. We selected a value of k equal to

27 to keep a low probability that a shingle would appear in any

method. The sentences and tokens of the methods are joined with

whitespace and fed to the shingle extractor. All the shingles from

all the methods are extracted and added to a list, and then their

index replaces all the shingles in all the methods. The sets of shingle

indices represent the methods, and we could obtain the similarity

level between any two methods by calculating the Jaccard similarity

of their two shingle index sets. However, doing so would leave us

back at square one, comparing every pair of methods. Instead, the

algorithm replaces all the shingle index sets from the methods with

their Minhash signatures.

The algorithm calculates the Minhash signatures for all the

methods by choosing the signature size n as the product of the

number of b bands in the signature and the number of r rows per

band. The number of bands and rows allows us to establish the

minimum similarity level needed to screen any pair of methods

as clone candidates. For each band, it generates a permutation of

all the shingles’ indices and selects each method’s permuted first r

shingles’ indices as its signature part for the band.

The algorithm feeds the methods’ Minhash signatures to a

Locality-Sensitive Hashing (LSH) step. The LSH step takes b

iterations over all the methods’ Minhash signatures. The i-th

iteration hashes the i-th band of each method’s Minhash signature

and collects the methods that are hashed to the same bucket as

clone candidate pairs. The sets of buckets in each iteration are

independent of each other.

Our implementation of LSH can detect clone candidate pairs

with a similarity of at least s by choosing b and r such that s =

(1/b)1/r . For example, if we set the minimum similarity to s = 0.8

and the number of rows per band to r = 18, then the number

of bands is b = 56, and the length of the Minhash signatures

is n = 1008. On the one hand, to decrease the number of false

negatives, we can adjust b and r to achieve a value of s lower than

0.8. On the other hand, to decrease the number of false positives,

we can set b and r to produce s greater than 0.8.

2.1.2 Syntactic-hierarchical local-global
sequence alignment algorithm

Once we have the list of clone candidate pairs, the algorithm

must verify which are indeed code clones. Our clone verification

algorithm takes every pair of candidates and performs a syntactic-

hierarchical local-global sequence alignment step. Syntactic means

leveraging the Abstract Syntax Tree (AST) constructed by the

IDE’s language compiler to extract each method and its tokenized

sentences. Each method then consists of a syntactic hierarchy of

lists: a list of sentences identified by their type (i.e., if-statement,

while-statement, assignment-statement) and their sublists of

tokens. Moreover, local-global alignment means applying the local

sequence alignment algorithm from Smith and Waterman (1981)

with the optimization by Gotoh (1982) at the sentence level while

applying the global sequence alignment algorithm fromNeedleman

and Wunsch (1970) at the token level.

The best local alignment found between the sentences of two

clone candidate methods is flagged as a clone if the similitude

of the alignment is at least the selected similitude threshold

(i.e., 0.8 similitude) and if the alignment has at least a selected

minimum number of sentences and tokens. The local alignment

algorithm compares each of the sentences of a method against

every other sentence of the other method. It considers them

similar if they are of the same sentence type and if the global

sequence alignment of their tokens’ returned similitude is at least

the selected similitude threshold. Otherwise, the algorithm treats

them as a mismatch or introduces a gap, whichever yields the most

similar alignment.

If the local alignment for a verified clone pair contains gaps or

any mismatches in the alignment, then it recognizes it as a Type 3

clone. However, if it does not contain any gaps or mismatches and

the source code of the sentences is identical, then it identifies it as a

Type 1 clone. Otherwise, the algorithm detects it as a Type 2 clone.

Finally, the algorithm merges the verified clone pairs into clone

classes or groups:

1. It collects all the fragments of the clone pairs in a list and sorts

them by their owner method.

2. It identifies the fragments of the same method that overlap

by at least a selected overlap ratio (i.e., 0.6) and merges their

corresponding clone pairs into a clone class.

3. If a clone pair exists whose fragments match the other

two fragments of the recently merged clone pairs, the

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1520344
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Navas-Su et al. 10.3389/fcomp.2025.1520344

FIGURE 1

High-level illustration of the proposed method.

FIGURE 2

IDE view with all visualization components.

algorithm adds this clone pair to the clone class from the

previous step.

2.2 Clones visualization and analysis

After screening and verifying the clone classes along with

their clone fragments, the plugin shows an interactive visual

representation of the graph assembled by the clones and the

fragments in the IDE. As shown in Figure 2, the IDE includes

the following:

1. A toolbar that features an interactive graphical visualization of

all the clone classes.

2. A toolbar with the list of fragments from the selected clone class

on the previous graph in.

3. An editor window shows the method containing the selected

fragment from the fragments list in.
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FIGURE 3

Clone classes visualization.

The region from Figure 2 is the interactive visualization of all

the clone classes and shows all the clone groups and their code

fragments. The visualization is shown in more detail in Figure 3,

with its four subregions tagged in red:

1. A bar chart with all the clone classes found. It has a slider to

zoom in on a subset of all the clone classes.

2. A zoomed-in subset of clone classes that fisheyes a hovered-

over clone class and displays information about it (i.e.,

clone identifier, similarity percentage, clone type, cognitive

complexity, and number of fragments).

3. A region with the arcs that connect the clone classes to

their fragments.

4. A bar chart displays all the fragments from the clone classes. It

allows users to hover over the fragments of the selected clone

and shows its information (i.e., class signature, method name,

similarity percentage, clone type, and cognitive complexity).

The clones visualized in Figure 3 belong to the code base of the

JetBrains Open Source IntelliJ Community project on GitHub. The

bar chart at the base of the visualization shows all the clone classes

as bars in descending order by their number of fragments in the

class and their cognitive complexity. The clone bar colors represent

the clone type: red for Type 1, yellow for Type 2, and green for

Type 3. The height of each clone bar is proportional to its cognitive

complexity. The bar chart has a slider to select and enable zooming

in on a subset of clone classes.

The visualization shows a zoomed-in subset of clone classes

selected with the slider (see the bar chart in from Figure 3). When

the developer selects or hovers over a particular clone class, the

visualization displays a fisheye view of the neighboring clones

and some clone information. It highlights the selected clone, its

fragments, and the arcs that connect the clone class to its fragments

while graying out the rest of the graph. The graph is not grayed

when no class is selected, and the clone classes are sorted either by

their Cognitive Complexity and then by their number of fragments

or by their number of fragments and then by their Cognitive

Complexity. Users can use the middle click to switch between both

sort orders to make finding clones that need refactoring easier. If

the developer clicks on a clone class, the highlight of its fragments

remains visible until clicked elsewhere. If the developer right-clicks

on a clone class (action on Figure 2), the list of its fragments is

shown in the fragments toolbar (see the list in from Figure 2).

The fragments toolbar allows users to select two fragments and

show their differences using the diff format (action). We reused

the fragments toolbar provided by the IntelliJ IDEA Community

Edition IDE in their duplicate code search utility. If the developer

double-clicks a fragment from the list (action), it opens the source

code of that fragment in an editor from Figure 2.

The developers can analyze the clone classes to determine

who needs refactoring. Depending on the development team,

the maximum number of acceptable clone fragments in a clone

class ranges from two to ten. We may choose five as an

acceptable number of fragments in a clone class before labeling it

for refactoring.

The clone classes with cognitive complexity over 15 for any

of their fragments can also be labeled for refactoring, as they are

considered too complex, according to the recommendation of the

open-source platform SonarQube. Future research could provide
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TABLE 1 Recall reported by BigCloneEval.

Clone type NiCad6 VizClone

Type-1 0.99897 0.99938

Type-2 0.99324 0.99847

Type-2 (blind) 0.98854 1.0

Type-2 (consistent) 0.99360 0.99833

Very-strongly type-3 0.98407 0.92601

us with an appropriate threshold for cognitive complexity (Muñoz

et al., 2020).

We might also label clone fragments for refactoring if they

are under constant modification and avoid labeling those that are

not. Moreover, one could prevent labeling code for refactoring

that is boilerplate, generated, an interface implementation, or a

pattern implementation. Ultimately, each development team will

establish its own thresholds and rules, so our suggestions are only a

starting point.

3 Validation of clone detection
algorithm

The BigCloneEval framework enables researchers to perform

evaluation experiments for clone detection tools using the

BigCloneBench clone benchmark (Svajlenko et al., 2014; Svajlenko

and Roy, 2021). We applied this benchmark to our clone detection

tool. The parameters used for the validation were: -st both -

m ’CoverageMatcher 0.7’ -mis 80 -mil 5 -mip

5 -mit 40. Our tool reported a high precision of 0.99993, with

60,350 true positives and four false positives. It also reported a high

recall, as shown in Table 1, and its performance is similar to that of

the NiCad6 tool. It took 14:03 min for our tool to detect the clones

from the BigCloneBench with 55,499 files, over 15.4M LOC, and

460,138 methods over the configured thresholds. Our algorithm

outperformed NiCad and other tools in speed, as shown in Table 2

(Feng et al., 2020). Feng et al. ran their experiments on an Intel

Core i7-7700K, with 16GB RAM and an SSD, while we ran ours

on an i7-7700HQ with 16GB RAM and an SSD, which makes the

results comparable. The list of clones found in compressed files,

the complete benchmark reports of both the NiCad6 and VizClone

tools, and the speed logs of VizClone can be found in our tool’s

GitHub repository under the bcb folder.

4 Results

We applied our method for visual clone analysis to the source

code of the six open-source projects described in Table 3 and

hosted on GitHub. The IntelliJ IDEA Community Edition and

IntelliJ Platform project (JetBrains, 2024), owned by JetBrains,

is an open-source IDE for several programming languages. The

Elasticsearch project (Elastic, 2024), owned by Elastic, is a

distributed search and analytics engine, a scalable data store,

and a vector database optimized for speed and relevance on

production-scale workloads. TheHadoop project (Apache Software

Foundation, 2024), owned by the Apache Software Foundation,

is a framework that allows for the distributed processing of large

data sets across clusters of computers using simple programming

models with high availability. From Eclipse, the projects Eclipse

Platform (Eclipse, 2024a) and Eclipse Platform UI (Eclipse, 2024b)

provide the basis for the Eclipse IDE and the basic building

blocks for user interfaces, respectively. From Spring, the Spring

Framework project (Spring, 2024) is the foundation for all Spring

projects and provides core support for dependency injection,

transaction management, web apps, data access, messaging,

and more.

The plugin’s source code is hosted onGitHub under the account

jnavas-tec and in the project vizclone.

The following subsections describe the analysis performed on

each of the projects. Although some describe clone classes with a

high number of fragments or high Cognitive Complexity, this does

not necessarily imply that the projects need to refactor the clone

classes found.

4.1 IntelliJ Community project analysis

Our method identified 35,136 Java files in the IntelliJ

Community project and 29,962 methods with more sentences and

tokens than their thresholds. The screening step yielded 8,354 clone

candidate pairs, and the detection step confirmed 7,801 as true

clones grouped into 591 clone classes. The number of clone classes

with Cognitive Complexity over 15 is 129, while the number of

clone classes with more than five fragments is 43. All of these clone

classes highlight candidates for refactoring. Manual inspection is

required to determine if refactoring is truly required. The search

process took under 7 min.

The first clone class has 64 fragments, and its Cognitive

Complexity is 3. All those fragments correspond to methods within

the same Java class, MantisConnectBindingStub.java,

and contain boilerplate code for SOAP action calls. The second

clone class has 53 fragments, and its Cognitive Complexity ranges

from 6 to 36. The corresponding methods implement the equals

pattern. The third clone class has 47 fragments, and its Cognitive

Complexity ranges from 5 to 45. The corresponding methods

implement the Comparable interface for classes in the same

package com.jetbrains.python.console.protocol.

We inspected all the clone classes with more than five fragments,

and all of them fall into similar categories as the previous ones.

The clone class with the highest Cognitive Complexity

value of 117 has five fragments. Its fragments correspond

to the method balanceDeletion for concurrent hash

map classes inside different packages. The five fragments are

almost identical. Two methods are from classes marked as

deprecated: com.intellij.util.containers.Con

currentIntObjectHashMap and com.intellij.

util.containers.ConcurrentLongObjectHashMap,

replaced by two others with the same names but in the

package com.intellij.concurrency. The fifth

fragment is from the class com.intellij.concurrency.

ConcurrentHashMap in the same last package. Although

these fragments are few and it appear unlikely they will

change, it could be worth examining them because of their
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TABLE 2 Execution time for VizClone and other tools (Feng et al., 2020).

LoC NiCad CCAligner CCFinderX SourcererCC VizClone

10 M 11 h 42 min 47 s 24 min 56 s 28 min 51 s 32 min 11 s -

15.4 M - - - - 14 min 3 s

TABLE 3 Duplicate code metrics for open-source projects.

Project Java files Methods Sim Clones Groups CC > 15 Frag > 5 Time

IntelliJ community 35,136 29,962 8,354 7,801 591 129 43 6:39

Elastic search 10,313 9,846 5,996 5,140 624 45 49 1:49

Apache Hadoop 7,343 7,563 1,037 843 313 23 10 1:50

Eclipse platform UI 5,669 5,460 862 650 267 41 11 1:07

Eclipse platform 4,223 4,805 455 365 217 33 2 0:40

Spring framework 4,507 2,482 237 180 136 23 1 0:38

high Cognitive Complexity value. The second clone class has

three fragments, and its Cognitive Complexity ranges between

72 and 111. The corresponding methods are in the same class

com.intellij.concurrency.ConcurrentHashMap

and implement different flavors of remapping an existing

key-value pair. The third clone class has five fragments, and

its Cognitive Complexity ranges between 103 and 106. The

corresponding methods come from the same previous classes

ConcurrentHashMap, ConcurrentIntObjectHashMap,

and ConcurrentLongObjectHashMap. The methods

implement transfer to copy the nodes in each bin to a new

table. We also inspected all the remaining 126 clone classes with a

Cognitive Complexity above 15, and all implemented boilerplate

code, pattern interfaces, lexer or parser actions, or protocol actions.

4.2 Elasticsearch project analysis

We visually analyzed the Elasticsearch project; Table 3 shows

it has 10,313 Java files and 9,846 methods above the thresholds.

It generated 5,996 clone pair candidates from the screening

stage, and the detection stage yielded 624 clone classes and

5,140 confirmed clone pairs. There are 49 clone classes with

more than five fragments and 45 with Cognitive Complexity

values above 15. It took approximately 2 min to complete the

search process.

We skipped the integration test suites interleaved with the

source code because their methods contain numerous boilerplate

source code patterns identified as clones.

The clone class with more fragments has 111, and its Cognitive

Complexity value ranges from 1 to 23. All the fragments conform

to a pattern that returns a JSON builder for multiple Java classes.

The second clone class has 19 fragments, and its Cognitive

Complexity varies between 10 and 44. The methods configure

and return a JSON query builder from a JSON content parser.

The third clone class has 17 fragments; its Cognitive Complexity

values range between 1 and 7. The methods are owned by the

three parsing Java classes SqlBaseParser, EqlBaseParser,

and PainlessParser; they return different subclasses of

ParserRuleContext. Upon inspection, all the other clone

classes with more than five fragments are related to parsing,

interface implementation, or boilerplate code.

The three clone classes with the highest Cognitive

Complexity have values of 86, 86, and 56, respectively, with

each containing two fragments. The first clone class consists

of the method innerFromXContent from the Java classes

org.elasticsearch.client.tasks.Elasticsearch

Exception and org.elasticsearch.Elasticsearch

Exception; this method yields an Elasticsearch

Exception based on an XContentParser. The second clone

class involves the method parseMath found in the Java classes

org.elasticsearch.common.joda.JodaDateMath

Parser and org.elasticsearch.common.time.Java

DateMath Parser; this method parsesmathematical operations

on a date using a time value, a rounding flag, and a timezone,

returning the outcome in milliseconds. The other clone classes

with a Cognitive Complexity exceeding 15 focus on implementing

JSON builders, parsing actions, pattern configurations, sorting

actions, and mathematical operations.

4.3 Apache Hadoop project analysis

When applying the method to the Apache Hadoop project (see

Table 3), which has 7,343 Java files and 7,563 methods above the

thresholds, the screening step produced 1,037 candidate pairs. In

contrast, the detection step verified 843 clone pairs grouped into

313 clone classes. The number of clone classes with Cognitive

Complexity over 15 is 23, and the number of clone classes with

more than five fragments is 10. All of these clone classes point

out candidates for refactoring. Manual inspection is required

to determine whether refactoring is truly necessary. The search

process took under 2 min.

The clone class with more fragments has 35, and its

Cognitive Complexity is 2. All those fragments correspond to

methods within the same Java class, FSNamesystem.java,

a container for namespace state, and contain boilerplate code

called by HadoopFS clients to modify and query the container.

The second clone class has 24 fragments, and its Cognitive

Complexity runs between 8 and 31. The corresponding methods
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implement the equals pattern. The third clone class has 15

fragments, and its Cognitive Complexity ranges between 1 and

3. The corresponding methods implement HTTP requests for the

TimelineReaderWerServices.java class. We inspected

all the remaining clone classes with more than 5 fragments, and all

of them fall into similar categories as the previous ones.

The clone class with the highest Cognitive Complexity

value of 60 has two fragments. These fragments correspond

to the methods hbMakeCodeLengths on the char array

and byte array in the class org.apache.hadoop.io.

compress.bzip2.CBZip2OutputStream. These methods

appear very unlikely to change. The second clone class has two

fragments; their Cognitive Complexity values are 50 and 41.

The methods are processMapAttemptLine and process

ReduceAttemptLine from the org.apache.hadoop.

tools.rumen.HadoopLogsAnalyzer class. The third

clone class also has two fragments; their Cognitive Complexity

values are 47 and 20. The corresponding methods are named

convertToApplicationAttemptReport and come

from the classes org.apache.hadoop.yarn.server.

applicationhistoryservice.ApplicationHistory

ManagerOnTimelineStore and org.apache.hadoop.

yarn.util.timeline.TimelineEntityV2Converter.

The first method generates a report on the events of the received

entity, while the second generates a report on the entity’s

information. We inspected the remaining 23 clone classes with

a Cognitive Complexity above 15, and the code implements

boilerplate code, pattern interfaces, and protocol actions.

4.4 Eclipse platform UI project analysis

The analyzed revision of this project has 5,669 Java files

and 5,460 methods with sufficient sentences and tokens. The

screening stage delivered 862 candidate pairs for clones, and the

detection stage verified 650 true clones grouped into 267 clone

classes. A total of 41 clone classes have a Cognitive Complexity

exceeding 15, and 11 clone classes have more than five fragments;

all of these are candidates for refactoring and require manual

inspection to determine whether to factorize. The search took

about 1 min.

The top three clone classes with more than 15 fragments

have 18, 9, and 8, respectively. The first clone class groups

methods that determine identifiers for different UI components

based on context information. Their Cognitive Complexity

varies from 9 to 30, and the related classes are all within the

package org.eclipse.e4.ui.model.application.

The second clone class contains methods that synchronize

extension points across several UI registry Java classes under the

package org.eclipse.ui.internal.genericeditor,

all of which have a Cognitive Complexity value of 4. The

third clone class corresponds to the method eIsSet,

which returns whether a corresponding feature in the UI

is set for various Java classes within the same package

org.eclipse.ui.internal.genericeditor; their

Cognitive Complexity values range from 3 to 21. The remaining

eight clone classes, each with more than five fragments, correspond

to methods from classes that implement interfaces within the UI

components inheritance hierarchy.

The clone class with the highest Cognitive Complexity has

seven fragments with complexity values between 8 and 216.

Its fragments correspond to the method doSwitch from

Java classes in the package org.eclipse.e4.ui.model.

application, which implement the Switch for the model’s

inheritance hierarchy. The second clone class has two fragments

with a Cognitive Complexity of 81. The method implemented

is processChange from the Java classes org.eclipse.

text.undo.DocumentUndoManager and org.eclipse.

jface.text.DefaultUndoManager, which records

changes in a document to be managed. The third clone class also

has two fragments with a Cognitive Complexity of 50. The method

implemented is refresh from the Java classes org.eclipse.ui.

internal.progress.ProgressInfoItem and org.eclipse.e4.ui.progress.

internal.ProgressInfoItem, which refreshes progress updates on

the UI. These classes represent items used to show jobs in the UI.

The remaining 38 clone classes, with Cognitive Complexity over

15, correspond to methods from classes that implement interfaces

under the UI components inheritance hierarchy.

4.5 Eclipse platform project analysis

The visual analysis method examined 4,223 Java files in this

project, filtered out methods with insufficient sentences or tokens,

and produced 4,805 methods for inspection. From the screening

step, it generated 455 candidate pairs for clones, and from the

detection step, it identified 365 verified clones arranged into 217

clone classes. As shown in Table 3, it found 33 clone classes with

Cognitive Complexity over 33 and only two clone classes with more

than five fragments. The search process took 40 s to complete.

The clone class with the highest Cognitive Complexity

is the same as the one with the most fragments; it

has eight fragments with Cognitive Complexity ranging

from 47 to 233. All the methods are in the class

org.apache.lucene.demo.html.HTMLParserToken

Manager, which is an HTML parser generated with JavaCC,

a popular Java parser generator. The second clone class

with six fragments corresponds to the methods named

startElement, which have Cognitive Complexity values

from 2 to 5. These methods belong to parsing classes in the package

org.eclipse.help.internal.webapp.parser, which

are specializations of the Java class ResultParser.

The second clone class, which has a high Cognitive Complexity

value of 57, contains two fragments with Cognitive Complexity

values of 48 and 57, respectively. The method names are

findNextPrev, which belong to the Diff TreeViewer classes

org.eclipse.team.internal.ui.synchronize.

AbstractTreeViewerAdvisor and org.eclipse.

compare.structuremergeviewer. DiffTreeViewer.

The third clone class, with a Cognitive Complexity value

of 45, has two fragments with Cognitive Complexity

values of 29 and 45, respectively. The method name is

loadContentForExtendedMemoryBlock, associated

with the Java classesorg.eclipse.debug.internal.ui.
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views.memory.renderings.TableRenderingContent

Provider and org.eclipse.debug.internal.ui.

elements.adapters.MemoryBlockContent Adapter.

All the remaining 30 clone classes, which have a Cognitive

Complexity over 15, contain fewer than five fragments and do not

appear to be suitable candidates for refactoring.

4.6 Spring framework project analysis

Our method found 4,507 Java files in the Spring Framework

project and 2,482 methods with more sentences and tokens than

their thresholds. The screening step yielded 237 clone candidate

pairs, and the detection step confirmed 180 as true clones, grouped

into 136 clone classes. Only one of the clones has more than

five fragments, but 23 clones have Cognitive Complexity over

15. To decide whether these clones should be refactored, manual

inspection must be performed. The search took 38 s.

There is only one method with more than five fragments,

and its Cognitive Complexity is as low as seven. It corresponds

to the overloading of the method getValue from the Java class

org.springframework.expression.spel.standard.

SpelExpression. These do not apply as candidates

for refactoring.

The three clone classes with the highest Cognitive Complexity

have two fragments, with their Cognitive Complexity values

being 60, 48, and 43, respectively. The first corresponds to

the method parseSqlStatement from the Java classes

org.springframework.r2dbc.core.NamedParamete

rUtils and org.springframework.jdbc.core.

namedparam.NamedParameterUtils, which parses a SQL

statement. The second is for the method skipCommentsAnd

Quotes from the same Java classes as in the previous clone, and it

is called from the previous method. The third clone class consists

of two methods: buildPersistenceMetadata from the

Java class org.springframework.orm.jpa.support.

PersistenceAnnotationBeanPostProcessor and

buildResourceMetadata from the Java class org.

springframework.context.annotation.CommonAnn

otationBeanPostProcessor. Both methods are used to

generate injection metadata. The remaining 20 clone classes have

a Cognitive Complexity over 15. have less than five fragments, and

are unlikely to be suitable for refactoring.

5 Discussion

Our proposed method for developing metrics-based visual

analytic tools is demonstrated by the implemented plugin as proof

of concept. Although the tool is not intended for publication as

a plugin in the IntelliJ Marketplace for IntelliJ IDEA Community

Edition, it illustrates how to extract metrics from the source code

of a functional project in the IDE and employ them to conduct

visual analysis of various quality aspects that need measurement

and control. The implemented use case is based on duplicate

code metrics combined with Cognitive Complexity metrics, but

it could be easily enhanced by incorporating the extraction and

combined analysis of additional metrics, such as direct and indirect

coupling metrics or source code repository revision metrics. The

visual representation of several combined metrics and the use

of thresholds facilitate the identification of code areas that are

candidates for refactoring.

Future enhancements involve refining the code into a

publishable open-source plugin, incorporating source code

tracking and documentation capabilities, such as automatically

adding annotations to metrics outlier methods, to enhance their

visibility and clarify their evolution.

Integrating the method into the IDE requires significant effort

and programming, but the rewards in terms of ease of control,

speed, and convenience outweigh the costs involved. The visual

analysis enhances the analytical capabilities of developers within

the IDE by allowing them to interact with the metrics in a more

direct manner. For example, sorting the measured elements using a

combination of several metrics involves ordering the clone classes

in descending order first by Cognitive Complexity and then by the

number of fragments, or by ordering the clone classes in descending

order first by the number of fragments and then by Cognitive

Complexity. A wealth of information about all code hotspots can be

visually accessed simultaneously in a compact space, and navigating

directly into the code for inspection is easily available.
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