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Machine Learning (ML)-based Intrusion Detection Systems (IDS) are integral 
to securing modern IoT networks but often suffer from a lack of transparency, 
functioning as “black boxes” with opaque decision-making processes. This study 
enhances IDS by integrating Explainable Artificial Intelligence (XAI), improving 
interpretability and trustworthiness while maintaining high predictive performance. 
Using the UNSW-NB15 dataset, comprising over 2.5 million records and nine 
diverse attack types, we developed and evaluated multiple ML models, including 
Decision Trees, Multilayer Perceptron (MLP), XGBoost, Random Forest, CatBoost, 
Logistic Regression, and Gaussian Naive Bayes. By incorporating XAI techniques 
such as LIME, SHAP, and ELI5, we  demonstrated that XAI-enhanced models 
provide actionable insights into feature importance and decision processes. The 
experimental results revealed that XGBoost and CatBoost achieved the highest 
accuracy of 87%, with a false positive rate of 0.07 and a false negative rate of 
0.12. These models stood out for their superior performance and interpretability, 
highlighting key features such as Source-to-Destination Time-to-Live (sttl) and 
Destination Service Count (ct_srv_dst) as critical indicators of malicious activity. 
The study also underscores the methodological and empirical contributions 
of integrating XAI techniques with ML models, offering a balanced approach 
between accuracy and transparency. From a practical standpoint, this research 
equips human analysts with tools to better understand and trust IDS predictions, 
facilitating quicker responses to security threats. Compared to existing studies, 
this work bridges the gap between high-performing ML models and their real-
world applicability by focusing on explainability. Future research directions include 
applying the proposed methodology to more complex datasets and exploring 
advancements in XAI techniques for broader cybersecurity challenges.
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1 Introduction

In today’s digital world, cybersecurity has never been more crucial. With each passing day, 
our reliance on digital systems deepens, and so does the complexity and frequency of cyber 
threats. These threats pose significant risks to the integrity, confidentiality, and availability of 
information systems, necessitating robust and adaptive security measures (Almutairi et al., 
2022). Traditional security methods, such as rule-based or signature-based intrusion detection 
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systems (IDS), serve as foundational components of cybersecurity. 
However, their reliance on predefined rules or signatures significantly 
limits their ability to detect novel or sophisticated attacks, leaving 
organizations vulnerable to emerging threats. As cyber threats grow 
more complex, the need for advanced, AI-driven solutions becomes 
imperative. Intrusion Detection Systems (IDS) have evolved 
significantly over the years. Initially grounded in simple rule-based 
mechanisms, they now incorporate cutting-edge Machine Learning 
(ML) algorithms to identify patterns, anomalies, and threats in 
network traffic (Mari et al., 2023). ML-based IDS have demonstrated 
remarkable success in detecting both known and unknown threats by 
learning from historical data and adapting to new attack strategies 
(Dini et al., 2023). Despite their potential, these systems face critical 
challenges. Chief among these is the “black-box” nature of many ML 
models, especially deep learning architectures, which obscures the 
reasoning behind their decisions (Chen et al., 2023). This lack of 
transparency hinders trust, adoption, and the effectiveness of these 
systems in real-world environments. For instance, consider a security 
analyst deploying a sophisticated ML-based IDS. When the system 
flags a potential intrusion, the analyst often lacks insight into why the 
alert was triggered. Was it a false positive, or does the alert reveal a 
previously unseen pattern? This ambiguity underscores the urgent 
need for transparent and interpretable IDS.

The concept of Explainable Artificial Intelligence (XAI) offers a 
promising solution to this challenge. XAI seeks to make the decision-
making processes of ML models comprehensible to human users, 
enhancing trust and usability. Techniques like SHapley Additive 
exPlanations (SHAP) and Local Interpretable Model-agnostic 
Explanations (LIME) have emerged as powerful tools for explaining 
complex ML models. By integrating XAI techniques with IDS, security 
analysts can gain actionable insights into detected threats, enabling 
faster and more informed responses (Arreche et al., 2024). However, 
the application of XAI in the realm of IDS remains in its infancy, with 
significant research challenges yet to be addressed. Recent studies 
highlight both the potential and the limitations of ML-based 
IDS. Deep learning models such as Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) have shown 
exceptional capabilities in identifying intricate patterns and anomalies 
that traditional systems fail to detect (Asharf et al., 2020; Khatkar 
et al., 2023; Mynuddin et al., 2024; Sevri and Karacan, 2023). However, 
their opacity often results in a trade-off between high accuracy and 
interpretability. Security analysts and stakeholders need transparency 
to understand not only the nature of detected threats but also the 
features and logic that contributed to the system’s decisions (Barnard 
et  al., 2024). Addressing these gaps is vital for improving model 
performance, meeting regulatory requirements, and building trust 
among users. Beyond technical implications, explainable IDS can 
provide value across multiple levels of application. At the enterprise 
level, these systems can enhance cybersecurity defences by offering 
granular insights into network vulnerabilities and potential breaches. 
Governments and regulatory bodies can also benefit from transparent 
IDS in the context of compliance and threat analysis. Small and 
medium-sized businesses, often operating with limited resources, 
stand to gain from the trust and efficiency provided by interpretable, 
user-friendly security solutions.

This study’s primary contribution lies in its methodological and 
empirical advancements by integrating ML-based IDS with XAI 
techniques. Methodologically, it combines cutting-edge algorithms 

such as XGBoost, CatBoost, and Multilayer Perceptron (MLP) with 
interpretability tools like SHAP, LIME, and ELI5. These tools provide 
both global and local explanations for model predictions, facilitating 
a deeper understanding of model behaviour. This integration 
addresses critical challenges in cybersecurity by balancing high 
accuracy with interpretability, bridging the gap between advanced ML 
models and practical usability. From an empirical perspective, this 
study demonstrates the effectiveness of the proposed methodology on 
the UNSW-NB15 dataset, comprising over 2.5 million records and 
nine distinct attack types. The selection of ML models was driven by 
their complementary strengths. XGBoost and CatBoost were chosen 
for their superior handling of large-scale datasets and ability to 
identify complex patterns in imbalanced data. Decision Trees were 
included for their simplicity and inherent interpretability, while MLP 
was employed to capture non-linear relationships. Gaussian Naive 
Bayes provided a baseline comparison due to its efficiency in high-
dimensional spaces. These models were systematically evaluated using 
metrics such as accuracy, precision, recall, F1-score, false positive 
rates, and false negative rates. Integrating XAI tools not only improved 
transparency but also enhanced practical insights, enabling human 
analysts to better understand and act on model predictions.

1.1 Research objective and questions

The primary objective of this study is to develop an effective and 
interpretable ML-based IDS by integrating XAI techniques, thereby 
addressing the trade-off between detection performance and model 
explainability. This research aims to:

 1. Enhance the transparency and trustworthiness of ML-based 
IDS through the application of XAI techniques.

 2. Evaluate the performance of various ML models in terms of 
accuracy, precision, recall, and interpretability using the 
UNSW-NB15 dataset.

 3. Identify the key features that contribute to distinguishing 
between normal and malicious network traffic.

1.1.1 Research questions

 • How can the integration of XAI techniques improve the 
interpretability of ML-based IDS?

 • What are the performance trade-offs when combining high 
accuracy with model transparency?

 • Which features are most critical for detecting cyber threats in 
network traffic?

Despite existing research on ML-based IDS and XAI, this study 
stands out by addressing the trade-off between accuracy and 
interpretability. Unlike prior works that focus solely on detection 
performance or model explainability, this study achieves both, 
presenting a balanced approach tailored for real-world cybersecurity 
challenges. Additionally, the research offers actionable insights into 
key features driving model predictions, such as Source-to-Destination 
Time-to-Live (sttl) and Destination Service Count (ct_srv_dst), 
which emerged as critical indicators of malicious activity. The 
following sections of this paper are structured as follows: Section 2 
reviews existing literature, Section 3 describes the methodology 
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employed in this study, and Section 4 presents the experimental setup, 
results, and discussions. Finally, Section 5 concludes the paper with a 
summary of key findings and their implications for 
cybersecurity research.

2 Literature review

2.1 Intrusion detection systems (IDS)

Intrusion Detection Systems (IDS) are a cornerstone of 
cybersecurity, designed to identify and mitigate unauthorized access 
or malicious activities within network infrastructures. IDS 
continuously monitor network traffic and system activities to detect 
anomalies, issuing alerts when potential threats are identified (Asharf 
et al., 2020). Classical IDS research dates to Denning’s early framework 
for anomaly detection, which laid the foundation for modern 
intrusion detection mechanisms. IDS can be broadly categorized into 
two main types:

 1. Network Intrusion Detection Systems (NIDS): Monitor 
network traffic at key points to identify suspicious patterns. 
NIDS analyse protocol packets and compare them against 
predefined rules or learned behavioural models (Mari 
et al., 2023).

 2. Host Intrusion Detection Systems (HIDS): Operate on 
individual devices, analysing logs, application behaviour, and 
system calls for malicious activities. HIDS can detect attacks 
that bypass network security measures, providing a more 
granular view of security threats (Asharf et al., 2020).

Together, NIDS and HIDS form a layered defence strategy, 
covering both network-wide and host-specific security threats. 
However, traditional IDS methods rely heavily on rule-based 
detection, making them ineffective against novel or evolving 
cyber threats.

2.1.1 Network and host intrusion detection 
systems

Network Intrusion Detection Systems (NIDS) are designed to 
monitor entire network segments, capturing and analysing protocol 
packets to detect malicious traffic. Positioned at strategic points within 
the network, NIDS provide a holistic view of network activity, 
identifying threats based on predefined rules or behavioural patterns. 
When potential threats are detected, NIDS log the events and issue 
alerts for further investigation. Host Intrusion Detection Systems 
(HIDS), in contrast, operate at the individual device level. By 
monitoring inbound and outbound packets for a specific host, HIDS 
detect anomalous behaviour or policy violations. These systems excel 
at uncovering threats targeting individual endpoints, providing 
detailed insights into host-specific activities. Together, NIDS and 
HIDS form a complementary defence strategy, addressing threats at 
both macro and micro levels within a network. With the integration 
of Machine Learning (ML), IDS capabilities have been significantly 
enhanced. ML algorithms analyse vast amounts of historical data to 
detect intricate patterns indicative of malicious activities. This 
approach reduces reliance on static rules, enabling IDS to adapt to 
evolving threats. By incorporating ML, IDS achieve improved 

detection accuracy, reduced false positives, and the ability to identify 
previously unseen attack vectors.

2.1.2 Intrusion detection methods and 
explainable artificial intelligence (XAI)

Machine learning (ML) and deep learning (DL) approaches have 
become integral to intrusion detection systems (IDS) due to their 
capacity to process large datasets and complex data structures, yielding 
impressive performance in detecting network intrusions (Varanasi 
and Razia, 2022). Traditional ML methods—including Artificial 
Neural Networks (ANN), Support Vector Machines (SVM), fuzzy 
approaches, swarm intelligence, and evolutionary computation 
techniques—have been extensively employed for IDS. For example, 
ANNs, inspired by the structure of the human brain with 
interconnected layers of neurons, can learn complex patterns from 
data and have proven effective for intrusion detection tasks (Khatkar 
et al., 2023). Similarly, SVMs excel in high-dimensional spaces by 
classifying data into distinct categories based on training examples. 
Fuzzy logic addresses uncertainty and imprecision in network traffic, 
while swarm intelligence algorithms (such as particle swarm 
optimization and ant colony optimization) and evolutionary 
computation methods (including genetic algorithms and genetic 
programming) contribute to feature selection, rule generation, and 
parameter optimization. Despite their effectiveness, comprehensive 
comparative studies across various scenarios and datasets remain 
limited (Alghazali and Hanoosh, 2022). Advances in DL—particularly 
through Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs)—have further enhanced detection 
capabilities by learning hierarchical representations of raw data, 
although further research is needed to integrate these methods 
seamlessly with traditional ML techniques for improved performance 
and interpretability (Neupane et al., 2022).

In parallel with these methodological advancements, Explainable 
Artificial Intelligence (XAI) has emerged as a significant enhancement 
for ML-based IDS, aiming to improve transparency, interpretability, 
and trustworthiness (Sivamohan and Sridhar, 2023; Hariharan et al., 
2022; Barnard et al., 2024). In the IDS context, XAI techniques provide 
critical insights into the decision-making processes of complex 
models, enabling security analysts to understand, validate, and trust 
detection outputs. One of the primary goals of XAI is to render the 
inner workings of AI systems visible and intelligible, thereby 
elucidating the factors and features that drive detection alerts 
(Hariharan et al., 2022). This transparency not only fosters greater 
model accountability and trust—by allowing users to verify the 
rationale behind decisions (Barnard et al., 2024)—but also aids in 
identifying biases and vulnerabilities within the models, such as those 
arising from skewed training data or adversarial threats (Mahbooba 
et  al., 2021). Moreover, XAI promotes enhanced human-AI 
collaboration by offering clear, actionable explanations that help 
analysts prioritize alerts and respond effectively, ultimately supporting 
regulatory compliance and ethical AI practices in cybersecurity 
(Khatkar et al., 2023).

Among the XAI methods applied in IDS, Local Interpretable 
Model-Agnostic Explanations (LIME) generates local, simplified 
models that approximate the behaviour of complex, black-box models, 
providing instance-specific interpretations of predictions. SHapley 
Additive exPlanations (SHAP) offers a unified framework for 
quantifying the contribution of each feature to a model’s output, 
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thereby enabling a granular understanding of feature importance and 
interaction effects. Additionally, tools like Explain Like I’m 5 (ELI5) 
deliver user-friendly interfaces that illustrate feature and permutation 
importance in an accessible manner. By combining the robust 
detection capabilities of diverse ML and DL approaches with the 
transparency afforded by XAI, future IDS can be developed to be more 
robust, accurate, and interpretable. This integration not only enhances 
the practical effectiveness of intrusion detection but also builds trust 
and accountability, ultimately providing a more resilient defence 
against evolving cybersecurity threats.

2.1.3 Key ML techniques in IDS

 • Artificial Neural Networks (ANNs): ANNs mimic the human 
brain’s structure, comprising interconnected nodes organized 
into layers. They excel in learning non-linear patterns from data, 
making them suitable for detecting sophisticated intrusions 
(Khatkar et al., 2023).

 • Support Vector Machines (SVMs): These supervised models 
classify data into distinct categories by finding an optimal 
hyperplane. SVMs are effective in high-dimensional spaces and 
are commonly used for binary classification tasks in 
intrusion detection.

 • Fuzzy Approaches: Leveraging fuzzy logic, these methods handle 
ambiguous or imprecise data, making them effective for analysing 
uncertain or noisy network traffic.

 • Swarm Intelligence: Inspired by social insect behaviour, 
algorithms like Particle Swarm Optimization (PSO) and Ant 
Colony Optimization (ACO) optimize feature selection and rule 
generation for IDS (Balyan et al., 2022).

 • Evolutionary Computation: Techniques such as Genetic 
Algorithms (GA) utilize natural selection principles to optimize 
IDS parameters and improve detection capabilities.

2.1.3.1 Recent advancements in deep learning for IDS
Deep Learning (DL) has emerged as a powerful tool for IDS, with 

architectures such as Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) achieving state-of-the-art 
performance. CNNs are particularly effective at extracting hierarchical 
features from network traffic data, while RNNs, with their ability to 
model temporal dependencies, excel at analysing sequential data such 
as time-series logs (Asharf et al., 2020; Khatkar et al., 2023). Hybrid 
models combining CNNs and RNNs have also shown promise, 
leveraging the strengths of both architectures for enhanced accuracy 
and detection of complex attack patterns (Mynuddin et al., 2024).

Despite their superior performance, DL-based IDS face challenges 
in interpretability. The intricate architectures of these models often 
operate as black boxes, making it difficult for analysts to understand 
their decision-making processes. This trade-off between accuracy and 
interpretability remains a critical area for further research and 
development (Barnard et al., 2024).

2.1.3.2 Limitations and challenges
While ML-based IDS have demonstrated high detection accuracy, 

several challenges persist:

 • False Positives: Despite improvements, many ML-based systems 
generate a significant number of false alarms, burdening analysts.

 • Scalability: The computational demands of ML algorithms, 
especially DL models, can hinder real-time detection in large-
scale networks.

 • Interpretability: Complex ML models often lack transparency, 
making it difficult for security analysts to validate or trust 
their outputs.

2.1.4 Intrusion detection system with machine 
learning and multiple datasets

An upgraded intrusion detection system (IDS) based on machine 
learning (ML) and hyperparameter tuning has shown promise in 
boosting model accuracy and efficacy (Yedukondalu et al., 2021; 
Tsukerman, 2020). This enhanced IDS leverages multiple datasets to 
improve model accuracy, providing a more robust defense against 
cyber threats. Intrusion detection systems are critical for protecting 
networks and data by detecting and responding to unauthorized 
access or malicious activity (Chatterjee, 2021). Given the rising 
complexity and diversity of cyber threats, there is an increasing need 
for IDS systems that can effectively identify and mitigate these 
attacks. ML has emerged as a powerful method for enhancing IDS 
capabilities by automating the detection of patterns and anomalies 
in network traffic data (Cuelogic Technologies, 2019). By analysing 
vast amounts of data and uncovering subtle patterns indicative of 
malicious behaviour, ML-based IDS can improve detection accuracy 
and reduce false positives. Hyperparameter tuning is a vital step in 
developing ML models, as it involves optimizing the parameters that 
control the model’s behaviour, to enhance its performance (Othman 
et al., 2018). By systematically exploring the hyperparameter space 
and selecting the best set of parameters, hyperparameter tuning can 
significantly boost the effectiveness of ML-based IDS. The enhanced 
IDS described in the literature utilizes both ML and hyperparameter 
tuning to improve its accuracy and efficacy. By fine-tuning the 
parameters of the ML models, the IDS can achieve better detection 
accuracy and lower false positive rates, resulting in more reliable and 
effective intrusion detection (Almutairi et al., 2022).

Moreover, the IDS incorporates multiple datasets to enhance the 
accuracy of the models. Training ML models on diverse datasets 
representing different types of network traffic and attack scenarios 
allows the IDS to generalize better and detect a broader range of 
threats (Chatterjee, 2021). This approach increases the robustness and 
resilience of the IDS against evolving cyber threats, ensuring it remains 
effective in real-world deployment scenarios. Overall, the improved 
IDS described in the literature represents a significant advancement 
in intrusion detection technology. By leveraging the power of ML and 
hyperparameter tuning and incorporating multiple datasets, this IDS 
can achieve superior performance in terms of accuracy and efficacy. 
This makes it a valuable tool for enhancing cybersecurity defences in 
today’s complex threat landscape (Barnard et al., 2024). Integrating 
these advanced techniques ensures that the IDS is well-equipped to 
handle the sophisticated and constantly changing nature of cyber 
threats, providing a more secure and reliable network environment.

2.1.4.1 Hyperparameter tuning
Optimizing model hyperparameters, such as learning rates and 

regularization coefficients, significantly enhances performance. This 
systematic exploration of the hyperparameter space ensures that ML 
models achieve optimal detection rates while minimizing false 
positives (Othman et al., 2018).
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2.1.4.2 Multiple datasets
Using diverse datasets enables IDS to detect a broader range of 

threats by exposing models to various attack scenarios. However, 
challenges such as data imbalance and domain adaptation must 
be addressed to maximize the utility of this approach.

2.1.5 Interpretable and explainable intrusion 
detection systems

Interpretable and explainable intrusion detection systems (IDS) 
are becoming increasingly important in the cybersecurity sector 
because they provide insights into the decision-making process behind 
detection mechanisms (Ahmad et al., 2021). By making the reasoning 
behind intrusion detection alerts transparent and understandable to 
human analysts, these systems enhance trust and facilitate more 
effective incident response. One innovative approach to creating an 
interpretable and explainable IDS involves combining expert-written 
rules with dynamic information generated by a decision tree algorithm 
(Barnard et al., 2022). This hybrid method leverages artificial 
intelligence technologies for more effective and sustainable security 
(Alghazali and Hanoosh, 2022). The system integrates the strengths of 
expert-written rules, which are based on domain knowledge and can 
capture specific patterns of known attacks, with the flexibility and 
adaptability of a decision tree algorithm (Mahbooba et  al., 2021). 
Decision trees are inherently interpretable models that recursively 
partition the feature space into regions, making them well-suited for 
explaining the logic behind intrusion detection decisions. In this 
hybrid approach, expert-written rules serve as the initial detection 
rules, providing a foundation for identifying common attack patterns 
(Wali and Khan, 2021). As new data becomes available and the system 
encounters previously unseen threats, the decision tree algorithm 
dynamically generates additional rules based on evolving patterns in 
the data (Mahbooba et al., 2021). This continuous learning process 
allows the IDS to adapt to emerging threats and evolving attack 
techniques, ensuring robust and up-to-date detection capabilities.

By combining expert knowledge with data-driven learning, this 
hybrid approach balances interpretability and effectiveness in intrusion 
detection. Human analysts can easily understand and validate the rules 
generated by the decision tree algorithm, gaining insights into the 
factors influencing intrusion detection decisions (Barnard et al., 2024). 
At the same time, the system leverages the power of artificial intelligence 
to automate the detection process and keep pace with the rapidly 
evolving threat landscape. Moreover, by providing explanations for 
intrusion detection alerts, the system enables human analysts to verify 
the validity of alerts, investigate the root causes of detected anomalies, 
and take appropriate remediation actions (Barnard et al., 2024). This 
enhances the overall effectiveness of cybersecurity operations and 
enables organizations to respond more quickly and decisively to security 
incidents. This hybrid IDS approach improves detection accuracy by 
integrating interpretable and explainable elements. It ensures that the 
decision-making process remains transparent and comprehensible to 
those tasked with protecting critical network infrastructure.

2.2 Challenges in applying XAI to IDS

 • Complexity of Cybersecurity Data: High-dimensional, dynamic, 
and often imbalanced data makes interpretation challenging.

 • Trade-offs with Performance: Simplifying models for 
interpretability may reduce accuracy.

 • Scalability: Many XAI methods are computationally intensive, 
complicating real-time applications in large-scale networks.

Table 1 shows the comparison of IDS approaches, looking at their 
advantages and limitations.

The integration of ML and XAI into IDS represents a significant 
advancement in cybersecurity. However, the trade-offs between 
accuracy, interpretability, and scalability must be addressed to ensure 
these systems are both effective and practical. Future research should 
focus on hybrid approaches combining ML techniques and XAI for 
robust, transparent, and scalable intrusion detection.

2.2.1 Machine learning models

2.2.1.1 Decision trees
These models are popular in IDS due to their simplicity, 

interpretability, and ability to generate human-readable rules for 
classifying network traffic. However, they may suffer from overfitting, 
especially with complex datasets. Researchers have explored 
techniques like pruning and ensemble methods to mitigate these 
issues and improve the robustness of Decision Trees in IDS 
applications (Mahbooba et al., 2021).

2.2.1.2 Gaussian naive Bayes
A probabilistic classifier based on Bayes’ theorem with the 

assumption of feature independence. It is efficient and performs well 
with small datasets, making it suitable for real-time intrusion 
detection scenarios. Its probabilistic nature provides clear explanations 
of how predictions are made.

2.2.1.3 Multilayer perceptron (MLP)
A type of neural network composed of multiple layers of nodes, 

which allows it to learn complex patterns in data. MLPs are useful in 
IDS for detecting sophisticated attack patterns but can be challenging 
to interpret without XAI techniques.

2.2.1.4 CatBoost
A gradient boosting algorithm that is particularly effective for 

categorical data, making it suitable for IDS where network traffic 
features are often categorical. CatBoost offers high performance and 
is designed to handle the complexities of real-world data. However, its 
complexity may pose challenges regarding interpretability 
and transparency.

TABLE 1 Tabular comparison of IDS approaches.

Approach Advantages Limitations

Traditional IDS Simple and interpretable Limited to known attack 

signatures

ML-based IDS High accuracy, adaptive 

to new threats

High false positive rates, 

opaque models

DL-based IDS Superior pattern 

recognition

High computational cost, 

black-box nature

Explainable IDS with 

XAI

Transparency, trust, 

regulatory compliance

Trade-off between 

accuracy and simplicity
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2.2.2 Challenges of black-box models
Despite their often high accuracy in predictions, Black-box 

models pose several challenges in intrusion detection systems (IDS). 
These challenges primarily arise from these models’ intrinsic opacity 
and lack of interpretability, which restrict security analysts’ ability to 
comprehend, validate, and trust the system’s judgments (Mynuddin 
et al., 2024).

2.2.3 Opaque decision-making process
Black-box models, such as deep neural networks (DNNs) and 

ensemble methods, operate by learning complex patterns and 
relationships from large volumes of data (Neupane et al., 2022). 
While these models may achieve impressive performance in 
detecting intrusions, the decision-making process underlying their 
predictions is often opaque and difficult to decipher. Security 
analysts cannot determine which features or factors are driving the 
model’s decisions, making it challenging to validate the correctness 
of detection alerts (Neupane et al., 2022; Mynuddin et al., 2024).

2.2.4 Limited human understanding
The lack of interpretability in black-box models significantly 

hinders human understanding. Security analysts evaluating the 
validity of intrusion detection alerts and taking appropriate remedial 
actions require insights into the rationale behind the system’s decisions 
(Ogino, 2015). Analysts may struggle to trust the system’s outputs and 
hesitate to act on detection alarms without comprehensive 
explanations of how the model makes its predictions.

2.2.5 Difficulty in debugging and troubleshooting
When black-box models produce unexpected or erroneous 

results, diagnosing the underlying causes of these errors can 
be challenging. Without visibility into the internal workings of the 
model, identifying and addressing issues such as data biases, model 
drift, or adversarial attacks becomes a daunting task (Almutairi et al., 
2022). As a result, black-box models may exhibit sub-optimal 
performance or vulnerabilities that go unnoticed, posing risks to the 
security and integrity of the system.

2.2.6 Regulatory compliance and accountability
In many industries, regulatory requirements mandate transparency 

and accountability in decision-making processes, especially for sensitive 
tasks such as intrusion detection. Black-box models may fail to meet 
these requirements, as they lack the transparency necessary to provide 
auditable explanations of their decisions. This can lead to compliance 
challenges and legal liabilities, particularly in highly regulated sectors 
such as finance, healthcare, and government (Sevri and Karacan, 2023).

2.2.7 Resistance to adoption and integration
The opacity of black-box models can lead to resistance to their 

adoption and integration into existing cybersecurity infrastructure. 
Security stakeholders, including analysts, administrators, and 
executives, may be  reluctant to rely on systems whose decision-
making processes they do not fully understand or trust (Othman et al., 
2018). This resistance can impede the deployment of advanced 
intrusion detection solutions and limit the effectiveness of 
cybersecurity defences in mitigating emerging threats.

In conclusion, while black-box models offer high accuracy and 
robust capabilities for intrusion detection, their lack of transparency 

and interpretability presents significant challenges. Addressing these 
issues is crucial for enhancing the trustworthiness, accountability, and 
effectiveness of IDS. As explainable artificial intelligence (XAI) 
advances, there is potential to overcome these challenges by 
developing methods that provide clear and actionable explanations for 
the decisions made by black-box models, thereby improving their 
integration into cybersecurity practices.

2.3 Comparative analysis table

Table 2 below summarises recent works related to ML-based IDS 
integrated with XAI, highlighting their methodologies, datasets used, 
key findings, and how the current study differs or advances the field.

3 Materials and methods

This study employs a comprehensive methodology to develop 
enhanced Intrusion Detection Systems (IDS) by integrating data 
collection, preprocessing, modelling, and evaluation within a unified 
framework. The UNSW-NB15 dataset serves as the foundation for this 
research, with raw network traffic data undergoing systematic 
preprocessing—such as normalization, encoding, and scaling—to 
transform it into a format suitable for effective IDS modelling. A diverse 
range of machine learning models, including traditional approaches like 
Decision Trees and Gaussian Naive Bayes as well as advanced techniques 
such as CatBoost, XGBoost, and Multilayer Perceptron (MLP), are 
applied to assess and improve detection capabilities. To ensure 
transparency in the decision-making process, interpretability techniques 
including SHAP (Shapley Additive Explanations), LIME (Local 
Interpretable Model-agnostic Explanations), and ELI5 are incorporated, 
thereby providing insights into model predictions alongside achieving 
high predictive accuracy. Performance is quantitatively evaluated using 
metrics such as accuracy, precision, recall, F1 score, and ROC curve 
analysis, while the qualitative aspects of model interpretability are also 
carefully considered, given their critical role in the practical adoption 
and usability of IDS in real-world cybersecurity contexts.

By triangulating diverse data sources, preprocessing strategies, 
modelling approaches, and evaluation methods, this research not only 
enhances the credibility, reliability, and validity of its findings but also 
establishes a robust framework for integrating machine learning with 
interpretable models. This structured approach enables a detailed 
examination of how each phase—from data transformation and 
model development to performance assessment—contributes to the 
overall effectiveness of IDS, thereby offering a comprehensive 
roadmap for deploying and understanding ML-based intrusion 
detection systems (as illustrated in Figure 1).

3.1 Data preprocessing and feature 
engineering

The preprocessing stage ensures the dataset is cleaned, transformed, 
and optimized for ML model development. Key steps include:

 • Data Cleaning: Duplicate entries were removed to prevent data 
redundancy and biases.
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 • Feature Selection: The dataset’s 49 features were analysed for 
relevance using techniques like Recursive Feature Elimination 
(RFE) and correlation analysis. Features with low variance or 
high multicollinearity were excluded to improve model 
performance and reduce overfitting.

 • Normalization and Scaling: Numerical features were normalized 
to a standard range using Min-Max scaling. This step ensures that 
features with larger ranges do not dominate those with smaller 
ranges during model training.

 • Encoding: Categorical features, such as protocol types and service 
labels, were transformed into numerical representations using 
one-hot encoding and label encoding, as appropriate.

 • Balancing the Dataset: Class imbalances were addressed using 
Synthetic Minority Oversampling Technique (SMOTE), ensuring 
that all attack types were adequately represented in the 
training data.

3.2 Rationale for model selection

The selection of ML models was driven by their complementary 
strengths and relevance to intrusion detection tasks:

 • Decision Trees: Chosen for their simplicity and interpretability, 
Decision Trees provide clear decision paths that are easily 
understood by security analysts. They are well-suited for initial 
exploration of feature importance.

 • Gaussian Naive Bayes: This probabilistic model is effective for 
high-dimensional data and provides fast classification. Its 
assumptions of feature independence align well with certain 
network traffic scenarios, making it a valuable baseline.

 • CatBoost and XGBoost: These gradient boosting algorithms are 
powerful for handling complex data patterns. CatBoost’s 
automatic handling of categorical features and XGBoost’s 
efficiency in large-scale datasets make them ideal for high-
performance IDS applications.

 • Multilayer Perceptron (MLP): As a neural network-based model, 
MLP excels at capturing non-linear relationships in data. Its 
adaptability makes it suitable for detecting sophisticated 
intrusion patterns.

The combination of these models ensures a balance between 
interpretability, computational efficiency, and detection accuracy. By 
leveraging their unique strengths, the study aims to maximize the 
overall performance of IDS.

3.3 Implementation of XAI techniques

To ensure transparency and interpretability, the following XAI 
techniques were integrated into the ML models:

 • SHAP (Shapley Additive exPlanations): SHAP values were 
computed to quantify the contribution of each feature to model 

TABLE 2 Comparison of recent works on ML-based IDS with XAI.

Study Methodology Dataset Key findings Novelty compared to 
current study

Explainable AI-based 

Innovative Hybrid Ensemble 

Model for Intrusion Detection 

Systems (Wang et al., 2024)

Hybrid ensemble model 

incorporating XAI for IDS

Not specified Improved transparency and 

interpretability in IDS

Current study utilizes specific 

ML algorithms (XGBoost, 

CatBoost, MLP) with SHAP, 

LIME, and ELI5 for detailed 

explanations

Explainable AI for Intrusion 

Detection Systems: LIME and 

SHAP Applicability on Multi-

Layer Perceptron (Wang et al., 

2023)

Application of LIME and SHAP in 

ML-based IDS

Not specified Enhanced transparency and 

interpretability of IDS 

decisions

Current study combines 

multiple XAI tools (SHAP, 

LIME, ELI5) for both global 

and local explanations in IDS

XAI-IDS: Toward Proposing an 

Explainable Artificial 

Intelligence Framework for 

Enhancing Network Intrusion 

Detection Systems (Arreche 

et al., 2024)

End-to-end XAI framework tailored 

for network intrusion detection

Not specified Improved interpretability of AI 

models in network intrusion 

detection tasks

Current study applies XAI 

techniques to specific ML 

models and provides actionable 

insights into key features

Explainable Intrusion 

Detection Systems Using 

Competitive Learning 

Techniques (Ables et al., 2023)

Competitive learning algorithms 

(e.g., Self-Organizing Maps) for 

explainable IDS

NSL-KDD, CIC-IDS-2017 Achieved accuracies slightly 

lower than error-based 

learning models but with 

enhanced explainability

Current study focuses on 

different ML algorithms and 

XAI tools, applied to the 

UNSW-NB15 dataset

Explainable Artificial 

Intelligence for Intrusion 

Detection Systems: A 

Comprehensive Survey (Patel 

and Shah, 2023)

Comprehensive survey on XAI 

techniques applied to IDS

Various Provided an extensive 

overview of XAI methods and 

their applicability in enhancing 

IDS transparency

Current study offers empirical 

analysis by applying specific 

XAI techniques to selected ML 

models on the UNSW-NB15 

dataset
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predictions. This global interpretability technique provided 
insights into how individual features influenced classification 
decisions across the dataset.

 • LIME (Local Interpretable Model-agnostic Explanations): LIME 
was employed to generate localized explanations for specific 
predictions. By approximating the behaviour of complex models 
with simpler interpretable models, LIME enabled analysts to 
understand why certain instances were classified as attacks.

 • ELI5: This tool provided intuitive visualizations of feature 
importance and model behaviour. Using techniques like 
permutation importance, ELI5 highlighted the most critical 
features driving model predictions, making it easier for analysts 
to validate results.

The integration of these techniques involved post-hoc analysis, 
ensuring that the explanations did not interfere with the models’ 
predictive performance. For example, SHAP and LIME were applied 
after model training to analyse predictions on test data, while ELI5 
offered feature importance visualizations during and after training.

3.4 Datasets

The initial step in our research to enhance Intrusion Detection 
Systems (IDS) with machine learning and interpretable models 
involves acquiring the UNSW-NB15 dataset. Recognized as a 
benchmark in cybersecurity research, this dataset forms the empirical 
backbone for our model development. It is sourced from reputable 
platforms, including the Australian Centre for Cyber Security (ACCS) 
and the UNSWNB15 GitHub repository, ensuring the integrity and 
reliability of the data. The UNSW-NB15 dataset is meticulously 
curated, encompassing a broad spectrum of network behaviours 

encapsulated in 49 distinct features, detailed in the UNSWNB15-
features.csv file. The comprehensive dataset includes 2,540,044 records 
across four CSV files, representing various normal activities and 
synthetic attack behaviours. Each feature captures specific aspects of 
network traffic, which is vital for distinguishing between benign and 
malicious activities.

The dataset categorizes network activities into 10 distinct types of 
attacks—such as Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 
Reconnaissance, Shellcode, Normal attacks and Worms—through its 
class labels. These labels are crucial for training our models to 
accurately identify and respond to various security threats, providing 
a robust foundation for enhancing IDS capabilities with advanced 
machine-learning techniques and A thorough understanding of the 
class distribution is essential for assessing the performance of ML 
models in an IDS context (Table 3).

3.4.1 Models
This study implemented several machine learning models to 

enhance Intrusion Detection Systems (IDS) using the UNSW-
NB15 dataset. The models include Decision Trees, CatBoost, 
Gaussian Naive Bayes, XGBoost, and Multilayer Perceptron 
(MLP). The Decision Tree and XGBoost models are selected as 
benchmarks to facilitate robust performance comparisons across 
the different models. These models are well-suited for handling the 
complexities of network traffic data, offering a strong baseline for 
evaluating the performance of more advanced models like 
CatBoost and Multilayer Perceptron. In addition to these models, 
interpretability techniques such as SHAP (SHapley Additive 
exPlanations) and LIME (Local Interpretable Model-agnostic 
Explanations) were integrated to ensure that the models achieve 
not only high predictive accuracy but also provide transparent, 
interpretable insights into their decision-making processes. These 

FIGURE 1

Intrusion detection system framework.
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interpretability techniques are critical for addressing machine 
learning models’ “black-box” nature, making the enhanced IDS 
more trustworthy and actionable in real-world 
cybersecurity contexts.

3.4.1.1 Decision trees
Decision Trees are a non-parametric supervised learning method 

for classification and regression tasks. They work by splitting the data 
into subsets based on the value of the input features, recursively 
partitioning the feature space.

The decision at each node is based on the impurity, calculated 
using the Gini impurity (for classification) or variance reduction (for 
regression), as can be seen in Equation 1:

 
( ) ( )

=
= −∑ 2

1
1 |

c

i
I t p i t

 
(1)

In this equation:

 • ( )I t  is the impurity of node t.
 • ( )|i t is the proportion of samples that belong to class c at node t.

How the impurity value is used for decision making:

 1. Initial Impurity Calculation: At each split, the algorithm 
calculates the impurity of a node using the Gini formula.

 2. Finding the Best Split: The model evaluates different features 
and thresholds to see which split leads to the largest reduction 
in impurity (also called the Gini Gain).

 3. Splitting the Node: The feature and threshold that provide the 
lowest impurity after splitting are selected.

 4. Repeating Until Stopping Criteria are Met: The process 
continues recursively until a stopping condition is met.

3.4.1.1.1 Gini impurity
For classification tasks, the Gini impurity is used to measure the 

impurity of a node. It quantifies the likelihood of an incorrect 
classification of a randomly chosen element if it was randomly labelled 
according to the distribution of labels in the node.

3.4.1.1.2 Variance reduction
For regression tasks, variance reduction is used instead of Gini 

impurity. It measures the reduction in the variance of the target 
variable after splitting the data based on an input feature. The goal is 
to minimize the variance within each subset.

3.4.1.1.3 Recursive partitioning
The process of building a decision tree involves recursively 

partitioning the feature space:

 1. Select the Best Split: At each node, choose the feature and 
threshold that result in the highest reduction in impurity.

 2. Create Sub-nodes: Split the data into subsets based on the 
chosen feature and threshold.

 3. Repeat: Recursively apply the same process to each subset until 
a stopping criterion is met (e.g., maximum depth, minimum 
number of samples per node).

Decision Trees are intuitive and easy to interpret, making them 
popular for many machine learning tasks.

3.4.1.2 XGBoost (extreme gradient boosting)
XGBoost is a decision-tree-based ensemble machine learning 

algorithm that uses a gradient-boosting framework. It is known for its 

TABLE 3 UNSW-NB15 attack types and description.

Attack type Description Number of records

Fuzzers
Attempts to discover security vulnerabilities by injecting massive amounts of random data (fuzz) into the system to 

cause it to crash or behave unexpectedly.

24,246

Analysis
Involves reconnaissance and probing attacks such as port scanning and IP sweeps aimed at gathering information 

about the network for future attacks.

2,677

Backdoors
Involves the use of unauthorized access points that bypass normal authentication mechanisms to gain control over the 

system.

1,746

DoS
Denial of Service (DoS) attacks aim to make a machine or network resource unavailable to its intended users by 

overwhelming it with a flood of illegitimate requests.

16,353

Exploits
Involves the use of known vulnerabilities in software to gain unauthorized access or escalate privileges on the affected 

system.

44,525

Generic
Refers to attacks that are designed to work across multiple platforms or software applications, often targeting 

encryption weaknesses.

215,481

Reconnaissance
Involves information-gathering activities such as network scanning to identify active hosts and open ports within a 

network.

13,987

Shellcode
Refers to a small piece of code used as the payload in the exploitation of a software vulnerability, often to execute 

arbitrary commands on the affected system.

1,511

Worms
Self-replicating malware that spreads across computers in a network without user intervention, often consuming 

bandwidth and overloading systems.

174

Normal Represents legitimate network traffic that does not exhibit any malicious behaviour. 2,218,761
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efficiency and performance in handling large datasets. The objective 
function for XGBoost is shown in Equation 2 as:
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In this equation:

 • ( )θObj  is the objective function that XGBoost aims to minimize.
 • ( )

ˆ ,i iy y  is a differentiable convex loss function measuring the 
difference between the prediction ˆ ,iy  and the actual value iy .

 • ( )Ω kf  is the regularization term to control the complexity of 
the model.

The objective function consists of two main components:

 1. Loss Function: This part of the objective function measures 
how well the model’s predictions match the actual values. 
Common loss functions include Mean Squared Error (MSE) 
for regression tasks and Log Loss for classification tasks.

 2. Regularization Term: This part of the objective function helps 
control the model’s complexity by adding a penalty for more 
complex models. This helps to prevent overfitting and ensures 
that the model generalizes well to new data.

XGBoost’s efficiency and performance come from its ability to 
handle large datasets and implement various optimization techniques, 
such as parallel processing and tree pruning. These features make it a 
popular choice for many machine learning tasks.

3.4.1.3 CatBoost
CatBoost (Categorical Boosting) is a gradient-boosting 

algorithm that handles categorical variables efficiently. It is known 
for delivering high performance with minimal data preprocessing. 
The objective function looks the same for both CatBoost and 
XGBoost, but their internal implementations and how they optimize 
for performance differ. The objective function for CatBoost is shown 
in Equation 3:
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In this equation:

 • ( )θObj  is the objective function that CatBoost aims to minimize.
 • ( )

ˆ ,i iy y  is the loss function, which measures the difference 
between the prediction ˆ ,iy  and the actual value iy .

 • ( )Ω kf  is the regularization term, which penalises the complexity 
of the model to prevent overfitting.

The objective function consists of two main components:

 1. Loss Function: This part of the objective function measures 
how well the model’s predictions match the actual values. 

Common loss functions include Mean Squared Error (MSE) 
for regression tasks and Log Loss for classification tasks.

 2. Regularization Term: This part of the objective function helps 
to control the complexity of the model by adding a penalty for 
more complex models. This helps to prevent overfitting and 
ensures that the model generalizes well to new data.

CatBoost’s efficiency in handling categorical variables comes from 
its ability to process these variables directly without needing extensive 
preprocessing, such as one-hot encoding. This makes it particularly 
useful for datasets with many categorical features.

3.4.1.4 Gaussian Naive Bayes
Gaussian Naive Bayes is a probabilistic classifier that assumes the 

features follow a Gaussian distribution and are conditionally 
independent given the class label, the probability of a class y  given the 
features X is shown in Equation 4:
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In this equation:

 • ( )|P y X  is the posterior probability of class y given the features X.
 • ( )P y  is the prior probability of class y .
 • ( )|iP x y  is the likelihood of feature ix  given class y .
 • P(X) is the marginal likelihood of the features X.

The Gaussian Naive Bayes classifier assumes that each feature ix  
follows a Gaussian (normal) distribution. The likelihood ( )|iP x y  can 
be  computed using the Gaussian probability density function as 
shown in Equation 5:
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Where:

 • µy  is the mean of the feature ix  for class y .
 • σ y  is the standard deviation of the feature ix  for class y .

The assumption of conditional independence means that the joint 
probability ( )|P X y  can be decomposed into the product of individual 
probabilities ( )|iP x y . This simplifies the computation and makes the 
classifier efficient.

3.4.1.5 Multilayer perceptron (MLP)
A Multilayer Perceptron (MLP) is a type of feedforward artificial 

neural network consisting of multiple layers of nodes, including an 
input layer, one or more hidden layers, and an output layer. The 
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general equation for the output of an MLP at an arbitrary layer i is 
given by Equation 6 and Equation 7:

 ( ) ( ) ( ) ( )−= +1i i i iZ W A b  (6)
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(7)

Where:

 • ( )iZ  is the weighted sum of inputs at layer i.
 • ( )iA  is the activation output at layer i.
 • ( )iW  is the weight matrix for layer i.
 • ( )ib  is the bias vector for layer i.
 • f is the activation function (e.g., ReLU, sigmoid, tanh).

The final output of the MLP can be expressed as:

 
( ) ( ) ( )( )−= +1ˆ L L Ly f W A b

 
(8)

Where L  represents the output layer.

3.4.1.5.1 Components of MLP

 1. Hidden Layers: One or more hidden layers process the inputs 
through weighted connections. Each hidden layer applies an 
activation function to introduce non-linearity.

 2. Input Layer: The input layer receives the input features X.
 3. Output Layer: The output layer produces the final prediction ŷ.

3.4.1.5.2 Activation function
The activation function f introduces non-linearity into the model, 

allowing it to learn complex patterns. Common activation 
functions include:

 • ReLU (Rectified Linear Unit): ( ) ( )=max 0,f x x  which is used in 
hidden layers to prevent vanishing gradients.

 • Sigmoid: ( ) −
=

+

1
1 xf x

e
 which converts inputs into probabilities 

(range: 0 to 1).
 • Tanh: ( ) ( )= tanhf x x  often used in hidden layers as an 

alternative to sigmoid.

3.5 Evaluation methodologies

The models will be  evaluated using several key metrics, each 
providing insight into different aspects of performance. True positives 
(TP) refer to instances correctly classified as positive, while false 
positives (FP) represent cases where the model incorrectly labels a 
negative instance as positive. Similarly, false negatives (FN) occur 
when positive instances are mistakenly classified as negative, and true 
negatives (TN) denote cases where negative instances are 
correctly identified.

 • Accuracy: Measures the overall correctness of the model, 
calculated as the ratio of correct predictions (both true positives 

and true negatives) to the total number of predictions made as 
shown in Equation 9.
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Accuracy is one of the most straightforward evaluation metrics 
and provides a general sense of how well the model is performing. It 
is particularly useful when the classes are balanced, meaning the 
number of instances in each class is roughly equal. However, accuracy 
can be misleading in cases where the class distribution is imbalanced.

 • Precision: Assesses the model’s ability to identify only relevant 
instances, calculated as the ratio of true positives to the sum of 
true positives and false positives as shown in Equation 10.

 
=

+
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Precision is a crucial metric, especially in scenarios where the cost 
of false positives is high. It measures the accuracy of the positive 
predictions made by the model. High precision indicates that the 
model has a low false positive rate, meaning it is good at identifying 
only the relevant instances.

 • Recall: Measures the model’s ability to identify all actual positives, 
calculated as the ratio of true positives to the sum of true positives 
and false negatives as shown in Equation 11.

 
=

+
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Recall, also known as sensitivity or true positive rate, is a crucial 
metric in scenarios where it is important to identify all positive 
instances. It measures the model’s ability to capture all actual positives 
in the dataset. High recall indicates that the model has a low false 
negative rate, meaning it successfully identifies most of the 
positive instances.

 • F1-score: The harmonic mean of precision and recall, providing 
a balance between the two metrics. It is particularly useful when 
the class distribution is imbalanced as shown in Equation 12.

 

∗
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Recall Precision  
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 • AUC-ROC (The area under the Receiver Operating Characteristic 
curve), representing the model’s ability to discriminate between 
classes at various threshold settings as shown below. A higher 
Area under the Receiver Operating Characteristic curve (AUC-
ROC) value indicates better model performance in distinguishing 
between positive and negative classes.
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3.5.1 Explainable AI (XAI) application
XAI Techniques: Techniques such as LIME (Local Interpretable 

Model-agnostic Explanations), ELI5 (Explain Like I’m 5), and SHAP 
(SHapley Additive exPlanations) will be  applied to the models’ 
predictions on the test set. These techniques provide clear, 
understandable explanations for the models’ decisions, highlighting 
the features and patterns influencing classification outcomes.

3.5.2 Quality assessment of explanations
The explanations generated by XAI techniques will be evaluated 

based on the following criteria:

 • Clarity: How easily can the explanations be understood by users, 
especially those who may not be familiar with the underlying 
machine learning models?

 • Consistency: Are the explanations stable and consistent across 
different instances, providing reliable insights?

 • Relevance: How useful are the explanations in providing 
actionable insights to help decision-making or improve 
the model?

This structured evaluation approach ensures that both the 
performance of the models and the quality of their interpretability are 
rigorously assessed, providing a comprehensive understanding of the 
effectiveness of the machine learning classifiers and the XAI 
techniques used in enhancing Intrusion Detection Systems.

4 Results and discussion

4.1 Descriptive analysis

After applying the data preprocessing and transformation 
methods described in the materials and methods section. The training 
set was left with 175,341 records and 82,332 records in the testing set. 
This dataset contained 10 types of attacks: Fuzzers, Analysis, 
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, 
Normal attacks and Worms. The response variable in this dataset is 

attack_cat, which classifies each record as either normal (label 0) or 
an attack (label 1). The dataset also includes 39 numeric features. 
Figure 2 and Figure detail the distribution and values of each attack 
class, highlighting that while some attack types are well-represented, 
others are underrepresented. There are some sampling techniques to 
deal with this, however in this study this issue will be ignored because 
the aim is to implement several ML models to compare their 
performance (Figure 3).

4.2 Model evaluation

For each model, we  evaluated the ROC’s accuracy, precision, 
recall, F1 score, and AUC value. These metrics provide insight into the 
effectiveness of the models in classifying network traffic as either 
normal or an attack.

Table  4 displays the performance of each model in terms of 
accuracy, precision, recall, F1 score, ROC-AUC, False Positive Rate 
(FPR) and False Negative Rate (FNR) The performance of the models 
varied slightly, with CatBoost, and Decision Tree classifiers achieving 
the highest accuracy of 87%. The MLP and XGBoost classifiers 
followed closely behind, with Gaussian Naïve Bayes performing 
slightly lower.

4.3 Model accuracy and sensitivity

The reported accuracy of 87%, while competitive, reflects the 
challenges inherent in IDS. This application’s sensitivity demands 
rigorous attention to false positive and false negative rates:

 • False Positive Rate (FPR): A lower FPR is crucial to reduce 
unnecessary alarms, ensuring security analysts focus on genuine 
threats. For instance, CatBoost and Decision Tree models 
demonstrated a low FPR of 0.07, making them suitable for 
operational deployment.

 • False Negative Rate (FNR): A high FNR can result in missed 
detections, posing a significant risk. The XGBoost model, with an 

FIGURE 2

Attack categories distribution in training data.
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FNR of 0.11, balances detection accuracy with 
acceptable sensitivity.

In sensitive applications, the trade-off between FPR and FNR is 
pivotal. This study prioritizes models that achieve a balance, ensuring 
minimal disruption while maintaining robust security measures.

4.4 Practical implications of XAI-enhanced 
IDS

The inclusion of XAI techniques greatly enhances the 
interpretability of ML models for intrusion detection. This 
transparency allows security analysts to:

 • Identify Root Causes: Understand why a particular record was 
classified as an attack, aiding in quick response.

 • Reduce False Alarms: Validate predictions and reduce time spent 
on false positives.

 • Facilitate Regulatory Compliance: Meet transparency 
requirements in sensitive cybersecurity environments.

4.5 Decision tree classifier

The feature importance for the top 10 features was graphed with 
both the sci-kit learn library and ELI5’s Permutation Importance 
toolkit. Feature importance is calculated as the decrease in node 
impurity weighted by the probability of reaching that node. The most 

important features will be  higher in the tree-like visualization 
generated. It helps to understand which features influence the model’s 
predictions most. It can assist in improving model performance by 
focusing on the most important features, reducing dimensionality, or 
interpreting the model’s decisions. Figures  4a,b show the relative 
contribution of each feature in making predictions for the Decision 
Tree model. In this case, the feature sttl (Source-to-Destination Time-
to-Live) stands out as the most influential feature, contributing 
significantly more than any other feature, including ct_srv_dst 
(Destination Service Count) and sbytes (Source Bytes). This 
dominance suggests that the network traffic characteristic related to 
TTL (the time limit for a data packet in the network) plays a critical 
role in distinguishing between normal and attack behaviours. It 
indicates that attackers might be distinctively manipulating the TTL 
values compared to normal traffic.

In Figure 5 the structure of the Decision Tree with a depth of 3 
nodes. The root node splits on sttl, reaffirming its critical role in 
decision-making. Further splits are based on sinpkt (Source Inter-
Packet Arrival Time) and smean (Source Mean Time). The structure 
of this tree shows how the decision tree classifier simplifies the 
decision-making process, using key features to progressively narrow 
down the possible classifications. Each split represents a decision point 
where the model evaluates a feature’s value to determine whether the 
sample should be classified as an attack or normal behaviour.

The Decision Tree classifier has proven to be an effective model 
for classifying network traffic into normal or attack categories, with 
key features like sttl and ct_dst_sport_ltm playing a critical role. The 
visualizations from the SHAP and Decision Tree nodes provide deeper 
insights into how these features influence the model’s decisions. 

FIGURE 3

Attack classes distribution.

TABLE 4 Performance metrics of machine learning models.

Model Accuracy Precision Recall F1 Score ROC AUC False 
positive rate

False negative 
rate

Decision Tree 87% 0.85 0.88 0.86 0.92 0.07 0.12

MLP Classifier 85.98% 0.84 0.87 0.85 0.91 0.09 0.13

XGBoost 86.87% 0.85 0.88 0.86 0.93 0.08 0.11

Gaussian Naive 

Bayes

73% 0.70 0.75 0.72 0.83 0.15 0.25

CatBoost 87% 0.86 0.88 0.87 0.94 0.07 0.12
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Moreover, the feature importance graph from the Scikitlearn and ELI5 
Permutation Importance confirms that the Decision Tree model 
consistently relies on specific features to distinguish between normal 
and attack traffic. The model’s reliance on sttl suggests that attackers 
are likely altering TTL values, making this feature an essential 
indicator for intrusion detection.

Figure 6a provides a comprehensive view of the most influential 
features and how they impact the model’s output. Features like ct_dst_
sport_ltm and sttl are shown to have the highest average impact on the 
model’s output, suggesting that they are driving the Decision Tree’s 
predictions. This SHAP analysis offers a detailed perspective by 

showing the importance of features and their direction of influence. 
For example, certain features with high SHAP values contribute 
positively to classifying a record as an attack, while lower values push 
the classification towards normal behaviour. Figure 6b depicts the 
SHAP force plot provides a visualization of how specific feature values 
contribute to the final prediction for a single sample. In this case, 
features such as ct_dst_sport_ltm and sttl push the prediction towards 
attack, while features like ct_srv_dst and ct_srv_src influence the 
prediction towards normal. This force plot helps explain why the 
model made a particular prediction for a single data point, which is 
crucial for model transparency.

FIGURE 4

Feature importance. (a) Feature importance using sci-kit learn; (b) Feature Importance using ELI5.
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4.6 XGBoost

The XGBoost classifier was trained and evaluated on the UNSW-
NB15 dataset for intrusion detection, aiming to classify network traffic 
into normal or one of several attack types. The model achieved an 
accuracy of 86.87%, demonstrating its effectiveness in detecting 
various attacks within the network traffic. The relatively high accuracy 
indicates that XGBoost can distinguish between normal and attack 
traffic within the dataset. However, the true power of the model lies 
not only in its performance but also in its interpretability through 
SHAP analysis.

SHAP (SHapley Additive exPlanations) was employed to provide 
insights into the contribution of individual features toward the 
classification output. By breaking down the prediction, SHAP allows 
us to understand the significance of each feature in both global and 
local contexts. The SHAP summary plot Figure 7a displays the global 
importance of features across all predictions. The top features 
identified by SHAP are:

 • ct_dst_sport_ltm (long-term count of destination sport): This 
feature has the highest average impact on the model’s output, 
suggesting it plays a crucial role in differentiating between attack 
and normal behaviour.

 • sttl (source-to-destination time to live): This feature is 
consistently important across the dataset, indicating the 
significance of time-to-live values in network traffic analysis.

 • ct_srv_src (count of source service): This feature highlights the 
importance of the type of services involved in network traffic 
when determining whether a packet is part of an attack.

Figure 7b shows a SHAP dependence plot for the sttl feature, 
revealing its interaction with another significant feature, ct_srv_src. 
The plot demonstrates that the SHAP value also rises as the sttl value 
increases, indicating a higher likelihood of an attack. This interaction 
is further enhanced by the ct_srv_src value, which influences the 
overall prediction in conjunction with sttl. This plot highlights the 
nonlinear nature of the relationships between features and their 
impact on the model’s prediction, making it crucial to consider feature 
interactions rather than isolated feature importance. The SHAP 
interaction plot Figure 7c reveals how pairs of features combine to 
influence the model’s prediction. For example, the interaction between 
ct_dst_sport_ltm and ct_srv_src shows how these two features 
collectively contribute to the likelihood of an attack. The intensity of 
interaction between certain features can provide deeper insights into 
the decision-making process of the XGBoost classifier. Reveals how 
pairs of features combine to influence the model’s prediction. For 
example, the interaction between ct_dst_sport_ltm and ct_srv_src 
shows how these two features collectively contribute to the likelihood 
of an attack. The intensity of interaction between certain features can 
provide deeper insights into the decision-making process of the 
XGBoost classifier.

Figure 7d illustrates how specific features contributed to a single 
classification prediction. For this data point, the prediction was 
classified as an attack with a high probability due to the influence of 
features like sttl, ct_dst_sport_ltm, and smean. This local explanation 
highlights which features pushed the prediction towards an attack to 
the decision-making process of the XGBoost classifier. In Figure 7e, 
the feature importance plot reveals the relative importance of the top 
features used by the XGBoost classifier. It provides a holistic view of 

FIGURE 5

Decision tree visualization—depth 3.
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which features significantly impacted the classifier’s performance 
across the entire dataset. Notably, ct_dst_sport_ltm and sttl were 
consistently among the top contributors, confirming their critical role 
in distinguishing between normal and attack behaviour.

The SHAP analysis of the XGBoost classifier shows that the model 
effectively captures complex relationships within the network traffic 
data, particularly through features like ct_dst_sport_ltm and sttl. The 
combination of these features allows the model to distinguish between 
normal and malicious traffic with high accuracy. The explainability 
provided by SHAP helps validate the model’s decisions and offers 
actionable insights into which network behaviours are most indicative 
of attacks. In summary, XGBoost combined with SHAP provides both 
high performance and transparency, making it a powerful tool for 
intrusion detection in IoT-based network environments.

4.7 Multilayer perceptron

The Multilayer Perceptron (MLP) classifier was also trained and 
tested on the UNSW-NB15 dataset to classify network traffic as either 
normal or one of several attack types. The MLP classifier achieved an 

accuracy of 85.98%, reflecting its capacity to handle the non-linear 
patterns present in the data. The high accuracy indicates that the MLP 
classifier is strong in detecting attack behaviours in network traffic, 
although it is slightly lower than the XGBoost classifier’s performance. 
This trade-off comes with the potential for better generalization in 
certain instances due to the deep learning nature of MLP models.

To enhance the interpretability of the MLP classifier, the LIME 
(Local Interpretable Model-Agnostic Explanations) library was 
utilized. LIME provides local explanations for individual predictions, 
making it possible to understand the specific features that contributed 
to each prediction. The LIME explanation shown in Figure 8 highlights 
a case where the MLP classifier correctly predicted the class as 
“Normal” with a probability of 1.00. The true class was also “Normal,” 
which confirms the accuracy of the model for this data point. In this 
instance, the following features contributed the most to the prediction:

 • The most influential feature in predicting the attack was sttl 
(0.72), which had the highest positive contribution.

 • Other contributing factors include ct_ftp_cmd (−0.09), ct_dst_
ltm (−0.56), is_ftp_login (−0.09), is_sm_ips_ports (−0.11), 
dbytes (−0.09), and spkts (−0.12)

FIGURE 6

(a) SHAP summary plot for decision tree (b) SHAP Force plot for decision tree.
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 • Some features, like ct_dst_sport_ltm (−0.45) and dload (−0.26), 
pushed the classification in the opposite direction but were 
outweighed by attack-contributing features.

The LIME explanation for the MLP classifier shows that several 
key features, like those identified in other models like XGBoost and 
Decision Trees, influence the model’s predictions. The MLP classifier’s 
ability to generalize non-linear patterns in the data makes it effective 
for distinguishing between normal and attack traffic. The use of deep 
learning helps capture subtle patterns in the network traffic that 
simpler models may not as easily discern. In summary, while the MLP 
classifier performs well, its effectiveness is further enhanced by LIME, 

which offers interpretable explanations for its predictions. This 
combination of high performance and interpretability makes the MLP 
classifier a valuable tool in building machine learning-based intrusion 
detection systems.

4.8 CatBoost

The CatBoost classifier was employed to classify network traffic as 
either normal or attack based on the UNSW-NB15 dataset. CatBoost, 
known for its efficient handling of categorical data and strong 
performance on a variety of datasets, achieved an accuracy of 87%, 

FIGURE 7

(a) SHAP plot for XGBoost (b) SHAP Dependence Plot (XGBoost) (c) SHAP interaction plot (XGBoost) (d) SHAP classification plot (XGBoost) (e) SHAP 
XGBoost feature importance plot.
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placing it among the top-performing models in this study. The high 
accuracy of the CatBoost classifier reflects its ability to effectively 
differentiate between normal and malicious network behaviour. 
CatBoost’s inherent strength in managing categorical features directly 
within the model contributed to this high level of performance. Like 
the MLP classifier, the CatBoost model’s predictions were analysed 
using the LIME (Local Interpretable Model-Agnostic Explanations) 
library to provide insights into the key features influencing the 
model’s decisions.

In the instance shown in Figure 9, the CatBoost classifier correctly 
predicted the traffic as “Attack” with a probability of 1.00. The true 
class was also “Attack,” confirming the model’s accuracy for this 
instance. The following features had the most significant impact on 
the CatBoost classifier’s prediction:

 • sttl (0.72): The source-to-destination time-to-live value had the 
highest positive contribution towards classifying the traffic as 
an attack.

 • ct_state_ttl (0.73): The state of the time-to-live value also had a 
significant positive impact on the classification.

 • ct_srv_src (−0.31): The number of source-to-server connections 
contributed negatively to the prediction.

 • ct_srv_dst (−0.29): The number of destination-to-server 
connections similarly had a negative impact on the 
model’s decision.

 • tcprtt (−0.52): The TCP round-trip time negatively influenced 
the classification.

The combination of these features drove the model towards 
predicting the sample as an attack. Sttl and ct_state_ttl emerged as the 
strongest indicators of attack traffic in this instance, as both had high 
positive impacts on the final prediction. CatBoost’s strong 
performance is underscored by its ability to handle both numerical 
and categorical features effectively, making it a robust choice for 

network traffic analysis. The LIME explanation further enhances the 
transparency of the CatBoost classifier by revealing the most 
influential features in the decision-making process. In this instance, 
the sttl feature, representing the time-to-live value, had the largest 
impact on the classifier’s decision. This is consistent with findings 
from other models, such as the Decision Tree and XGBoost classifiers, 
where sttl was also identified as a critical feature. The fact that multiple 
models converge on the importance of sttl indicates that this feature 
is a strong indicator of malicious behaviour in the UNSW-NB15 
dataset. CatBoost’s advantage in handling categorical variables without 
extensive preprocessing simplifies the modelling process and reduces 
the risk of losing valuable information during transformation. This 
model’s robustness, coupled with its high interpretability via LIME, 
provides strong support for its use in intrusion detection systems 
where accuracy and transparency are essential. In summary, CatBoost 
not only performed well in terms of predictive accuracy but also 
offered valuable insights into the decision-making process through 
LIME, making it an excellent candidate for practical deployment in 
machine learning-based intrusion detection systems.

4.9 Gaussian naive Bayes

The Gaussian Naive Bayes (GNB) model achieved an accuracy of 
73%, which reflects its moderate effectiveness in classifying network 
traffic as either normal or an attack. Although its accuracy is lower 
compared to other models evaluated in this study, GNB’s simplicity 
and efficiency make it a viable option for real-time intrusion detection 
systems where speed is paramount. The performance of the GNB 
model was further assessed using the Receiver Operating 
Characteristic (ROC) curve, which yielded an area under the curve 
(AUC) score of 0.83. This suggests that the model can reasonably 
distinguish between benign and malicious network activity. As shown 

FIGURE 8

SHAP MLP classification plot.
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in Figure 10, the ROC curve reveals a solid trade-off between true 
positive and false positive rates, positioning the GNB model as a 
reliable classifier in network security tasks despite its relatively 
lower accuracy.

Figure 11a highlights which specific features contributed most to 
a particular classification of “Attack.” The key factors in this 
example include:

 • ct_srv_src and ct_srv_dst: These service-related features are 
crucial in determining the likelihood of an attack.

 • sload and sbytes: The load and bytes sent during the connection 
were significant in making the attack classification.

 • sinpkt, dur, and ct_dst_ltm: These features, related to packet 
characteristics and duration, further suggest the model captures 
temporal and size-related aspects of network traffic to 
classify behaviour.

Using LIME, we  also examined individual predictions to 
understand the decision-making process at a granular level. Figure 11b 
highlights a specific instance where the model classified network 
traffic as an attack. Features such as ct_srv_src, sload, and ct_srv_dst 
were critical in pushing the prediction towards an attack classification. 
The local explanation shows the contribution of each feature, offering 
transparency into why the model classified a given traffic instance as 
malicious. This level of interpretability is crucial, as it allows us to 
verify the model’s reasoning and detect false positives or negatives 
more effectively.

While the Gaussian Naive Bayes model achieved a modest 
accuracy of 73%, its speed and interpretability excel, making it a 
valuable addition to an ensemble of machine learning models for 
network intrusion detection. Its AUC score of 0.83 demonstrates an 
adequate ability to differentiate between normal and attack traffic, and 
the feature importance and local explanation tools provide critical 
insights into how the model arrives at its decisions. This transparency 
can significantly enhance the model’s usability in operational 
environments, where quick and understandable decisions are 
necessary for proactive cybersecurity measures.

The results of this study illustrate the effectiveness of various 
machine learning models in classifying network traffic for intrusion 
detection within the UNSWNB15 dataset. Each model demonstrated 
distinct performance, interpretability, and usability strengths with 
varying degrees of success. The XGBoost model emerged as the top 
performer in accuracy and interpretability, aided by SHAP 
explainability techniques that provided granular insights into feature 
importance and interaction effects. Its balance of precision and recall 
and its robust handling of complex feature relationships make it a 
powerful tool for detecting sophisticated cyber-attacks. Similarly, the 
CatBoost model showed strong classification capabilities, offering 
high predictive accuracy and reliable explainability through the LIME 
framework. Its ability to maintain high performance across diverse 
attack types, combined with intuitive model interpretations, positions 
it as an asset in building transparent and effective intrusion detection 
systems. Although less interpretable, the Multilayer Perceptron (MLP) 
performed admirably in terms of accuracy. The application of LIME 
provided local explanations for individual predictions, aiding in 
understanding this otherwise “black-box” model. With its inherently 
interpretable structure, the Decision Tree model also proved effective, 
particularly when paired with ELI5 for feature importance analysis. 
This model’s ability to visualize decision paths enhances its practical 
applicability in cybersecurity. Lastly, while achieving a lower accuracy 
of 73%, the Gaussian Naive Bayes model stands out for its simplicity 
and speed, making it suitable for real-time applications. Its 
performance was bolstered using the importance of permutation 
features and local explanations, which clarified its decision processes, 
despite its modest predictive power.

In conclusion, each model offered unique performance, speed, 
and interpretability advantages. XGBoost and CatBoost emerged as 
the most reliable classifiers for high-stakes cybersecurity environments 
due to their superior accuracy and advanced explainability tools. 
Meanwhile, the simplicity and interpretability of Decision Tree and 
Gaussian Naive Bayes models provide an accessible pathway for 
operational deployment where real-time responses are critical. 
Including explainability techniques, such as SHAP, LIME, and ELI5, 
has proven essential in providing transparency to these machine 

FIGURE 9

LIME explanation for a single prediction using CatBoost.
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FIGURE 10

Gaussian naive ROC curve.

FIGURE 11

(a) Local explanation for class attack. (b) Local explanation of predictions.
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learning models, ultimately increasing trust and facilitating their 
adoption in the ever-evolving field of network intrusion detection.

4.10 Strengths and weaknesses of the 
proposed approach

The proposed approach offers several strengths:

 1. High Interpretability: By integrating XAI tools such as SHAP, 
LIME, and ELI5, the models provide both global and local 
explanations, enabling analysts to understand the key drivers 
behind predictions.

 2. Feature Insights: The emphasis on feature importance 
highlights actionable indicators, such as sttl and ct_dst_sport_
ltm, aiding in proactive threat mitigation.

 3. Performance Balance: Models like CatBoost and XGBoost 
achieve high accuracy while maintaining transparency, 
addressing the trade-off between accuracy and interpretability.

However, the approach also has limitations:

 1. Complexity of XAI Integration: Incorporating XAI tools 
requires additional computational resources and expertise, 
which may limit applicability in resource-
constrained environments.

 2. Limited Dataset Scope: The evaluation relies solely on the 
UNSW-NB15 dataset, which may not capture all real-world 
intrusion scenarios.

 3. False Negative Sensitivity: While false positives are minimized, 
false negatives in certain models could result in missed 
detections of advanced threats.

4.11 Real-world application case

The proposed models were applied to a simulated enterprise 
network environment to evaluate practical effectiveness. By deploying 
the XGBoost model with SHAP analysis, security analysts were able to:

 • Quickly identify key features influencing attack classifications, 
such as TTL manipulation by attackers.

 • Reduce false positives by validating predictions with 
transparent explanations.

 • Enhance incident response times through actionable insights 
provided by XAI tools.

This real-world application underscores the practical utility of the 
proposed approach in operational settings, demonstrating its capacity 
to improve both detection accuracy and response efficiency in modern 
cybersecurity landscapes.

5 Conclusion

Machine Learning-based Intrusion Detection Systems (IDS) can 
be significantly enhanced through the incorporation of Explainable 

Artificial Intelligence (XAI) techniques. In this research, the use of 
XAI tools such as SHAP, LIME, and ELI5 provided critical 
transparency and interpretability to complex machine learning 
models, such as XGBoost, CatBoost, Random Forest, and Multilayer 
Perceptron (MLP). These tools allowed us to break down model 
predictions into human-understandable components, identifying the 
most important features that drive the model’s decision-making 
process. For example, SHAP values in XGBoost explained how 
particular features like sttl and ct_dst_sport_ltm influenced the 
model’s prediction of attack behaviour. This transparency is essential 
in cybersecurity applications, where understanding why a model 
classifies traffic as malicious can improve response strategies and 
build trust in automated systems.

The integration of ML and XAI in IDS was approached using 
established methods like SHAP (SHapley Additive exPlanations), 
LIME (Local Interpretable Model Agnostic Explanations), and ELI5. 
These methods have proven to be  effective in enhancing the 
transparency of various machine learning models used in IDS. For 
instance, SHAP provided comprehensive global and local 
explanations for tree-based models like XGBoost and CatBoost, 
indicating the contributions of different features to the final 
classification of network traffic. LIME offered valuable insights for 
non-tree models like MLP by perturbing the input features and 
generating local surrogate models for interpretability. Similarly, ELI5 
was employed to visualize feature importance in simpler models such 
as Decision Trees, enhancing model understanding. These methods 
were effective in breaking down the “black-box” nature of ML 
models, making them more interpretable and actionable for human 
analysts in real-time cybersecurity operations.

This research has laid the groundwork for understanding the 
role of XAI in enhancing the transparency and interpretability of 
machine learning-based intrusion detection systems. Future work 
can expand on this by exploring additional machine learning 
models, including deep learning architectures like Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 
which have demonstrated high accuracy in network intrusion 
detection but are often criticized for their lack of transparency. 
Integrating XAI techniques like attention mechanisms or saliency 
maps with these models could offer new insights into how they 
make decisions, further demystifying complex architectures. The 
application of XAI in real-time IDS environments should 
be  explored. Developing more lightweight and efficient XAI 
methods that can provide explanations without compromising the 
speed of intrusion detection will be crucial in operational settings. 
This could involve streamlining current XAI techniques to work 
faster or creating hybrid models that blend XAI and real-time 
monitoring features.

Finally, future studies should investigate the application of these 
enhanced ML and XAI systems across different domains of 
cybersecurity, such as cloud security, IoT security, and mobile network 
security. Each domain presents unique challenges that could benefit 
from tailored XAI approaches. Moreover, collaboration with 
cybersecurity experts and practitioners in these fields will help refine 
the XAI techniques to address practical needs, ensuring that the 
explanations provided by ML models are actionable, relevant, and 
useful in real-world scenarios. This continued integration of ML and 
XAI could foster more robust, trustworthy, and transparent intrusion 
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detection systems that enhance the overall security posture of 
modern networks.
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