
Frontiers in Computer Science 01 frontiersin.org

How math shapes the world of
life science animation
Rafael Oliveira 1, Evellyn Araujo Dias 1,2, Ricardo Santos 1,3,
Vinicius Cotta-De-Almeida 4, José Aguiar Coelho Nt 1,5,6 and
Luiz Anastácio Alves 1*
1 Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de
Janeiro, Brazil, 2 Laboratory of Innovations in Therapies, Education and Bioproducts; Oswaldo Cruz
Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil, 3 Faculty of Technological Education of the
State of Rio de Janeiro (FAETERJ), Rio de Janeiro, Brazil, 4 Laboratory on Thymus Research, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil, 5 National Institute of Industrial
Property - INPI, Patent Examination Division XV, Rio de Janeiro, Brazil, 6 Veiga de Almeida University,
Electric Engineering Faculty - Campus Tijuca, Rio de Janeiro, Brazil

With the advances in technology, it is noticeable the educational potential of
animation in the field of cell biology, physiology and other basic life science
disciplines, revolutionizing the learning process in science. This paper elucidates
the role of matrix manipulation in animating figures on screens, elucidates the
distinctions between Scalable Vector Graphics (SVG), bitmap and raster images,
and unveils the inner workings of the Bresenham algorithm in the context of
rendering lines on screens. Furthermore, the article offers a practical dimension
to this theoretical understanding by providing a comprehensive example of code
written in JavaScript for generating an animation, also using HTML and CSS. This
code example is designed to be easy to comprehend, even to those with limited
programming experience, fostering the integration of animations into life science
education. We synthesized findings from various studies to underscore the proven
advantages of this new teaching tool, and by reviewing them, we reaffirm that
animations have a demonstrable impact on improving the learning experience,
making complex physiological processes more comprehensible and engaging.
This highlights the critical role of animations as a pedagogical tool in science
classrooms, and emphasizes the importance of understanding the mathematical
and computational principles that support their creation. By bridging this knowledge
gap, educators and students can make more effective and informed use of existing
animation tools.

KEYWORDS

animation, biology, math, secondary and undergraduate, programming

1 Introduction

Fields like cell biology, physiology, and biochemistry are crucial for understanding disease
mechanisms. However, their study often leans heavily on memorization, making it tedious.
Textbooks, being the primary information source, may fail to offer clear, engaging explanations
(Kalas and Redfield, 2022). To overcome this, animations in these textbooks can aid in
illustrating complex concepts and phenomena. Animations not only capture visual attention,
enhancing long-term memory, but also simplify understanding of dynamic biological
processes (O’Day, 2007; Wildhaber et al., 2011; Peart et al., 2022). They effectively demonstrate
time and space-related changes like protein movements, enzymatic reactions, phagocytosis
processes, cell division. Animations attract and maintain attention, proving beneficial in
learning, marketing, and teaching (O’Day, 2007; Praveen and Srinivasan, 2022). Praveen et al.’s

OPEN ACCESS

EDITED BY

Kostas Karpouzis,
Panteion University, Greece

REVIEWED BY

Ruben Cornelius Siagian,
State University of Medan, Indonesia

*CORRESPONDENCE

Luiz Anastácio Alves
 alveslaa40@gmail.com

RECEIVED 31 October 2024
ACCEPTED 10 June 2025
PUBLISHED 03 July 2025

CITATION

Oliveira R, Dias EA, Santos R,
Cotta- De-Almeida V, Aguiar Coelho Nt J and
Alves LA (2025) How math shapes the world
of life science animation.
Front. Comput. Sci. 7:1520930.
doi: 10.3389/fcomp.2025.1520930

COPYRIGHT

© 2025 Oliveira, Dias, Santos,
Cotta-De-Almeida, Aguiar Coelho Nt and
Alves. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Perspective
PUBLISHED 03 July 2025
DOI 10.3389/fcomp.2025.1520930

https://www.frontiersin.org/computer-science
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1520930&domain=pdf&date_stamp=2025-07-03
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1520930/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1520930/full
mailto:alveslaa40@gmail.com
https://doi.org/10.3389/fcomp.2025.1520930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/computer-science#editorial-board
https://www.frontiersin.org/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1520930

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 02 frontiersin.org

review (2015–2021) on animations’ impact on attention highlights
their role in enhancing learning strategies.

In this digital age, the realm of teaching is being revolutionized
with technology, turning classrooms into dynamic learning
environments. This approach is very effective in demystifying the
complexities of biology. Through virtual tools, what was once abstract
becomes visually tangible, enhancing student understanding
(Veselinovska and Stavreva, 2020). A popular and powerful tool to
help better understand biological processes is animation. Table 1
shows a few softwares available for the purpose of animation and
illustration. With platforms like YouTube, Instagram, and user-
friendly software such as Inkscape, creating and sharing animations
has never been easier (Coluci, 2022). This fusion of technology and
pedagogy is reshaping how we teach and learn.

However, while these tools have become more accessible, there is
still a gap in understanding the fundamental principles behind how
they work. This paper does not suggest that animation via code is
inherently better than using dedicated software. Rather, we argue that
by understanding the mathematical and computational foundations
that power these tools—such as matrix operations, vector geometry,
and rendering algorithms—educators and students can use animation
software more effectively and critically. This knowledge enhances their
ability to customize animations, ensure scientific accuracy, and
develop a more meaningful interpretation of the biological processes
being represented.

While technology has advanced the use of animations in
education, there is still a gap in understanding the core process of
creating these animations. It is crucial to grasp what goes on behind
the software’s interface to better understand how it works and how to
use it properly to create more realistic biological animations. This
article explains some important concepts used in the field of computer
graphics and the mathematics behind it, to illustrate how the process

of creating an animation works. This includes knowledge about how
matrices are utilized in this context and the algorithms involved in
generating vector figures. Understanding these foundational elements
is not necessarily about replacing animation tools, but about
enhancing their use. By grasping the mathematics and logic behind
them, users can create more accurate and effective biological
animations and better evaluate the visual models these tools generate.

2 Vectors and matrices

Mathematics plays a pivotal role in creating accurate and
informative animations of biological processes. For example, when
showing how a cell divides, mathematical algorithms can control the
movement of chromosomes and the shape of the cell as it splits. In
animations of blood circulation, curves and equations are used to
draw smooth, realistic paths that represent how blood flows through
veins and arteries. These mathematical tools allow animations to show
both structure and movement in ways that are easier to understand,
helping students visualize processes that are often hard to grasp
through static images or text alone.

Matrices and vectors are mathematical concepts with wide-
ranging applications, such as in computer graphics. Understanding
matrices and vertices is fundamental to mastering animation and
computer graphics, as they form the backbone of how visual data is
represented and manipulated within digital environments. This article
explains their use in manipulating space through matrix operations
and transformations in computer graphics. It covers the basics of
matrices and vectors, their role in representing space, and how they
are represented in programming languages.

Vectors are essentially ordered lists of elements, useful in
representing directions in space. In computer graphics, they are used
for positions and directions, with 2D coordinates represented by two
indexes (x and y) as represented in Supplementary Figure 1A, and 3D
or 1D space represented by adding or removing components.

In computer graphics, a matrix is a rectangular array of numbers,
symbols, or expressions arranged in rows and columns. Two
representations of matrices and their indexes are shown in
supplementary Figure 1B, the first one representing its indexes as in
mathematics, and the second as in the JavaScript programming
language. Matrices are used to perform various mathematical
operations like shearing, rotations, translations, and scaling, which are
crucial for modeling and rendering images in both 2D and 3D spaces.
Essentially, a vector can be seen as a one-dimensional matrix, with its
indexes representing coordinates. Shapes in space can be represented
by a collection of vectors that define the coordinates of their vertices,
organized within a matrix, where each column corresponds to a vector
representing a vertex. The connections between these vertices form
the structure of the shape.

3 Matrix transformations for shapes

To transform shapes in computer graphics, various matrix
transformations are used. These include translation (moving objects
without changing their form), rotation (changing the object’s angle),
scaling (altering the object’s size), and shearing (modifying the shape
and size along axes). Additionally, matrix addition can combine

TABLE 1 Free softwares for illustration and animation.

Softwares Purpose Website

Krita Illustration and

animation

https://krita.org/

GIMP Illustration https://www.gimp.org/

Inkscape Illustration https://inkscape.org/

FireAlpaca Illustration https://firealpaca.com/

MediBang Paint Illustration https://medibangpaint.com/

Blender Illustration and

animation

https://www.blender.org/

Pencil2D Illustration and

animation

https://www.pencil2d.org/

Synfig Studio Illustration and

animation

https://www.synfig.org/

Vectorian Giotto Illustration and

animation

https://archive.org/details/

vectoriangiotto_201807

Google Web Designer Illustration and

animation

https://webdesigner.withgoogle.

com/intl/pt-BR/

Plastic Animation

Paper (PAP)

Animation https://www.

plasticanimationpaper.dk/

Opentoonz Animation https://opentoonz.github.io/e/

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://krita.org/
https://www.gimp.org/
https://inkscape.org/
https://firealpaca.com/
https://medibangpaint.com/
https://www.blender.org/
https://www.pencil2d.org/
https://www.synfig.org/
https://archive.org/details/vectoriangiotto_201807
https://archive.org/details/vectoriangiotto_201807
https://webdesigner.withgoogle.com/intl/pt-BR/
https://webdesigner.withgoogle.com/intl/pt-BR/
https://www.plasticanimationpaper.dk/
https://www.plasticanimationpaper.dk/
https://opentoonz.github.io/e/

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 03 frontiersin.org

matrices for complex transformations, useful in creating movement
in animations as in Figure 1, which illustrates horizontal and vertical
movement, and in Supplementary Figure 2, which illustrates diagonal
movement. Scalar multiplication changes the length of a vector
without altering its direction as shown in Supplementary Figure 3,
essential for scaling objects uniformly and making vector art
resolution-independent. These transformations play a crucial role in
animating and manipulating objects in computer graphics (Kist, 2020).

In game development platforms, translation, rotation, and scaling
matrices are fundamental for animating characters, controlling object
movement, and simulating realistic environments. These
transformations are often applied iteratively, frame by frame, to
produce smooth and continuous animations. In 3D modeling software
like Blender, matrix operations are essential for transforming meshes,
adjusting camera perspectives, and applying lighting effects during
both modeling and animation workflows. Similarly, in OpenGL—one
of the most commonly used graphics libraries—transformation
matrices are part of the rendering pipeline, enabling efficient
manipulation of objects in real time and supporting animation
through timed updates of matrix values. These practical examples
demonstrate how matrix mathematics underpins many of the visual
effects and animated representations commonly used in scientific
visualization, biology education, and entertainment media.

Besides helping to create movement and transformations,
matrices also play an important role in how fast and smoothly

animations run—especially in real-time environments like simulations
or educational apps. When many objects are moving or changing at
once, the computer needs to do a lot of calculations quickly. Matrix
operations are efficient because they follow simple math rules that
computers can process very fast. In most animation systems, different
transformations (like moving, rotating, and resizing an object) can
be combined into a single matrix, reducing the number of calculations
needed. This makes animations smoother and helps them run well
even on basic computers or in classroom settings. By using optimized
matrix calculations, it’s possible to show complex biological processes,
like the beating of a heart or cell division without lag.

To bring these shapes to life on a digital screen, we must also
understand how they are rendered using pixels and color. Therefore,
it is important to understand how digital screens interpret spatial
information through coordinate systems and how RGB color models
are used to represent visual details in a way that supports both
accuracy and clarity in animated content.

4 Screen and RGB

Understanding how images are displayed on screens involves
different concepts compared to a Cartesian grid. While screens
share similarities with Cartesian grids—such as having specific
coordinates for pixel locations—there are key differences. One

FIGURE 1

Representation of the movement of a triangle through the x and y-axis by addition of matrices m and n, which have 3 vectors that represents
coordinates, resulting in a new matrix m’.

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 04 frontiersin.org

notable distinction is that, on screens, the y-axis is inverted
compared to the Cartesian grid, as illustrated in
Supplementary Figure 4. Each coordinate on the screen represents
a pixel, which typically consists of three subpixels colored Red,
Green, and Blue. This model combines different intensities of
these three colors to produce a wide range of colors (Zelazko,
2023). Unlike the Cartesian grid, screens only use integer
coordinates and have a fixed resolution, determining the
sharpness and detail of the image. In digital color representation,
each color’s intensity is typically stored in a three-index vector,
like {255, 255, 255}. Each index in this vector represents a primary
color (Red, Green, Blue) and can have a value ranging from 0 to
255. By adjusting these values and mixing different intensities, a
wide range of colors can be created. For instance, a vector of {255,
255, 255} would represent the color white. This system allows for
the precise representation of colors on digital screens. Some
examples of visualization can be seen in Supplementary Figure 5,
which shows 3 vectors with 3 indexes each, and the color that they
represent in the RGB model.

While RGB is the standard color model for digital displays, it is
not the only method for representing color. Other models, such as
CMYK (Cyan, Magenta, Yellow, Key/Black) and HSL (Hue,
Saturation, Lightness), offer different approaches to color
representation. CMYK is a subtractive color model commonly used
for production printers, where colors are created by subtracting
varying amounts of ink from a white background. In contrast, HSL
is a cylindrical-coordinate representation of points in an RGB color
model, designed to be more intuitive and perceptually relevant than
the Cartesian (cube) representation. It defines colors in terms of
three components: hue (the type of color), saturation (the intensity
of the color), and lightness (the brightness of the color).
Understanding these alternative models is crucial, as the RGB
system has limitations, especially when colors are reproduced on
different media. A color that appears vibrant on a screen may look
dull when printed, due to the differences in how RGB and CMYK
models represent colors (Ibraheem et al., 2012; Nayyer and Sharma,
2015; Shishmanova and Rinaldi, 2018).

Screen resolution refers to the number of pixels arranged
horizontally and vertically on a digital display, and it directly
influences the clarity and detail of an image. For example, a 720p
screen has a resolution of 1,280 × 720 pixels, while a 4 K screen
displays at 3,840 × 2,160 pixels—offering significantly more visual
information. This difference becomes especially important in
educational animations, where fine structures such as organelles or
cell membranes must be represented clearly. On a lower-resolution
screen, these details may appear blurry or pixelated, reducing the
effectiveness of the visualization. In contrast, higher-resolution
displays allow animations to present smoother lines, sharper edges,
and more precise colors, resulting in a more accurate and engaging
learning experience.

Behind every image rendered on a screen lies a particular type
of graphic structure—either raster-based or vector-based. These
two formats, bitmap and SVG, differ not only in how they store
and organize visual information but also in how they behave when
scaled, manipulated, or animated (Eisenberg, 2002). To deepen
this understanding, the following section will explore the
characteristics, advantages, and limitations of these image formats,
and how each one plays a role in the construction of animations
and illustrations.

5 SVG and bitmap

Imagine a digital world where matrices, vectors, and vertices are
magical tools for creating and transforming images. In this world,
there are two main types of images: raster and vector.
Supplementary Figure 6A shows that a raster image works like digital
pointillism, where tiny colored dots come together to form a picture
(Bosch and Heman, 2005). Zoom in as illustrated in
Supplementary Figure 6B, and you’ll see each individual pixel, much
like looking closely at a pointillist painting.

On the other hand, vector images are like detailed blueprints
describing shapes and lines. These blueprints adjust themselves to
maintain perfection, no matter how much you resize or transform
them. It’s like having a magic wand that keeps everything sharp and
clear. A great example is SVG, a format that stores all the
instructions for creating these magical vector images.
Supplementary Figure 7A illustrates that an SVG is essentially a text
file, which in this instance establishes an area of specific width and
height. Within this area, it defines a line connecting two points with
specified coordinates, colored according to the stroke property.
While this example features a simple line, SVG files can describe
much more complex images. SVGs have the advantage of being able
to render geometrical shapes after transformations, allowing shape
manipulation without quality loss, as shown in
Supplementary Figure 7B. However, vector illustrations generally
require less storage space compared to raster images, as they
describe shapes instead of just color points. It is also important to
note that on a pixel-based monitor, vector art is converted to raster
format for rendering, maintaining the perception of unchanged
quality during transformations (Eisenberg, 2002).

Regarding storage, raster files, especially high-resolution ones,
tend to be larger due to the need to store color information for each
pixel. This can impact loading times and storage space, particularly on
web platforms. Vector files, however, generally have smaller sizes since
they store only the mathematical descriptions of shapes and colors,
making them more efficient for web use.

Understanding these distinctions is crucial when rendering vector
graphics onto raster displays, a process that involves converting
mathematical descriptions into pixel-based representations. This
conversion is where algorithms like Bresenham’s line algorithm
become essential, as they efficiently determine which pixels best
approximate the intended vector shapes, ensuring accurate and
visually appealing results on screen.

6 Bresenham algorithm

Now knowing the basics of how a screen works, what is a vectorial
image and the differences between a raster image, we can dive on the
fundamentals of how vectorial shapes can be rendered. For that
we must understand how programs and operating systems render
information and the algorithm which converts a vectorial line to its
raster image representation.

The text content of Supplementary Figure 7A is a description of the
drawing of Supplementary Figure 7B, with a width and height of 100,
which has a line inside which goes from the coordinates defined on the
points x1, y1 to x2, y2. It also has a property stroke, which has the value
black, that symbolizes the color the line should assume. As discussed
before, the SVG file only gives us information about what should

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 05 frontiersin.org

be rendered in the figure, so it does not render it on the screen. That
would be the job of a rendering engine which could be used by a browser,
an editing software or even a library used by the operating system. In this
case, we will discuss xorg-server and how it renders a line.

X. Org (commonly referred to as Xorg) is the default X Window
System server in Unix-like operating systems, widely used in both
Linux and BSD. This server is open source and widely used, and its
primary function is to provide a platform for displaying graphical
elements on a computer screen and managing input devices like
keyboards and mouses. It acts as an intermediary between applications
(such as browses, drawing software or image visualizers) and the
display hardware. In the xorg-server source code, there is an
implementation of the Bresenham algorithm for computer control of
a digital plotter, which can be used for example to render a straight
vectorial line (such as the one described in the SVG file) as a raster
figure, making it possible to render it on the screen (Bresenham,
1965). Xorg provides an implementation of the Bresenham algorithm
available on the Xorg server GitHub repository. Instead of delving into
Xorg’s specific implementation, we will use a basic JavaScript function
that operates on the same principle. If you are interested in exploring
how Xorg implements Bresenham’s algorithm, their source code is
available online.1

When teaching the principles of computer graphics, especially line
drawing, the Bresenham line drawing algorithm serves as an excellent
example to illustrate how complex visual outcomes can be achieved
through simple mathematical logic. This algorithm provides a
foundational lesson in both the power of algorithmic thinking and the
practical application of mathematical concepts in computer science.

To understand the Bresenham algorithm, let us start with the
basics. Imagine you are tasked with drawing a straight line between
two points on a piece of graph paper, but all you have is a pencil, and
you aim to draw this line as straight as possible without the aid of a
ruler. This scenario closely mimics the challenge faced in computer
graphics when attempting to render a straight line between two points
on a pixelated display.

In computer graphics, the screen can be thought of as a grid of
pixels, similar to the squares on graph paper. The challenge is
determining which pixels to “light up” so that they collectively form
what appears to be a straight line to the human eye. This is where the
Bresenham algorithm comes into play, acting as a guide to select the
most appropriate pixels for this task.

The beauty of the Bresenham algorithm lies in its simplicity and
efficiency. It uses only integer addition and subtraction to make
decisions, avoiding the computational overhead associated with
floating-point arithmetic. This simplicity is critical for real-time
rendering, where computational speed is paramount, such as in video
games or interactive applications.

Here’s how the algorithm works in a pedagogical context: Starting
Point: The algorithm begins at the first pixel or point; Decision Making:
At each step, it evaluates the pixels that lie along the path of the line and
selects the next pixel that will keep the line as straight as possible, based
on the line equation = +y mx c, where m is the slope of the line and c
is the y-intercept; Adjustment for Steep Lines: If the line is particularly

1 https://github.com/XQuartz/xorg-server/blob/0ea9b595891f2f319155381

92961f3404d9ca699/fb/fbseg.c

steep, the algorithm adjusts its selection strategy to ensure the visual
integrity of the line remains intact; Practical Application: Imagine
drawing a line from two coordinates such as (0, 0) to (15, 10). Direct
drawing might lead to discrepancies between the actual and desired
line paths due to pixel alignment issues. The algorithm solves this by
determining which pixel best represents each segment of the line, based
on their proximity to the theoretical line path; Calculation of Distances:
This involves computing the distances between the theoretical line and
the candidate pixels, using these calculations to make informed
decisions about which pixel to illuminate; Handling Cases of
inclination: When a line has a high slope, greater than 1, it can
be challenging to draw it accurately using the basic Bresenham
algorithm. In such cases, the algorithm adjusts its strategy to ensure the
line’s visual integrity remains intact. For lines with a slope greater than
1, the algorithm swaps the roles of x and y coordinates. This effectively
treats the line as if it were sloping less than 1, simplifying the rendering
process. In summary, the Bresenham algorithm is a fundamental tool
in computer graphics, providing a simple yet effective method for
rendering straight lines on a pixelated display. By understanding its
principles and adaptations for different line slopes, developers can
achieve efficient and accurate line rendering in various applications.

In the context of Figure 2A, Bresenham’s algorithm tackles a
fundamental challenge in rasterization: determining which theoretical
point, M1 or M2, should be rendered on the screen based on the
distance to M. Figure 2B elucidates that the algorithm operates by
evaluating the distances d1 between M1 and M and d2 between M2
and M. The initial error, denoted as P1, crucially arises from the
combination of d1 and d2, with their differences simplified. This error
serves as a pivotal factor in selecting the appropriate pixel along the
line within the Bresenham line drawing algorithm. It’s noteworthy to
further expound that in Figure 2B, the coordinates of point M are
represented as x, y, where y can be determined from x by the line
equation ()+ +1km x c . As illustrated in the figure, the coordinates of
points M1 and M2 are +  1,k kx y and + +  1 1, ,k kx y respectively.
However, due to the integer nature of coordinate representations and
pixel indexes, the x-coordinate values vary by one unit between
consecutive pixels, as do their respective indexes.
Hence, + += +1 1 1k kx x .

The parameter Pk captures the discrepancy between the
theoretical position of the line and its actual representation on the
screen. It is essential for determining the next pixel to render along the
line, guiding the algorithm’s decision-making process. This Pk
represents the initial decision parameter used in the Bresenham line

FIGURE 2

How to better understand Bresenham’s algorithm. (A) A display with
a line and three points, M, M1 and M2. (B) A display with a line, three
points, M, M1, M2 and two distances d1, d2.

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://github.com/XQuartz/xorg-server/blob/0ea9b595891f2f31915538192961f3404d9ca699/fb/fbseg.c
https://github.com/XQuartz/xorg-server/blob/0ea9b595891f2f31915538192961f3404d9ca699/fb/fbseg.c

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 06 frontiersin.org

drawing algorithm and is crucial for determining the next pixel along
the line to render.

 = −1 kd y y

 += −12 kd y y

 () = + + − 1 1kd m x c yk

 ()+  = − + + 12 1k kd y m x c

The difference d1 - d2 results in:

 ()() ()() − = + + − − + − + + 1 2 1 1 1k k k kd d m x c y y m x c

and, with a simple algebraic manipulation:

 ()− = + − + −1 2 2 1 2 2 1k kd d m x y c

Substituting d1 - d2 into Bresenham’s initial error equation and
mΔx for Δy:

() () = ∆ − = ∆ + − + − 1 2 2 1 2 2 1k k kP x d d x m x y c

 ()= ∆ + − ∆ + ∆ −∆2 1 2 2k k kP y x xy xc x

This Pk represents the initial decision parameter used in the
Bresenham line drawing algorithm and is crucial for determining the
next pixel along the line to render. However, the algorithm needs to
be recursive, so we need to check Pk + 1, starting with its base value
from the difference to Pk:

 = ∆ − ∆ + ∆ + ∆ −∆2 2 2 2k k kP yx xy y c x x

 + + += ∆ − ∆ + ∆ + ∆ −∆1 1 12 2 2 2k k kP yx xy y c x x

 + + +  − = ∆ − ∆ − ∆ − ∆    1 1 12 2 2 2k k k k k kP P yx xy yx xy

 () ()+ + +− = ∆ − − ∆ −1 1 12 2k k k k k kP P y x x x y y

Considering that xk + 1 = xk + 1, we need to factor in that yk + 1 is
a variable value based on PK:

 () ()+ += + ∆ + − − ∆ −1 12 1 2k k k k k kP P y x x x y y

As Pk = Δx (d1–d2), if the distance d2 is bigger than d1 on
Figure 2B (which implies Pk < 0), the best value to represent the new
y coordinate would be yk + 1 = yk, and if d1 > d2, the best value would
be yk + 1 = yk+1.

So, if Pk < 0:

 + = + ∆1 2k kP P y

 + =1k ky y

else:

 + = + ∆ − ∆1 2 2k kP P y x

 + = +1 1k ky y

Now we should get the starting value of Pk.

 = ∆ − ∆ + ∆ + ∆ −∆k2 2 2 2k kP yx xy y xc x

For getting the starting value we must first derive the value of c
from the line formula:

 = +1 1y mx c

 = −1 1c y mx

∆ = −  ∆ 
1 1

yc y x
x

Then substitute it on P1:

 ∆ = ∆ − ∆ + ∆ + ∆ − −∆  ∆  
1 1 1 1 12 2 2 2 yP yx xy y x y x x

x

With a few simplifications we get the initial value of P1:

 = ∆ −∆1 2P y x

The sequence of deductions is accurate, with the that it’s important
to note that, in cases where the algorithm deals with lines of small
slopes, m < 1. Additionally, since Δy over Δx appears in the
denominator in certain equations, it could never be zero. However, this
is circumvented by the algorithm’s treatment of vertical lines, which
allows for the manipulation of coordinates x and y as if they were
horizontal lines.

And then there is Bresenham’s algorithm. Educationally, the
Bresenham algorithm is not just about drawing lines. It’s a lesson in
optimization, efficiency, and the application of discrete mathematics
in solving real-world problems. It demonstrates how a series of
intelligent decisions, based on simple arithmetic, can create a visually
perfect representation of a line on a pixelated display. For better
understanding readers can access videos available online which
visually explain the Bradenham’s algorithm and how to implement it,
such as the one available at this link: https://www.youtube.com/
watch?v=CceepU1vIKo.

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://www.youtube.com/watch?v=CceepU1vIKo
https://www.youtube.com/watch?v=CceepU1vIKo

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 07 frontiersin.org

This approach of breaking down complex problems into
manageable steps is a cornerstone of computational thinking and
algorithm design, making the Bresenham algorithm a valuable
pedagogical tool in computer science education.

7 Code demonstration

To better illustrate how to apply the concepts of vector graphics,
coordinates, and transformations to create animations, a simple
application employing HTML (HyperText Markup Language), CSS
(Cascading Style Sheets), and JavaScript was described. The concept
of a basic HTML structure for the web page is outlined below. HTML
is tasked with defining the layout and elements of the project. The
HTML includes a canvas element with the id “cartesian-plane,”
designated for rendering the animation. Additionally, it features an
input labeled “BPM:” and a button named “Update BPM,” which are
intended for setting the animation’s speed through user input.

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-

scale=1.0" />
 <title>Smooth Heart Expansion and Contraction</title>
 <!-- CSS Styles -->
 <style>
 body {
 background-color: #121212; /* Dark background */
 display: flex;
 justify-content: center;
 align-items: center;
 height: 100vh;
 margin: 0;
 }
 #labelBpmInput {
 color: white;
 }
 canvas {
 border: 2px solid #fff; /* White border */
 }
 </style>
 </head>
 <body>
 <canvas id="cartesian-plane" width="400" height="400">

</canvas>
 <label id="labelBpmInput" for="bpmInput">BPM:</label>
 <input type="number" id="bpmInput" min="1" max="240"

step="1" value="60" />
 <button onclick="updateInterval()">Update BPM</

button>
 <script>
 // JavaScript code will be explained below
 </script>
 </body>
 </html>

The CSS styles, also implemented in the example, serve as a
language for styling and laying out web pages. CSS dictates the display
of HTML elements on screen, with the ability to control a vast array
of web page appearance aspects, including font, color, size, spacing,
and the layout of elements. Lastly, the JavaScript code is charged with
creating and managing the heart’s expansion and contraction
animation. JavaScript, a programming language designed to add
interactivity to the webpage, can facilitate the creation of animations,
games, and other interactive elements. This code is articulated through
a series of statements, which are directives for the computer’s
operation. These statements are organized into blocks of code using
curly braces ({}).

The function below establishes the Cartesian plane on the
canvas, providing a grid and axes for reference. This code segment
begins by setting the color palette for the plane and determining
the line width. Subsequently, vertical and horizontal lines are
drawn to form a grid pattern. Ultimately, the x and y axes are
delineated in white.

 // JavaScript
 // Constants for animation scaling
 const SCALE_MIN = 1.0;
 const SCALE_MAX = 1.2;
 const SCALE_STEP = 0.01;
 // Variables to control animation state
 let scaleFactor = SCALE_MIN;
 let expanding = true;
 let bpm = 60;
 let lastTimestamp = 0;
 let interval = 60000 / bpm; // milliseconds per beat
 // Function to create the Cartesian plane
 function createCartesianPlane() {
 const canvas = document.getElementById("cartesian-plane");
 const ctx = canvas.getContext("2d");
 // Configure color palette for the Cartesian plane
 ctx.strokeStyle = "#ccc"; // Gray
 ctx.lineWidth = 1;
 // Draw vertical lines
 for (let x = 0; x < canvas.width; x += 20) {
 ctx.beginPath();
 ctx.moveTo(x, 0);
 ctx.lineTo(x, canvas.height);
 ctx.stroke();
 }
 // Draw horizontal lines
 for (let y = 0; y < canvas.height; y += 20) {
 ctx.beginPath();
 ctx.moveTo(0, y);
 ctx.lineTo(canvas.width, y);
 ctx.stroke();
 }
 // Draw x and y axes
 ctx.strokeStyle = "#fff "; // White
 ctx.beginPath();
 ctx.moveTo(canvas.width / 2, 0);
 ctx.lineTo(canvas.width / 2, canvas.height);
 ctx.stroke();

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 08 frontiersin.org

 ctx.beginPath();
 ctx.moveTo(0, canvas.height / 2);
 ctx.lineTo(canvas.width, canvas.height / 2);
 ctx.stroke();
 }

The code presented below adjusts the color palette for the lines
and fixes the line width. This function processes the coordinates and
calculates the pixel positions for line drawing. Following this, it
completes the path and executes the line rendering. // Function to
draw lines between coordinates

 function drawLines(coordinates) {
 const canvas = document.getElementById("cartesian-plane");
 const ctx = canvas.getContext("2d");
 // Configure color palette for the lines
 ctx.strokeStyle = "#ff0000"; // Red
 ctx.lineWidth = 3;
 ctx.beginPath();
 // Iterate through the coordinates matrix and draw lines
 for (const [x, y] of coordinates) {
 const centerX = canvas.width / 2;
 const centerY = canvas.height / 2;
 const pointX = centerX + x * 20;
 const pointY = centerY + y * -20; // Negative y-coordinate
 ctx.lineTo(pointX, pointY);
 }
 // Complete the path and draw the lines
 ctx.stroke();
 }

The constant heartShape represents the array of the coordinates
of points that form a heart shape. These points will be scaled to create
the animation.

 // Heart shape represented as a set of coordinates
 const heartShape = [
 [0, 1], [1, 2], [2, 2], [3, 1], [3, 0],
 [0, -3], [-3, 0], [-3, 1], [-2, 2], [-1, 2], [0, 1],
];

The function below manages the heart expansion and contraction
animation. It initiates by clearing the canvas and re-establishing the
Cartesian plane. The animation fluctuates between the heart shape’s
expansion and contraction, influenced by the expanding variable. The
scale factor, scaleFactor, is modified accordingly. The heart shape’s
coordinates are scaled utilizing the scaleFactor. The drawLines
function is then invoked to depict the heart shape. The animation
ceases when the heart shape reverts to its original size.

 function animateHeart(timestamp) {
 if (!lastTimestamp || timestamp - lastTimestamp >= interval) {
 // Update the scale factor
 scaleFactor += expanding? SCALE_STEP: -SCALE_STEP;
 if (scaleFactor >= SCALE_MAX || scaleFactor <=

SCALE_MIN) {
 expanding = !expanding;
 }

 // Scale the heart shape
 const scaledCoordinates = heartShape.map(([x, y]) => [x *

scaleFactor, y * scaleFactor]);
 // Redraw canvas
 createCartesianPlane();
 drawLines(scaledCoordinates);
 lastTimestamp = timestamp;
 }
 requestAnimationFrame(animateHeart);
 }
 // Function to update the BPM and corresponding interval
 function updateInterval() {
 const input = document.getElementById("bpmInput").value;
 bpm = parseInt(input);
 interval = 60000 / bpm;
 lastTimestamp = 0;
 }

An illustration of how the HTML animation appears in the first
frame can be observed, from which point the heart will enlarge and
shrink by 20% based on the entered BPM speed. The complete heart
animation is hosted at https://www.cienciaimago.com/heart_imago.
html. This article dissected the provided, elucidating the role and
functionality of each segment. It also acquainted the reader with the
foundational concepts of animations utilizing canvas and JavaScript.
Notably, the line drawing algorithm employed bears resemblance to
Bresenham’s, in that it is supplied with two coordinates and rasterizes
a line between them.

8 Discussion

The basic concepts of computer graphics help to understand
how animations are created, from writing the initial code to the
final product that is shown on the screen. It’s important that
students and professors understand more deeply what they are
seeing, and the process behind that, so they can create their own
animations and illustrations to propagate knowledge. A few
studies conducted with students already showed that animations
can help the understanding of subjects like biology. A quiz with
questions on apoptosis was conducted after students saw either
the lecture, or the lecture with also an animation about the topic.
The results show that the average of correct questions was higher
on students that saw both contents. The questions that involved
definitions of the subject were not enhanced, but the ones that
were about the order or location of the events of apoptosis were
(Stith, 2004). Another study was conducted in a biology classroom
with the subject of mitosis and meiosis, and the classroom was
divided into different groups. As a result, they suggest that the
animation significantly improved student retention of the content
in students that had the animation with the lecture and as an
individual study aid, suggesting that this is the best approach
(Veselinovska and Stavreva, 2020). Coluci et al. also states that
animations have been used to facilitate learning both in the
classroom and in individual study (Coluci, 2022). When it comes
to the complexity of the animation, a study on molecular biology
showed that even being exposed to a greater visual complexity,
students were able to focus on the more thematically

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://www.cienciaimago.com/heart_imago.html
https://www.cienciaimago.com/heart_imago.html

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 09 frontiersin.org

relevant aspects of the animation. Furthermore, it was established
that this kind of animation contributed the greatest level of insight
into the events depicted. This observation implies that students
are more capable of processing visual complexity than the
literature on cognitive load would suggest (Jenkinson and
McGill, 2013).

Since a few studies showed that animation helps students improve
their knowledge in biological processes, the recommendation is that
teachers adopt the use of this technology along the traditional ways of
teaching to improve students’ learning (Awofodu et al., 2022).

However, these studies often lack a critical examination of the
underlying mechanisms that make animations effective, such as the
mathematical and computational principles involved in their
creation. Moreover, they frequently overlook variables like students’
prior knowledge of technology, the complexity of the animations,
and the potential cognitive load imposed by dynamic visuals.

The current study addresses these gaps by exploring not only the
educational benefits of animations in biology but also the
mathematical and programming concepts that underpin their
development. By elucidating the processes of matrix transformations,
rendering algorithms, and graphical programming, this research
provides educators and students with a deeper understanding of how
animations are constructed and how they can be effectively utilized
in teaching complex biological processes. This integrated approach
aims to bridge the gap between theoretical knowledge and practical
application, offering a more comprehensive perspective on the use of
animations in science education and highlighting the role of
computer graphics as a vital tool in developing effective
educational resources.

9 Conclusion

The use of animation in life science education represents a
significant leap forward in how we teach and understand complex
biological concepts. Animation, by its very nature, simplifies and
visualizes processes that are difficult to grasp through traditional
teaching methods. For students, this means that the often invisible or
abstract phenomena of biology, such as cellular mechanisms, genetic
processes, and ecological interactions, can be made visible and
tangible. For educators, animations offer a dynamic way to present
biological content. They can break down the steps of a process, like
photosynthesis or mitosis, into digestible, sequential animations. This
not only aids in retention but also helps students make connections
between concepts. Visual learners, in particular, can benefit
significantly from animations, but the interactive nature of animated
content also engages kinesthetic and auditory learners by providing
a multi-sensory learning experience. This inclusivity enhances the
overall educational environment, making biology more accessible to
a broader range of students.

By revealing the principles behind animation tools—such as
vector operations, matrix transformations, coordinate systems,
and rendering algorithms—we aim to empower educators and
students to not only use animations more effectively but also to
critically engage with how they are built. This approach
encourages a deeper comprehension of visualized biological
processes and opens the door for more meaningful customization

and innovation in educational content. Practically, this
understanding can enhance the creation of accurate and didactic
animations in classrooms, particularly in contexts where access to
professional tools is limited.

Future studies could explore the impact of teaching the
mathematical and programming principles underlying animations on
biology students’ comprehension of complex processes. An interesting
approach would be exploring how these foundational concepts can
be integrated into virtual and augmented reality environments to
create immersive and interactive biology learning experiences.
Additionally, empirical studies comparing learning outcomes with and
without such math-based animation frameworks could help validate
their impact and further refine best practices for implementation in
science education.

To maximize the benefits of animation in biology education, it is
essential to provide clear recommendations. Educators should
incorporate animations into curricula to illustrate complex processes,
while professional development programs can equip teachers with the
skills needed to create and utilize these tools effectively. Content
developers must prioritize scientific accuracy, ideally collaborating with
subject matter experts. The development and implementation of high-
quality animations often require substantial technical expertise and
financial resources, which may not be readily available in all educational
institutions, particularly those with limited funding. Due to that,
policymakers should support initiatives that increase access to animation
resources and training, especially in under-resourced settings.
Additionally, future studies should consider factors such as cultural
relevance and technological accessibility to inform best practices.

In summary, integrating animation into biology education has the
potential to transform traditional teaching methods, especially for
complex topics. Emphasizing both the use of animation software and
the conceptual foundations of computer graphics and mathematics
will empower users to fully realize the potential of these tools and
shape the future of science education.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

RO: Data curation, Investigation, Software, Validation, Writing –
original draft, Writing – review & editing. EA: Data curation,
Investigation, Writing – original draft, Writing – review & editing. RS:
Writing – review & editing. VC-D-A: Writing – review & editing. JC:
Writing – review & editing. LA: Conceptualization, Writing – original
draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org

Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 10 frontiersin.org

Acknowledgments

The authors would like to thank the Oswaldo Cruz Institute,
CNPQ and FAPERJ for their support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcomp.2025.1520930/
full#supplementary-material

SUPPLEMENTARY FIGURE 1

Representations of Vectors and Matrices. (A) Representations of an
unidimensional and a tridimensional vector. (B) Representations of a matrix.

SUPPLEMENTARY FIGURE 2

Representation of the diagonal movement of the triangle through the axis by
addition of matrices m, n and v which have 3 one dimensional vectors which
represent coordinates, resulting in a new matrix m’.

SUPPLEMENTARY FIGURE 3

Representation of the scaling of the triangle by multiplication of the matrix m
which has 3 one dimensional vectors which represent coordinates, resulting
in a new matrix m’.

SUPPLEMENTARY FIGURE 4

Representation of the difference between the axes of a cartesian grid and
a screen.

SUPPLEMENTARY FIGURE 5

Vectors and the color that they represent according to the RGB system. Each
of these vectors have 3 indexes, which combined represents a unique color.

SUPPLEMENTARY FIGURE 6

Raster image and how it works. (A) A drawing representation of how a raster
image works. Each pixel has a color value and so they have a fixed resolution,
however there is a problem with said approach, the figure can’t be as easily
transformed or resized without the loss of quality or characteristics. (B) A
drawing representation of a raster image in its normal size and after
being ampliated.

SUPPLEMENTARY FIGURE 7

SVG image and how it works (A) A SVG file of a line and the code that creates
it. This shows the content of a basic SVG file and what it renders. (B) A SVG
drawing of a cell, showing that even if it is ampliated, image quality is not lost.

References
Awofodu, A. D., Ogbonnaya, U., Ogundele, O. E., Zangonde, G. S., and

Odusanwo, E. O. (2022). The use of video and cartoon concepts in the teaching and
learning of secondary school biology. Afr. J. Sci. Technol. Math. 8, 196–201.

Bosch, R., and Heman, A. (2005). Pointillism via linear programming. UMAP J. 26,
405–411. doi: 10.2307/27646402

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Syst.
J. 4, 25–30. doi: 10.1147/sj.41.0025

Coluci, V. R. (2022). Animações de Conceitos da Teoria de Erros Usando Manim/
Python. Rev. Bras. Ensino Fis. 44:e20210239. doi: 10.1590/1806-9126-RBEF-2021-0239

Eisenberg, J. D. (2002). SVG Essentials. O’Reilly.

Ibraheem, N. A., Hasan, M. M., Khan, R. Z., and Mishra, P. K. (2012). Understanding
color models: a review. ARPN J. Sci. Technol. 2, 265–275.

Jenkinson, J., and McGill, G. (2013). Using 3D animation in biology education:
examining the effects of visual complexity in the representation of dynamic molecular
events. J. Biocommun. 39, 42–49.

Kalas, P., and Redfield, R. J. (2022). Using animations to teach biological processes and
principles. PLoS Biol. 20:e3001875. doi: 10.1371/journal.pbio.3001875

Kist, G. (2020). Abordagem Da Utilização Da Álgebra Linear Em Transformações
Geométricas Implementadas Na Visão Computacional. Rio Grande do Sul: Universidade
do Vale do Taquari - UNIVATES.

Nayyer, R., and Sharma, B. (2015). Use and analysis of color models in image
processing. Int. J. Adv. Sci. Res. 1, 329–330. doi: 10.7439/ijasr.v1i8.2460

O’Day, D. H. (2007). The value of animations in biology teaching: a study of long-term
memory retention. CBE Life Sci. Educ. 6, 217–223. doi: 10.1187/cbe.07-01-0002

Peart, D. J., Keane, K. M., Allen, G., Bruce-Martin, C., and Rumbold, P. L. S. (2022).
Using animations to support student learning in undergraduate physiology. J. Biol. Educ.
56, 432–442. doi: 10.1080/00219266.2020.1821082

Praveen, C. K., and Srinivasan, K. (2022). Psychological impact and influence of
animation on viewer’s visual attention and cognition: a systematic literature review, open
challenges, and future research directions. Comput. Math. Methods Med. 2022:8802542.
doi: 10.1155/2022/8802542

Shishmanova, S., and Rinaldi, A. (2018). RGB color wheel intended to create color
harmony compositions in modern art and design. EPH - Int. J. Sci. Eng. 4, 45–57. doi:
10.53555/eijse.v4i4.163

Stith, B. J. (2004). Use of animation in teaching cell biology. Cell Biol. Educ. 3, 181–188.
doi: 10.1187/cbe.03-10-0018

Veselinovska, S. S., and Stavreva, A. (2020). The impact of the usage of web animation
in teaching molecular and cellular biology. J. Educ. Sci. Theory Pract. 11, 116–127. doi:
10.46763/jespt

Wildhaber, R. A., Verrey, F., and Wenger, R. H. (2011). A graphical simulation
software for instruction in cardiovascular mechanics physiology. Biomed. Eng. Online
10, 1–6. doi: 10.1186/1475-925X-10-8

Zelazko, A. (2023). RGB colour model. Encyclopedia Britannica. Available
online at: https://www.britannica.com/science/RGB-colour-model (Accessed August
24, 2023).

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1520930/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1520930/full#supplementary-material
https://doi.org/10.2307/27646402
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.1590/1806-9126-RBEF-2021-0239
https://doi.org/10.1371/journal.pbio.3001875
https://doi.org/10.7439/ijasr.v1i8.2460
https://doi.org/10.1187/cbe.07-01-0002
https://doi.org/10.1080/00219266.2020.1821082
https://doi.org/10.1155/2022/8802542
https://doi.org/10.53555/eijse.v4i4.163
https://doi.org/10.1187/cbe.03-10-0018
https://doi.org/10.46763/jespt
https://doi.org/10.1186/1475-925X-10-8
https://www.britannica.com/science/RGB-colour-model

	How math shapes the world of life science animation
	1 Introduction
	2 Vectors and matrices
	3 Matrix transformations for shapes
	4 Screen and RGB
	5 SVG and bitmap
	6 Bresenham algorithm
	7 Code demonstration
	8 Discussion
	9 Conclusion

	 References

