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With the advances in technology, it is noticeable the educational potential of 
animation in the field of cell biology, physiology and other basic life science 
disciplines, revolutionizing the learning process in science. This paper elucidates 
the role of matrix manipulation in animating figures on screens, elucidates the 
distinctions between Scalable Vector Graphics (SVG), bitmap and raster images, 
and unveils the inner workings of the Bresenham algorithm in the context of 
rendering lines on screens. Furthermore, the article offers a practical dimension 
to this theoretical understanding by providing a comprehensive example of code 
written in JavaScript for generating an animation, also using HTML and CSS. This 
code example is designed to be easy to comprehend, even to those with limited 
programming experience, fostering the integration of animations into life science 
education. We synthesized findings from various studies to underscore the proven 
advantages of this new teaching tool, and by reviewing them, we reaffirm that 
animations have a demonstrable impact on improving the learning experience, 
making complex physiological processes more comprehensible and engaging. 
This highlights the critical role of animations as a pedagogical tool in science 
classrooms, and emphasizes the importance of understanding the mathematical 
and computational principles that support their creation. By bridging this knowledge 
gap, educators and students can make more effective and informed use of existing 
animation tools.
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1 Introduction

Fields like cell biology, physiology, and biochemistry are crucial for understanding disease 
mechanisms. However, their study often leans heavily on memorization, making it tedious. 
Textbooks, being the primary information source, may fail to offer clear, engaging explanations 
(Kalas and Redfield, 2022). To overcome this, animations in these textbooks can aid in 
illustrating complex concepts and phenomena. Animations not only capture visual attention, 
enhancing long-term memory, but also simplify understanding of dynamic biological 
processes (O’Day, 2007; Wildhaber et al., 2011; Peart et al., 2022). They effectively demonstrate 
time and space-related changes like protein movements, enzymatic reactions, phagocytosis 
processes, cell division. Animations attract and maintain attention, proving beneficial in 
learning, marketing, and teaching (O’Day, 2007; Praveen and Srinivasan, 2022). Praveen et al.’s 
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review (2015–2021) on animations’ impact on attention highlights 
their role in enhancing learning strategies.

In this digital age, the realm of teaching is being revolutionized 
with technology, turning classrooms into dynamic learning 
environments. This approach is very effective in demystifying the 
complexities of biology. Through virtual tools, what was once abstract 
becomes visually tangible, enhancing student understanding 
(Veselinovska and Stavreva, 2020). A popular and powerful tool to 
help better understand biological processes is animation. Table  1 
shows a few softwares available for the purpose of animation and 
illustration. With platforms like YouTube, Instagram, and user-
friendly software such as Inkscape, creating and sharing animations 
has never been easier (Coluci, 2022). This fusion of technology and 
pedagogy is reshaping how we teach and learn.

However, while these tools have become more accessible, there is 
still a gap in understanding the fundamental principles behind how 
they work. This paper does not suggest that animation via code is 
inherently better than using dedicated software. Rather, we argue that 
by understanding the mathematical and computational foundations 
that power these tools—such as matrix operations, vector geometry, 
and rendering algorithms—educators and students can use animation 
software more effectively and critically. This knowledge enhances their 
ability to customize animations, ensure scientific accuracy, and 
develop a more meaningful interpretation of the biological processes 
being represented.

While technology has advanced the use of animations in 
education, there is still a gap in understanding the core process of 
creating these animations. It is crucial to grasp what goes on behind 
the software’s interface to better understand how it works and how to 
use it properly to create more realistic biological animations. This 
article explains some important concepts used in the field of computer 
graphics and the mathematics behind it, to illustrate how the process 

of creating an animation works. This includes knowledge about how 
matrices are utilized in this context and the algorithms involved in 
generating vector figures. Understanding these foundational elements 
is not necessarily about replacing animation tools, but about 
enhancing their use. By grasping the mathematics and logic behind 
them, users can create more accurate and effective biological 
animations and better evaluate the visual models these tools generate.

2 Vectors and matrices

Mathematics plays a pivotal role in creating accurate and 
informative animations of biological processes. For example, when 
showing how a cell divides, mathematical algorithms can control the 
movement of chromosomes and the shape of the cell as it splits. In 
animations of blood circulation, curves and equations are used to 
draw smooth, realistic paths that represent how blood flows through 
veins and arteries. These mathematical tools allow animations to show 
both structure and movement in ways that are easier to understand, 
helping students visualize processes that are often hard to grasp 
through static images or text alone.

Matrices and vectors are mathematical concepts with wide-
ranging applications, such as in computer graphics. Understanding 
matrices and vertices is fundamental to mastering animation and 
computer graphics, as they form the backbone of how visual data is 
represented and manipulated within digital environments. This article 
explains their use in manipulating space through matrix operations 
and transformations in computer graphics. It covers the basics of 
matrices and vectors, their role in representing space, and how they 
are represented in programming languages.

Vectors are essentially ordered lists of elements, useful in 
representing directions in space. In computer graphics, they are used 
for positions and directions, with 2D coordinates represented by two 
indexes (x and y) as represented in Supplementary Figure 1A, and 3D 
or 1D space represented by adding or removing components.

In computer graphics, a matrix is a rectangular array of numbers, 
symbols, or expressions arranged in rows and columns. Two 
representations of matrices and their indexes are shown in 
supplementary Figure 1B, the first one representing its indexes as in 
mathematics, and the second as in the JavaScript programming 
language. Matrices are used to perform various mathematical 
operations like shearing, rotations, translations, and scaling, which are 
crucial for modeling and rendering images in both 2D and 3D spaces. 
Essentially, a vector can be seen as a one-dimensional matrix, with its 
indexes representing coordinates. Shapes in space can be represented 
by a collection of vectors that define the coordinates of their vertices, 
organized within a matrix, where each column corresponds to a vector 
representing a vertex. The connections between these vertices form 
the structure of the shape.

3 Matrix transformations for shapes

To transform shapes in computer graphics, various matrix 
transformations are used. These include translation (moving objects 
without changing their form), rotation (changing the object’s angle), 
scaling (altering the object’s size), and shearing (modifying the shape 
and size along axes). Additionally, matrix addition can combine 

TABLE 1 Free softwares for illustration and animation.

Softwares Purpose Website

Krita Illustration and 

animation

https://krita.org/

GIMP Illustration https://www.gimp.org/

Inkscape Illustration https://inkscape.org/

FireAlpaca Illustration https://firealpaca.com/

MediBang Paint Illustration https://medibangpaint.com/

Blender Illustration and 

animation

https://www.blender.org/

Pencil2D Illustration and 

animation

https://www.pencil2d.org/

Synfig Studio Illustration and 

animation

https://www.synfig.org/

Vectorian Giotto Illustration and 

animation

https://archive.org/details/

vectoriangiotto_201807

Google Web Designer Illustration and 

animation

https://webdesigner.withgoogle.

com/intl/pt-BR/

Plastic Animation 

Paper (PAP)

Animation https://www.

plasticanimationpaper.dk/

Opentoonz Animation https://opentoonz.github.io/e/
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matrices for complex transformations, useful in creating movement 
in animations as in Figure 1, which illustrates horizontal and vertical 
movement, and in Supplementary Figure 2, which illustrates diagonal 
movement. Scalar multiplication changes the length of a vector 
without altering its direction as shown in Supplementary Figure 3, 
essential for scaling objects uniformly and making vector art 
resolution-independent. These transformations play a crucial role in 
animating and manipulating objects in computer graphics (Kist, 2020).

In game development platforms, translation, rotation, and scaling 
matrices are fundamental for animating characters, controlling object 
movement, and simulating realistic environments. These 
transformations are often applied iteratively, frame by frame, to 
produce smooth and continuous animations. In 3D modeling software 
like Blender, matrix operations are essential for transforming meshes, 
adjusting camera perspectives, and applying lighting effects during 
both modeling and animation workflows. Similarly, in OpenGL—one 
of the most commonly used graphics libraries—transformation 
matrices are part of the rendering pipeline, enabling efficient 
manipulation of objects in real time and supporting animation 
through timed updates of matrix values. These practical examples 
demonstrate how matrix mathematics underpins many of the visual 
effects and animated representations commonly used in scientific 
visualization, biology education, and entertainment media.

Besides helping to create movement and transformations, 
matrices also play an important role in how fast and smoothly 

animations run—especially in real-time environments like simulations 
or educational apps. When many objects are moving or changing at 
once, the computer needs to do a lot of calculations quickly. Matrix 
operations are efficient because they follow simple math rules that 
computers can process very fast. In most animation systems, different 
transformations (like moving, rotating, and resizing an object) can 
be combined into a single matrix, reducing the number of calculations 
needed. This makes animations smoother and helps them run well 
even on basic computers or in classroom settings. By using optimized 
matrix calculations, it’s possible to show complex biological processes, 
like the beating of a heart or cell division without lag.

To bring these shapes to life on a digital screen, we must also 
understand how they are rendered using pixels and color. Therefore, 
it is important to understand how digital screens interpret spatial 
information through coordinate systems and how RGB color models 
are used to represent visual details in a way that supports both 
accuracy and clarity in animated content.

4 Screen and RGB

Understanding how images are displayed on screens involves 
different concepts compared to a Cartesian grid. While screens 
share similarities with Cartesian grids—such as having specific 
coordinates for pixel locations—there are key differences. One 

FIGURE 1

Representation of the movement of a triangle through the x and y-axis by addition of matrices m and n, which have 3 vectors that represents 
coordinates, resulting in a new matrix m’.

https://doi.org/10.3389/fcomp.2025.1520930
https://www.frontiersin.org/computer-science
https://www.frontiersin.org


Oliveira et al. 10.3389/fcomp.2025.1520930

Frontiers in Computer Science 04 frontiersin.org

notable distinction is that, on screens, the y-axis is inverted 
compared to the Cartesian grid, as illustrated in 
Supplementary Figure 4. Each coordinate on the screen represents 
a pixel, which typically consists of three subpixels colored Red, 
Green, and Blue. This model combines different intensities of 
these three colors to produce a wide range of colors (Zelazko, 
2023). Unlike the Cartesian grid, screens only use integer 
coordinates and have a fixed resolution, determining the 
sharpness and detail of the image. In digital color representation, 
each color’s intensity is typically stored in a three-index vector, 
like {255, 255, 255}. Each index in this vector represents a primary 
color (Red, Green, Blue) and can have a value ranging from 0 to 
255. By adjusting these values and mixing different intensities, a 
wide range of colors can be created. For instance, a vector of {255, 
255, 255} would represent the color white. This system allows for 
the precise representation of colors on digital screens. Some 
examples of visualization can be seen in Supplementary Figure 5, 
which shows 3 vectors with 3 indexes each, and the color that they 
represent in the RGB model.

While RGB is the standard color model for digital displays, it is 
not the only method for representing color. Other models, such as 
CMYK (Cyan, Magenta, Yellow, Key/Black) and HSL (Hue, 
Saturation, Lightness), offer different approaches to color 
representation. CMYK is a subtractive color model commonly used 
for production printers, where colors are created by subtracting 
varying amounts of ink from a white background. In contrast, HSL 
is a cylindrical-coordinate representation of points in an RGB color 
model, designed to be more intuitive and perceptually relevant than 
the Cartesian (cube) representation. It defines colors in terms of 
three components: hue (the type of color), saturation (the intensity 
of the color), and lightness (the brightness of the color). 
Understanding these alternative models is crucial, as the RGB 
system has limitations, especially when colors are reproduced on 
different media. A color that appears vibrant on a screen may look 
dull when printed, due to the differences in how RGB and CMYK 
models represent colors (Ibraheem et al., 2012; Nayyer and Sharma, 
2015; Shishmanova and Rinaldi, 2018).

Screen resolution refers to the number of pixels arranged 
horizontally and vertically on a digital display, and it directly 
influences the clarity and detail of an image. For example, a 720p 
screen has a resolution of 1,280 × 720 pixels, while a 4 K screen 
displays at 3,840 × 2,160 pixels—offering significantly more visual 
information. This difference becomes especially important in 
educational animations, where fine structures such as organelles or 
cell membranes must be represented clearly. On a lower-resolution 
screen, these details may appear blurry or pixelated, reducing the 
effectiveness of the visualization. In contrast, higher-resolution 
displays allow animations to present smoother lines, sharper edges, 
and more precise colors, resulting in a more accurate and engaging 
learning experience.

Behind every image rendered on a screen lies a particular type 
of graphic structure—either raster-based or vector-based. These 
two formats, bitmap and SVG, differ not only in how they store 
and organize visual information but also in how they behave when 
scaled, manipulated, or animated (Eisenberg, 2002). To deepen 
this understanding, the following section will explore the 
characteristics, advantages, and limitations of these image formats, 
and how each one plays a role in the construction of animations 
and illustrations.

5 SVG and bitmap

Imagine a digital world where matrices, vectors, and vertices are 
magical tools for creating and transforming images. In this world, 
there are two main types of images: raster and vector. 
Supplementary Figure 6A shows that a raster image works like digital 
pointillism, where tiny colored dots come together to form a picture 
(Bosch and Heman, 2005). Zoom in as illustrated in 
Supplementary Figure 6B, and you’ll see each individual pixel, much 
like looking closely at a pointillist painting.

On the other hand, vector images are like detailed blueprints 
describing shapes and lines. These blueprints adjust themselves to 
maintain perfection, no matter how much you resize or transform 
them. It’s like having a magic wand that keeps everything sharp and 
clear. A great example is SVG, a format that stores all the 
instructions for creating these magical vector images. 
Supplementary Figure 7A illustrates that an SVG is essentially a text 
file, which in this instance establishes an area of specific width and 
height. Within this area, it defines a line connecting two points with 
specified coordinates, colored according to the stroke property. 
While this example features a simple line, SVG files can describe 
much more complex images. SVGs have the advantage of being able 
to render geometrical shapes after transformations, allowing shape 
manipulation without quality loss, as shown in 
Supplementary Figure 7B. However, vector illustrations generally 
require less storage space compared to raster images, as they 
describe shapes instead of just color points. It is also important to 
note that on a pixel-based monitor, vector art is converted to raster 
format for rendering, maintaining the perception of unchanged 
quality during transformations (Eisenberg, 2002).

Regarding storage, raster files, especially high-resolution ones, 
tend to be larger due to the need to store color information for each 
pixel. This can impact loading times and storage space, particularly on 
web platforms. Vector files, however, generally have smaller sizes since 
they store only the mathematical descriptions of shapes and colors, 
making them more efficient for web use.

Understanding these distinctions is crucial when rendering vector 
graphics onto raster displays, a process that involves converting 
mathematical descriptions into pixel-based representations. This 
conversion is where algorithms like Bresenham’s line algorithm 
become essential, as they efficiently determine which pixels best 
approximate the intended vector shapes, ensuring accurate and 
visually appealing results on screen.

6 Bresenham algorithm

Now knowing the basics of how a screen works, what is a vectorial 
image and the differences between a raster image, we can dive on the 
fundamentals of how vectorial shapes can be  rendered. For that 
we must understand how programs and operating systems render 
information and the algorithm which converts a vectorial line to its 
raster image representation.

The text content of Supplementary Figure 7A is a description of the 
drawing of Supplementary Figure 7B, with a width and height of 100, 
which has a line inside which goes from the coordinates defined on the 
points x1, y1 to x2, y2. It also has a property stroke, which has the value 
black, that symbolizes the color the line should assume. As discussed 
before, the SVG file only gives us information about what should 
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be rendered in the figure, so it does not render it on the screen. That 
would be the job of a rendering engine which could be used by a browser, 
an editing software or even a library used by the operating system. In this 
case, we will discuss xorg-server and how it renders a line.

X. Org (commonly referred to as Xorg) is the default X Window 
System server in Unix-like operating systems, widely used in both 
Linux and BSD. This server is open source and widely used, and its 
primary function is to provide a platform for displaying graphical 
elements on a computer screen and managing input devices like 
keyboards and mouses. It acts as an intermediary between applications 
(such as browses, drawing software or image visualizers) and the 
display hardware. In the xorg-server source code, there is an 
implementation of the Bresenham algorithm for computer control of 
a digital plotter, which can be used for example to render a straight 
vectorial line (such as the one described in the SVG file) as a raster 
figure, making it possible to render it on the screen (Bresenham, 
1965). Xorg provides an implementation of the Bresenham algorithm 
available on the Xorg server GitHub repository. Instead of delving into 
Xorg’s specific implementation, we will use a basic JavaScript function 
that operates on the same principle. If you are interested in exploring 
how Xorg implements Bresenham’s algorithm, their source code is 
available online.1

When teaching the principles of computer graphics, especially line 
drawing, the Bresenham line drawing algorithm serves as an excellent 
example to illustrate how complex visual outcomes can be achieved 
through simple mathematical logic. This algorithm provides a 
foundational lesson in both the power of algorithmic thinking and the 
practical application of mathematical concepts in computer science.

To understand the Bresenham algorithm, let us start with the 
basics. Imagine you are tasked with drawing a straight line between 
two points on a piece of graph paper, but all you have is a pencil, and 
you aim to draw this line as straight as possible without the aid of a 
ruler. This scenario closely mimics the challenge faced in computer 
graphics when attempting to render a straight line between two points 
on a pixelated display.

In computer graphics, the screen can be thought of as a grid of 
pixels, similar to the squares on graph paper. The challenge is 
determining which pixels to “light up” so that they collectively form 
what appears to be a straight line to the human eye. This is where the 
Bresenham algorithm comes into play, acting as a guide to select the 
most appropriate pixels for this task.

The beauty of the Bresenham algorithm lies in its simplicity and 
efficiency. It uses only integer addition and subtraction to make 
decisions, avoiding the computational overhead associated with 
floating-point arithmetic. This simplicity is critical for real-time 
rendering, where computational speed is paramount, such as in video 
games or interactive applications.

Here’s how the algorithm works in a pedagogical context: Starting 
Point: The algorithm begins at the first pixel or point; Decision Making: 
At each step, it evaluates the pixels that lie along the path of the line and 
selects the next pixel that will keep the line as straight as possible, based 
on the line equation = +y mx c, where m is the slope of the line and c 
is the y-intercept; Adjustment for Steep Lines: If the line is particularly 

1 https://github.com/XQuartz/xorg-server/blob/0ea9b595891f2f319155381

92961f3404d9ca699/fb/fbseg.c

steep, the algorithm adjusts its selection strategy to ensure the visual 
integrity of the line remains intact; Practical Application: Imagine 
drawing a line from two coordinates such as (0, 0) to (15, 10). Direct 
drawing might lead to discrepancies between the actual and desired 
line paths due to pixel alignment issues. The algorithm solves this by 
determining which pixel best represents each segment of the line, based 
on their proximity to the theoretical line path; Calculation of Distances: 
This involves computing the distances between the theoretical line and 
the candidate pixels, using these calculations to make informed 
decisions about which pixel to illuminate; Handling Cases of 
inclination: When a line has a high slope, greater than 1, it can 
be  challenging to draw it accurately using the basic Bresenham 
algorithm. In such cases, the algorithm adjusts its strategy to ensure the 
line’s visual integrity remains intact. For lines with a slope greater than 
1, the algorithm swaps the roles of x and y coordinates. This effectively 
treats the line as if it were sloping less than 1, simplifying the rendering 
process. In summary, the Bresenham algorithm is a fundamental tool 
in computer graphics, providing a simple yet effective method for 
rendering straight lines on a pixelated display. By understanding its 
principles and adaptations for different line slopes, developers can 
achieve efficient and accurate line rendering in various applications.

In the context of Figure  2A, Bresenham’s algorithm tackles a 
fundamental challenge in rasterization: determining which theoretical 
point, M1 or M2, should be rendered on the screen based on the 
distance to M. Figure 2B elucidates that the algorithm operates by 
evaluating the distances d1 between M1 and M and d2 between M2 
and M. The initial error, denoted as P1, crucially arises from the 
combination of d1 and d2, with their differences simplified. This error 
serves as a pivotal factor in selecting the appropriate pixel along the 
line within the Bresenham line drawing algorithm. It’s noteworthy to 
further expound that in Figure 2B, the coordinates of point M are 
represented as x, y, where y can be determined from x by the line 
equation ( )+ +1km x c . As illustrated in the figure, the coordinates of 
points M1 and M2 are +  1,k kx y  and + +  1 1, ,k kx y  respectively. 
However, due to the integer nature of coordinate representations and 
pixel indexes, the x-coordinate values vary by one unit between 
consecutive pixels, as do their respective indexes. 
Hence, + += +1 1 1k kx x .

The parameter Pk captures the discrepancy between the 
theoretical position of the line and its actual representation on the 
screen. It is essential for determining the next pixel to render along the 
line, guiding the algorithm’s decision-making process. This Pk 
represents the initial decision parameter used in the Bresenham line 

FIGURE 2

How to better understand Bresenham’s algorithm. (A) A display with 
a line and three points, M, M1 and M2. (B) A display with a line, three 
points, M, M1, M2 and two distances d1, d2.
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drawing algorithm and is crucial for determining the next pixel along 
the line to render.

 = −1 kd y y

 += −12 kd y y

 ( ) = + + − 1 1kd m x c yk

 ( )+  = − + + 12 1k kd y m x c

The difference d1 - d2 results in:

 ( )( ) ( )( ) − = + + − − + − + + 1 2 1 1 1k k k kd d m x c y y m x c

and, with a simple algebraic manipulation:

 ( )− = + − + −1 2 2 1 2 2 1k kd d m x y c

Substituting d1 - d2 into Bresenham’s initial error equation and 
mΔx for Δy:

 
( ) ( ) = ∆ − = ∆ + − + − 1 2 2 1 2 2 1k k kP x d d x m x y c

 ( )= ∆ + − ∆ + ∆ −∆2 1 2 2k k kP y x xy xc x

This Pk represents the initial decision parameter used in the 
Bresenham line drawing algorithm and is crucial for determining the 
next pixel along the line to render. However, the algorithm needs to 
be recursive, so we need to check Pk + 1, starting with its base value 
from the difference to Pk:

 = ∆ − ∆ + ∆ + ∆ −∆2 2 2 2k k kP yx xy y c x x

 + + += ∆ − ∆ + ∆ + ∆ −∆1 1 12 2 2 2k k kP yx xy y c x x

 + + +  − = ∆ − ∆ − ∆ − ∆    1 1 12 2 2 2k k k k k kP P yx xy yx xy

 ( ) ( )+ + +− = ∆ − − ∆ −1 1 12 2k k k k k kP P y x x x y y

Considering that xk + 1 = xk + 1, we need to factor in that yk + 1 is 
a variable value based on PK:

 ( ) ( )+ += + ∆ + − − ∆ −1 12 1 2k k k k k kP P y x x x y y

As Pk = Δx (d1–d2), if the distance d2 is bigger than d1 on 
Figure 2B (which implies Pk < 0), the best value to represent the new 
y coordinate would be yk + 1 = yk, and if d1 > d2, the best value would 
be yk + 1 = yk+1.

So, if Pk < 0:

 + = + ∆1 2k kP P y

 + =1k ky y

else:

 + = + ∆ − ∆1 2 2k kP P y x

 + = +1 1k ky y

Now we should get the starting value of Pk.

 = ∆ − ∆ + ∆ + ∆ −∆k2 2 2 2k kP yx xy y xc x

For getting the starting value we must first derive the value of c 
from the line formula:

 = +1 1y mx c

 = −1 1c y mx

 

∆ = −  ∆ 
1 1

yc y x
x

Then substitute it on P1:

 

 ∆ = ∆ − ∆ + ∆ + ∆ − −∆  ∆  
1 1 1 1 12 2 2 2 yP yx xy y x y x x

x

With a few simplifications we get the initial value of P1:

 = ∆ −∆1 2P y x

The sequence of deductions is accurate, with the that it’s important 
to note that, in cases where the algorithm deals with lines of small 
slopes, m < 1. Additionally, since Δy over Δx appears in the 
denominator in certain equations, it could never be zero. However, this 
is circumvented by the algorithm’s treatment of vertical lines, which 
allows for the manipulation of coordinates x and y as if they were 
horizontal lines.

And then there is Bresenham’s algorithm. Educationally, the 
Bresenham algorithm is not just about drawing lines. It’s a lesson in 
optimization, efficiency, and the application of discrete mathematics 
in solving real-world problems. It demonstrates how a series of 
intelligent decisions, based on simple arithmetic, can create a visually 
perfect representation of a line on a pixelated display. For better 
understanding readers can access videos available online which 
visually explain the Bradenham’s algorithm and how to implement it, 
such as the one available at this link: https://www.youtube.com/
watch?v=CceepU1vIKo.
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This approach of breaking down complex problems into 
manageable steps is a cornerstone of computational thinking and 
algorithm design, making the Bresenham algorithm a valuable 
pedagogical tool in computer science education.

7 Code demonstration

To better illustrate how to apply the concepts of vector graphics, 
coordinates, and transformations to create animations, a simple 
application employing HTML (HyperText Markup Language), CSS 
(Cascading Style Sheets), and JavaScript was described. The concept 
of a basic HTML structure for the web page is outlined below. HTML 
is tasked with defining the layout and elements of the project. The 
HTML includes a canvas element with the id “cartesian-plane,” 
designated for rendering the animation. Additionally, it features an 
input labeled “BPM:” and a button named “Update BPM,” which are 
intended for setting the animation’s speed through user input.

     <!DOCTYPE html>
     <html lang="en">
     <head>
        <meta charset="UTF-8" />
          <meta name="viewport" content="width=device-width, initial- 

scale=1.0" />
       <title>Smooth Heart Expansion and Contraction</title>
       <!-- CSS Styles -->
       <style>
         body {
           background-color: #121212; /* Dark background */
           display: flex;
           justify-content: center;
           align-items: center;
           height: 100vh;
           margin: 0;
         }
         #labelBpmInput {
           color: white;
         }
         canvas {
           border: 2px solid #fff; /* White border */
         }
       </style>
     </head>
     <body>
   <canvas id="cartesian-plane" width="400" height="400"> 

</canvas>
       <label id="labelBpmInput" for="bpmInput">BPM:</label>
       <input type="number" id="bpmInput" min="1" max="240" 

step="1" value="60" />
 <button onclick="updateInterval()">Update BPM</ 

button>
       <script>
         // JavaScript code will be explained below
       </script>
     </body>
     </html>

The CSS styles, also implemented in the example, serve as a 
language for styling and laying out web pages. CSS dictates the display 
of HTML elements on screen, with the ability to control a vast array 
of web page appearance aspects, including font, color, size, spacing, 
and the layout of elements. Lastly, the JavaScript code is charged with 
creating and managing the heart’s expansion and contraction 
animation. JavaScript, a programming language designed to add 
interactivity to the webpage, can facilitate the creation of animations, 
games, and other interactive elements. This code is articulated through 
a series of statements, which are directives for the computer’s 
operation. These statements are organized into blocks of code using 
curly braces ({}).

The function below establishes the Cartesian plane on the 
canvas, providing a grid and axes for reference. This code segment 
begins by setting the color palette for the plane and determining 
the line width. Subsequently, vertical and horizontal lines are 
drawn to form a grid pattern. Ultimately, the x and y axes are 
delineated in white.

     // JavaScript
     // Constants for animation scaling
     const SCALE_MIN = 1.0;
     const SCALE_MAX = 1.2;
     const SCALE_STEP = 0.01;
     // Variables to control animation state
     let scaleFactor = SCALE_MIN;
     let expanding = true;
     let bpm = 60;
     let lastTimestamp = 0;
     let interval = 60000 / bpm; // milliseconds per beat
     // Function to create the Cartesian plane
     function createCartesianPlane() {
         const canvas = document.getElementById("cartesian-plane");
        const ctx = canvas.getContext("2d");
        // Configure color palette for the Cartesian plane
        ctx.strokeStyle = "#ccc"; // Gray
        ctx.lineWidth = 1;
        // Draw vertical lines
        for (let x = 0; x < canvas.width; x += 20) {
         ctx.beginPath();
         ctx.moveTo(x, 0);
         ctx.lineTo(x, canvas.height);
         ctx.stroke();
       }
        // Draw horizontal lines
        for (let y = 0; y < canvas.height; y += 20) {
         ctx.beginPath();
         ctx.moveTo(0, y);
         ctx.lineTo(canvas.width, y);
         ctx.stroke();
       }
        // Draw x and y axes
        ctx.strokeStyle = "#fff "; // White
        ctx.beginPath();
        ctx.moveTo(canvas.width / 2, 0);
        ctx.lineTo(canvas.width / 2, canvas.height);
        ctx.stroke();
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        ctx.beginPath();
        ctx.moveTo(0, canvas.height / 2);
        ctx.lineTo(canvas.width, canvas.height / 2);
        ctx.stroke();
     }

The code presented below adjusts the color palette for the lines 
and fixes the line width. This function processes the coordinates and 
calculates the pixel positions for line drawing. Following this, it 
completes the path and executes the line rendering.     // Function to 
draw lines between coordinates

     function drawLines(coordinates) {
       const canvas = document.getElementById("cartesian-plane");
       const ctx = canvas.getContext("2d");
       // Configure color palette for the lines
       ctx.strokeStyle = "#ff0000"; // Red
       ctx.lineWidth = 3;
       ctx.beginPath();
       // Iterate through the coordinates matrix and draw lines
       for (const [x, y] of coordinates) {
         const centerX = canvas.width / 2;
         const centerY = canvas.height / 2;
         const pointX = centerX + x * 20;
         const pointY = centerY + y * -20; // Negative y-coordinate
         ctx.lineTo(pointX, pointY);
       }
       // Complete the path and draw the lines
       ctx.stroke();
     }

The constant heartShape represents the array of the coordinates 
of points that form a heart shape. These points will be scaled to create 
the animation.

     // Heart shape represented as a set of coordinates
     const heartShape = [
       [0, 1], [1, 2], [2, 2], [3, 1], [3, 0],
       [0, -3], [-3, 0], [-3, 1], [-2, 2], [-1, 2], [0, 1],
     ];

The function below manages the heart expansion and contraction 
animation. It initiates by clearing the canvas and re-establishing the 
Cartesian plane. The animation fluctuates between the heart shape’s 
expansion and contraction, influenced by the expanding variable. The 
scale factor, scaleFactor, is modified accordingly. The heart shape’s 
coordinates are scaled utilizing the scaleFactor. The drawLines 
function is then invoked to depict the heart shape. The animation 
ceases when the heart shape reverts to its original size.

     function animateHeart(timestamp) {
       if (!lastTimestamp || timestamp - lastTimestamp >= interval) {
      // Update the scale factor
      scaleFactor += expanding? SCALE_STEP: -SCALE_STEP;
      if (scaleFactor >= SCALE_MAX || scaleFactor <= 

SCALE_MIN) {
        expanding = !expanding;
      }

      // Scale the heart shape
      const scaledCoordinates = heartShape.map(([x, y]) => [x * 

scaleFactor, y * scaleFactor]);
      // Redraw canvas
      createCartesianPlane();
      drawLines(scaledCoordinates);
      lastTimestamp = timestamp;
       }
       requestAnimationFrame(animateHeart);
     }
     // Function to update the BPM and corresponding interval
     function updateInterval() {
       const input = document.getElementById("bpmInput").value;
       bpm = parseInt(input);
       interval = 60000 / bpm;
       lastTimestamp = 0;
     }

An illustration of how the HTML animation appears in the first 
frame can be observed, from which point the heart will enlarge and 
shrink by 20% based on the entered BPM speed. The complete heart 
animation is hosted at https://www.cienciaimago.com/heart_imago.
html. This article dissected the provided, elucidating the role and 
functionality of each segment. It also acquainted the reader with the 
foundational concepts of animations utilizing canvas and JavaScript. 
Notably, the line drawing algorithm employed bears resemblance to 
Bresenham’s, in that it is supplied with two coordinates and rasterizes 
a line between them.

8 Discussion

The basic concepts of computer graphics help to understand 
how animations are created, from writing the initial code to the 
final product that is shown on the screen. It’s important that 
students and professors understand more deeply what they are 
seeing, and the process behind that, so they can create their own 
animations and illustrations to propagate knowledge. A few 
studies conducted with students already showed that animations 
can help the understanding of subjects like biology. A quiz with 
questions on apoptosis was conducted after students saw either 
the lecture, or the lecture with also an animation about the topic. 
The results show that the average of correct questions was higher 
on students that saw both contents. The questions that involved 
definitions of the subject were not enhanced, but the ones that 
were about the order or location of the events of apoptosis were 
(Stith, 2004). Another study was conducted in a biology classroom 
with the subject of mitosis and meiosis, and the classroom was 
divided into different groups. As a result, they suggest that the 
animation significantly improved student retention of the content 
in students that had the animation with the lecture and as an 
individual study aid, suggesting that this is the best approach 
(Veselinovska and Stavreva, 2020). Coluci et al. also states that 
animations have been used to facilitate learning both in the 
classroom and in individual study (Coluci, 2022). When it comes 
to the complexity of the animation, a study on molecular biology 
showed that even being exposed to a greater visual complexity, 
students were able to focus on the more thematically 
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relevant aspects of the animation. Furthermore, it was established 
that this kind of animation contributed the greatest level of insight 
into the events depicted. This observation implies that students 
are more capable of processing visual complexity than the 
literature on cognitive load would suggest (Jenkinson and 
McGill, 2013).

Since a few studies showed that animation helps students improve 
their knowledge in biological processes, the recommendation is that 
teachers adopt the use of this technology along the traditional ways of 
teaching to improve students’ learning (Awofodu et al., 2022).

However, these studies often lack a critical examination of the 
underlying mechanisms that make animations effective, such as the 
mathematical and computational principles involved in their 
creation. Moreover, they frequently overlook variables like students’ 
prior knowledge of technology, the complexity of the animations, 
and the potential cognitive load imposed by dynamic visuals.

The current study addresses these gaps by exploring not only the 
educational benefits of animations in biology but also the 
mathematical and programming concepts that underpin their 
development. By elucidating the processes of matrix transformations, 
rendering algorithms, and graphical programming, this research 
provides educators and students with a deeper understanding of how 
animations are constructed and how they can be effectively utilized 
in teaching complex biological processes. This integrated approach 
aims to bridge the gap between theoretical knowledge and practical 
application, offering a more comprehensive perspective on the use of 
animations in science education and highlighting the role of 
computer graphics as a vital tool in developing effective 
educational resources.

9 Conclusion

The use of animation in life science education represents a 
significant leap forward in how we teach and understand complex 
biological concepts. Animation, by its very nature, simplifies and 
visualizes processes that are difficult to grasp through traditional 
teaching methods. For students, this means that the often invisible or 
abstract phenomena of biology, such as cellular mechanisms, genetic 
processes, and ecological interactions, can be  made visible and 
tangible. For educators, animations offer a dynamic way to present 
biological content. They can break down the steps of a process, like 
photosynthesis or mitosis, into digestible, sequential animations. This 
not only aids in retention but also helps students make connections 
between concepts. Visual learners, in particular, can benefit 
significantly from animations, but the interactive nature of animated 
content also engages kinesthetic and auditory learners by providing 
a multi-sensory learning experience. This inclusivity enhances the 
overall educational environment, making biology more accessible to 
a broader range of students.

By revealing the principles behind animation tools—such as 
vector operations, matrix transformations, coordinate systems, 
and rendering algorithms—we aim to empower educators and 
students to not only use animations more effectively but also to 
critically engage with how they are built. This approach 
encourages a deeper comprehension of visualized biological 
processes and opens the door for more meaningful customization 

and innovation in educational content. Practically, this 
understanding can enhance the creation of accurate and didactic 
animations in classrooms, particularly in contexts where access to 
professional tools is limited.

Future studies could explore the impact of teaching the 
mathematical and programming principles underlying animations on 
biology students’ comprehension of complex processes. An interesting 
approach would be exploring how these foundational concepts can 
be  integrated into virtual and augmented reality environments to 
create immersive and interactive biology learning experiences. 
Additionally, empirical studies comparing learning outcomes with and 
without such math-based animation frameworks could help validate 
their impact and further refine best practices for implementation in 
science education.

To maximize the benefits of animation in biology education, it is 
essential to provide clear recommendations. Educators should 
incorporate animations into curricula to illustrate complex processes, 
while professional development programs can equip teachers with the 
skills needed to create and utilize these tools effectively. Content 
developers must prioritize scientific accuracy, ideally collaborating with 
subject matter experts. The development and implementation of high-
quality animations often require substantial technical expertise and 
financial resources, which may not be readily available in all educational 
institutions, particularly those with limited funding. Due to that, 
policymakers should support initiatives that increase access to animation 
resources and training, especially in under-resourced settings. 
Additionally, future studies should consider factors such as cultural 
relevance and technological accessibility to inform best practices.

In summary, integrating animation into biology education has the 
potential to transform traditional teaching methods, especially for 
complex topics. Emphasizing both the use of animation software and 
the conceptual foundations of computer graphics and mathematics 
will empower users to fully realize the potential of these tools and 
shape the future of science education.
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SUPPLEMENTARY FIGURE 1

Representations of Vectors and Matrices. (A) Representations of an 
unidimensional and a tridimensional vector. (B) Representations of a matrix.

SUPPLEMENTARY FIGURE 2

Representation of the diagonal movement of the triangle through the axis by 
addition of matrices m, n and v which have 3 one dimensional vectors which 
represent coordinates, resulting in a new matrix m’.

SUPPLEMENTARY FIGURE 3

Representation of the scaling of the triangle by multiplication of the matrix m 
which has 3 one dimensional vectors which represent coordinates, resulting 
in a new matrix m’.

SUPPLEMENTARY FIGURE 4

Representation of the difference between the axes of a cartesian grid and 
a screen.

SUPPLEMENTARY FIGURE 5

Vectors and the color that they represent according to the RGB system. Each 
of these vectors have 3 indexes, which combined represents a unique color.

SUPPLEMENTARY FIGURE 6

Raster image and how it works. (A) A drawing representation of how a raster 
image works. Each pixel has a color value and so they have a fixed resolution, 
however there is a problem with said approach, the figure can’t be as easily 
transformed or resized without the loss of quality or characteristics. (B) A 
drawing representation of a raster image in its normal size and after 
being ampliated.

SUPPLEMENTARY FIGURE 7

SVG image and how it works (A) A SVG file of a line and the code that creates 
it. This shows the content of a basic SVG file and what it renders. (B) A SVG 
drawing of a cell, showing that even if it is ampliated, image quality is not lost.
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